Abstract
Although there are numerous publications on amygdala volumetry, so far there has not been many studies on modeling local amygdala surface shape variations in a rigorous framework. This paper present a systematic framework for modeling local amygdala shape. Using a novel surface flattening technique, we obtain a smooth mapping from the amygdala surface to a sphere. Then taking the spherical coordinates as a reference frame, amygdala surfaces are parameterized as a weighted linear combination of smooth basis functions using the recently developed weighted spherical harmonic representation. This new representation is used for parameterizing, smoothing and nonlinearly registering a group of amygdala surfaces. The methodology has been applied in detecting abnormal local shape variations in 23 autistic subjects compared against 24 normal controls. We did not detect any statistically significant abnormal amygdala shape variations in autistic subjects. The complete amygdala surface modeling codes used in this study is available at http://www.stat.wisc.edu/~mchung/research/amygdala.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angenent, S., Hacker, S., Tannenbaum, A., Kikinis, R.: On the laplace-beltrami operator and brain surface flattening. IEEE Transactions on Medical Imaging 18, 700–711 (1999)
Aylward, E.H., Minshew, N.J., Goldstein, G., Honeycutt, N.A., Augustine, A.M., Yates, K.O., Bartra, P.E., Pearlson, G.D.: Mri volumes of amygdala and hippocampus in nonmentally retarded autistic adolescents and adults. Neurology 53, 2145–2150 (1999)
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc, Ser. B 57, 289–300 (1995)
Brechbuhler, C., Gerig, G., Kubler, O.: Parametrization of closed surfaces for 3d shape description. Computer Vision and Image Understanding 61, 154–170 (1995)
Chung, M.K., Shen, L., Dalton, K.M., Evans, A.C., Davidson, R.J.: Weighted fourier representation and its application to quantifying the amount of gray matter. IEEE transactions on medical imaging 26, 566–581 (2007)
Convit, A., McHugh, P., Wolf, O.T., de Leon, M.J., Bobinkski, M., De Santi, S., Roche, A., Tsui, W.: Mri volume of the amygdala: a reliable method allowing separation from the hippocampal formation. Psychiatry Res. 90, 113–123 (1999)
Dalton, K.M., Nacewicz, B.M., Johnstone, T., Schaefer, H.S., Gernsbacher, M.A., Goldsmith, H.H., Alexander, A.L., Davidson, R.J.: Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience 8, 519–526 (2005)
Gerig, G., Styner, M., Jones, D., Weinberger, D., Lieberman, J.: Shape analysis of brain ventricles using spharm. In: MMBIA, pp. 171–178 (2001)
Gu, X., Wang, Y.L., Chan, T.F., Thompson, T.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging 23, 1–10 (2004)
Haznedar, M.M., Buchsbaum, M.S., Wei, T.C., Hof, P.R., Cartwright, C., Bienstock, E., Hollander, C.A.: Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. American Journal of Psychiatry 157, 1994–2001 (2000)
Hurdal, M.K., Stephenson, K.: Cortical cartography using the discrete conformal approach of circle packings. NeuroImage 23, S119–S128 (2004)
Kelemen, A., Szekely, G., Gerig, G.: Elastic model-based segmentation of 3-d neuroradiological data sets. IEEE Transactions on Medical Imaging 18, 828–839 (1999)
Miller, M.I., Banerjee, A., Christensen, G.E., Joshi, S.C., Khaneja, N., Grenander, U., Matejic, L.: Statistical methods in computational anatomy. Statistical Methods in Medical Research 6, 267–299 (1997)
Nacewicz, B.M., Dalton, K.M., Johnstone, T., Long, M.T., McAuliff, E.M., Oakes, T.R., Alexander, A.L., Davidson, R.J.: Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Arch. Gen. Psychiatry. 63, 1417–1428 (2006)
Shen, L., Ford, J., Makedon, F., Saykin, A.: surface-based approach for classification of 3d neuroanatomical structures. Intelligent Data Analysis 8, 519–542 (2004)
Sparks, B.F., Friedman, S.D., Shaw, D.W., Aylward, E.H., Echelard, D., Artru, A.A., Maravilla, K.R., Giedd, J.N., Munson, J., Dawson, G., Dager, S.R.: Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59, 184–192 (2002)
Timsari, B., Leahy, R.: An optimization method for creating semi-isometric flat maps of the cerebral cortex. In: The Proceedings of SPIE, Medical Imaging (2000)
Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C.: A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4, 58–73 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chung, M.K., Nacewicz, B.M., Wang, S., Dalton, K.M., Pollak, S., Davidson, R.J. (2008). Amygdala Surface Modeling with Weighted Spherical Harmonics . In: Dohi, T., Sakuma, I., Liao, H. (eds) Medical Imaging and Augmented Reality. MIAR 2008. Lecture Notes in Computer Science, vol 5128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79982-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-79982-5_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79981-8
Online ISBN: 978-3-540-79982-5
eBook Packages: Computer ScienceComputer Science (R0)