[go: up one dir, main page]

Skip to main content

A New Meccano Technique for Adaptive 3-D Triangulations

  • Conference paper
Proceedings of the 16th International Meshing Roundtable

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ALBERTA - An Adaptive Hierarchical Finite Element Toolbox, http://www.alberta-fem.de/

    Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programing: theory and algorithms. John Wiley and Sons Inc, New York

    MATH  Google Scholar 

  • Carey GF (1997) Computational grids: generation, adaptation, and solution strategies. Taylor & Francis, Washington

    Google Scholar 

  • Carey GF (2006) A perspective on adaptive modeling and meshing (AM&M). Comput Meth Appl Mech Eng 195:214–235

    Article  MATH  MathSciNet  Google Scholar 

  • Escobar JM, Montenegro R (1996) Several aspects of three-dimensional Delaunay triangulation. Adv Eng Soft 27:27–39

    Article  Google Scholar 

  • Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Meth Appl Mech Eng 192:2775–2787

    Article  MATH  Google Scholar 

  • Escobar JM, Montero G, Montenegro R, E. Rodríguez E (2006) An algebraic method for smoothing surface triangulations on a local parametric space. Int J Num Meth Eng 66:740–760

    Article  MATH  Google Scholar 

  • Ferragut F, Montenegro R, Plaza A (1994) Efficient refinement/derefinement algorithm of nested meshes to solve evolution problems. Comm Num Meth Eng 10:403–412

    Article  MATH  MathSciNet  Google Scholar 

  • Freitag LA, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Num Meth Eng 49:109–125

    Article  MATH  Google Scholar 

  • Freitag LA, Knupp PM (2002) Tetrahedral mesh improvement via optimization of the element condition number. Int J Num Meth Eng 53:1377–1391

    Article  MATH  MathSciNet  Google Scholar 

  • Frey PJ, George PL (2000) Mesh generation. Hermes Sci Publishing, Oxford

    MATH  Google Scholar 

  • George PL, Hecht F, Saltel E (1991) Automatic mesh generation with specified boundary. Comput Meth Appl Mech Eng 92:269–288

    Article  MATH  MathSciNet  Google Scholar 

  • George PL, Borouchaki H (1998) Delaunay triangulation and meshing: application to finite elements. Editions Hermes, Paris

    MATH  Google Scholar 

  • González-Yuste JM, Montenegro R, Escobar JM, Montero G, Rodríguez E (2004) Local refinement of 3-D triangulations using object-oriented methods. Adv Eng Soft 35:693–702

    Article  MATH  Google Scholar 

  • Knupp PM (2000) Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated quantities. Part II-A frame work for volume mesh optimization and the condition number of the jacobian matrix. Int J Num Meth Eng 48:1165–1185

    Article  MATH  Google Scholar 

  • Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23:193–218

    Article  MATH  MathSciNet  Google Scholar 

  • Kossaczky I (1994) A recursive approach to local mesh refinement in two and three dimensions. J Comput Appl Math 55:275–288

    Article  MATH  MathSciNet  Google Scholar 

  • Löhner R, Baum JD (1992) Adaptive h-refinement on 3-D unstructured grids for transient problems. Int J Num Meth Fluids 14:1407–1419

    Article  MATH  Google Scholar 

  • Maubach J (1995) Local bisection refinement for n-simplicial grids generated by reflection. SIAM J Sci Comput 16:210–227

    Article  MATH  MathSciNet  Google Scholar 

  • Mitchell WF (1989) A comparison of adaptive refinement techniques for elliptic problems. ACM Trans Math Soft 15:326–347

    Article  MATH  Google Scholar 

  • Montenegro R, Montero G, Escobar JM, Rodríguez E (2002) Efficient strategies for adaptive 3-D mesh generation over complex orography. Neural, Parallel & Scientific Computation 10:57–76

    MATH  Google Scholar 

  • Montenegro R, Montero G, Escobar JM, Rodríguez E, González-Yuste JM (2002) Tetrahedral mesh generation for environmental problems over complex terrains. Lecture Notes in Computer Science 2329:335-344

    Article  Google Scholar 

  • Montenegro R, Escobar JM, Montero G, Rodríguez E (2005) Quality improvement of surface triangulations. Proc 14th Int Meshing Roundtable 469–484, Springer, Berlin

    Book  Google Scholar 

  • Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G (2006) Implementation in ALBERTA of an automatic tetrahedral mesh generator. Proc 15th Int Meshing Roundtable 325–338, Springer, Berlin

    Google Scholar 

  • Montero G, Montenegro R, Escobar JM, Rodríguez E, González-Yuste JM (2004) Velocity field modelling for pollutant plume using 3-D adaptive finite element method. Lecture Notes in Computer Science 3037:642–645

    Article  Google Scholar 

  • Montero G, Rodríguez E, Montenegro R, Escobar JM, González-Yuste JM (2005) Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model. Adv Eng Soft 36:3–10

    Article  MATH  Google Scholar 

  • Rivara MC (1987) A grid generator based on 4-triangles conforming. Mesh-refinement algorithms. Int J Num Meth Eng 24:1343–1354

    Article  MATH  Google Scholar 

  • Rivara MC, Levin C (1992) A 3-D refinement algorithm suitable for adaptive multigrid techniques. J Comm Appl Numer Meth 8:281–290

    Article  MATH  Google Scholar 

  • Schmidt A, Siebert KG (2005) Design of adaptive finite element software: the finite element toolbox ALBERTA. Lecture Notes in Computer Science and Engineering 42, Springer, Berlin

    MATH  Google Scholar 

  • Thompson JF, Soni B, Weatherill N (1999) Handbook of grid generation, CRC Press, London

    MATH  Google Scholar 

  • Traxler CT (1997) An algorithm for adaptive mesh refinement in n dimensions. Computing 59:115–137

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cascón, J., Montenegro, R., Escobar, J., Rodríguez, E., Montero, G. (2008). A New Meccano Technique for Adaptive 3-D Triangulations. In: Brewer, M.L., Marcum, D. (eds) Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75103-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75103-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75102-1

  • Online ISBN: 978-3-540-75103-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics