[go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4682))

Included in the following conference series:

  • 1836 Accesses

Abstract

Hidden Markov models (HMMs) usually assume that the state transition matrices and the output models are time-invariant. Without this assumption, the parameters in a HMM may not be identifiable. In this paper, we propose a HMM with multiple observers such that its parameters are local identifiable without the time-invariant assumption. We show a sufficient condition for local identifiability of parameters in HMMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ghahramani, Z.: An Introduction to Hidden Markov Models and Bayesian Networks. Hidden Markov Models: Applications in Computer Vision, pp. 9–42 (2001)

    Google Scholar 

  2. Goodman, L.A.: Exploratory Latent Structure Analysis Using Both Identifiable and Unidentifiable Models. Biometrika 61, 215–231 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Spezia, L.: Bayesian Analysis of Non-homogeneous Hidden Markov Models. Journal of Statistical Computation and Simulation 76, 713–725 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Van de Pol, F., Langeheine, R.: Mixed Markov Latent Class Models. In: Clogg, C.C. (ed.) Sociological Methodology, Blackwell, Oxford (1990)

    Google Scholar 

  5. Vermunt, J.K., Langeheine, R., Bockenholt, U.: Discrete-time Discrete-state Latent Markov Models with Time-constant and Time-varying Covariates. Journal of Educational and Behavioral Statistics 24, 179–207 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, H., Geng, Z., Jia, J. (2007). Hidden Markov Models with Multiple Observers. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74205-0_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74201-2

  • Online ISBN: 978-3-540-74205-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics