Abstract
Hidden Markov models (HMMs) usually assume that the state transition matrices and the output models are time-invariant. Without this assumption, the parameters in a HMM may not be identifiable. In this paper, we propose a HMM with multiple observers such that its parameters are local identifiable without the time-invariant assumption. We show a sufficient condition for local identifiability of parameters in HMMS.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ghahramani, Z.: An Introduction to Hidden Markov Models and Bayesian Networks. Hidden Markov Models: Applications in Computer Vision, pp. 9–42 (2001)
Goodman, L.A.: Exploratory Latent Structure Analysis Using Both Identifiable and Unidentifiable Models. Biometrika 61, 215–231 (1974)
Spezia, L.: Bayesian Analysis of Non-homogeneous Hidden Markov Models. Journal of Statistical Computation and Simulation 76, 713–725 (2006)
Van de Pol, F., Langeheine, R.: Mixed Markov Latent Class Models. In: Clogg, C.C. (ed.) Sociological Methodology, Blackwell, Oxford (1990)
Vermunt, J.K., Langeheine, R., Bockenholt, U.: Discrete-time Discrete-state Latent Markov Models with Time-constant and Time-varying Covariates. Journal of Educational and Behavioral Statistics 24, 179–207 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, H., Geng, Z., Jia, J. (2007). Hidden Markov Models with Multiple Observers. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_47
Download citation
DOI: https://doi.org/10.1007/978-3-540-74205-0_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74201-2
Online ISBN: 978-3-540-74205-0
eBook Packages: Computer ScienceComputer Science (R0)