[go: up one dir, main page]

Skip to main content

Cone-Realizations of Discrete-Time Systems with Delays

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4432))

Included in the following conference series:

  • 2007 Accesses

Abstract

A new notion of cone-realization for discrete-time linear systems with delays is proposed. Necessary and sufficient conditions for the existence of cone-realizations of discrete-time linear systems with delays are established. A procedure is proposed for computation of a cone-realization for a given proper rational matrix T(z). It is shown that there exists a (\({\mathcal{P,Q,V}}\))-cone realization of T(z) if and only if there exists a positive realization of \({\bf \bar T}\) (z) = VT(z)Q − 1 where V, Q and P are non-singular matrices generating the cones \(\cal V\), \(\cal Q\) and \(\cal P\) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benvenuti, L., Farina, L.: A tutorial on the positive realization problem. IEEE Trans. Autom. Control 49(5), 651–664 (2004)

    Article  MathSciNet  Google Scholar 

  2. Busłowicz, M.: Explicit solution of discrete-delay equations. Foundations of Control Engineering 7(2), 67–71 (1982)

    MATH  Google Scholar 

  3. Busłowicz, M., Kaczorek, T.: Reachability and minimum energy control of positive linear discrete-time systems with one delay. In: 12th Mediterranean Conference on Control and Automation, Kauadasi, Izmir, Turkey, June 6-9 (2004)

    Google Scholar 

  4. Farina, L., Rinaldi, S.: Positive Linear Systems; Theory and Applications. J. Wiley, New York (2000)

    MATH  Google Scholar 

  5. Kaczorek, T.: Positive 1D and 2D Systems. Springer, London (2002)

    MATH  Google Scholar 

  6. Kaczorek, T.: Some recent developments in positive systems. In: Proc. 7th Conference of Dynamical Systems Theory and Applications, Łódź, pp. 25–35 (2003)

    Google Scholar 

  7. Kaczorek, T.: Realization problem for positive discrete-time systems with delay. System Science 30(4), 117–130 (2004)

    MathSciNet  Google Scholar 

  8. Kaczorek, T.: Realization problem for positive multivariable discrete-time linear systems with delays in state and inputs. In: Proc. Trans. COMP, Zakopane, Poland, Dec. 5-8, 2005, pp. 1–10 (2005)

    Google Scholar 

  9. Kaczorek, T.: Computation of realizations of discrete-time cone-systems. Bull. Pol. Acad. Sci. Techn. Sci. 54(3), 347–350 (2006)

    Google Scholar 

  10. Kaczorek, T.: Realization problem for positive linear systems with time delay. Math. Problems in Engineering 4, 455–463 (2005)

    Article  MathSciNet  Google Scholar 

  11. Kaczorek, T., Busłowicz, M.: Minimal realization for positive multivariable linear systems with delay. Int. J. Appl. Math. Comput. Sci. 14(2), 181–187 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Xie, G., Wang, L.: Reachability and controllability of positive linear discrete-time systems with time-delays. In: Benvenuti, L., De Santis, A., Farina, L. (eds.) Positive Systems. LNCIS, vol. 294, pp. 377–384. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kaczorek, T. (2007). Cone-Realizations of Discrete-Time Systems with Delays. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics