Abstract
We provide a theoretical framework that allows the direct search for natural deduction proofs in some non-classical logics, namely, intuitionistic sentential and predicate logic, but also in the modal logic S4. The framework uses so-called intercalation calculi to build up broad search spaces from which normal proofs can be extracted, if a proof exists at all. This claim is supported by completeness proofs establishing in a purely semantic way normal form theorems for the above logics. Logical restrictions on the search spaces are briefly discussed in the last section together with some heuristics for structuring a more efficient search. Our paper is a companion piece to [15], where classical logic was treated.
This paper is dedicated to Jörg Siekmann, pragmatic visionary.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avron, A., Honsell, F., Miculan, M., Paravano, C.: Encoding Modal Logics in Logical Frameworks. Studia Logica 60(1), 161–208 (1998)
Basin, D., Matthews, S., Viganò, L.: Natural Deduction for Non-Classical Logics. Studia Logica 60(1), 119–160 (1998)
Byrnes, J.: Proof Search and Normal Forms for Natural Deductions. PhD thesis, Carnegie Mellon University (1999)
Cittadini, S.: Intercalation calculus for intuitionistic propositional logic. Technical Report PHIL-29, Philosophy, Methodology, and Logic, Carnegie Mellon University (1992)
Cittadini, S.: Deduzione Naturale e Ricerca Automatica di Dimostrazioni in varie logiche: il Calcolo delle Intercalazioni. In: Cellucci, C., Di Maio, M. C., Roncaglia, G. (eds.): Atti del Congresso Logica e filosofia della scienza: problemi e prospettive, Lucca, Pisa, gennaio 7–10, pp. 583–591. Edizioni ETS (1993)
van Dalen, D.: Logic and Structure, 2nd edn. Springer, Heidelberg (1989)
Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic 57(3), 795–807 (1992)
Fitting, M.: Intuitionistic Logic Model Theory and Forcing. North-Holland Publishing Company, Amsterdam (1969)
Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. D. Reidel Publishing Company, Dordrecht (1983)
Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press, Cambridge (1989)
Harrop, R.: Concerning formulas of the types A → B ∨ C, A → (Ex)B(x) in intuitionistic formal systems. The Journal of Symbolic Logic 25(1), 27–32 (1960)
Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiskell, Stockholm (1965)
Shankar, N.: Proof search in the intuitionistic sequent calculus. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 522–536. Springer, Heidelberg (1992)
Sieg, W.: Mechanisms and Search: Aspects of Proof Theory. AILA Preprint 19, Associazione Italiana di Logica e sue Applicazioni, Padova (1992)
Sieg, W., Byrnes, J.: Normal Natural Deduction Proofs (in classical logic). Studia Logica 60(1), 67–106 (1998)
Sieg, W., Cittadini, S.: Normal Natural Deduction Proofs (in non-classical logics). Rapporto Matematico n. 351, Dipartimento di Matematica, Università di Siena (1998)
Sieg, W., Scheines, R.: Searching for proofs (in sentential logic). In: Burkholder, L. (ed.) Philosophy and the Computer, pp. 137–159. Westview Press, Boulder (1992)
Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theoretical Computer Science 9(1), 67–72 (1979)
Tennant, N.: Autologic. Edinburgh University Press, Edinburgh (1992)
Wallen, L.A.: Automated Proof Search in Non-Classical Logics. MIT Press, Cambridge (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sieg, W., Cittadini, S. (2005). Normal Natural Deduction Proofs (in Non-classical Logics). In: Hutter, D., Stephan, W. (eds) Mechanizing Mathematical Reasoning. Lecture Notes in Computer Science(), vol 2605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32254-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-32254-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25051-7
Online ISBN: 978-3-540-32254-2
eBook Packages: Computer ScienceComputer Science (R0)