[go: up one dir, main page]

Skip to main content

A Comparative Study of Network Embedding Based on Matrix Factorization

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10943))

Included in the following conference series:

  • 4079 Accesses

Abstract

In the era of big data, the study of networks has received an enormous amount of attention. Of recent interest is network embedding—learning representations of the nodes of a network in a low dimensional vector space, so that the network structural information and properties are maximally preserved. In this paper, we present a review of the latest developments on this topic. We compare modern methods based on matrix factorization, including GraRep [5], HOPE [22], DeepWalk [23], and node2vec [12], in a collection of 12 real-world networks. We find that the performance of methods depends on the applications and the specific characteristics of the networks. There is no clear winner for all of the applications and in all of the networks. In particular, node2vec exhibits relatively reliable performance in the multi-label classification application, while HOPE demonstrates success in the link prediction application. Moreover, we provide suggestions on how to choose a method for practical purposes in terms of accuracy, speed, stability, and prior knowledge requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/c/learning-social-circles/data.

  2. 2.

    http://www.anac.gov.br/.

  3. 3.

    http://ec.europa.eu/.

  4. 4.

    https://transtats.bts.gov/.

  5. 5.

    https://linqs.soe.ucsc.edu/data/.

  6. 6.

    https://aminer.org/billboard/citation/.

  7. 7.

    https://github.com/thunlp/MMDW/tree/master/data/.

  8. 8.

    http://snap.stanford.edu/node2vec/#datasets/.

  9. 9.

    http://socialcomputing.asu.edu/datasets/BlogCatalog3/.

  10. 10.

    The similar reason also applies to the Cora and Citeseer networks.

References

  1. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: Proceedings of the 22nd International World Wide Web Conference, WWW 2013, Rio de Janeiro, Brazil, pp. 37–48 (2013)

    Google Scholar 

  2. Barabási, A.L.: Linked: The New Science of Networks. Perseus Publishing, Cambridge (2002)

    Google Scholar 

  3. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Social Network Data Analytics, pp. 115–148 (2011)

    Chapter  Google Scholar 

  4. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques and applications. arXiv preprint arXiv:1709.07604 (2017)

  5. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM Conference on Information and Knowledge Management, CIKM 2015, Melbourne, Australia, pp. 891–900 (2015)

    Google Scholar 

  6. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: Proceedings of 20th AAAI Conference on Artificial Intelligence, AAAI 2016, Phoenix, AZ, USA, pp. 1145–1152 (2016)

    Google Scholar 

  7. Chen, S., Niu, S., Akoglu, L., Kovačević, J., Faloutsos, C.: Fast, warped graph embedding: unifying framework and one-click algorithm. arXiv preprint arXiv:1702.05764 (2017)

  8. Faerman, E., Borutta, F., Fountoulakis, K., Mahoney, M.W.: LASAGNE: locality and structure aware graph node embedding. arXiv preprint arXiv:1710.06520 (2017)

  9. García-Durán, A., Niepert, M.: Learning graph embeddings with embedding propagation. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, Long Beach, CA, USA (2017)

    Google Scholar 

  10. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explor. Newsl. 7(2), 3–12 (2005)

    Article  Google Scholar 

  11. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. arXiv preprint arXiv:1705.02801 (2017)

  12. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2016, San Francisco, CA, USA, pp. 855–864 (2016)

    Google Scholar 

  13. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 (2017)

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France (2017)

    Google Scholar 

  15. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS 2014, pp. 2177–2185 (2014)

    Google Scholar 

  16. Lü, L., Medo, M., Yeung, C.H., Zhang, Y., Zhang, Z., Zhou, T.: Recommender systems. Phys. Rep. 519, 1–49 (2012)

    Article  Google Scholar 

  17. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A 390, 1150–1170 (2011)

    Article  Google Scholar 

  18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, pp. 3111–3119 (2013)

    Google Scholar 

  20. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  21. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)

    Book  Google Scholar 

  22. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2016, San Francisco, CA, USA, pp. 1105–1114 (2016)

    Google Scholar 

  23. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, NY, USA, pp. 701–710 (2014)

    Google Scholar 

  24. Pržulj, N., Malod-Dognin, N.: Network analytics in the age of big data. Science 353(6295), 123–124 (2016)

    Article  Google Scholar 

  25. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining, WSDM 2018 (2018)

    Google Scholar 

  26. Ribeiro, L.F.R., Saverese, P.H.P., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2017, Halifax, Nova Scotia, Canada, pp. 385–394 (2017)

    Google Scholar 

  27. Scholtes, I.: Understanding complex systems: when big data meets network science. IT Inf. Technol. 57(4), 252–256 (2015)

    Google Scholar 

  28. Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, Sydney, Australia, pp. 1165–1174 (2015)

    Google Scholar 

  29. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International World Wide Web Conference, WWW 2015, Florence, Italy, pp. 1067–1077 (2015)

    Google Scholar 

  30. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 817–826 (2009)

    Google Scholar 

  31. Tang, L., Liu, H.: Leveraging social media networks for classification. Data Min. Knowl. Discov. 23(3), 447–478 (2011)

    Article  MathSciNet  Google Scholar 

  32. Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-Margin DeepWalk: discriminative learning of network representation. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, pp. 3889–3895 (2016)

    Google Scholar 

  33. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: Proceedings of the 21st AAAI Conference on Artificial Intelligence, AAAI 2017, San Francisco, CA, USA, pp. 203–209 (2017)

    Google Scholar 

  34. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning with rich text information. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI 2015, Austin, TX, USA, pp. 2111–2117 (2015)

    Google Scholar 

  35. Yang, C., Sun, M., Liu, Z., Tu, C.: Fast network embedding enhancement via high order proximity approximation. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, pp. 3894–3900 (2017)

    Google Scholar 

Download references

Acknowledgment

This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Kim, KS. (2018). A Comparative Study of Network Embedding Based on Matrix Factorization. In: Tan, Y., Shi, Y., Tang, Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science(), vol 10943. Springer, Cham. https://doi.org/10.1007/978-3-319-93803-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93803-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93802-8

  • Online ISBN: 978-3-319-93803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics