Abstract
This research approach deals with rational methods for generating explanations provided by autonomous vehicles. The first part concerns a new model for generating explanation content. In the second part, we describe a method for providing explanations at time instants demanding less cognitive workload using game theory.
Supported by Research Training Group (RTG) “Social Embeddedness of Autonomous Cyber Physical Systems” (SEAS) at Universität Oldenburg.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Craig, W.: Linear reasoning. a new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593
Du, N., et al.: Look who’s talking now: Implications of AV’s explanations on driver’s trust, AV preference, anxiety and mental workload. CoRR abs/1905.08878 (2019). http://arxiv.org/abs/1905.08878
Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. J. Satisf. Boolean Model. Comput. 1(3–4), 209–236 (2007). https://doi.org/10.3233/sat190012
Koo, J., Kwac, J., Ju, W., Steinert, M., Leifer, L., Nass, C.: Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance. Int. J. Interact. Des. Manuf. (IJIDeM) 9(4), 269–275 (2014). https://doi.org/10.1007/s12008-014-0227-2
Koo, J., Shin, D., Steinert, M., Leifer, L.: Understanding driver responses to voice alerts of autonomous car operations. Int. J. Veh. Des. 70(4), 377–392 (2016). https://doi.org/10.1504/IJVD.2016.076740
Körber, M., Prasch, L., Bengler, K.: Why do I have to drive now? Post hoc explanations of takeover requests. Hum. Factors 60(3), 305–323 (2018). https://doi.org/10.1177/0018720817747730
Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: an efficient SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer, Heidelberg (2005). https://doi.org/10.1007/11527695_27
McMillan, K.: Applications of Craig interpolation to model checking. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 22–23. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30124-0_3
Omeiza, D., Kollnig, K., Webb, H., Jirotka, M., Kunze, L.: Why not explain? Effects of explanations on human perceptions of autonomous driving. In: International IEEE Conference on Advanced Robotics and Its Social Impacts, pp. 194–199. IEEE (2021). https://doi.org/10.1109/ARSO51874.2021.9542835
Petersen, L., Robert, L., Yang, X.J., Tilbury, D.M.: Situational awareness, driver’s trust in automated driving systems and secondary task performance. CoRR abs/1903.05251 (2019). http://arxiv.org/abs/1903.05251
Shen, Y., et al.: To explain or not to explain: a study on the necessity of explanations for autonomous vehicles. CoRR abs/2006.11684 (2020). https://arxiv.org/abs/2006.11684
Wickens, C., Helleberg, J., Goh, J., Xu, X., Horrey, W.: Pilot task management: testing an attentional expected value model of visual scanning. Savoy, IL, UIUC Institute of Aviation Technical report (2001)
Wiegand, G., Eiband, M., Haubelt, M., Hussmann, H.: "I’d like an explanation for that!" exploring reactions to unexpected autonomous driving. In: MobileHCI 2020: 22nd International Conference on HCI with Mobile Devices and Services, pp. 36:1–36:11. ACM (2020). https://doi.org/10.1145/3379503.3403554
Zhang, Q., Yang, X.J., Robert, L.P.: What and when to explain? A survey of the impact of explanation on attitudes toward adopting automated vehicles. IEEE Access 9, 159533–159540 (2021). https://doi.org/10.1109/ACCESS.2021.3130489
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Bairy, A. (2022). Modeling Explanations in Autonomous Vehicles. In: ter Beek, M.H., Monahan, R. (eds) Integrated Formal Methods. IFM 2022. Lecture Notes in Computer Science, vol 13274. Springer, Cham. https://doi.org/10.1007/978-3-031-07727-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-07727-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07726-5
Online ISBN: 978-3-031-07727-2
eBook Packages: Computer ScienceComputer Science (R0)