Abstract
To apply ultrasonic motors (USMs) to the chemical industry, in this study, alumina is employed as vibrating bodies of transducers as it offers not only high chemical resistance but also a possibility to generate high output torques and power of motors due to the high Young’s modulus. First, a Langevin-type transducer was constructed by clamping several annular lead-zirconate-titanate (PZT) disks between two rod-shaped alumina vibrating bodies, and a traveling wave was excited to drive the rotor by a superposition of two orthogonal standing waves in bending modes. Subsequently, the performance of the alumina/PZT motor was assessed and compared to those of the metal/PZT motors with identical structures when the same voltage was applied. As predicted, the alumina/PZT motor provides higher performance than the metal/PZT ones. Since the alumina/PZT transducer has relatively high strain in its PZT disks owing to the high Young’s modulus of alumina, it exhibits a relatively high force factor, leading to a high output torque of the alumina/PZT motor. In the meantime, the transducer stores higher vibration energy due to the larger force factor; this enables the alumina/PZT motor to exhibit a higher output power. Besides, a higher rotation speed is obtained with this motor because the alumina/PZT transducer has a larger vibration velocity on the end surface. These results indicate the high applicability of alumina to high-power USMs as their vibrating bodies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ueha, S., Tomikawa, Y., Kurosawa, M., Nakamura, K.: Ultrasonic Motors—Theory and Applications. Oxford University Press, New York (1993)
Nakamura, K., Kurosawa, M., Ueha, S.: Characteristics of a hybrid transducer-type ultrasonic motor. IEEE Trans. Ultrason. Ferroelect. Freq. Control 38(3), 188–193 (1991)
Zheng, L., Liu, S., Wang, S.: Current situation and future of Chinese industrial robot development. Int. J. Mech. Eng. Rob. Res. 5(4), 295–300 (2016)
Nishioka, H., Takeuchi, A.: The development of high technology industry in Japan. In: The Development of High Technology Industries—An International Survey, 1st edn. Routledge, Taylor & Francis Group, New York (2018)
Waard, C.D., Milliams, D.E.: Carbonic acid corrosion of steel. Corrosion 31(5), 177–181 (1975)
Ghali, E.: Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing. Wiley, Hoboken (2010)
Wu, J., Mizuno, Y., Nakamura, K.: Piezoelectric motor utilizing an alumina/PZT transducer. IEEE Trans. Industr. Electron. 67(8), 6762–6772 (2020)
Qiu, W., Mizuno, Y., Nakamura, K.: Tribological performance of ceramics in lubricated ultrasonic motors. Wear 352(353), 188–195 (2016)
Rehbein, P., Wallaschek, J.: Friction and wear behavior of polymer/steel and alumina/alumina under high-frequency fretting conditions. Wear 216(2), 97–105 (1998)
Aoyagi, M., Beeby, S.P., White, N.M.: A novel multi-degree-of-freedom thick-film ultrasonic motor. IEEE Trans. Ultrason. Ferroelect. Freq. Control 49(2), 151–158 (2002)
Koyama, O., Koyama, D., Nakamura, K., Ueha, S.: Ultrasonic linear motor using traveling vibration on fine ceramic twin ridge. Acoust. Sci. Techno. 29(1), 95–98 (2008)
Wu, J., Mizuno, Y., Nakamura, K.: A rotary ultrasonic motor operating in torsional/bending modes with high torque density and high power density. IEEE Trans. Industr. Electron. 68(7), 6109–6120 (2021)
Kurosawa, M., Nakamura, K., Okamoto, T., Ueha, S.: An ultrasonic motor using bending vibrations of a short cylinder. IEEE Trans. Ultrason. Ferroelect. Freq. Control 36(5), 517–521 (1989)
Liu, D., Turner, J.A.: Numerical analysis of longitudinal ultrasonic attenuation in sintered materials using a simplified two-phase model. J. Acoust. Soc. Am. 141(2), 1226–1237 (2017)
Wang, H., Ritter, T., Cao, W., Shung, K.K.: High frequency properties of passive materials for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelect. Freq. Control 48(1), 78–84 (2001)
Nakamura, K., Kurosawa, M., Kurebayashi, H., Ueha, S.: An estimation of load characteristics of an ultrasonic motor by measuring transient responses. IEEE Trans. Ultrason. Ferroelect. Freq. Control 38(5), 481–485 (1991)
Wu, J., Mizuno, Y., Nakamura, K.: Polymer-based ultrasonic motors utilizing high-order vibration modes. IEEE/ASME Trans. Mechatron. 23(2), 788–799 (2018)
Kuribayashi, M., Ueha, S., Mori, E.: Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor. J. Acoust. Soc. Am. 77(4), 1431–1435 (1985)
Wu, J., Mizuno, Y., Tabaru, M., Nakamura, K.: Ultrasonic motors with polymer-based vibrators. IEEE Trans. Ultrason. Ferroelect. Freq. Control 62(12), 2169–2178 (2015)
Shi, W., Zhao, H., Ma, J., Yao, Y.: An optimum-frequency tracking scheme for ultrasonic motor. IEEE Trans. Ind. Electron. 64(6), 4413–4422 (2017)
Nakamura, K., Kakihara, K., Kawakami, M., Ueha, S.: Measuring vibration characteristics at large amplitude region of materials for high power ultrasonic vibration system. Ultrasonics 38(1/2), 122–126 (2000)
Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1991)
Koike, Y., Tamura, T., Ueha, S.: Derivation of a force factor equation for a Langevin-type flexural mode transducer. Jpn. J. Appl. Phys. 35(5B), 3274–3280 (1996)
Morita, T.: Piezoelectric Phenomena. Morikita Publication, Tokyo (2017), Ch. 2
Timoshenko, S.P.: Vibration Problems in Engineering, 2nd edn. D. Van Nostrand Company, Inc., New York (1956). Ch. 4
Kurosawa, M., Kodaira, O., Tsuchitoi, Y., Higuchi, T.: Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Trans. Ultrason. Ferroelect. Freq. Control 45(5), 1185–1195 (1998)
Yun, C.-H., Ishii, T., Nakamura, K., Ueha, S., Akashi, K.: A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped Langevin type transducer. Jpn. J. Appl. Phys. 40(5B), 3773–3776 (2001)
Kim, W.-S., Yun, C.-H., Lee, S.-K.: Nano positioning of a high power ultrasonic linear motor. Jpn. J. Appl. Phys. 47(7R), 5687–5692 (2008)
Satonobu, J., Torii, N., Nakamura, K., Ueha, S.: Construction of mega-torque hybrid transducer type ultrasonic motor. Jpn. J. Appl. Phys. 35(9B), 5038–5041 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, J., Niu, J., Liu, Y., Rong, X., Song, R., Li, Y. (2021). Non-metal Piezoelectric Motor Utilizing Langevin-Type Alumina/PZT Transducer Working in Orthogonal Bending Modes. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-89098-8_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89097-1
Online ISBN: 978-3-030-89098-8
eBook Packages: Computer ScienceComputer Science (R0)