[go: up one dir, main page]

Skip to main content

Non-metal Piezoelectric Motor Utilizing Langevin-Type Alumina/PZT Transducer Working in Orthogonal Bending Modes

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Abstract

To apply ultrasonic motors (USMs) to the chemical industry, in this study, alumina is employed as vibrating bodies of transducers as it offers not only high chemical resistance but also a possibility to generate high output torques and power of motors due to the high Young’s modulus. First, a Langevin-type transducer was constructed by clamping several annular lead-zirconate-titanate (PZT) disks between two rod-shaped alumina vibrating bodies, and a traveling wave was excited to drive the rotor by a superposition of two orthogonal standing waves in bending modes. Subsequently, the performance of the alumina/PZT motor was assessed and compared to those of the metal/PZT motors with identical structures when the same voltage was applied. As predicted, the alumina/PZT motor provides higher performance than the metal/PZT ones. Since the alumina/PZT transducer has relatively high strain in its PZT disks owing to the high Young’s modulus of alumina, it exhibits a relatively high force factor, leading to a high output torque of the alumina/PZT motor. In the meantime, the transducer stores higher vibration energy due to the larger force factor; this enables the alumina/PZT motor to exhibit a higher output power. Besides, a higher rotation speed is obtained with this motor because the alumina/PZT transducer has a larger vibration velocity on the end surface. These results indicate the high applicability of alumina to high-power USMs as their vibrating bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ueha, S., Tomikawa, Y., Kurosawa, M., Nakamura, K.: Ultrasonic Motors—Theory and Applications. Oxford University Press, New York (1993)

    Google Scholar 

  2. Nakamura, K., Kurosawa, M., Ueha, S.: Characteristics of a hybrid transducer-type ultrasonic motor. IEEE Trans. Ultrason. Ferroelect. Freq. Control 38(3), 188–193 (1991)

    Article  Google Scholar 

  3. Zheng, L., Liu, S., Wang, S.: Current situation and future of Chinese industrial robot development. Int. J. Mech. Eng. Rob. Res. 5(4), 295–300 (2016)

    Google Scholar 

  4. Nishioka, H., Takeuchi, A.: The development of high technology industry in Japan. In: The Development of High Technology Industries—An International Survey, 1st edn. Routledge, Taylor & Francis Group, New York (2018)

    Google Scholar 

  5. Waard, C.D., Milliams, D.E.: Carbonic acid corrosion of steel. Corrosion 31(5), 177–181 (1975)

    Article  Google Scholar 

  6. Ghali, E.: Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing. Wiley, Hoboken (2010)

    Book  Google Scholar 

  7. Wu, J., Mizuno, Y., Nakamura, K.: Piezoelectric motor utilizing an alumina/PZT transducer. IEEE Trans. Industr. Electron. 67(8), 6762–6772 (2020)

    Article  Google Scholar 

  8. Qiu, W., Mizuno, Y., Nakamura, K.: Tribological performance of ceramics in lubricated ultrasonic motors. Wear 352(353), 188–195 (2016)

    Article  Google Scholar 

  9. Rehbein, P., Wallaschek, J.: Friction and wear behavior of polymer/steel and alumina/alumina under high-frequency fretting conditions. Wear 216(2), 97–105 (1998)

    Article  Google Scholar 

  10. Aoyagi, M., Beeby, S.P., White, N.M.: A novel multi-degree-of-freedom thick-film ultrasonic motor. IEEE Trans. Ultrason. Ferroelect. Freq. Control 49(2), 151–158 (2002)

    Article  Google Scholar 

  11. Koyama, O., Koyama, D., Nakamura, K., Ueha, S.: Ultrasonic linear motor using traveling vibration on fine ceramic twin ridge. Acoust. Sci. Techno. 29(1), 95–98 (2008)

    Article  Google Scholar 

  12. Wu, J., Mizuno, Y., Nakamura, K.: A rotary ultrasonic motor operating in torsional/bending modes with high torque density and high power density. IEEE Trans. Industr. Electron. 68(7), 6109–6120 (2021)

    Article  Google Scholar 

  13. Kurosawa, M., Nakamura, K., Okamoto, T., Ueha, S.: An ultrasonic motor using bending vibrations of a short cylinder. IEEE Trans. Ultrason. Ferroelect. Freq. Control 36(5), 517–521 (1989)

    Article  Google Scholar 

  14. Liu, D., Turner, J.A.: Numerical analysis of longitudinal ultrasonic attenuation in sintered materials using a simplified two-phase model. J. Acoust. Soc. Am. 141(2), 1226–1237 (2017)

    Article  Google Scholar 

  15. Wang, H., Ritter, T., Cao, W., Shung, K.K.: High frequency properties of passive materials for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelect. Freq. Control 48(1), 78–84 (2001)

    Article  Google Scholar 

  16. Nakamura, K., Kurosawa, M., Kurebayashi, H., Ueha, S.: An estimation of load characteristics of an ultrasonic motor by measuring transient responses. IEEE Trans. Ultrason. Ferroelect. Freq. Control 38(5), 481–485 (1991)

    Article  Google Scholar 

  17. Wu, J., Mizuno, Y., Nakamura, K.: Polymer-based ultrasonic motors utilizing high-order vibration modes. IEEE/ASME Trans. Mechatron. 23(2), 788–799 (2018)

    Article  Google Scholar 

  18. Kuribayashi, M., Ueha, S., Mori, E.: Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor. J. Acoust. Soc. Am. 77(4), 1431–1435 (1985)

    Article  Google Scholar 

  19. Wu, J., Mizuno, Y., Tabaru, M., Nakamura, K.: Ultrasonic motors with polymer-based vibrators. IEEE Trans. Ultrason. Ferroelect. Freq. Control 62(12), 2169–2178 (2015)

    Article  Google Scholar 

  20. Shi, W., Zhao, H., Ma, J., Yao, Y.: An optimum-frequency tracking scheme for ultrasonic motor. IEEE Trans. Ind. Electron. 64(6), 4413–4422 (2017)

    Article  Google Scholar 

  21. Nakamura, K., Kakihara, K., Kawakami, M., Ueha, S.: Measuring vibration characteristics at large amplitude region of materials for high power ultrasonic vibration system. Ultrasonics 38(1/2), 122–126 (2000)

    Article  Google Scholar 

  22. Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1991)

    MATH  Google Scholar 

  23. Koike, Y., Tamura, T., Ueha, S.: Derivation of a force factor equation for a Langevin-type flexural mode transducer. Jpn. J. Appl. Phys. 35(5B), 3274–3280 (1996)

    Article  Google Scholar 

  24. Morita, T.: Piezoelectric Phenomena. Morikita Publication, Tokyo (2017), Ch. 2

    Google Scholar 

  25. Timoshenko, S.P.: Vibration Problems in Engineering, 2nd edn. D. Van Nostrand Company, Inc., New York (1956). Ch. 4

    MATH  Google Scholar 

  26. Kurosawa, M., Kodaira, O., Tsuchitoi, Y., Higuchi, T.: Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Trans. Ultrason. Ferroelect. Freq. Control 45(5), 1185–1195 (1998)

    Google Scholar 

  27. Yun, C.-H., Ishii, T., Nakamura, K., Ueha, S., Akashi, K.: A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped Langevin type transducer. Jpn. J. Appl. Phys. 40(5B), 3773–3776 (2001)

    Article  Google Scholar 

  28. Kim, W.-S., Yun, C.-H., Lee, S.-K.: Nano positioning of a high power ultrasonic linear motor. Jpn. J. Appl. Phys. 47(7R), 5687–5692 (2008)

    Article  Google Scholar 

  29. Satonobu, J., Torii, N., Nakamura, K., Ueha, S.: Construction of mega-torque hybrid transducer type ultrasonic motor. Jpn. J. Appl. Phys. 35(9B), 5038–5041 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Niu, J., Liu, Y., Rong, X., Song, R., Li, Y. (2021). Non-metal Piezoelectric Motor Utilizing Langevin-Type Alumina/PZT Transducer Working in Orthogonal Bending Modes. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics