Abstract
This paper investigates the mathematical model and control schemes for tracking control of pneumatic artificial muscle (PAM) using fast switching valves. Three control schemes are proposed and compared to achieve high accuracy trajectory tracking. The static model of PAM is established using the isometric experimental data, and the dynamic model of PAM is derived based on the polytropic equation. Then, the hysteresis model and its inverse model of PAM is established by using Prandtl–Shlinskii (PI) model, in which the air mass flow rate through the fast switching valve is evaluated using the Sanville equation. Sequentially, the trajectory tracking control schemes of PAM are derived by means of feedforward, feedback, and feedforward/feedback control schemes, which are implemented in the environment of MATLAB/Simulink. The results indicate that the feedforward/feedback control scheme can achieve better performance and accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xie, S.L., Liu, H.T., Mei, J.P.: Achievements and developments of hysteresis and creep of pneumatic artificial muscles. J. Syst. Simul. 30(3), 809–823 (2018)
Xie, S.L., Liu, H.T., Mei, J.P., et al.: Modeling and compensation of asymmetric hysteresis for pneumatic artificial muscles with a modified generalized Prandtl-Ishlinskii model. Mechatronics 52, 49–57 (2018)
Xie, S., Mei, J., Liu, H., Wang, P.: Motion control of pneumatic muscle actuator using fast switching valve. In: Zhang, X., Wang, N., Huang, Y. (eds.) Mechanism and Machine Science, ASIAN MMS 2016, CCMMS 2016. LNEE, vol. 408, pp. 1439–1451. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-2875-5_114
Vo-minh, T., Kamers, B., Ramon, H., et al.: Modeling and control of a pneumatic artificial muscle manipulator joint–part I: modeling of a pneumatic artificial muscle manipulator joint with accounting for creep effect. Mechatronics 22(7), 923–933 (2012)
Daerden, F., Lefeber, D.: Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 11–21 (2002)
Caldwell, D.G., Medrano, G., Goodwin, M.: Control of pneumatic muscle actuators. IEEE Control Syst. 15(1), 40–48 (1995)
Davis, S., Caldwel, D.G.: Braid effects on contractile range and friction modeling in pneumatic muscle actuators. Int. J. Robot. Res. 25(4), 359–369 (2006)
Taghizadeh, M., Ghaffari, A., Najafi, F.: Modeling and identification of a solenoid valve for PWM control applications. Comptes Rendus Mecanique 337(3), 131–140 (2005)
Li, H., Kawashima, K., Tadano, K., et al.: Achieving haptic perception in forceps manipulator using pneumatic artificial muscle. IEEE/ASME Trans. Mechatron. 18(1), 74–85 (2013)
Robinson, R.M., Wereley, N.M., Kothera, C.S., et al.: Model-based feedforward control of a robotic manipulator with pneumatic artificial muscles. In: ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. 461–471. ASME, Georgia (2012)
Ito, A., Kiyoto, K., Furuya, N.: Motion control of parallel manipulator using pneumatic artificial actuators. In: IEEE International Conference on Robotics and Biomimetics, pp. 460–465. IEEE, Tianjin (2010)
Ito, A., Washizawa, N., Kiyoto, K., et al.: Control of pneumatic actuator in consideration of hysteresis characteristics. In: IEEE International Conference on Robotics and Biomimetics, pp. 2541–2546. IEEE, Phuket (2011)
Vo-minh, T., Tjahjowidodo, T., Ramon, H., et al.: A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model. IEEE/ASME Trans. Mechatron. 16(1), 177–186 (2011)
Lin, C.J., Lin, C.R., Yu, S.K., et al.: Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model. Mechatronics 28, 35–45 (2015)
Chen, Y., Zhang, J.F., Yang, C.J., et al.: Design and hybrid control of the pneumatic force-feedback systems for Arm-Exoskeleton by using on/off valve. Mechatronics 17(6), 325–335 (2007)
Zhang, J.F., Yang, C.J., Chen, Y., et al.: Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton. Mechatronics 18(8), 448–457 (2008)
Pujana, A.A., Mendizabal, A., Arenas, J., et al.: Modelling in Modelica and position control of a 1-DoF set-up powered by pneumatic muscles. Mechatronics 20(5), 535–552 (2010)
Xie, S.L., Mei, J.P., Liu, H.T.: Achievements and trends of research on McKibben pneumatic artificial muscles. Comput. Integr. Manuf. Syst. 24(5), 1065–1081 (2018)
Kuhnen, K., Janocha, H.: Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell. Syst. 29(3), 74–83 (2001)
Xie, S.L., Liu, H.T., Mei, J.P., et al.: Simulation of tracking control of pneumatic artificial muscle based on fast switching valves. Trans. Chin. Soc. Agric. Mach. 48(1), 368–374+385 (2017)
Xie, S.L., Mei, J.P., Liu, H.T.: Kinematics modeling and simulation of trajectory tracking control of a foot-plate-based lower-limb rehabilitation robot. J. Tianjin Univ. (Sci. Technol.) 51(5), 443–452 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, S., Wang, B., Chen, D. (2019). Comparison of Different Schemes for Motion Control of Pneumatic Artificial Muscle Using Fast Switching Valve. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_57
Download citation
DOI: https://doi.org/10.1007/978-3-030-27535-8_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27534-1
Online ISBN: 978-3-030-27535-8
eBook Packages: Computer ScienceComputer Science (R0)