[go: up one dir, main page]

Skip to main content

Comparison of Different Schemes for Motion Control of Pneumatic Artificial Muscle Using Fast Switching Valve

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11742))

Included in the following conference series:

Abstract

This paper investigates the mathematical model and control schemes for tracking control of pneumatic artificial muscle (PAM) using fast switching valves. Three control schemes are proposed and compared to achieve high accuracy trajectory tracking. The static model of PAM is established using the isometric experimental data, and the dynamic model of PAM is derived based on the polytropic equation. Then, the hysteresis model and its inverse model of PAM is established by using Prandtl–Shlinskii (PI) model, in which the air mass flow rate through the fast switching valve is evaluated using the Sanville equation. Sequentially, the trajectory tracking control schemes of PAM are derived by means of feedforward, feedback, and feedforward/feedback control schemes, which are implemented in the environment of MATLAB/Simulink. The results indicate that the feedforward/feedback control scheme can achieve better performance and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xie, S.L., Liu, H.T., Mei, J.P.: Achievements and developments of hysteresis and creep of pneumatic artificial muscles. J. Syst. Simul. 30(3), 809–823 (2018)

    Google Scholar 

  2. Xie, S.L., Liu, H.T., Mei, J.P., et al.: Modeling and compensation of asymmetric hysteresis for pneumatic artificial muscles with a modified generalized Prandtl-Ishlinskii model. Mechatronics 52, 49–57 (2018)

    Article  Google Scholar 

  3. Xie, S., Mei, J., Liu, H., Wang, P.: Motion control of pneumatic muscle actuator using fast switching valve. In: Zhang, X., Wang, N., Huang, Y. (eds.) Mechanism and Machine Science, ASIAN MMS 2016, CCMMS 2016. LNEE, vol. 408, pp. 1439–1451. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-2875-5_114

    Chapter  Google Scholar 

  4. Vo-minh, T., Kamers, B., Ramon, H., et al.: Modeling and control of a pneumatic artificial muscle manipulator joint–part I: modeling of a pneumatic artificial muscle manipulator joint with accounting for creep effect. Mechatronics 22(7), 923–933 (2012)

    Article  Google Scholar 

  5. Daerden, F., Lefeber, D.: Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 11–21 (2002)

    Google Scholar 

  6. Caldwell, D.G., Medrano, G., Goodwin, M.: Control of pneumatic muscle actuators. IEEE Control Syst. 15(1), 40–48 (1995)

    Article  Google Scholar 

  7. Davis, S., Caldwel, D.G.: Braid effects on contractile range and friction modeling in pneumatic muscle actuators. Int. J. Robot. Res. 25(4), 359–369 (2006)

    Article  Google Scholar 

  8. Taghizadeh, M., Ghaffari, A., Najafi, F.: Modeling and identification of a solenoid valve for PWM control applications. Comptes Rendus Mecanique 337(3), 131–140 (2005)

    Article  Google Scholar 

  9. Li, H., Kawashima, K., Tadano, K., et al.: Achieving haptic perception in forceps manipulator using pneumatic artificial muscle. IEEE/ASME Trans. Mechatron. 18(1), 74–85 (2013)

    Article  Google Scholar 

  10. Robinson, R.M., Wereley, N.M., Kothera, C.S., et al.: Model-based feedforward control of a robotic manipulator with pneumatic artificial muscles. In: ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. 461–471. ASME, Georgia (2012)

    Google Scholar 

  11. Ito, A., Kiyoto, K., Furuya, N.: Motion control of parallel manipulator using pneumatic artificial actuators. In: IEEE International Conference on Robotics and Biomimetics, pp. 460–465. IEEE, Tianjin (2010)

    Google Scholar 

  12. Ito, A., Washizawa, N., Kiyoto, K., et al.: Control of pneumatic actuator in consideration of hysteresis characteristics. In: IEEE International Conference on Robotics and Biomimetics, pp. 2541–2546. IEEE, Phuket (2011)

    Google Scholar 

  13. Vo-minh, T., Tjahjowidodo, T., Ramon, H., et al.: A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model. IEEE/ASME Trans. Mechatron. 16(1), 177–186 (2011)

    Article  Google Scholar 

  14. Lin, C.J., Lin, C.R., Yu, S.K., et al.: Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model. Mechatronics 28, 35–45 (2015)

    Article  Google Scholar 

  15. Chen, Y., Zhang, J.F., Yang, C.J., et al.: Design and hybrid control of the pneumatic force-feedback systems for Arm-Exoskeleton by using on/off valve. Mechatronics 17(6), 325–335 (2007)

    Article  Google Scholar 

  16. Zhang, J.F., Yang, C.J., Chen, Y., et al.: Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton. Mechatronics 18(8), 448–457 (2008)

    Article  Google Scholar 

  17. Pujana, A.A., Mendizabal, A., Arenas, J., et al.: Modelling in Modelica and position control of a 1-DoF set-up powered by pneumatic muscles. Mechatronics 20(5), 535–552 (2010)

    Article  Google Scholar 

  18. Xie, S.L., Mei, J.P., Liu, H.T.: Achievements and trends of research on McKibben pneumatic artificial muscles. Comput. Integr. Manuf. Syst. 24(5), 1065–1081 (2018)

    Google Scholar 

  19. Kuhnen, K., Janocha, H.: Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell. Syst. 29(3), 74–83 (2001)

    Google Scholar 

  20. Xie, S.L., Liu, H.T., Mei, J.P., et al.: Simulation of tracking control of pneumatic artificial muscle based on fast switching valves. Trans. Chin. Soc. Agric. Mach. 48(1), 368–374+385 (2017)

    Google Scholar 

  21. Xie, S.L., Mei, J.P., Liu, H.T.: Kinematics modeling and simulation of trajectory tracking control of a foot-plate-based lower-limb rehabilitation robot. J. Tianjin Univ. (Sci. Technol.) 51(5), 443–452 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binrui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, S., Wang, B., Chen, D. (2019). Comparison of Different Schemes for Motion Control of Pneumatic Artificial Muscle Using Fast Switching Valve. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27535-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27534-1

  • Online ISBN: 978-3-030-27535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics