Abstract
In this work, we investigate the use of unsupervised data mining techniques to speed up Bee Swarm Optimization metaheuristic (BSO). Knowledge is extracted dynamically during the search process in order to reduce the number of candidate solutions to be evaluated. One approach uses clustering (for grouping similar solutions) and evaluates only clusters centers considered as representatives. The second uses Frequent itemset mining for guiding the search process to promising solutions. The proposed hybrid algorithms are tested on MaxSAT instances and results show that a significant reduction in time execution can be obtained for large instances while maintaining equivalent quality compared to the original BSO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adibi, M.A., Shahrabi, J.: A clustering-based modified variable neighborhood search algorithm for a dynamic job shop scheduling problem. Int. J. Adv. Manuf. Technol. 70(9–12), 1955–1961 (2014)
Battiti, R., Brunato, M.: Reactive search optimization: learning while optimizing. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, vol. 146, pp. 543–571. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_18
Calvet, L., de Armas, J., Masip, D., Juan, A.A.: Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Math. 15(1), 261–280 (2017)
Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005). https://doi.org/10.1007/11494669_39
Farag, M.A., El-Shorbagy, M., El-Desoky, I., El-Sawy, A., Mousa, A.: Genetic algorithm based on k-means-clustering technique for multi-objective resource allocation problems. Br. J. Appl. Sci. Technol. 8(1), 80–96 (2015)
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)
Martins, S.D.L., Rosseti, I., Plastino, A.: Data mining in stochastic local search. In: Marti, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics. Springer, Cham (2016)
Plastino, A., Barbalho, H., Santos, L.F.M., Fuchshuber, R., Martins, S.L.: Adaptive and multi-mining versions of the DM-GRASP hybrid metaheuristic. J. Heuristics 20(1), 39–74 (2014)
Plastino, A., Fuchshuber, R., Martins, S.D.L., Freitas, A.A., Salhi, S.: A hybrid data mining metaheuristic for the p-median problem. Stat. Anal. Data Min. ASA Data Sci. J. 4(3), 313–335 (2011)
Ribeiro, M.H., Plastino, A., Martins, S.L.: Hybridization of grasp metaheuristic with data mining techniques. J. Math. Model. Algorithms 5(1), 23–41 (2006)
Sadeg, S., Hamdad, L., Benatchba, K., Habbas, Z.: BSO-FS: bee swarm optimization for feature selection in classification. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 387–399. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19258-1_33
Santos, L.F., Ribeiro, M.H., Plastino, A., Martins, S.L.: A hybrid GRASP with data mining for the maximum diversity problem. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 116–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11546245_11
Santos, L.F., Martins, S.L., Plastino, A.: Applications of the DM-GRASP heuristic: a survey. Int. Trans. Oper. Res. 15(4), 387–416 (2008)
Talbi, E.G.: Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 240(1), 171–215 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Sadeg, S., Hamdad, L., Haouas, M., Abderrahmane, K., Benatchba, K., Habbas, Z. (2019). Unsupervised Learning Bee Swarm Optimization Metaheuristic. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_64
Download citation
DOI: https://doi.org/10.1007/978-3-030-20518-8_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20517-1
Online ISBN: 978-3-030-20518-8
eBook Packages: Computer ScienceComputer Science (R0)