[go: up one dir, main page]

Skip to main content

Unsupervised Learning Bee Swarm Optimization Metaheuristic

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Abstract

In this work, we investigate the use of unsupervised data mining techniques to speed up Bee Swarm Optimization metaheuristic (BSO). Knowledge is extracted dynamically during the search process in order to reduce the number of candidate solutions to be evaluated. One approach uses clustering (for grouping similar solutions) and evaluates only clusters centers considered as representatives. The second uses Frequent itemset mining for guiding the search process to promising solutions. The proposed hybrid algorithms are tested on MaxSAT instances and results show that a significant reduction in time execution can be obtained for large instances while maintaining equivalent quality compared to the original BSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.maxsat.udl.cat.

  2. 2.

    http://www.cs.waikato.ac.nz/ml/weka/.

  3. 3.

    http://www.cs.ubc.ca/labs/beta/Projects/SMAC/.

References

  1. Adibi, M.A., Shahrabi, J.: A clustering-based modified variable neighborhood search algorithm for a dynamic job shop scheduling problem. Int. J. Adv. Manuf. Technol. 70(9–12), 1955–1961 (2014)

    Article  Google Scholar 

  2. Battiti, R., Brunato, M.: Reactive search optimization: learning while optimizing. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, vol. 146, pp. 543–571. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_18

    Chapter  Google Scholar 

  3. Calvet, L., de Armas, J., Masip, D., Juan, A.A.: Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Math. 15(1), 261–280 (2017)

    Article  MathSciNet  Google Scholar 

  4. Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005). https://doi.org/10.1007/11494669_39

    Chapter  Google Scholar 

  5. Farag, M.A., El-Shorbagy, M., El-Desoky, I., El-Sawy, A., Mousa, A.: Genetic algorithm based on k-means-clustering technique for multi-objective resource allocation problems. Br. J. Appl. Sci. Technol. 8(1), 80–96 (2015)

    Article  Google Scholar 

  6. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  7. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  8. Martins, S.D.L., Rosseti, I., Plastino, A.: Data mining in stochastic local search. In: Marti, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics. Springer, Cham (2016)

    Chapter  Google Scholar 

  9. Plastino, A., Barbalho, H., Santos, L.F.M., Fuchshuber, R., Martins, S.L.: Adaptive and multi-mining versions of the DM-GRASP hybrid metaheuristic. J. Heuristics 20(1), 39–74 (2014)

    Article  Google Scholar 

  10. Plastino, A., Fuchshuber, R., Martins, S.D.L., Freitas, A.A., Salhi, S.: A hybrid data mining metaheuristic for the p-median problem. Stat. Anal. Data Min. ASA Data Sci. J. 4(3), 313–335 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ribeiro, M.H., Plastino, A., Martins, S.L.: Hybridization of grasp metaheuristic with data mining techniques. J. Math. Model. Algorithms 5(1), 23–41 (2006)

    Article  MathSciNet  Google Scholar 

  12. Sadeg, S., Hamdad, L., Benatchba, K., Habbas, Z.: BSO-FS: bee swarm optimization for feature selection in classification. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 387–399. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19258-1_33

    Chapter  Google Scholar 

  13. Santos, L.F., Ribeiro, M.H., Plastino, A., Martins, S.L.: A hybrid GRASP with data mining for the maximum diversity problem. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 116–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11546245_11

    Chapter  Google Scholar 

  14. Santos, L.F., Martins, S.L., Plastino, A.: Applications of the DM-GRASP heuristic: a survey. Int. Trans. Oper. Res. 15(4), 387–416 (2008)

    Article  MathSciNet  Google Scholar 

  15. Talbi, E.G.: Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 240(1), 171–215 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhila Sadeg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadeg, S., Hamdad, L., Haouas, M., Abderrahmane, K., Benatchba, K., Habbas, Z. (2019). Unsupervised Learning Bee Swarm Optimization Metaheuristic. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics