[go: up one dir, main page]

Skip to content

Kafka Consumer

The Kafka Consumer utility transparently handles message deserialization, provides an intuitive developer experience, and integrates seamlessly with the rest of the Powertools for AWS Lambda ecosystem.

flowchart LR
    KafkaTopic["Kafka Topic"] --> MSK["Amazon MSK"]
    KafkaTopic --> MSKServerless["Amazon MSK Serverless"]
    KafkaTopic --> SelfHosted["Self-hosted Kafka"]
    MSK --> EventSourceMapping["Event Source Mapping"]
    MSKServerless --> EventSourceMapping
    SelfHosted --> EventSourceMapping
    EventSourceMapping --> Lambda["Lambda Function"]
    Lambda --> KafkaConsumer["Kafka Consumer Utility"]
    KafkaConsumer --> Deserialization["Deserialization"]
    Deserialization --> YourLogic["Your Business Logic"]

Key features

  • Automatic deserialization of Kafka messages (JSON, Avro, and Protocol Buffers)
  • Simplified event record handling with intuitive interface
  • Support for key and value deserialization
  • Support for custom output serializers (e.g., dataclasses, Pydantic models)
  • Support for ESM with and without Schema Registry integration
  • Proper error handling for deserialization issues

Terminology

Event Source Mapping (ESM) A Lambda feature that reads from streaming sources (like Kafka) and invokes your Lambda function. It manages polling, batching, and error handling automatically, eliminating the need for consumer management code.

Record Key and Value A Kafka messages contain two important parts: an optional key that determines the partition and a value containing the actual message data. Both are base64-encoded in Lambda events and can be independently deserialized.

Deserialization Is the process of converting binary data (base64-encoded in Lambda events) into usable Python objects according to a specific format like JSON, Avro, or Protocol Buffers. Powertools handles this conversion automatically.

SchemaConfig class Contains parameters that tell Powertools how to interpret message data, including the format type (JSON, Avro, Protocol Buffers) and optional schema definitions needed for binary formats.

Output Serializer A Pydantic model, Python dataclass, or any custom class that helps structure data for your business logic.

Schema Registry Is a centralized service that stores and validates schemas, ensuring producers and consumers maintain compatibility when message formats evolve over time.

Moving from traditional Kafka consumers

Lambda processes Kafka messages as discrete events rather than continuous streams, requiring a different approach to consumer development that Powertools for AWS helps standardize.

Aspect Traditional Kafka Consumers Lambda Kafka Consumer
Model Pull-based (you poll for messages) Push-based (Lambda invoked with messages)
Scaling Manual scaling configuration Automatic scaling to partition count
State Long-running application with state Stateless, ephemeral executions
Offsets Manual offset management Automatic offset commitment
Schema Validation Client-side schema validation Optional Schema Registry integration with Event Source Mapping
Error Handling Per-message retry control Batch-level retry policies

Getting started

Installation

Install the Powertools for AWS Lambda package with the appropriate extras for your use case:

1
2
3
4
5
6
7
8
# Basic installation - includes JSON support
pip install aws-lambda-powertools

# For processing Avro messages
pip install 'aws-lambda-powertools[kafka-consumer-avro]'

# For working with Protocol Buffers
pip install 'aws-lambda-powertools[kafka-consumer-protobuf]'

Required resources

To use the Kafka consumer utility, you need an AWS Lambda function configured with a Kafka event source. This can be Amazon MSK, MSK Serverless, or a self-hosted Kafka cluster.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
  KafkaConsumerFunction:
    Type: AWS::Serverless::Function
    Properties:
      Handler: app.lambda_handler
      Runtime: python3.13
      Timeout: 30
      Events:
        MSKEvent:
          Type: MSK
          Properties:
            StartingPosition: LATEST
            Stream: !GetAtt MyMSKCluster.Arn
            Topics:
              - my-topic-1
              - my-topic-2
      Policies:
        - AWSLambdaMSKExecutionRole

Using ESM with Schema Registry

The Event Source Mapping configuration determines which mode is used. With JSON, Lambda converts all messages to JSON before invoking your function. With SOURCE mode, Lambda preserves the original format, requiring you function to handle the appropriate deserialization.

Powertools for AWS supports both Schema Registry integration modes in your Event Source Mapping configuration.

Processing Kafka events

The Kafka consumer utility transforms raw Lambda Kafka events into an intuitive format for processing. To handle messages effectively, you'll need to configure a schema that matches your data format.

Using Avro is recommended

We recommend Avro for production Kafka implementations due to its schema evolution capabilities, compact binary format, and integration with Schema Registry. This offers better type safety and forward/backward compatibility compared to JSON.

getting_started_with_avro.py
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from aws_lambda_powertools import Logger
from aws_lambda_powertools.utilities.kafka import ConsumerRecords, SchemaConfig, kafka_consumer
from aws_lambda_powertools.utilities.typing import LambdaContext

logger = Logger()

# Define the Avro schema
avro_schema = """
{
    "type": "record",
    "name": "User",
    "namespace": "com.example",
    "fields": [
        {"name": "name", "type": "string"},
        {"name": "age", "type": "int"}
    ]
}
"""

# Configure schema
schema_config = SchemaConfig(
    value_schema_type="AVRO",
    value_schema=avro_schema,
)


@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context: LambdaContext):
    for record in event.records:
        user = record.value  # Dictionary from avro message

        logger.info(f"Processing user: {user['name']}, age {user['age']}")

    return {"statusCode": 200}
getting_started_with_protobuf.py
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from aws_lambda_powertools import Logger
from aws_lambda_powertools.utilities.kafka import ConsumerRecords, SchemaConfig, kafka_consumer
from aws_lambda_powertools.utilities.typing import LambdaContext

# Import generated protobuf class
from .user_pb2 import User  # type: ignore[import-not-found]

logger = Logger()

# Configure schema for protobuf
schema_config = SchemaConfig(
    value_schema_type="PROTOBUF",
    value_schema=User,  # The protobuf message class
)


@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context: LambdaContext):
    for record in event.records:
        user = record.value  # Dictionary from avro message

        logger.info(f"Processing user: {user['name']}, age {user['age']}")

    return {"statusCode": 200}
getting_started_with_json.py
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
from aws_lambda_powertools import Logger
from aws_lambda_powertools.utilities.kafka import ConsumerRecords, SchemaConfig, kafka_consumer
from aws_lambda_powertools.utilities.typing import LambdaContext

logger = Logger()

# Configure schema
schema_config = SchemaConfig(value_schema_type="JSON")


@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context: LambdaContext):
    for record in event.records:
        user = record.value  # Dictionary from avro message

        logger.info(f"Processing user: {user['name']}, age {user['age']}")

    return {"statusCode": 200}

Deserializing keys and values

The @kafka_consumer decorator can deserialize both keys and values independently based on your schema configuration. This flexibility allows you to work with different data formats in the same message.

working_with_key_and_value.py
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from aws_lambda_powertools import Logger
from aws_lambda_powertools.utilities.kafka import ConsumerRecords, SchemaConfig, kafka_consumer
from aws_lambda_powertools.utilities.typing import LambdaContext

logger = Logger()

# Define schemas for both components
key_schema = """
{
    "type": "record",
    "name": "ProductKey",
    "fields": [
        {"name": "product_id", "type": "string"}
    ]
}
"""

value_schema = """
{
    "type": "record",
    "name": "ProductInfo",
    "fields": [
        {"name": "name", "type": "string"},
        {"name": "price", "type": "double"},
        {"name": "in_stock", "type": "boolean"}
    ]
}
"""

# Configure both key and value schemas
schema_config = SchemaConfig(
    key_schema_type="AVRO",
    key_schema=key_schema,
    value_schema_type="AVRO",
    value_schema=value_schema,
)


@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context: LambdaContext):
    for record in event.records:
        # Access both deserialized components
        key = record.key
        value = record.value

        logger.info(f"Processing key: {key['product_id']}")
        logger.info(f"Processing value: {value['name']}")

    return {"statusCode": 200}
working_with_value_only.py
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
from aws_lambda_powertools import Logger
from aws_lambda_powertools.utilities.kafka import ConsumerRecords, SchemaConfig, kafka_consumer
from aws_lambda_powertools.utilities.typing import LambdaContext

logger = Logger()

# Configure only value schema
schema_config = SchemaConfig(value_schema_type="JSON")


@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context: LambdaContext):
    for record in event.records:
        # Key remains as string (if present)
        if record.key is not None:
            logger.info(f"Message key: {record.key}")

        # Value is deserialized as JSON
        value = record.value
        logger.info(f"Order #{value['order_id']} - Total: ${value['total']}")

    return {"statusCode": 200}

Handling primitive types

When working with primitive data types (strings, integers, etc.) rather than structured objects, you can simplify your configuration by omitting the schema specification for that component. Powertools for AWS will deserialize the value always as a string.

Common pattern: Keys with primitive values

Using primitive types (strings, integers) as Kafka message keys is a common pattern for partitioning and identifying messages. Powertools automatically handles these primitive keys without requiring special configuration, making it easy to implement this popular design pattern.

working_with_primitive_key.py
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from aws_lambda_powertools import Logger
from aws_lambda_powertools.utilities.kafka import ConsumerRecords, SchemaConfig, kafka_consumer
from aws_lambda_powertools.utilities.typing import LambdaContext

logger = Logger()

# Only configure value schema
schema_config = SchemaConfig(value_schema_type="JSON")


@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context: LambdaContext):
    for record in event.records:
        # Key is automatically decoded as UTF-8 string
        key = record.key

        # Value is deserialized as JSON
        value = record.value

        logger.info(f"Processing key: {key}")
        logger.info(f"Processing value: {value['name']}")

    return {"statusCode": 200}
working_with_primitive_key_and_value.py
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
from aws_lambda_powertools import Logger
from aws_lambda_powertools.utilities.kafka import ConsumerRecords, kafka_consumer
from aws_lambda_powertools.utilities.typing import LambdaContext

logger = Logger()


@kafka_consumer
def lambda_handler(event: ConsumerRecords, context: LambdaContext):
    for record in event.records:
        # Key is automatically decoded as UTF-8 string
        key = record.key

        # Value is automatically decoded as UTF-8 string
        value = record.value

        logger.info(f"Processing key: {key}")
        logger.info(f"Processing value: {value}")

    return {"statusCode": 200}

Message format support and comparison

The Kafka consumer utility supports multiple serialization formats to match your existing Kafka implementation. Choose the format that best suits your needs based on performance, schema evolution requirements, and ecosystem compatibility.

Selecting the right format

For new applications, consider Avro or Protocol Buffers over JSON. Both provide schema validation, evolution support, and significantly better performance with smaller message sizes. Avro is particularly well-suited for Kafka due to its built-in schema evolution capabilities.

Format Schema Type Description Required Parameters
JSON "JSON" Human-readable text format None
Avro "AVRO" Compact binary format with schema value_schema (Avro schema string)
Protocol Buffers "PROTOBUF" Efficient binary format value_schema (Proto message class)
Feature JSON Avro Protocol Buffers
Schema Definition Optional Required JSON schema Required .proto file
Schema Evolution None Strong support Strong support
Size Efficiency Low High Highest
Processing Speed Slower Fast Fastest
Human Readability High Low Low
Implementation Complexity Low Medium Medium
Additional Dependencies None avro package protobuf package

Choose the serialization format that best fits your needs:

  • JSON: Best for simplicity and when schema flexibility is important
  • Avro: Best for systems with evolving schemas and when compatibility is critical
  • Protocol Buffers: Best for performance-critical systems with structured data

Advanced

Accessing record metadata

Each Kafka record contains important metadata that you can access alongside the deserialized message content. This metadata helps with message processing, troubleshooting, and implementing advanced patterns like exactly-once processing.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools.utilities.kafka.consumer_records import ConsumerRecords
from aws_lambda_powertools.utilities.kafka.schema_config import SchemaConfig

# Define Avro schema
avro_schema = """
{
    "type": "record",
    "name": "Customer",
    "fields": [
        {"name": "customer_id", "type": "string"},
        {"name": "name", "type": "string"},
        {"name": "email", "type": "string"},
        {"name": "order_total", "type": "double"}
    ]
}
"""

schema_config = SchemaConfig(
    value_schema_type="AVRO",
    value_schema=avro_schema
)

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context):
    for record in event.records:
        # Log record coordinates for tracing
        print(f"Processing message from topic '{record.topic}'")
        print(f"  Partition: {record.partition}, Offset: {record.offset}")
        print(f"  Produced at: {record.timestamp}")

        # Process message headers
        if record.headers:
            for header in record.headers:
                print(f"  Header: {header['key']} = {header['value']}")

        # Access the Avro deserialized message content
        customer = record.value
        print(f"Processing order for: {customer['name']}")
        print(f"Order total: ${customer['order_total']}")

        # For debugging, you can access the original raw data
        # print(f"Raw message: {record.raw_value}")

    return {"statusCode": 200}

Available metadata properties

Property Description Example Use Case
topic Topic name the record was published to Routing logic in multi-topic consumers
partition Kafka partition number Tracking message distribution
offset Position in the partition De-duplication, exactly-once processing
timestamp Unix timestamp when record was created Event timing analysis
timestamp_type Timestamp type (CREATE_TIME or LOG_APPEND_TIME) Data lineage verification
headers Key-value pairs attached to the message Cross-cutting concerns like correlation IDs
key Deserialized message key Customer ID or entity identifier
value Deserialized message content The actual business data
original_value Base64-encoded original message value Debugging or custom deserialization
original_key Base64-encoded original message key Debugging or custom deserialization

Custom output serializers

Transform deserialized data into your preferred object types using output serializers. This can help you integrate Kafka data with your domain models and application architecture, providing type hints, validation, and structured data access.

Choosing the right output serializer
  • Pydantic models offer robust data validation at runtime and excellent IDE support
  • Dataclasses provide lightweight type hints with better performance than Pydantic
  • Custom classes give complete flexibility for complex transformations and business logic
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from pydantic import BaseModel, Field, EmailStr
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools.utilities.kafka.schema_config import SchemaConfig

# Define Pydantic model for strong validation
class Customer(BaseModel):
    id: str
    name: str
    email: EmailStr
    tier: str = Field(pattern=r'^(standard|premium|enterprise)$')
    loyalty_points: int = Field(ge=0)

    def is_premium(self) -> bool:
        return self.tier in ("premium", "enterprise")

# Configure with Avro schema and Pydantic output
schema_config = SchemaConfig(
    value_schema_type="JSON",
    value_output_serializer=Customer
)

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event, context):
    for record in event.records:
        # record.value is now a validated Customer instance
        customer = record.value

        # Access model properties and methods
        if customer.is_premium():
            print(f"Processing premium customer: {customer.name}")
            apply_premium_benefits(customer)

    return {"statusCode": 200}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from dataclasses import dataclass
from datetime import datetime
from typing import List, Optional
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools.utilities.kafka.schema_config import SchemaConfig

# Define dataclasses for type hints and structure
@dataclass
class OrderItem:
    product_id: str
    quantity: int
    unit_price: float

@dataclass
class Order:
    order_id: str
    customer_id: str
    items: List[OrderItem]
    created_at: datetime
    shipped_at: Optional[datetime] = None

    @property
    def total(self) -> float:
        return sum(item.quantity * item.unit_price for item in self.items)

# Helper function to convert timestamps to datetime objects
def order_converter(data):
    # Convert timestamps to datetime objects
    data['created_at'] = datetime.fromtimestamp(data['created_at']/1000)
    if data.get('shipped_at'):
        data['shipped_at'] = datetime.fromtimestamp(data['shipped_at']/1000)

    # Convert order items
    data['items'] = [OrderItem(**item) for item in data['items']]
    return Order(**data)

schema_config = SchemaConfig(
    value_schema_type="JSON",
    value_output_serializer=order_converter
)

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event, context):
    for record in event.records:
        # record.value is now an Order object
        order = record.value

        print(f"Processing order {order.order_id} with {len(order.items)} items")
        print(f"Order total: ${order.total:.2f}")

    return {"statusCode": 200}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools.utilities.kafka.schema_config import SchemaConfig

# Custom class with business logic
class EnrichmentProcessor:
    def __init__(self, data):
        self.user_id = data['user_id']
        self.name = data['name']
        self.preferences = data.get('preferences', {})
        self._raw_data = data  # Keep original data
        self._enriched = False
        self._recommendations = None

    def enrich(self, recommendation_service):
        """Enrich user data with recommendations"""
        if not self._enriched:
            self._recommendations = recommendation_service.get_for_user(self.user_id)
            self._enriched = True
        return self

    @property
    def recommendations(self):
        if not self._enriched:
            raise ValueError("Must call enrich() before accessing recommendations")
        return self._recommendations

# Configure with custom processor
schema_config = SchemaConfig(
    value_schema_type="JSON",
    value_output_serializer=EnrichmentProcessor
)

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event, context):
    # Initialize services
    recommendation_service = RecommendationService()

    for record in event.records:
        # record.value is now an EnrichmentProcessor
        processor = record.value

        # Use the processor's methods for business logic
        enriched = processor.enrich(recommendation_service)

        # Access computed properties
        print(f"User: {enriched.name}")
        print(f"Top recommendation: {enriched.recommendations[0]['title']}")

    return {"statusCode": 200}

Error handling

Handle errors gracefully when processing Kafka messages to ensure your application maintains resilience and provides clear diagnostic information. The Kafka consumer utility provides specific exception types to help you identify and handle deserialization issues effectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools.utilities.kafka.exceptions import KafkaConsumerDeserializationError
from aws_lambda_powertools import Logger

logger = Logger()

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event, context):
    successful_records = 0
    failed_records = 0

    for record in event.records:
        try:
            # Process each record individually to isolate failures
            process_customer_data(record.value)
            successful_records += 1

        except KafkaConsumerDeserializationError as e:
            failed_records += 1
            logger.error(
                "Failed to deserialize Kafka message",
                extra={
                    "topic": record.topic,
                    "partition": record.partition,
                    "offset": record.offset,
                    "error": str(e)
                }
            )
            # Optionally send to DLQ or error topic

        except Exception as e:
            failed_records += 1
            logger.error(
                "Error processing Kafka message",
                extra={
                    "error": str(e),
                    "topic": record.topic
                }
            )

    return {
        "statusCode": 200,
        "body": f"Processed {successful_records} records successfully, {failed_records} failed"
    }
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools.utilities.kafka.exceptions import (
    KafkaConsumerDeserializationError,
    KafkaConsumerAvroSchemaParserError
)
from aws_lambda_powertools import Logger, Metrics
from aws_lambda_powertools.metrics import MetricUnit

logger = Logger()
metrics = Metrics()

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event, context):
    metrics.add_metric(name="TotalRecords", unit=MetricUnit.Count, value=len(event.records))

    for record in event.records:
        try:
            order = record.value
            process_order(order)
            metrics.add_metric(name="ProcessedRecords", unit=MetricUnit.Count, value=1)

        except KafkaConsumerAvroSchemaParserError as e:
            logger.critical(
                "Invalid Avro schema configuration",
                extra={"error": str(e)}
            )
            metrics.add_metric(name="SchemaErrors", unit=MetricUnit.Count, value=1)
            # This requires fixing the schema - might want to raise to stop processing
            raise

        except KafkaConsumerDeserializationError as e:
            logger.warning(
                "Message format doesn't match schema",
                extra={
                    "topic": record.topic,
                    "error": str(e),
                    "raw_data_sample": str(record.raw_value)[:100] + "..." if len(record.raw_value) > 100 else record.raw_value
                }
            )
            metrics.add_metric(name="DeserializationErrors", unit=MetricUnit.Count, value=1)
            # Send to dead-letter queue for analysis
            send_to_dlq(record)

    return {"statusCode": 200, "metrics": metrics.serialize_metric_set()}

Exception types

Exception Description Common Causes
KafkaConsumerDeserializationError Raised when message deserialization fails Corrupted message data, schema mismatch, or wrong schema type configuration
KafkaConsumerAvroSchemaParserError Raised when parsing Avro schema definition fails Syntax errors in schema JSON, invalid field types, or malformed schema
KafkaConsumerMissingSchemaError Raised when a required schema is not provided Missing schema for AVRO or PROTOBUF formats (required parameter)
KafkaConsumerOutputSerializerError Raised when output serializer fails Error in custom serializer function, incompatible data, or validation failures in Pydantic models

Integrating with Idempotency

When processing Kafka messages in Lambda, failed batches can result in message reprocessing. The idempotency utility prevents duplicate processing by tracking which messages have already been handled, ensuring each message is processed exactly once.

The Idempotency utility automatically stores the result of each successful operation, returning the cached result if the same message is processed again, which prevents potentially harmful duplicate operations like double-charging customers or double-counting metrics.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from aws_lambda_powertools import Logger
from aws_lambda_powertools.utilities.idempotency import (
    idempotent_function,
    DynamoDBPersistenceLayer,
    IdempotencyConfig
)
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools.utilities.kafka.schema_config import SchemaConfig
from aws_lambda_powertools.utilities.kafka.consumer_records import ConsumerRecords

# Configure persistence layer for idempotency
persistence_layer = DynamoDBPersistenceLayer(table_name="IdempotencyTable")
logger = Logger()

# Configure Kafka schema
avro_schema = """
{
    "type": "record",
    "name": "Payment",
    "fields": [
        {"name": "payment_id", "type": "string"},
        {"name": "customer_id", "type": "string"},
        {"name": "amount", "type": "double"},
        {"name": "status", "type": "string"}
    ]
}
"""

schema_config = SchemaConfig(
    value_schema_type="AVRO",
    value_schema=avro_schema
)

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context):
    for record in event.records:
        # Process each message with idempotency protection
        process_payment(
            payment=record.value,
            topic=record.topic,
            partition=record.partition,
            offset=record.offset
        )

    return {"statusCode": 200}

@idempotent_function(
    data_keyword_argument="payment",
    config=IdempotencyConfig(
        event_key_jmespath="topic & '-' & partition & '-' & offset"
    ),
    persistence_store=persistence_layer
)
def process_payment(payment, topic, partition, offset):
    """Process a payment exactly once"""
    logger.info(f"Processing payment {payment['payment_id']} from {topic}-{partition}-{offset}")

    # Execute payment logic
    payment_service.process(
        payment_id=payment['payment_id'],
        customer_id=payment['customer_id'],
        amount=payment['amount']
    )

    return {"success": True, "payment_id": payment['payment_id']}

TIP: By using the Kafka record's unique coordinates (topic, partition, offset) as the idempotency key, you ensure that even if a batch fails and Lambda retries the messages, each message will be processed exactly once.

Best practices

Handling large messages

When processing large Kafka messages in Lambda, be mindful of memory limitations. Although the Kafka consumer utility optimizes memory usage, large deserialized messages can still exhaust Lambda's resources.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools import Logger

logger = Logger()

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event, context):
    for record in event.records:
        # Example: Handle large product catalog updates differently
        if record.topic == "product-catalog" and len(record.raw_value) > 3_000_000:
            logger.info(f"Detected large product catalog update ({len(record.raw_value)} bytes)")

            # Example: Extract S3 reference from message
            catalog_ref = record.value.get("s3_reference")
            logger.info(f"Processing catalog from S3: {catalog_ref}")

            # Process via S3 reference instead of direct message content
            result = process_catalog_from_s3(
                bucket=catalog_ref["bucket"],
                key=catalog_ref["key"]
            )
            logger.info(f"Processed {result['product_count']} products from S3")
        else:
            # Regular processing for standard-sized messages
            process_standard_message(record.value)

    return {"statusCode": 200}

For large messages, consider these proven approaches:

  • Store the data: use Amazon S3 and include only the S3 reference in your Kafka message
  • Split large payloads: use multiple smaller messages with sequence identifiers
  • Increase memory Increase your Lambda function's memory allocation, which also increases CPU capacity

Batch size configuration

The number of Kafka records processed per Lambda invocation is controlled by your Event Source Mapping configuration. Properly sized batches optimize cost and performance.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
Resources:
OrderProcessingFunction:
    Type: AWS::Serverless::Function
    Properties:
    Handler: app.lambda_handler
    Runtime: python3.9
    Events:
        KafkaEvent:
        Type: MSK
        Properties:
            Stream: !GetAtt OrdersMSKCluster.Arn
            Topics:
            - order-events
            - payment-events
            # Configuration for optimal throughput/latency balance
            BatchSize: 100
            MaximumBatchingWindowInSeconds: 5
            StartingPosition: LATEST
            # Enable partial batch success reporting
            FunctionResponseTypes:
            - ReportBatchItemFailures

Different workloads benefit from different batch configurations:

  • High-volume, simple processing: Use larger batches (100-500 records) with short timeout
  • Complex processing with database operations: Use smaller batches (10-50 records)
  • Mixed message sizes: Set appropriate batching window (1-5 seconds) to handle variability

Cross-language compatibility

When using binary serialization formats across multiple programming languages, ensure consistent schema handling to prevent deserialization failures.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Example: Processing Java-produced Avro messages in Python
from aws_lambda_powertools.utilities.kafka import kafka_consumer
from aws_lambda_powertools.utilities.kafka.schema_config import SchemaConfig

# Define schema that matches Java producer
avro_schema = """
{
    "namespace": "com.example.orders",
    "type": "record",
    "name": "OrderEvent",
    "fields": [
        {"name": "orderId", "type": "string"},
        {"name": "customerId", "type": "string"},
        {"name": "totalAmount", "type": "double"},
        {"name": "orderDate", "type": "long", "logicalType": "timestamp-millis"}
    ]
}
"""

# Configure schema with field name normalization for Python style
class OrderProcessor:
    def __init__(self, data):
        # Convert Java camelCase to Python snake_case
        self.order_id = data["orderId"]
        self.customer_id = data["customerId"]
        self.total_amount = data["totalAmount"]
        # Convert Java timestamp to Python datetime
        self.order_date = datetime.fromtimestamp(data["orderDate"]/1000)

schema_config = SchemaConfig(
    value_schema_type="AVRO",
    value_schema=avro_schema,
    value_output_serializer=OrderProcessor
)

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event, context):
    for record in event.records:
        order = record.value  # OrderProcessor instance
        print(f"Processing order {order.order_id} from {order.order_date}")

Common cross-language challenges to address:

  • Field naming conventions: camelCase in Java vs snake_case in Python
  • Date/time: representation differences
  • Numeric precision handling: especially decimals

Troubleshooting common errors

Troubleshooting

Deserialization failures

When encountering deserialization errors with your Kafka messages, follow this systematic troubleshooting approach to identify and resolve the root cause.

First, check that your schema definition exactly matches the message format. Even minor discrepancies can cause deserialization failures, especially with binary formats like Avro and Protocol Buffers.

For binary messages that fail to deserialize, examine the raw encoded data:

1
2
3
4
5
6
7
# DO NOT include this code in production handlers
# For troubleshooting purposes only
import base64

raw_bytes = base64.b64decode(record.raw_value)
print(f"Message size: {len(raw_bytes)} bytes")
print(f"First 50 bytes (hex): {raw_bytes[:50].hex()}")

Schema compatibility issues

Schema compatibility issues often manifest as successful connections but failed deserialization. Common causes include:

  • Schema evolution without backward compatibility: New producer schema is incompatible with consumer schema
  • Field type mismatches: For example, a field changed from string to integer across systems
  • Missing required fields: Fields required by the consumer schema but absent in the message
  • Default value discrepancies: Different handling of default values between languages

When using Schema Registry, verify schema compatibility rules are properly configured for your topics and that all applications use the same registry.

Memory and timeout optimization

Lambda functions processing Kafka messages may encounter resource constraints, particularly with large batches or complex processing logic.

For memory errors:

  • Increase Lambda memory allocation, which also provides more CPU resources
  • Process fewer records per batch by adjusting the BatchSize parameter in your event source mapping
  • Consider optimizing your message format to reduce memory footprint

For timeout issues:

  • Extend your Lambda function timeout setting to accommodate processing time
  • Implement chunked or asynchronous processing patterns for time-consuming operations
  • Monitor and optimize database operations, external API calls, or other I/O operations in your handler
Monitoring memory usage

Use CloudWatch metrics to track your function's memory utilization. If it consistently exceeds 80% of allocated memory, consider increasing the memory allocation or optimizing your code.

Kafka consumer workflow

Using ESM with Schema Registry validation (SOURCE)

sequenceDiagram
    participant Kafka
    participant ESM as Event Source Mapping
    participant SchemaRegistry as Schema Registry
    participant Lambda
    participant KafkaConsumer
    participant YourCode
    Kafka->>+ESM: Send batch of records
    ESM->>+SchemaRegistry: Validate schema
    SchemaRegistry-->>-ESM: Confirm schema is valid
    ESM->>+Lambda: Invoke with validated records (still encoded)
    Lambda->>+KafkaConsumer: Pass Kafka event
    KafkaConsumer->>KafkaConsumer: Parse event structure
    loop For each record
        KafkaConsumer->>KafkaConsumer: Decode base64 data
        KafkaConsumer->>KafkaConsumer: Deserialize based on schema_type
        alt Output serializer provided
            KafkaConsumer->>KafkaConsumer: Apply output serializer
        end
    end
    KafkaConsumer->>+YourCode: Provide ConsumerRecords
    YourCode->>YourCode: Process records
    YourCode-->>-KafkaConsumer: Return result
    KafkaConsumer-->>-Lambda: Pass result back
    Lambda-->>-ESM: Return response
    ESM-->>-Kafka: Acknowledge processed batch

Using ESM with Schema Registry deserialization (JSON)

sequenceDiagram
    participant Kafka
    participant ESM as Event Source Mapping
    participant SchemaRegistry as Schema Registry
    participant Lambda
    participant KafkaConsumer
    participant YourCode
    Kafka->>+ESM: Send batch of records
    ESM->>+SchemaRegistry: Validate and deserialize
    SchemaRegistry->>SchemaRegistry: Deserialize records
    SchemaRegistry-->>-ESM: Return deserialized data
    ESM->>+Lambda: Invoke with pre-deserialized JSON records
    Lambda->>+KafkaConsumer: Pass Kafka event
    KafkaConsumer->>KafkaConsumer: Parse event structure
    loop For each record
        KafkaConsumer->>KafkaConsumer: Record is already deserialized
        alt Output serializer provided
            KafkaConsumer->>KafkaConsumer: Apply output serializer
        end
    end
    KafkaConsumer->>+YourCode: Provide ConsumerRecords
    YourCode->>YourCode: Process records
    YourCode-->>-KafkaConsumer: Return result
    KafkaConsumer-->>-Lambda: Pass result back
    Lambda-->>-ESM: Return response
    ESM-->>-Kafka: Acknowledge processed batch

Using ESM without Schema Registry integration

sequenceDiagram
    participant Kafka
    participant Lambda
    participant KafkaConsumer
    participant YourCode
    Kafka->>+Lambda: Invoke with batch of records (direct integration)
    Lambda->>+KafkaConsumer: Pass raw Kafka event
    KafkaConsumer->>KafkaConsumer: Parse event structure
    loop For each record
        KafkaConsumer->>KafkaConsumer: Decode base64 data
        KafkaConsumer->>KafkaConsumer: Deserialize based on schema_type
        alt Output serializer provided
            KafkaConsumer->>KafkaConsumer: Apply output serializer
        end
    end
    KafkaConsumer->>+YourCode: Provide ConsumerRecords
    YourCode->>YourCode: Process records
    YourCode-->>-KafkaConsumer: Return result
    KafkaConsumer-->>-Lambda: Pass result back
    Lambda-->>-Kafka: Acknowledge processed batch

Testing your code

Testing Kafka consumer functions is straightforward with pytest. You can create simple test fixtures that simulate Kafka events without needing a real Kafka cluster.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import pytest
import base64
import json
from your_module import lambda_handler

def test_process_json_message():
    """Test processing a simple JSON message"""
    # Create a test Kafka event with JSON data
    test_event = {
        "eventSource": "aws:kafka",
        "records": {
            "orders-topic": [
                {
                    "topic": "orders-topic",
                    "partition": 0,
                    "offset": 15,
                    "timestamp": 1545084650987,
                    "timestampType": "CREATE_TIME",
                    "key": None,
                    "value": base64.b64encode(json.dumps({"order_id": "12345", "amount": 99.95}).encode()).decode(),
                }
            ]
        }
    }

    # Invoke the Lambda handler
    response = lambda_handler(test_event, {})

    # Verify the response
    assert response["statusCode"] == 200
    assert response.get("processed") == 1


def test_process_multiple_records():
    """Test processing multiple records in a batch"""
    # Create a test event with multiple records
    test_event = {
        "eventSource": "aws:kafka",
        "records": {
            "customers-topic": [
                {
                    "topic": "customers-topic",
                    "partition": 0,
                    "offset": 10,
                    "value": base64.b64encode(json.dumps({"customer_id": "A1", "name": "Alice"}).encode()).decode(),
                },
                {
                    "topic": "customers-topic",
                    "partition": 0,
                    "offset": 11,
                    "value": base64.b64encode(json.dumps({"customer_id": "B2", "name": "Bob"}).encode()).decode(),
                }
            ]
        }
    }

    # Invoke the Lambda handler
    response = lambda_handler(test_event, {})

    # Verify the response
    assert response["statusCode"] == 200
    assert response.get("processed") == 2