aws

Developer Guide

AWS Step Functions

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Step Functions Developer Guide

AWS Step Functions: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Step Functions Developer Guide

Table of Contents

What is Step FUNCLIONS?iiiiiieeeeiiiiiiiieiiiiinenensssnsssssseeess 1
Standard and EXpress WOrkflOWS tYPES ...ttt sae e neens 2
.. 3
INtegrating With Other SEIVICES ...ttt st st a s 3
Example use €ases fOr WOIrKFLOWS ...ttt aesae e e a e a e saeaan 6
.. 6

103 =1 0 T Tl 13 = 10
KEY CONEEPTES ettt ettt st e e s ae e s s st e sear e se st e sssnaessssaesssseassssaessssasssssessssaassssaassnnees 11
State MAChiNG DAt ...ccoiveeiiieereec ettt sttt st et sa et et s s st et e st e e e e sa b e e ene 12
DAata FOIMAT ...ttt et a e st sa e s s e e st e ae et 13
State Machine INPUE/OULPUL ...ttt a ettt sa e s e ns 14
StAte INPUL/OULPUL ...ttt ettt re s e et e e s e e et et et e s b e s e s e e sessneaesensanean 14
INVOKE STEP FUNCLIONS ..ttt et s te s e e s e e sttt e esse e e e e e e e sa et eaansenns 15
Transitions iN State MACKhINES ..ottt et ae st saes 16
Transitions in Distributed Map StAte ...t 17

REAA CONSISTENCY .ttt ettt te e te st et e st e e e e e et et e te st et e s s e sassaesa e e esaensassansassassassesseasaesaanes 18
ACTIVITIES wevvvrerennnnnnenenneniiintiiiiiiiiiiiiiiiieieeieessees 19
OVEIVIBW ...ttt ettt st ettt et st s b st st e s st et e s st s st st e s st e s ae e b e st e esesasesate st eseeabesstsssesnsanseesenns 19
APIs Related to ACLIVITY TASKS ..c.eciiiiieeecececee ettt ettt re s a e sa et et saa s 19
Waiting for an Activity Task t0 COMPLELE ... eas 20
Example: Activity WOrker in RUDY ...ttt ettt et 21
INEXE STEPS ceeietietiecteett ettt ettt e st e st e s te s s e e s ste e st e s ba s s st e s sae e sae s seesssesssaessaassssesssassstesssessssesssessseesssennn 22
USE CASES .eerrrneeeieernannessensssnncssssssssesssnssssss 23
DAt PrOCESSING ..uveiiieeiiicierteecteste sttt e st s st e s sae e st e s saesssaessse e s st assaesssaesssassseasssesssaessseesseesssessseesseessaans 23
MACHINE LEAIMING ..viuviieieeeetetetetec ettt ettt et e s e e ae e e e e e s et e st e st e sessessaese e st esaastansassasassassaenaassensansanes 24
MiICrOSErviCe OFCRESTIALION ...c.couiiiieiiietcecc ettt sttt b e st s s e st e s sasaesaesasnas 26

IT and security QULOMATIONcce ittt ra et saesaesaesbe s e e e e e s e s e aenaaneans 27
ChooSiNg WOIKFLOW tYPE ...ceeeereeiiiiiiiiiiiiiiiiennnnciiiseceiiiineeecssns 29
EXPress WOTKFLOW TYPES ...ttt ettt ettt e s e s e e et et et et e saassassesnaennan 32
EXECULION QUAKANTEES ...ttt sttt et e s ee st e s sae s s e e s ae s s sa e s saa s aa e s aa s st essaaessnasssesssaessseennees 33
AMaAzon States LANQUAQGEccceciirreeiiirmeicirmescessesirssessessessssssesssssesssssssssssssssssssssssssssssssesssssssssssssssass 35
Example Amazon States Language Specification ... 35
State MACKHING STTUCTUIE ..ttt e a et sttt b et ene 36

COMIMON SEATE THOLAS .ottt ettt e e et e e e e e saeeeeeeesaeeseessaesesessaeesenneeseasnnaessennssaesaans 38

AWS Step Functions Developer Guide

INEFINSIC FUNCLIONS ettt ettt sttt et et sa et e s b et et s b et e e besbesesaasns 39
Fields that support intrinSic fFUNCLIONSoouiieeeeee e 40
INEFNSICS FOI @ITAYS wouveieeeieeieeetetetetesee ettt et e s te e e e e e s e et et e st e st et e s seeseesaeseesaensansensassassessaesaanes 41
Intrinsics for data encoding and deCOdINgG ... 45
INtrinsic for hash CalCULAtIONco.oviiiie ettt sa et ae e 46
Intrinsics for JSON data mManipulation ...t 47
INtrinsics fOr Math OPEratioNS ...ttt sae s ne 49
INtriNSiC fOr StriNG OPEIratioN ..ottt et e et s e e aesaanaan 51
Intrinsic for unique identifier GenNeration ... 53
INtrinSic fOr geNEeriC OPEIrAtioN ...ttt et s ae st e s s e e e e e e anennan 53
Reserved characters in intrinSic fFUNCLIONScocvviiiiriniiee et 54

WOTKFLOW SEALES ..ciiiiiiiiiiiiiiiiniisnssssssssssssssssssssnnssnsssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssss 56

Reference list Of WOrKFLOW SEAtes ..ottt saes 58

TASK ettt sttt ettt sttt e e et e A et et e e et et e se b et e e e s et et e e ese s et esenaentenans 58
TASK LYPIES ettt ettt te e s te s e et e e et et et e st et e s ae e s e e sa e s e e s e et et et e seebaeseeaaene et et eta b e taeseereereenaanes 59
TaSK SLATE TIELAS ..ottt ettt et s e s b et e b e e e b et e e e sanan 62
Task state definition @XAMPLES ...ttt s aeaenaens 65

CROICE ettt ettt ettt et e st e st e e a et et e bt e e e e b et et e s b et et e s et et e seebe s eneenaane 68
CROICE RULES ...ttt sttt ettt ettt st e st e st s s e st et e e s ba st e e ssasenaenessassanasans 69
ChOiCE StAte EXAMPLE ..ottt ettt st e s testesae e e e e s et et e st et e tesseese e e esaensensansanes 73

PATALLEL .ottt ettt ettt ettt et e sa et e et et e s et et b et et e sessanteneens 75
Parallel State EXAMIPLE ...ttt et te e et se e e sa et e st e b e s bessa s e s sa s s enaesaessensansans 76
Parallel State Input and OutpuUt ProCesSingcoeceeiecieciecieneeeeeeeeeee sttt e e s et sseeas 77
ErrOr HANALING ettt sttt e st e s ae s e e e e st e st et et e st e sae e e e enaenaennanes 79

VAP ceteiitietert ettt e et e st e e te s s e e s st e e s st e et e e s st e e s e e e s s e e s b e e s e e e b e e R e e et e e At e et e e st et e e s e e et e e se e et e e st eesaeeaseensaaeraann 79
Map ProCeSSING MOAEScceecueeieereeieeeeietetete e ste e s e e e e e e s e s e stestestessassessaesasssessassensansensassassassssssensanes 80
INLINE MO ettt sttt sttt et s et e st s b e b e e s sesb et e e ssassenssnessansanans 82
DiStribDULEA MOAE ...ttt et ettt st s st s e b et s ba e e e ssasean 91

PSS ettt s a e st et e b et et e b et e Rt e b e et e Rt e ae et e at e b e et e ne e ae et enes 105
Pass StAate EXQAMIPLE ...ttt sttt e st st e st e s te s e e s e e e s e aesae s b e s seeseesaesaennensantans 105

WAL ottt ettt et e st ettt st st sttt et e et e b et e s et et e s e e b et e e b et et e s e e b et et ese b et esesseneenasan 106
Walit STAte EXQAMIPLES ..ottt ettt ettt e s tesae e e e e e et et e st e saassa e e e saesnenaennans 107

SUCCEEM ..ttt ettt ettt e st et s e st et e e s te st e e s b e st et s e b et e st s se st e st esesse st esessantestssessessessssansessesersensases 108

FL ettt st b et ettt et e R et et e R et et e Rt e s et et e s e be e eseesente e enaeee 108
Fail state definition @XAMPLES ...ttt st s ae e s ns 110

Developing WOIrKFLOWScccciiiiiiieeumnciiiiicciiiiinnneesssenssiiiseeessee 111

AWS Step Functions Developer Guide

Defining YOUIr WOIKFLOW ..ottt ettt ettt et s e naens 112
Running and debugging your WOrKFLOWS ...ttt 119
Deploying YOUr WOIKFLOWScovieeeeeeeeecetete ettt et este e e et et esaesaesaessassnesnennans 120
USING WOTKFLOW STUAIO ..ttt ve s e e s sae st sae s e st s e e e s aeaesaaaans 121
DESIGN MOAE ...ttt ettt st e st e e e st e e e e e et et e st e st e s be s s e e saesaesae s estensessansassanseasaessensanes 122
COAE MOAE ettt ettt et ettt e s s et et s se s et e e sae b antesassessesaesansensesarsn 125
CONTFIG MOAE .ttt et e e st e e e e e e e st e st e s be s e s sessaessenaeaetestassassassaennansantans 127
Create @ WOTKFLOW ..ottt ettt a e sttt a s aasa e 128
Configure iNPUL @and OULPUL ...ttt sttt a e et es 136
Set UP EXECULION FOLES ..ttt te st et e e et ettt e s ae st e s se s e s se e e e s esaeaensansans 143
Configure error RANALING ..ottt st este e e e e sa e s e s aesaaaans 149
Using Workflow Studio in Infrastructure COMPOSETccccveeeecieerereeeeeeeeeeeecee e sre e e eee e 151
USING AWS SAM Lttt sttt sttt et sttt s sa et s st et e s et et s se s b et esessasseseesassensesensan 155
Why use Step FUNCtions With AWS SAM? ...ttt ste e ss et e saesaessans 155
Step Functions integration with the AWS SAM specificationcccceveeveeececenenieceeeeeeee. 156
Step Functions integration with the SAM CLI ... 156
DefinitionSubstitutions in AWS SAM temPplates ... 157
NEXE SEEPS ettt ettt te et e s te s sre s st e s sae e s e e s saeessaessse e st e s saesssesssaesssesssessssessseesssesssensseennses 161
Create a state machine with ClLOUdFOrMAtioNccccviveiiiininnenececeree et 161
Step 1: Set up your AWS CloudFormation template ... 161
Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 167
Step 3: Start a State Maching eXeCULION ...t 172
Using CDK to create a Standard WOIKFLOW ..ottt e e anens 172
Step 1: Set up your AWS CDK PrOJECT ..cuiiiiiirieeitisteetecstesteestessressseessaesssaessseesssesssessssessssessaens 173
Step 2: Use AWS CDK to create a state Maching ... 175
Step 3: Start a state Maching @XECULION ...t 183
SEEP 4: CLEAN UP ettt te e e e e e e e e e et e st e s ae s e st e s s e e e e e e s et esaantassesaessaesaesnanaantans 184
NEXE SEEPS ettt ettt te st e e s ste e st e e ae e s e e s aeessaessae e s st e s sasssseessaesseesssessssesssessssasssensseennses 184
Using CDK to create an EXpress WOrKFLOW ..ottt 185
Step 1: Set Up YOUr AWS CDK PrOJECTuuiivieieecterteesttreeesreesne st esseeesseessesssaesseessseesssesssassseens 186
Step 2: Use the AWS CDK to create an APl Gateway REST API with Synchronous Express
State Machine backend iNtEGration ...t ae e 189
Step 3: TeSt the APl GAtEWAY ...ttt sa et ste st e s aesae e e e e e e e s e saesaenaanaans 199
SEEP 4: CLEAN UP ettt e et e et e st e st e s e st e s s e e e e e e s et e s e bassesaessaeseennenaantans 201
Using Terraform to deploy WOrKFLOWS ...ttt 201
PrErEQUISITES .ottt ettt s st e e s ae s s st e s sa e s s e e s s be e saessa e s st esssesssaesssaesssassseesssessssennnes 202

AWS Step Functions Developer Guide

Development lifecycle with Terraform ... 202
IAM roles and policies for your state Maching ... 204
Workshops and tULOrialseeeeciiiiiiiiiiiiiiiiennnniiiiiieeiiiniisscessesssissssseesssssssssssssssssssssssssssssssssssssnss 206
Workshops for learning Step FUNCLIONSccuooviiiiieieeceeeeee ettt sae st a et sae e 207
WOTKSROPS ..ottt ettt te e et e e et et e st e st e s bessesseess e e e s et e tessassessaeseessestensesasansasseesaensensanes 208
Design With WOrKFLOW STUIO ...cuevieeeeeeeeeeeeee ettt a et s ae st s a e aeaeaan 209
Step 1: Navigate to WOorkflow STUIOcveeeieeeeeeeeeeee e 209
Step 2: Create @ State MAChINE ...ttt aeaeaens 210
Step 3: Review the auto-generated Amazon States Language definitionccceeuennnenee. 211
Step 4: Edit the workflow definition in Code MOde ..., 213
Step 5: Save the state MAChING ...ttt nnens 216
Step 6: RuN the state MAaChiNe ...t 216
Step 7: Update your state Machine ...t 217
SEEP 8: CLEANM UP ittt ettt te e te e et e e e e e e e st e st et e s b e st e s e e e e sa e st e s etessasassassaesseneensanean 219
Create a state Machine USING AWS SAM ...ttt e ae s e s nenans 219
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 220
Step 1: Download a Sample AWS SAM Applicationcceieiiecieceeeeeecee e 221
Step 2: Build YOUr APPLICAtION ..ottt st te s e e e saesaeaens 222
Step 3: Deploy Your Application to the AWS Cloud ... 223
TrOUBLESNOOTING .ottt sttt et et e st esae s be e e e sa e e e e e s e b entanean 224
CLEAN UP ettt ettt et e st et e st e st e et e s e s e e e st e st et et e st e s b e s se e e eseentensansesetasseeseesaeseennensantans 224
EXQMING @XECULIONS ...ttt ettt a et ae st st s e et st s nessae st s sneebanns 225
Step 1: Create and test the required Lambda functionscceveieoeeenenenececeeeceeeeen, 226
Step 2: Create and execute the state Maching ... 228
Step 3: View the state machine execution detailscccceoeeeeeeeeeeceececcceeecee e 232
Step 4: Explore the different View modes ...ttt aenens 232
Create a state machine that uses Lambda ...t 234
Step 1: Create @ Lambda fUNCLION ...ttt 235
Step 2: Test the Lambda fUNCLIONcviveeeeeeeerre et nenens 236
Step 3: Create @ State MAChINe ...ttt aeaens 236
Step 4: Run the state MAaChiNe ...t e r et s 238
Walit for hUMAN QPPIrOVAL ...ttt ettt e st e st e s e e e e e s s e e e be b e aannas 239
Step 1: Create @ TEMIPLALE ..ottt ettt e be s b e e e nennan 240
SteP 2: Create @ SEACK ..ottt ettt nes 240
Step 3: Approve the SNS SUDSCHPLION ... 241
Step 4: Run the state MAaChiNe ... s 241

Vi

AWS Step Functions Developer Guide

TEMPLALE SOUMCE COUE ettt e st te s s e s e e e e et e s bastessassaesaennenaanes 244
Repeat actions With ININE Map ...ttt ste st s e e aeaenaans 254
Step 1: Create the WOrkflow PrototyPe ...t eeens 254
Step 2: Configure iNput and OULPULceeeeieeeeeeeeee et 255
Step 3: Review and save auto-generated definition ... 256
Step 4: Run the state MAaChine ...t s 258
Copy large-scale CSV using Distributed Map ...ttt 259
PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 260
Step 1: Create the WOrkflow PrototyPe ...t eens 260
Step 2: Configure the required fields for Map State ... 260
Step 3: Configure additional OPLIONSccucouieiieieeceeeeeeerec e nens 262
Step 4: Configure the Lambda funNCtion ... 263
Step 5: Update the WOrkflow prototype ...ttt 263
Step 6: Review the auto-generated Amazon States Language definition and save the
WOTKTLOW 1ottt ettt ettt sttt st et et et et et et e e saa b et ssessastesasensenesn 264
Step 7: Run the state MAaChine ...ttt 266
[terate @ Loop With LAambda ...ttt ettt s anens 267
Step 1: Create a Lambda function to iterate @ countc.ocoeoeeeeeeeeeeeeeeeecee e, 267
Step 2: Test the Lambda FUNCLION ..ottt nenens 268
Step 3: Create @ State MACKhiNe ...ttt sae st e 270
Step 4: Start @ NEW EXECULION ..ottt ettt st eseessae s saessaeesaesssesssnesssaessaessunanns 272
Process batch data With Lambda ...ttt sa s saens 273
Step 1: Create the state MAaChINEG ...t 274
Step 2: Create the Lambda fUNCLiON ...t 276
Step 3: Run the state MAaChinNe ...t 277
Process individual items with Lambdacooeiiireniiicrececeeee et see e 279
Step 1: Create the state MAaChINEG ...t 279
Step 2: Create the Lambda fUNCLiON ... 281
Step 3: Run the state MAaChine ...t e r e 277
Start @ WOrkflow from EVENEBIidge ..ottt sttt n e nnens 286
Prerequisite: Create a State MacChing ...t 286
Step 1: Create a Bucket in AMAZON S3 ...ttt stesae e a st e st et aas 286
Step 2: Enable Amazon S3 Event Notification with EventBridgecccecveeveeeceveceeeeeenne. 287
Step 3: Create an Amazon EventBridge RULE ...t 287
StEP 4: TESt The RULE ettt re ettt ae s b e s b s e e e e e e saennan 289
Example of EXECULION INPUL ..ottt st s ns 289

vii

AWS Step Functions Developer Guide

Create an APl USING APl GATEWAY ...c.eiiiiriiriiiteeciecrtesste et ste et e s sae s e e s seeesseesssesssaesssessseesssesssessssans 290
Step 1: Create an IAM Role for APl GAteWaycccceiicieciecececeeeceeee ettt e e nenens 291
Step 2: Create your APl GAte@Way APl ... eerteeecsteesesstesseeeseesssesseessaeeseesssesssaessasesananns 292
Step 3: Test and Deploy the APl Gateway APl ...t sae e 293

Handle error CONAITIONSoiiueeiiiieirereter ettt ettt st et se st e saesbe e s e s b e s s e saassenees 295
Step 1: Create a Lambda function that fails ... 296
Step 2: Test the Lambda fUNCLION ...ttt nens 297
Step 3: Create a state machine with a Catch field ..., 297
Step 4: Run the state MAaChiNe ...t 299

Create an Activity state MAChiNg ...ttt ean 301
Step 1: Create an ACTIVITY .ottt sae st ssae s st e s sre e s s e s saesssaesssaessnassneens 302
Step 2: Create @ State MAChINE ...ttt reaens 302
Step 3: IMPLEMENT @ WOTKET ...ttt e ettt e e e nennan 305
Step 4: Run the state MAaChiNe ...t 307
Step 5: RUN aNd StOP the WOIKET ...ttt a e a e aas 308

VIEW X-RAY TrACES ...ttt st re et esae s sae s s sae s sae e s sae s sa e s b e s saaasssesssaesssessssesssesssessssessseesssannns 309
Step 1: Create an IAM role for Lambda ...ttt 309
Step 2: Create @ Lambda fUNCLION ...ttt 310
Step 3: Create two more Lambda fuNCLioNS ..o 311
Step 4: Create @ State MAChINE ...ttt aeaeaens 312
Step 5: Run the state MacChine ...t e 314

Gather AmMAzon S3 BUCKET INTO ..ottt st se e st saes 317
Step 1: Create the state MAaChINEG ...t 317
Step 2: Add the necessary IAM role PermMiSSIONScccceeeeeeeeieereeieeciese e ee e saesae s s 319
Step 3: Run a Standard state machine executioncceeeeieeececececece e 320
Step 4: Run an Express state maching eXeCUtionoeececececececeeeree e 321

Continue long-running workflows using Step Functions API (recommended)ccccoeuueunee.e. 322
Step 1: Create a long-running state Maching ... 322
Step 2: Create a state machine to call the Step Functions APl actioncccceeveeeeeevevecneneene 322
Step 3: Update the IAM POLICY ettt e e et saesaesbe e s e e e snnens 324
Step 4: Run the state MAaChiNe ...t e r et s 325

Using Lambda to continue @ WOrKFLOWoouvieeeeeeeeeeee ettt 326
PrErEQUISITES .ottt ettt sre s st e s sae s s st e st e e st e s sae s ssaeesae e s st assseesssesasaesstasssessssessseennees 327
Step 1: Create a Lambda function to iterate a countccooeeeeeeeeeeiecceeeecee e, 327
Step 2: Create a Restart Lambda function to start a new Step Functions execution 330
Step 3: Create @ State MAChINe ...ttt aereaens 331

viii

AWS Step Functions Developer Guide

Step 4: Update the IAM POLICY ...ttt ssestesaesaessesae e e snnens 335
Step 5: Run the state MacChine ...ttt 335
ACCESS CrOSS-ACCOUNT FESOUICTESc.ueiiiiiiieiiieiieiteet et e et st e et e st e e s e e s s e s st e s sae s st e s be s st eesaeseneannnes 338
PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 339
Step 1: Update the Task state definition to specify the target roleccoeveeeeeececeneeecnnnnen. 339
Step 2: Update the target role's trust POLICY ..c.coeeeieeiecieceeeeee e 341
Step 3: Add the required permission in the target role ..., 342
Step 4: Add permission in execution role to assume the target roleccooeoeeeeerceeeeeennnnen. 342
Getting started tULOrial ... iiiiiiiiiiiiiieirciiiieceeiiiieeeeasneiiseeeeeettessanes 344
Building a credit card application WOrkflOW ..o 344
Create @ STAte MACKINE ..ottt ettt s sb e st et e st s b e e e ene 347
NEXE SEEPS eveioieiteeteirtee ettt te et ste s sre e st e e ae e s e e s et essaessae e s st e s se e sseessaesseesssessssessseesssessseesseennses 350
INTEGIATE @ SEIVICE ..ottt st e st s e s st e s ae s ba e s b e s s st e s b e s saesssaessaesssasssaesssassssesssennnes 350
Step 1: Create and test the Lambda function ... 350
Step 2: Update the workflow — configure the Get credit limit stateccccoeeveeveeeecieiecienennee. 351
NEXE SEEPS ettt ettt te et e s te s sre s st e s sae e s e e s saeessaessse e st e s saesssesssaesssesssessssessseesssesssensseennses 352
Add coONAItIONAL LOGIC c.ueiiieieeee ettt st et e st e s s e e e et et e st e b e besseesaesnennanes 352
Step 1: Create an Amazon SNS topic that receives the callback tokencoeevererennnnnnenn, 353
Step 2: Create a Lambda function to handle the callback ..., 353
Step 3: Update the workflow — add if-else condition logic in the Choice state 355
NEXE SEEPS ettt ettt te st s e s sae e st e e sae e s e e s saeessaessae e s st e s seesssessseesseesssessssessseesseessseasseennses 358
DefiNe PArallel TaSKS ...ttt ettt s ae s a e e e e e aeaans 358
Step 1: Create the Lambda functions to perform the required checksccoeeeeerrvennnnenne. 358
Step 2: Update the workflow — Add parallel tasks to be performed ..o 360
NEXE SEEPS ettt ettt te et te s sae e s e e s sae e s e e s st essaessaa e s st e s seesssesssaesssesssessssesssessssassseesseennses 361
[EEIAte OVEF TTEIMIS ..ttt ettt st sttt s b st e st s s e st e s seesnesanesnees 362
Step 1: Create a DynamoDB table to store the name of all credit bureaus 362
Step 2: Update the state machine - Fetch results from the DynamoDB table 363
Step 3: Create a Lambda function that returns the credit scores for all credit bureaus 363
Step 4: Update the state machine — add a Map state to iteratively fetch credit scores 364
NEXE SEEPS ettt te et s e s re e st e e ae e s e e s saeessaessse e st e s saessseessaesssesssessssessseesssassseassaennses 364
RUN YOUE WOTKFLOW ..ttt s et st st e st e st e s s e sa e e e e e b e saesaasaassassnesesnnans 364
Step 1: Save the state MACKhINE ...t nnens 365
Step 2: Add the remaining [AM POLICIES ...ccueeeeieieeeececececeeee ettt aeaeaens 366
Step 3: Run the state MAaChine ...ttt 366
NEXE SEEPS ettt te et te s sre e st e e sae e s ae s saeessaessaa e s st e s sesssseessaessaesssesssessseesssessseasseennses 368

AWS Step Functions Developer Guide

Configure iINPUL @Nd OULPUL ...ttt sttt e s ae s e s e e e e e e a et e aeaan 368
Select portions of the INPUL ...ttt 369
ManNIPULATE INPUL .ttt a et et et e st e st e e e e e e e s et e tesaesaessaesnennaneans 373
CONFIGUIE OULPUL ettt te e ae e e e e e e et e st e st e s e e s e e sa e e e e e b ansessansasseenneneanes 374
Manipulate the selected input using the Parameters field ..o, 376
NEXE STEPS ettt ettt s ae e s e sre e s s ae e s e be e s sssessssneesssnaessssasssssasssssesssssessssaassssaessneenss 377

DEDUG BITOIS .ttt et et te st e s e e e e et e e e st et et e s basseesaesa e e e st entasentasassesssessansansensanes 377
Debugging the invalid path Choice state error ... 378
Debugging JSON path expression errors while applying input and output filters 380
CoNClUSION ANd NEXL STEPS w.uveeeieeeeeeeeese ettt sa et e st se st e sse e e e e e e e aesaasaanean 381

Starter tEMPLAtes ... ciiiiiiiiiiiiiieecniieeeeiititaeeasenesssiseetetttassasssnsnns 383

ManNage @ CONTAINET TASK ..ooviieieieceeeceeee ettt et et e st e te st e e se s e e e e e e s et et esaessessaesaenaassansansanes 384
Step 1: Create the state MAaChINEG ...t as 385
Step 2: Run the state MAaChiNe ...t s 386

TransTer data FECOIASc.oviriiieeeeteeee ettt ettt st et s s e st et e e sae st e e s sasbe s sanssassanees 387
Step 1: Create the state MAaChINEG ...t 387
Step 2: Run the state MAaChine ...t 389

Lo o 1 oo L 1=T Ou TR 389
Step 1: Create the state MAaChINEG ...t as 390
Step 2: Run the state MAaChinNe ...t 392
Example State Maching COAE ...ttt a ettt e e st nnennan 394

TASK BIMIBE ettt ettt ettt st et e s b et et e et et e e s s et et e sasentestsansansensene 395
Step 1: Create the state MAaChINEG ...t 396
Step 2: Run the state MAaChinNe ...t 398

Callback pattern EXAMPLE ...ttt te e s e e e e e e e et e stesbe st e s e e snenseaesaantans 399
Step 1: Create the state MAaChINEG ...t 400
Step 2: Run the state MAaChine ...ttt 402
Lambda Callback EXQMPLE ...ttt ettt e et et st a et nn e ns 403

Manage an AmMAzon EMR JOD ..ttt ettt a e 404
Step 1: Create the state MAaChINEG ...t 404
Step 2: Run the state MAaChinNe ...ttt 386
Example State Maching COAE ...ttt e ettt e e s te e nn s 407
JAM EXQIMIPLE <.ttt et ete st et e et e s te s e et e e e e e s e e st et et e sasseeseesaesaesaessensessansansassaessesasnsenean 409

RUN @N EMR SEIVEILESS JOD ..ottt sttt ettt ste e s e e et st e st et e s e se e e naens 411
AWS CloudFormation template and additional reSourcesccocevececececeneccecceeceeceeee e 412
Step 1: Create the state MAaChINEG ...ttt 412

AWS Step Functions Developer Guide

Step 2: Run the state MAaChine ...t s 414
Start @ workflow Within @ WOIKFLOWc.oceueeiiiiiee ettt 414
Step 1: Create the state MAaChINEG ...t 415
Step 2: Run the state MAaChinNe ...t a e e 417
Example State Maching COAE ...ttt et et aesaeste e nnennan 417
Process data With @ Map .ttt ettt st s e e e et et sa e st et e e s e e snennenes 419
Step 1: Create the state MAChINEG ...t 420
Step 2: Subscribe to the AMazon SNS tOPIC ..o 421
Step 3: Add messages to the AmMazon SQS QUEUEceeeeeeeeeeeeeeeee e re et sse s 421
Step 4: Run the state MAaChiNe ...t 421
Distributed Map to process @ CSV fil@ iN S3 ...ttt e e nens 422
AWS CloudFormation template and additional reSourcescoceeecececececrecvesceeeeeecee e 423
Step 1: Create the state machine and provision reSOUICEScccoceeeeeeeereceereeeeceeceecrecee e 423
Step 2: Run the state MAaChiNe ...t s 426
Distributed Map to process fileS iN S3 ...ttt st sae e 427
AWS CloudFormation template and additional reSouUrcescooeeececececenrecceceeeeeeee e 428
Step 1: Create the state machine and provision reSOUIrCESccoceeeevecereeeereereeceecreceecee e 429
Step 2: Run the state MAaChinNe ...t 431
Train @ machine learNing MOEL ...ttt e e sa e saa s 432
Step 1: Create the state MAaChINEG ...t 433
Step 2: Run the state MAaChinNe ...t 434
Example State Maching COAE ...ttt a ettt e e st nnennan 435
JAM EXQIMIPLE ..ttt ettt e te st et e st e s te s e et e e e e sa e e e st et et e sassesseesaesaessessensessasasassasssessensansan 437
Tune @ machine 1earNiNg MOAELc.cue it e st saesse s e e e e nennan 438
Step 1: Create the state MAaChINEG ...t 439
Step 2: Run the state MAaChinNe ...t 441
Example State Maching COAE ...ttt e ettt e et nnennan 441
[AM EXQIMIPLES ..ottt ettt et et e testeste s e e e e e e e et et e sessesseesaess et essensassasansasssesaensansensansanes 446
Perform Al prompt-chaining with Amazon Bedrock ... 448
AWS CloudFormation template and additional reSouUrcescocevvececeececececceceeeeeecee e 449
PrErEQUISITES .ottt ettt sre s st e s sae s s st e st e e st e s sae s ssaeesae e s st assseesssesasaesstasssessssessseennees 449
Step 1: Create the state MAaChINEG ...t 450
Step 2: Run the state MAaChinNe ...t et 452
Process high-volume messages from SQS ...ttt aesaesae e seens 452
Step 1: Create the state MAaChINEG ...ttt 453
Step 2: Trigger the state Maching eXeCULION ... 455

Xi

AWS Step Functions Developer Guide

Example Lambda FUNCEION COAE ..ttt ettt st te s e e sa e saesaenaens 456
Example State Maching COAE ...ttt e et st saesae st nn s 456
JAM EXQIMIPLE ..ttt ettt te st et e et e s te s e e se e e e e e e e st et et e sassesseesaesaessessensassasasasseeseesasnsenean 458
Selective checkpointing @XAMIPLE ...ttt as 459
Step 1: Create the State Machine and Provision ReSOUICESccccvecveciececeneceereeeecee e 459
Step 2: Run the state MAaChinNe ...t et 461
Example State Machine Code for the Parent (Standard Workflows)cccceeeeeirieiennneee. 462
Example IAM Role for the Parent State Maching ... 465
Example State Machine Code for the Nested State Machine (Express Workflows) 462
Example IAM Role for Child State Maching ..o 468
Start @ COAEBUILA DUILA ..ottt se ettt sb et e s e b e e s aa e nas 469
Step 1: Create the state MAaChINEG ...t as 469
Step 2: Run the state MAaChiNe ...t s 471
Example State Maching COAE ...ttt e et stesaesae st sesnnenaan 472
Preprocess data and train a machine learning Model ... 473
Step 1: Create the state MAaChINEG ...t 474
Step 2: Run the state MAaChine ...t 476
Example State Maching COAE ...ttt et saesae st nnennan 476
JAM EXQIMIPLE ..ttt e te st et e st e s te s e e e e e e e s e e st e st et e sassesseesaesaessessensessansansassasssessessansan 480
Orchestrate Lambda fUNCLIONScoeviiirinieiriertrccererete ettt sttt s st e s s s s s 481
Step 1: Create the state MAaChINEG ...t 481
Step 2: Run the state MAaChinNe ...t 484
About the state machine and itS eXECULIONcccveriirireniireeeeee e 485
[AM EXQIMIPLES ..ottt ettt et e ste s testestesse e e e e et et e tessassessaesaessessessansessassansasssensansansensansanes 488
SEArt @N ATRHENA QUETY ettt ettt te e s ae e e e et e st e st e st e eese e e e e e e e aesaasansanes 490
Step 1: Create the state MAaChINEG ...t 491
Step 2: Run the state MAaChine ...ttt 492
Execute queries in sequence and parallel using Athena ... 493
Step 1: Create the state MAaChINEG ...t 493
Step 2: Run the state MAaChinNe ...ttt 495
Example State Maching COAE ...ttt e ettt e e s te e nn s 496
[AM EXQIMIPLES ..ottt ettt testestestestesse e e e e e e et et e sassessaesaese e s essestassassassasseessensassensansanes 498
QUENY Large dAtASELSucouieeeeeceeeeeeee et ettt te s te st e st e e e e e e e e s et et e tesae s s e seeseesee e enaenaentans 502
Step 1: Create the state MAaChINEG ...t 502
Step 2: Run the state MAaChinNe ...t e 505
Example State Maching COAE ...ttt et saesae s nnennan 505

xii

AWS Step Functions Developer Guide

[AM EXQIMIPLES ..eveeeeeeeetetetecte ettt et e stestesteste s e e e et e s et e stassassessaesaesa et essensassassassasseensensantensansanes 507
KEEP data UP T0 At ettt e e et sa ettt e st e e be e e e e nn e aennans 510
Step 1: Create the state MAaChINEG ...t 511
Step 2: Run the state MAaChinNe ...t a e e 513
Example State Maching COAE ...ttt et et aesaeste e nnennan 513
[AM EXQIMIPLE ..ttt te st et e st e s te e e e te e e e e e e e st et et e bassesseesaesaessessansensasansassasssesssssansan 515
Manage an AmMAzon EKS CLUSTEN ...ttt sae e s a e ae s 517
Step 1: Create the state MAChINEG ...t 517
Step 2: Run the state MAaChine ...ttt 519
Example State Maching COAE ...ttt et et aesaeste e nnennan 520
[AM EXQIMIPLE ..ttt te st et e st e s te e e e te e e e e e e e st et et e bassesseesaesaessessansensasansassasssesssssansan 524
Make a Call tO APl GAtEWAYceeeeeeeceeeceeteteeee ettt et e te e s e e s se e e e s et e te st et e s sasse s e esneneennannan 526
Step 1: Create the state machine and provision reSOUICEScccoceeeeeeeereceereeeeceeceecrecee e 526
Step 2: Run the state MAaChiNe ...t s 528
Example State Maching COAE ...ttt e et et sae st e st sesnnenaan 528
JAM EXQIMIPLE ..ttt ettt et et et e st e s te s e e se e e e e e e e st et et e s sassesseesaesaessessensessasansassesssesasssansan 530
Call @ microservice With APl GAtEWAYcceoeeieieieieececereeee et ste st ste e ssesse e s e s e s e s e tasaessassens 530
Step 1: Create the state MAaChINEG ...t as 531
Step 2: Run the state MAaChinNe ...t 532
Send a custom event to EVENIBIIAQE ...ttt sttt e 533
Step 1: Create the state MAaChINEG ...t 533
Step 2: Run the state MAaChinNe ...t 535
Example State Maching COAE ...ttt et et saesae s e nnennan 536
JAM EXQIMIPLE ..ttt ettt e te st et esteste s e e te e e e sa s e e st et et e s sassesseesaesaessessensensansansassesssessensenean 537
Invoke Synchronous Express Workflows through APl Gatewayccccceeeeeeececeeceeceeceecreceeceene. 537
Step 1: Create the state MAaChINEG ...t 538
Step 2: Run the state MAaChine ...ttt 540
Example State Maching COAE ...ttt et sae et nnennan 540
[AM EXQIMIPLES ..ottt ettt e stestesteste s e e e e e et et et e sessessaesaese e s essansassasansasseensensansensansanes 542
ETL job in AMAzon REASNIfL ...ttt et st a e e aan 543
Step 1: Create the state MAaChINEG ...t ns 544
Step 2: Run the state MAaChinNe ...t et 545
Example state Maching COAE ...ttt aan 546
EXQMPLE TAM POLICY oottt ettt e e saesteste s e e e s e e e e s e e e st e s aasaesbassessneseensenaensanes 566
ManNage @ DAtCR JOD ..ottt ettt s a e b e naanaan 567
Step 1: Create the state MAaChINEG ...ttt 567

xiii

AWS Step Functions Developer Guide

Step 2: Run the state MAaChine ...t s 386
Fan oUt @ DAtCh JOD ettt et e st e e e e e aetens 569
Step 1: Create the state MAaChINEG ...t 569
Step 2: Run the state MAaChinNe ...t a e e 572
Example State Maching COAE ...ttt et et aesaeste e nnennan 572
[AM EXQIMIPLE ..ttt te st et e st e s te e e e te e e e e e e e st et et e bassesseesaesaessessansensasansassasssesssssansan 574
Batch jOb With Lambda ...ttt ettt a e a e aan 575
Step 1: Create the state MAChINEG ...t 575
Step 2: Run the state MAaChine ...ttt 577
Example State Maching COAE ...ttt et et aesaeste e nnennan 577
[AM EXQIMIPLE ..ttt te st et e st e s te e e e te e e e e e e e st et et e bassesseesaesaessessansensasansassasssesssssansan 578
Starting state MacChinesueeiiiiiiiiiiiiirececintttieeeessseisisseeeetsssssssssssssssssssssssssssssssssssssss 581
SEArt FrOM @ TASK ettt ettt et st ettt e s b et e e s s et et esassassesasan 581
Associate WOrKFlOW EXECULIONSccverieiiinientitrentetsesientetsesaet e ssesse e ssessesessessessesassessessesassenes 583
Using EVeNtBridge SCREAULETcu ettt e aestesaesae s e s e e ssaesaeaanaans 584
Set UP the @XECULION FOLE ...ttt e et aesaestesae s b e s ae e e an e s annans 584
Create @ SCREAULE ..ottt ettt st et s et e st e e ssasse s e e saasseneen 585
RELALEA FESOUICES ...cuveiieieteeiete ettt st ettt ettt et st et e s se b et ssa st et esassassesaesansensesansan 589
VIieWING WOTKFLOW FURNS ..ottt s teete s et et e sae st e s ae s e ese s s e s e s e e e s assessassessessnesaennans 589
EXECULION dETAILS ..ottt sttt a ettt s e st e st s e sbe e e e nans 590
Standard and EXPress diffErenCeS ...ttt 597
Limitations viewing Express Workflow e@XeCUtionscccecveciecieceneneneeeceeee et 598
Redriving State MACKINESc..ouieeeeeeceeeeeeeere ettt ettt e s te st e s e e e e s e e e s e sbestestassassessnenaannans 599
Redrive eligibility for unsuccessful @XeCUtioNScocveieciecececeeeccee e 600
Redrive behavior of individual States ...t 600
IAM permission to redrive an @XECULION ...ttt 602
Redriving eXecUutions iN CONSOLEoiiiiiieieeeecececee ettt re e e e et e ste st e ste e s e e e e aennennan 602
Redriving eXeCUtioNS USING AP ...ttt e e e stestesaestesse s e s e e e e s esaesaesaensans 604
Examining redriven @XECULIONSccccueeeieeececeete e ctecte e e e s stestesaesaesse e e e e s saeaesaenaesaanes 604
Retry behavior of redriven @XECULIONSc.coeeiiieieiecceeee ettt sa e e aes 606
ViIEWING MAP RUNS ..ttt sttt seesste s te s st s st e s sessaessaeessaessaaesaassaeesssesssaesssassseesssesssaesssens 608
Map RUN @XECUTION SUMIMIAIY ..cooiiiiiiieiieerteesiteeee st eseeesreeseessseessesssessssessssesssesssessssessssessaesssnans 608
EFTOT MESSAGE ittt s st st st e st e s saeestesssa e s saessse e s st esssaessaessseesssesssassssessseesstessseesssesnses 609
[TEM ProCESSING STATUS ..coueiiiiiieececrteectetere ettt st s ree et esae s ssa e s sa e s saessssesssaesssassseasssesssaenseans 609
EXECULIONS LISTING ettt ettt st ste st e s e e s e s e s e saesbe st e saasaessaesnenaanaans 611
REANVING MAP RUNS ...ttt te s teste e e e e s et et e st e st e s sesseesaesaensesaesaesastassassasseensansansans 612

Xiv

AWS Step Functions Developer Guide

Redrive eligibility for child workflows in @ Map RUN ..o 613
Child workflow execution redrive BERAVIOr ..o 614
Scenarios of input used 0N Map RUN FEATIVEceiieiieieececececeere ettt saeaens 615
IAM permission to redrive @ Map RUN ...ttt ste et e e saesaeseens 616
Redriving Map RUN iN CONSOLE ...ttt ettt et s re s 616
Redriving Map RUN USING APl ... ettt et e te st steste s e e e e e s s eaestesaesaessassassnennennens 618
Processing input and OULPULciiiiiiiiiiiiiieeneeiiiiiieeienieeeeesssssssssssessssssssssssssssssssssssssssssssssssssans 620
INPUL QCCESS USING PALNS ettt et e st e te s e e e e e e s e st e saesaassasanesesnnans 622
REFEIENCE PANS ...ttt ettt sttt b et e se s 623
ManNipulate State data ...ttt sttt st s b e s e ae e e nnens 624
INPUEPATN <.ttt et et e st e st et e s s e e e s e e e e e et e st e bessessessesseensesaansansan 624
PAFAMIELELS ...ttt ettt s a e et s b st e st s b e et e s ae s sbe st e ae et e e seesneeas 626
RESULESELECEON .ttt sttt et ettt e e st e e s be st et esassastenassassensenaen 627
SPECITY StATE OULPUL ..ttt ettt e e e e e e et e st e b e s b e s se b e s s e e saene e e eaantansansas 630
Replace INPUL With RESULLc..eeeeeeeeee ettt sttt ns 631
Discard Result and KEEP INPUL ...ttt e st et estesaesaesae s e s s e aennens 633
INnclude ReSUlt With INPUL ..ottt a et et a e s s 633
Update a Node in INput With RESULLc.ooveieeeeeeeeeeeer ettt 636
Include Error and INput in @ CQtCh et sae s 637
FIltering STate OULPUL ..oeeeeececeee ettt sttt et e e s e et et e st e s b e be e e e e e aennanes 638
Example: Manipulating state data ...ttt nens 639
Map state input and output fields in Step FUNCLIONSccooviieiereeeeeeeeeeecee e 644
EEIMREAAEN ..ttt ettt et sttt et e s s et et s s b et e e s sa st et esasbestesassansensenanns 645
EEMISPALN ..ttt b ettt et a e st s et et s e s et enasnesaeneen 660
OIS ELECEON ettt ettt sttt et st et e e b et e e s s et et s e ssessesaesessensanas 662
EEMBATCNEL ettt et et sttt et e s s et et s e be st e e ssanbenaesansen 664
RESULEWIIEEE <.ttt ettt ettt et ettt e s b et et s s b et e e sa st et ssasensenssnenns 669
Parsing iNPUL CSV fILES ..ottt ettt ste s sttt e s e st e st e s be s e s sasaenennanaans 673
CONEEXE ODJECL .ttt ettt et e s e e e s e e e st et et e st e s s e s s aese s e e s essastassassessessasssensansansansans 675
Context ObJECt FOIMAL ...c..oieeeceeeee ettt te s s e et sa et e st e stesse s e e e e e esaesaesaeneans 676
Accessing the Context ODJECT ... et aesaeee 678
Context Object Data for Map States ...t sr e sa e re e 679
INtEGrating SEIVICES ...cciiiiiiiiiiiieennnniiiiiiiieiiiieinseesssssssssssseeesssssssssssssssssssssassssssssssssssssssssssssssssssssanee 683
Call OTNET AWS SEIVICES ...oveeenieirietetreeentetee sttt te st e st st s sse st et s e sae st e e s se st e e ssassestesessessessesensessones 683
AWS SDK INTEGIAtiONS .ccueeiiiiiieeteeteecteerteest ettt esre st este s st ssaessseessaessaessssesssassssasssassssesssasssnanns 683
OPtimiIzZed INTEGIrAtiONSceeeeeeeeeee et sa et sre s e e a e e e s e st e saeaan 684

XV

AWS Step Functions Developer Guide

CrOSS-QCCOUNT QCCESS ...oouiiuierieienitecieeteetestee e st seseste st e ssessaes st s st ste st essessbesstssesssesstesesnsessessesnsannes 684
INtegration PAtLern SUPPOIT ...ttt s st s s e e s sae s s e e s saesssaessaeessnessaeassnanans 684
Service INtegration PAtLEINS ...ttt ssae et e e sre s s e e s sseesaesssesssaessseessnasns 686

Integration PaAtLern SUPPOIT ...ttt sre e s sre e s e e s sae s a e s saessnessanessnasane 684

REQUEST RESPONSE ...eeiiieiiiiteecteceteesrteste st setessaeestessseesstessseesstesssassssessseesssesssassssessssesseesssessssennses 688

RUN @ JOD ((SYNEC) ottt ettt te st e st e e e e e sa et et e st e sbe st e sa e e e seeseenaensensansansans 689

Wait FOr CAllDACK ...eeeeieieeieteeeee ettt sttt ettt s sbe e et ssa s e e ssasnns 691
CAll third=Party APIS ...ttt e e s e e e et et e e e st et e st e st esseesessa e s e s etesantansassassesssensansensansan 697

HTTP Task definition ..ottt sttt sttt et ss st et ae e e nas 697

HTTP TASK FIELAS ..ottt ettt a et sttt st e sa s s b et e sesaa s e e enans 698

Authentication fOr @an HTTP TAsK ..ottt siesteteesae e e sestesessessesaeessessenees 704

Merging EventBridge connection and HTTP Task definition data ..o 705

Applying URL-encoding on request Body ...ttt ste e 708

IAM permissions to run an HTTP TaSK ...ttt sre st a e nas 710

HTTP Task @XAMIPLE ..ottt ettt et e st e st e e se e e e e e e e s et e tessassasseeseesaennansansans 711

TESEING AN HTTP TASK ettt ettt e s tesse s e e e e e e et e b e s besaasseeseesaesnennaneans 714

Unsupported HTTP TASK FESPONSEScceereeuieieietiiecteseseeseeeeessesaessessessessessessessssssesssssessessassens 716
PSS PAFAMELELSeeeieieeeeecteeterst ettt st e s sae st e s s et s s e e s st e e st e s sesssaessaa e s st assseessaesssaesstassseesssessseenatans 716

Pass static JSON QS PAramMELEIS ...ttt sttt s e sre e s sae s s e e s sae e s e e ssaesssaesssaesnnans 716

Pass state input as parameters USing Paths ... 717

Pass Context Object Nodes as PAarameEters ... cieeeciecieneseceeee sttt sre e aeaenas 718
AWS SDK INEEGIAtiONSeviiiiiieectetecctetert ettt st e ste e s e e s stessseesssessseesssesssaesssasssaasssessssesssesssaans 718

Using AWS SDK Service iNTeGrationscccceciieieriieiniienieintenreeseessseeseesssessseesssessseesssessssesssesssnens 719

SUPPOTTEA SEIVICES ..uveuteeereeiieteeectectecte e ste s et s e e e et e st estestestessassessae e essessessessessassassassassasssensassansansas 720

Unsupported APl actions for sUpported SErviCesScciveeeeeeceeeereceesesese e saesaeneens 760

Deprecated AWS SDK Service integrationscccceeeeciecieeieneneseeeeeeceesee e ssessessesee e eaesaesseneens 762
INtEgration SUPPOIT LOG c..ecmiieeceeeeeee ettt et e s e e e e s sa et e ae st e saessesse s e esnessennansansans 763

Integrating optimized SEIrVICEScuuueeeeciiiiiiiiiiiiiiiennnniiiiiiiieiiiiieneessasns 787
AMAZON APl GALEWAY ...ueieeiiciiiiiiicieeiitisteerteestessteesseessseesseesssesssessssassssesssesssessssessssesssessseessaesssessssesssaans 789

APl Gateway featUre SUPPOIt ... ettt e s e et a et saeste s se s e e s e s e saenaensans 789

REQUEST FOIMIAL .ttt et e e s e e e e e et saeste st e ba s e s seese e e ennesaensansans 790

Authentication and QUthOFIZAtioN ...ttt 793

Service INTegration PAtLEINS ...t ae s s re e s ae s ae s s s e s saaessnassneens 794

OULPUL FOMMIAT ettt te e s ae e et et et e st e st e s basseese e e e e esaesansansansanes 795

ErrOr NANALING oottt ettt et e s ae e et e e et e st e st e b e seese e e e e et esansaneans 796

[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 796

XVi

AWS Step Functions Developer Guide

AMAZON ALNENG ..ttt ettt sttt a e st s b et e e s e s b et e s et e e enes 798
SUPPOTEEA APIS ..ttt et e te e st e st e st e e e et et et e s e st e sassessaessesaestastansansassassaassensansanes 799
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 800

AWS BAtCh ettt ettt sttt ettt e s a et et e bt et e s b e e e e e s et et esesaentenaenans 809
SUPPOTEEA APIS ..ttt et et te st e st e s e e e e e et et et e s e s s e b e e se s e essesaastassansassassassasnsensansanes 810
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 811

AMAZON BEATOCK ..ttt sttt sttt s s st s e st e st s sbe st e e saesbe st saassassesassansassass 812
SErvice INTEGrAtION APIS ...ttt et et e s e e s sae e s e e s sae s ssaessaaessnessaesssnasssasssnanns 812
Task State definitioN ...ttt et sa et sn e 814
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 815

AWS COAEBUILL ...ttt ettt ettt ae st st ettt e s e e s s et e e s e ba st esassassensensene 822
SUPPOTEEA APIS ..ttt ettt e st ste st e s te s te e e e et et et et e st e s e e sessaesaesaassessansansassassaassensansanes 824
.. 827
[AM POLICIES ..ottt ettt e te st e e se e e e e e e et e b e st e bassesseesaesae st estansensansassaesesnsensensanes 828

AMAzZON DYNAMODB ...ttt ettt sre st e sae s s e e s sae e st e s sae s saessse e st esssesssaessseesssassseesssesases 840
SUPPOTEEA APIS ..ttt et e e te st e st este s e e e et et e st e s e st e b e e se e e esaesaessastansansassassasnsensansanes 841
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 843

AMAZON ECS/FArQAte ...cuiiiieeeeeeeeeeeetectetete e e et et et stestesae s e e e s e e s e s e st et e sbestassassassasssansansansansansans 844
SUPPOTEEA APIS ..ttt et e e te st e st este s e e e et et e st e s e st e b e e se e e esaesaessastansansassassasnsensansanes 845
Passing Data to an AmMAzon ECS TaSK ...ttt ve s saesaesnens 846
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 848

AMAZON EKS .ttt ettt ettt ettt b et b e st ae b e et e ne e ae s b e s s 851
Kubernetes APl iNtEGratioNs ...ttt ste e e e et st e saesse s e s e s e e nennens 852
Supported AMAzon EKS APIS ...ttt e e a e st et e s aesae s s sa e e aena e ae s 858
PEITNISSIONS ..ttt ettt ettt s s st et b e st e st ssse st e e st e aessbe st e ssesasasntesesssanns 863
[AM POLICIES ..ottt tetete ettt et et e s te s e e te e e e e e e et e s be st e be st e e s e esaesa et estensessansassaeseansensansanes 865

AMAZON EMR ..ottt ettt b st b e et st sttt ae s b et e ne et et e ene s 868
SUPPOTEEA APIS ..ttt ettt et e s te st et esse e e e et et et e s e s b e baese e e esaesaestassansansassassesnsensansanes 869
EXQIMIPLES ettt ettt s te e e e e et et e st et et et e s e e aeeae et et e ta b e saeseeseeaaensententetantans 877
[AM POLICIES ..ottt ettt e st e e st e et e e e e e e e et e s be st e s be st e s s eesaesae st estansensansassaesesnsensensanes 880

AMAzoN EMR 0N EKS ..ottt ettt et st e sttt s e s sb et esne s sa e s esneenenne 886

AMAZON EMR SEIVETLESS ..ottt sttt st e st s s e st e e s s et et s e sbe st e e ssessesaesassassenaone 889
SErvice INTEGrAtiON APIS ...ttt ste s e e st e s sae e st e s saessaaessaaesanesssassssasssasssnanns 890
INTEGIAtION USE CASES ..oocueiieeieieeteetereteete et st s e e st e s saesssaessaessseessaesssaesssasssaasssesssaesssessseesssennses 895
[AM POLICIES ..ottt et e st te st e et e e e e e e e et e be st e bessesseesa e e e st estensestansassassesnsensensanes 898

AMAZON EVENTBIIAGE ...ttt e e e e et e st e st e st e s ae s e e s e s e e e e s e e et estessassessessnesaannans 915

XVii

AWS Step Functions Developer Guide

SUPPOTEEA APIS ..ttt et e te e st e st e st e e e et et et e s e st e sassessaessesaestastansansassassaassensansanes 917
ErrOr RANALING oottt te s e et et e st e sbe st e s s e e e e se e e esaenseaansaneans 917
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 918
AWS GLUE .ttt ettt et st s b st sttt e s b st e s b et e e s e st et e st e s et eseesassestesassassenassansensenssansanens 919
SUPPOTEEA APIS ..ttt et et te st e st e s e e e e e et et et e s e s s e b e e se s e essesaastassansassassassasnsensansanes 920
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 920
AWS GLUE DALABIEWeeovieiriiieteirietetsesteste s estet s e ste st e e sse st et s e ste st ssessasaesassassestesassessesassansensesassassesens 921
SUPPOTEEA APIS ..ttt et et te st e st e s e e e e e et et et e s e s s e b e e se s e essesaastassansassassassasnsensansanes 922
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 922
AWS LamMDAQ ..ottt ettt a e sttt st e st e e st st e s e s s et et e e sae st e e e s et e e e e sse s e e esensenaesantans 923
SUPPOTEEA APIS ..ttt ettt e st ste st e s te s te e e e et et et et e st e s e e sessaesaesaassessansansassassaassensansanes 924
EXQIMIPLES ettt ettt s te e e e e et et e st et et et e s e e aeeae et et e ta b e saeseeseeaaensententetantans 924
[AM POLICIES ..ottt ettt e te st e e se e e e e e e et e b e st e bassesseesaesae st estansensansassaesesnsensensanes 927
AWS Elemental MeAIiQCONVEIt ...ttt esess et sseste st s e saestesessesse st s e ssessesassassassssansans 928
SUPPOTEEA APIS ..ttt et e e te st e st este s e e e et et e st e s e st e b e e se e e esaesaessastansansassassasnsensansanes 930
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 930
AMAZON SAGEMAKET ...ttt ettt e st e st e e st e s e e e e e e e et e st et e s tesaasseeseeseentesaensantansansanes 932
SUPPOTEEA APIS ..ttt et e e te st e st este s e e e et et e st e s e st e b e e se e e esaesaessastansansassassasnsensansanes 932
Transform JOD EXQMIPLE ...ttt ettt e et a e bt b e s besse s e e s e e n e ta s 936
Training JOD EXAMIPLE ..ottt ettt st e s ae e s e e e s e e e st e st e s e sassaeanenaannans 937
Labeling JOD EXQMIPLE ..ottt ettt e te s tesbeste s e e s e s e et e st e besaa b assassessaennan 939
Processing JOD EXQMIPLE ...ttt ettt s ae s tesae s s e e e e e e e et tannas 941
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 942
AMAZON SNS Lottt ettt b st st a e st et a et s b st e at e b e et e st e nesanens 952
SUPPOTEEA APIS ..ttt ettt et e s te st et esse e e e et et et e s e s b e baese e e esaesaestassansansassassesnsensansanes 954
[AM POLICIES ..ottt tetete ettt et et e s te s e e te e e e e e e et e s be st e be st e e s e esaesa et estensessansassaeseansensansanes 955
AMNAZON SQS ..ottt e e rtte e eeessaeeeesebaee e e e ssaseee s saaseesssaaeeess st s eeee s s s aeee s sareeeessareeennsanaesns 956
SUPPOTEEA APIS ..ttt ettt et e s te st et esse e e e et et et e s e s b e baese e e esaesaestassansansassassesnsensansanes 957
[AM POLICIES ..ottt ettt e st e e st e et e e e e e e e et e s be st e s be st e s s eesaesae st estansensansassaesesnsensensanes 958
AWS SEEP FUNCLIONS ..ttt sttt st e st s st e s sae s ae e s sae s sa e s saessaeessaesssaesssesssaasssasssaesssassneens 959
SUPPOTEEA APIS ..ttt ettt et e st te st e st este e e e e et e e e st et e st e s e e se e e essessastessansansassassasssensansanes 960
EXQIMIPLES ettt ettt s te e e e e et et e st et et et e s e e aeeae et et e ta b e saeseeseeaaensententetantans 960
[AM POLICIES ..ottt et e st te st e et e e e e e e e et e be st e bessesseesa e e e st estensestansassassesnsensensanes 963
Securing state MACKINESccciiiiiiiiieeeeriiiiiiiiiiiiieeeeesseeiiiieeeeetetessanes 966
DAta PrOTECLION ...ttt s e et e et e st e s sae e st e s aesssaessaaessaasssassssassaesssessaanns 966
Data at reSt ENCIYPLION ...ttt sre et e s ae s s e e s sae s sae e s saessaeessbesssnessnasane 968

xviii

AWS Step Functions Developer Guide

Data in tranSit @NCIYPLION ..ottt e e sae e s e e s sre s sa e s saeessnessaesssaasnnas 986
Identity and Access ManNAgQEIMENTccecieieeiieietetectecte e e e e e saestestesaesse s e e e e e e s e e e saensansessanes 986
AUAIENCE ..ttt sttt sttt s b et s s b et et e e b et e s s et et s sa b et esassabestesassansesessansensenanns 986
Authenticating With identities ...t 987
Managing access USING POLICIES ...cceeeiieiieieceeeceeeeee et ste e ste e e e e e e e e e e s e ste st e sse s e sse e e esaennennan 990
ACCESS CONTIOL 1euiiiieiiirierieteereste et e st ettt et e e s ae st e e st e st e e sse s s e s ssessesse st esassessesassensessssansensenanes 993
How AWS Step Functions works With [AM ...t 993
Identity-based POliCYy EXAMPLEScucoueeeeeeeeeeeeeeee ettt e e e sa e e saenaans 999
AWS MANAGEA POLICIES w.uveeeeeeieeeietecteeetee ettt et te e st e e e s e e e e et et e stesbessassasseesnessenaensansansans 1002
Creating a state MAChiNg IAM FOLE ...ttt b e saeas 1004
Creating granular permissions for NON-admin USErsScccceeereeereeeeceeceeceecee e 1007
Accessing CrosS-aCCOUNT AWS FESOUICESeceieerrereeerieeeseessserseessseeseesssessssesssessssessssssssessssssseens 1010
Create VPC @NAPOINTS ...ttt ettt et e s e e ese e s e s e st e ste b essasseesessaensensensans 1015
IAM Policies for integrated SEIrVICESccoeeeeieeceeeeeeer ettt a e e sa et aas 1018
Activities or N0 task WOIKFLOWS ..ottt sae e 1020
IAM policies for Distributed Maps ...ttt steste e s re e e saenenes 1021
Creating tag-based POLICIES ...ttt sttt es 1026
Troubleshooting identity and QCCESS ...t nas 1027
ComPLiANCe ValidAtioN ...ttt et ae s e e e et aa s 1029
RESILIEICE ..ottt ettt ettt s b e st s b et st et e e e b e sae st e sa b e st esaesestensesesensesans 1030
INFraStrUCTUIE SECUNILY .ueiieieieeeee ettt ettt e st e s e e e e e e e s e aestesaesaessesseesnennennans 1030
Logging and MONITOFING ..ccccciiiiiiiieeeenniiiiiiiiciiiieeeeesssssssssssceesss 1032
Metrics iIN CLOUAWALCR ...ttt ettt ettt b et s sb e e s 1032
CLOUAWALCN MELIICS vttt sttt ettt s b e st s e ssa s e e s sa s e e ssanans 1033
Viewing metrics in CLOUAWATCH ...ttt sae st 1043
Setting alarms iN CLOUAWaALCHo ettt aenens 1044
AULOMALE EVENT AELIVEIY ..ttt et sa et ae st e st e b e e e e e sa e s et e sanean 1045
STEP FUNCLIONS EVENTS ..ottt ettt s st e s sae st e s se s s st e s saesssaessaasssnessassssasssaessaanns 1046
Delivering Step FUNCLIONS EVENTScuiiieeeeeceeeeteetetete ettt st ste e s a e e sae s 1046
Triggering Step Functions state Machings ... 1047
EVENtS detail rEEIENCE ..ottt sttt sae e 1048
API Calls iN CLOUATIAIL .coueiiiiiieieereetcesete ettt ettt et st sa e st e sa e e e e saa st e e saenes 1053
Data events in CLOUATIAIL ..ottt sae e sre st et se e e s sa e 1055
Management events in CLoUTrail ..ottt nenens 1056
EVENT EXAIMIPLES ...ttt ettt et et e s b e st e s b e e se s e e s et et e tesbessassassessaensansensansan 1058
Logging in CLOUAWAtCN LOGS ...ocveiiieieeeeeectetetetete et e et saesaeste s e e e s e s e ssesaasaassassasseennsnnans 1060

Xix

AWS Step Functions Developer Guide

CONFIGUIE LOGGING ittt ettt te st et e s e e te e e e e e e e s et e st e st e s besse e esaenseaansessansansansas 1060
CloudWatch Logs PAYLOAASceccveeueeeeeeieeetetetectee ettt steste e e sa et saeste st saessesseeaenenes 1061
IAM Policies for logging to CloudWatch LOgScceeieieieieieeeceeeeeete ettt 1061
EVENT LOG LEVELS ...ttt te et e ettt e st e s besae e e e e e e et et e aasaessasseennennans 1063
Trace data iN XoRAY .ottt e st e et e st st e st e st e s te st e s e e e e s et e saesaassessassaesaensensansans 1067
Setup anNd CONFIGUIALION ..oeieieeeeeee ettt e st e s b s e e a et saennan 1068
CONCEPLS ittt ettt st e et e st e s sae s s st e e sa e e s e e e b e s st e s aeessaasssa e ssassseasssessseesssessseesssessseessaessseanns 1072
SErVICE INTEGIALIONS ...ttt st e st e s ae s s ae e s b e e sae e s ae s saessbessseasssesssaessnans 1073
Viewing the X-Ray CONSOLE ...ttt ste e ste s s e e e e e et st aanas 1074
Viewing X-Ray tracing information for Step FUNCLiONSc.coeoieieiiieeeeeeee e, 1074
THACES ettt ettt ettt st st e bbbt a e s b e et e e Rt s be et e a e e b e et e n e e be et e neesaeeae 1074
SEIVICE MAP cetiiiiiieeiterteect sttt e st s st e s te s satestessseesstesssaesssesssaesssassssasssesssaesssessstesssessssesssessseessenn 1075
Segments and SUDSEGMENTS ..ot teste st e e e s e benaans 1077
ANALYTICS oottt ettt et e st e e s b e s e e e e e e et et e st e b e e beeseeaeese e s et etetenbassasaaeseenaentan 1078
CONFIGUIALION <.ttt et et et e st e s b e s be e e e e e e et et et e aesaassassassaennanes 1078
What if there is no data in the trace map or service Map?ceeeeeceveeieceereeeseeeecreeens 1079
Events using User NOtIfiCAtioNS ..ottt e 1079
Testing and debUgQginNgeeiiiiiiiiiiiinieenneiiiiiiiiiiiiiiiisessssssiiiiieteessses 1080
USiNg data fLOW SIMULAEON ...ttt st sa et ae s aa s 1080
Using Data flOW SIMULATONoveeeeeeeee ettt s nens 1081
Data flow simulator cONSIAErationsccoeeevirininiiineniesce et see e ne 1083
Testing USING TeSTSTAte AP ...ttt re st e s sae s s ae e s sae s aa e s saessaeessnesssaessnas 1084
Considerations about using the TestState APl ... 1085
Using inspection levels in TeStState APl ... ettt eeenean 1085
IAM permissions for usSing TestState APl ...ttt nens 1093
Testing @ STate (CONSOLE) ..ottt e et e aesteste s b e aesse e e e s e nannens 1094
Testing @ state USING AWS CLI ...ttt e ae st e s sae s s e e s saesssessaesssaessnassneans 1095
Testing and debugging input and output data flow ..., 1101
Testing state machines locally in Step FUNCLIONSoooiiiiiecieeeeeeeeeceee et 1105
Setting Up Step Functions Local and DOCKENcucuieeieieceeeeteeeeeee ettt 1106
Setting Up Step Functions Local - Java VErSiONccecececeneneceeeeeeee et 1107
Configuring Step Functions LOcal OPLioNSc.coeiiieiecieceeeseeee ettt 1108
RUNNING Step FUNCLIONS LOCAL ...oueeieeeeeee ettt st ve e nnens 1110
Tutorial: Testing using Step Functions and AWS SAM CLI Localcooeeeeeeececeeeeeeeeeenene 1112
Testing with mocked service iNtegrations ... 1116
Versions and QlIASES ..cccccieiiiirrisss 1134

XX

AWS Step Functions Developer Guide

VIBISIONS ...ttt ettt ettt et et s et st e st e b et et s b e st e st et e et e st s b e e st e seebe s st e se s et e st esseessasstssasasanns 1135
Publishing a state machine version (CONSOLE)ccoeeiiieceecieceereceeee e 1136
Managing VersionNs WIth APIS ...ttt steste e s e e e e e s et e saassanaans 1136
Running a state machine version from the console ..., 1137

ALIGSES ...ttt ettt sttt et et et et s st et e et et e b et et R et et e h et et e R et et e s e be b et e sente st eseetantenene 1138
Creating a state machine alias (CONSOLE)ccueeuerueeieieececeeeer et 1139
Managing aliases With APIS ...ttt e e et e saesaesae s e e e e e e a e ae s 1139
Alias routing coONFIGUIAtIoN ...ttt st aenan 1140
Running a state machine using an alias (CONSOLE)cceceeeeeeieieeeeececeeee e 1141

Versions and alias authOriZation ...ttt sa e 1141
SCOPING AOWN PEIMNISSIONSeocviieieietetectesteeteeeeeeeeaetestestestessessessassaessessessessessessessassassassesssensanes 1142

Associating executions with @ version or @lias ... 1143
Viewing executions started with a version or an aliascccceeeeeeeeeeveeccceceecececeeee e, 1144

DeEPLOYMENT EXAMIPLE ..eeeieieeeeeeeee ettt ettt e te st e e s e e e e e e s e tesbe b e s saeseesnenaenaensansanes 1147

Gradual deployment Of VEISIONS ...ttt et saesae s s s se e aennan 1150

HanNALiNgG @ITOKS ..uueiiiiiiiiiiiiieeeeniiiiieieiiitiesessssssssssssssess 1160

EFFOI NAIMIES .ttt ettt sttt e st st b e st e e st s b e et e s st s b e st e e st s sa et esnesssasssannas 1160

RELIYING @fLEI QN EITOK ..ttt st ae s ae st e e se e e a et et e aesaassessaennsnnans 1163
RELrY field @XAMPLES ..ottt e a e e s aesae st e s e e be e e e sneaenannan 1165

FALlDACK STATES ..ottt sttt b e sttt s b e st e b et e e s e ae e s aeene 1167
EFTOT OUEPUL .ottt sttt ae s re e s e e s sae s s ae s ssa e s b e s aeessae s saesssassstasssessssenssassseens 1168
Cause payloads and service iNtegrationscccvecieciceceneeececeee et eesaenens 1169

State machine examples using Retry and using Catch ... 1169
Handling a failure USING RELIY ...ttt st st e s be e s e e e saeaens 1170
Handling a failure USing CatCh ...ttt aeas 1171
Handling @ timeout USING RELIY ...ttt ettt te e s a et 1173
Handling a timeout USING CatCh ...ttt 1173

TroubLeSHOOTING ..ciiiiiiiieiiciiiiiiiiiiiiineeennniiiiieeeettttnssass 1175

GENETAL ISSUBS ..ttt ettt ettt s b e st e sae st e s s e be st e e sae st e e s b e s e st ssessastesaesessantesesassesersen 1175
I'm unable to create a state MAChINE. ...t 1175
I'm unable to use a JsonPath to reference the previous task’s output.ccccoeeevevrcveneneene 1175
There was a delay in state transitions. ... 1176
When | start new Standard Workflow executions, they fail with the
ExecutionLimitEXCEEAEA EITON. ..ottt ettt ettt sse st e ssesaesaesens 1176
A failure on one branch in a parallel state causes the whole execution to fail. 1176

SErVICE INTEGIATIONSoieiieiiiieeteeeectere sttt s sre e s rte s st e s aessseestessaeesssessaesssessssssssessssesssassneanns 1176

XXi

AWS Step Functions Developer Guide

My job is complete in the downstream service, but in Step Functions the task state

remains "In progress" or its completion is delayed. ..., 1176
| want to return a JSON output from a nested state machine execution.cccccecveeveunneene 1177
| can't invoke a Lambda function from another account. ..o 1177
I'm unable to see task tokens passed from .waitForTaskToken states.cccecereneenenee. 1178
ACTIVITIES ettt ettt st s a st s s a e st et s e e b e et s ne st e et e sneesbe s st e sesabesatesnenne 1179
My state machine execution is stuck at an activity state.cccoceveeeececenennee 1179
My activity worker times out while waiting for a task token.ccccccvvveveecececeneneneeeeene 1179
EXPreSS WOIKTLOWSeoeiieieeeeee ettt et st et e st e st s s ssa et et et e s ta st e sasaeesesanenaanns 1180
My application times out before receiving a response from a StartSyncExecution API
CALL ettt ettt et b et e b et e e R et et e e s et et e sesse st e e eaesenaesans 1180
I'm unable to see the execution history in order to troubleshoot Express Workflow
FQULUTES. ettt et ettt et e b e st et s et et s ae b et e e s et et esesbe e e e snanes 1180
BESt PracCtiCes ..uccieeiiiiiiieennnnniiiiiiiciiiiieneessssssssssseeeessassssssssssssssssss 1182
Optimizing With EXPress WOIKFLOWScccoieieieietccecesesese ettt ste e re e saesa e sae e sae e 1182
NESE WOTKFLOWS ...ttt ettt ettt et s b et b et e e saa s e aesans 1182
Convert to EXpress WOrKFLOW tYPe ...ttt nens 1183
TQGGING FESOUICESuveiveeereeeuteerereeeesteestesssessseesssessssesssesssessssessssesssesssessssessseesssesssessssessssesssesssessssessses 1184
Tagging for COSt ALLOCALIONceeieieieeceeeeeteteee et a et e st estesae s se e e s s e s e naneans 1185
TAGQING TOr SECUILY .ottt ste s e e et e e e s e st e st e s e st e s e s e s e ens e s ensassansans 1185
Managing tags in the Step FUNCLIONS CONSOLE ...t 1186
Managing tags with Step FUNCtions APl ACLIONScouooieieiiieeeececeseete e 1186
Using timeouts to avoid STUCK @XECULIONSc.ecuiiieieieeeeeeetc ettt saesaeaens 1186
Using AmMazon S3 to Pass large data ...ttt sae e re s aennens 1188
Avoiding execution hiStOry QUOTAcc.coeiiiieceeeeeee ettt ae e 1190
Handling Lambda @XCEPLIONScveiiieieeeceeeeeeteterete ettt ae et saesaessesse s s e e s s e aesae st e e nne 1191
Avoiding latency for activity task tasks ...t 1192
LOg resource POLICY LIMILS ..ottt e te e s et et sae st e sae s e s e e aneaenes 1193
SEIVICE QUOLAS ..cceeerneeniiiieeciiinnnseesssane 1194
GENETAL QUOLAS ..ttt et et e st e s te st e s e e e e e s et et e besbesbaeseeseesaesaansansansansansassasses 1195
QUOLAS related tO QACCOUNTS ...oueeieeeeeeeeeece e b b s b e e aeesasesssesareenseessseennns 1195
QUOLAS related tO HTTP TASK ..cceeieeicieicieiceeceetecte ettt crecaecesseeseessseeseesssecsseessseesssesssessssesssesaseens 1196
Quotas related to state throttling ... 1197
Quotas related to APl action throttling ... 1198
(O] 010] = {=] 1 <o IR o T =X i) = 1 (= Y ad SRR 1199
(@ 14 =T S o [o] - [OO O TP 1199

xxii

AWS Step Functions Developer Guide

Quotas related to state MaAching EXECULIONSccueieeiiiiiciceeceeceece e e 1201
Quotas related to task EXECULIONS ...ttt e esbe s e s e e e esaeenns 1204
Quotas related to versions @and QlIASESocueieiiiiiiiicececcece e e e 1205
Restrictions related t0 tagQinNg ...ttt s a s 1205
Recent feature LaUNCRESeeeeeiiiiiiiiiiiiiineeneneiiiiieeeetitessasssssssssssssssessssssssssssssssssssssssssssssssnes 1206
(DT oYal 1Ty 1 L= 01 a1 TS o] o OO UPURN 1207

xxiii

AWS Step Functions Developer Guide

What is Step Functions?

With AWS Step Functions, you can create workflows, also called State machines, to build
distributed applications, automate processes, orchestrate microservices, and create data and
machine learning pipelines.

Step Functions is based on state machines and tasks. In Step Functions, state machines are called
workflows, which are a series of event-driven steps. Each step in a workflow is called a state. For
example, a Task state represents a unit of work that another AWS service performs, such as calling
another AWS service or API. Instances of running workflows performing tasks are called executions
in Step Functions.

The work in your state machine tasks can also be done using Activities which are workers that exist

Choice state
” Choose your path...

outside of Step Functions.

/
l $.condition == "3P" |
v

HTTP Endpoint
| 2ae Call third-party API

l

Textract: AnalyzeDocument
Extract text

Lambda: Invoke
Retrieve data

'

Glue: StartJobRun
Start data processing

1 &

AWS Step Functions Developer Guide

In the Step Functions' console, you can visualize, edit, and debug your application’s workflow. You
can examine the state of each step in your workflow to make sure that your application runs in
order and as expected.

Depending on your use case, you can have Step Functions call AWS services, such as Lambda, to
perform tasks. You can have Step Functions control AWS services, such as AWS Glue, to create
extract, transform, and load workflows. You also can create long-running, automated workflows
for applications that require human interaction.

For a complete list of AWS regions where Step Functions is available, see the AWS Region Table.

(® Learn how to use Step Functions

To learn how to use Step Functions, follow the interactive modules in The Step Functions
Workshop, or see the Getting Started section in this guide.

Standard and Express workflows types

Step Functions has two workflow types:

 Standard workflows are ideal for long-running, auditable workflows, as they show execution
history and visual debugging.

Standard workflows have exactly-once workflow execution and can run for up to one year. This
means that each step in a Standard workflow will execute exactly once.

» Express workflows are ideal for high-event-rate workloads, such as streaming data processing
and loT data ingestion.

Express workflows have at-least-once workflow execution and can run for up to five minutes.
This means that one or more steps in an Express Workflow can potentially run more than once,
while each step in the workflow executes at least once.

Standard workflows Express workflows
2,000 per second execution 100,000 per second execution rate
rate

Standard and Express workflows types 2

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://s12d.com/sfn-ws-docs
https://s12d.com/sfn-ws-docs

AWS Step Functions Developer Guide

Standard workflows Express workflows

4,000 per second state Nearly unlimited state transition rate
transition rate

Priced by state transition Priced by number and duration of executions
Show execution history and Show execution history and visual debugging based on log
visual debugging level

See execution history in Step Send execution history to CloudWatch
Functions

Support integrations with all Support integrations with all services.
services.

Support optimized integrati
ons with some services.

Support Request Response Support Request Response pattern for all services
pattern for all services

Support Run a Job and/or
Wait for Callback patterns

in specific services (see
following section for details)

For more information on Step Functions pricing and choosing workflow type, see the following:

« AWS Step Functions pricing

» Choosing workflow type in Step Functions

Integrating with other services

Step Functions integrates with multiple AWS services. To call other AWS services, you can use two
integration types:

Integrating with other services 3

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/step-functions/pricing/

AWS Step Functions Developer Guide

« AWS SDK integrations provide a way to call any AWS service directly from your state machine,
giving you access to thousands of API actions.

« Optimized integrations provide custom options for using those services in your state machines.

To combine Step Functions with other services, there are three service integration patterns:

» Request Response (default)

Call a service, and let Step Functions progress to the next state after it gets an HTTP response.

e Runajob (.sync)

Call a service, and have Step Functions wait for a job to complete.

« Wait for a callback with a task token (.waitForTaskToken)

Call a service with a task token, and have Step Functions wait until the task token returns with a
callback.

Standard Workflows and Express Workflows support the same integrations but not the same
integration patterns.

« Standard Workflows support Request Response integrations. Certain services support Run a
Job (.sync), or Wait for Callback (.waitForTaskToken) , and both in some cases. See the following
optimized integrations table for details.

» Express Workflows only support Request Response integrations.

To help decide between the two types, see Choosing workflow type in Step Functions.

AWS SDK integrations in Step Functions

Integrated service Request Response Run a Job - .sync Wait for Callback -
.waitForTaskToken

Over two hundred Standard & Express Not supported Standard

services

Optimized integrations in Step Functions

Integrating with other services 4

AWS Step Functions

Developer Guide

Integrated service

Amazon AP| Gateway

Amazon Athena

AWS Batch

Amazon Bedrock

AWS CodeBuild

Amazon DynamoDB

Amazon ECS/Fargate

Amazon EKS
Amazon EMR

Amazon EMR on EKS

Amazon EMR
Serverless

Amazon EventBridge

AWS Glue

AWS Glue DataBrew

AWS Lambda

AWS Elemental
MediaConvert

Amazon SageMaker

Amazon SNS

Request Response

Standard & Express
Standard & Express
Standard & Express
Standard & Express
Standard & Express
Standard & Express
Standard & Express
Standard & Express
Standard & Express
Standard & Express

Standard & Express

Standard & Express
Standard & Express
Standard & Express
Standard & Express

Standard & Express

Standard & Express

Standard & Express

Run a Job - .sync

Not supported
Standard
Standard
Standard
Standard
Not supported
Standard
Standard
Standard
Standard

Standard

Not supported
Standard
Standard
Not supported

Standard

Standard

Not supported

Wait for Callback -
.waitForTaskToken

Standard
Not supported
Not supported
Standard
Not supported
Not supported
Standard
Standard
Not supported
Not supported

Not supported

Standard
Not supported
Not supported
Standard

Not supported

Not supported

Standard

Integrating with other services

AWS Step Functions Developer Guide

Integrated service Request Response Run a Job - .sync Wait for Callback -
.waitForTaskToken

Amazon SQS Standard & Express Not supported Standard

AWS Step Functions Standard & Express Standard Standard

Example use cases for workflows

Step Functions manages your application's components and logic, so you can write less code and
focus on building and updating your application quickly. The following image shows six use cases

for Step Functions workflows.

Example use cases for workflows

AWS Step Functions Developer Guide

1 Orchestrate tasks 2 Choosetasks 3 Retry tasks
o " based on data o

v\
C D

4 Add a human in the loop 5 Process data in parallel
° _ Data
e —fg—F | 1] |
T | |
P1 P2 P3 Pn |

Data[0] —» M1 —» M2 —» Mn
D/v [o] i

¢ [Results]

—> Data[1] —» M1 —»> M2 —» Mn

a i
~ Data[n] —» M1 —» M2 — Mn

Example use cases for workflows 7

AWS Step Functions Developer Guide

1. Orchestrate tasks — You can create workflows that orchestrate a series of tasks, or steps, in
a specific order. For example, Task A might be a Lambda function which provides inputs for
another Lambda function in Task B. The last step in your workflow provides the final result.

2. Choose tasks based on data - Using a Choice state, you can have Step Functions make
decisions based on the state’s input. For example, imagine that a customer requests a credit limit
increase. If the request is more than your customer’s pre-approved credit limit, you can have
Step Functions send your customer's request to a manager for sign-off. If the request is less than
your customer's pre-approved credit limit, you can have Step Functions approve the request
automatically.

3. Error handling (Retry / Catch) - You can retry failed tasks, or catch failed tasks and
automatically run alternative steps.

For example, after a customer requests a username, perhaps the first call to your validation
service fails, so your workflow may retry the request. When the second request is successful, the
workflow can proceed.

Or, perhaps the customer requested a username that is invalid or unavailable, a Catch
statement could lead to a Step Functions workflow step that suggests an alternative username.

For examples of Retry and Catch, see Handling errors in Step Functions workflows.

4. Human in the loop - Step Functions can include human approval steps in the workflow. For
example, imagine a banking customer attempts to send funds to a friend. With a callback and

a task token, you can have Step Functions wait until the customers friend confirms the transfer,
and then Step Functions will continue the workflow to notify the banking customer that the
transfer has completed.

For an example, see Create a callback pattern example with Amazon SQS, Amazon SNS, and
Lambda.

5. Process data in parallel steps — Using a Parallel state, Step Functions can process input
data in parallel steps. For example, a customer might need to convert a video file into several
display resolutions, so viewers can watch the video on multiple devices. Your workflow could
send the original video file to several Lambda functions or use the optimized AWS Elemental
MediaConvert integration to process a video into multiple display resolutions at the same time.

6. Dynamically process data elements — Using a Map state, Step Functions can run a set of
workflow steps on each item in a dataset. The iterations run in parallel, which makes it possible
to process a dataset quickly. For example, when your customer orders thirty items, your system
needs to apply the same workflow to prepare each item for delivery. After all items have been

Example use cases for workflows 8

AWS Step Functions Developer Guide

gathered and packaged for delivery, the next step might be to quickly send your customer a
confirmation email with tracking information.

For an example starter template, see Process data with a Map.

Example use cases for workflows 9

AWS Step Functions Developer Guide

Learn about state machines in Step Functions

Step Functions is based on state machines and tasks. In Step Functions, state machines are called
workflows, which are a series of event-driven steps. Each step in a workflow is called a state. For
example, a Task state represents a unit of work that another AWS service performs, such as calling
another AWS service or API. Instances of running workflows performing tasks are called executions

in Step Functions.

Choice state
” Choose your path...

/
l $.condition == "3P" |
v

HTTP Endpoint
” '@) Call third-party API

Lambda: Invoke
Retrieve data

'

Glue: StartJobRun
Start data processing

Textract: AnalyzeDocument
Extract text

Introduction to state machines

» Key concepts
« State Machine Data

» Invoke AWS Step Functions from other services

10

AWS Step Functions Developer Guide

« Transitions in state machines

» Read Consistency in Step Functions

Key concepts

The following provides an overview of the key Step Functions terms for context.

Term Description
Workflow A sequence of steps that often reflect a business process.
States Individual steps in your state machine that can make decisions based on their

input, perform actions from those inputs, and pass output to other states.

For more information, see Discovering workflow states to use in Step Functions.

Workflow A visual workflow designer that helps you to prototype and build workflows
Studio faster.

For more information, see Developing workflows in Step Functions Workflow

Studio.
State A workflow defined using JSON text representing the individual states or steps
machine in the workflow along with fields, such as StartAt, TimeoutSeconds , and
Version.

For more information, see State machine structure in Amazon States Language

for Step Functions workflows.

Amazon A JSON-based, structured language used to define your state machines. With
States ASL, you define a collection of states that can do work (Task state), determine
Language which states to transition to next (Choice state), and stop an execution with an

error (Fail state).

For more information, see Using Amazon States Language to define Step

Functions workflows.

Key concepts n

AWS Step Functions

Developer Guide

Term

Input and
output
configuration

Service
integration

Service
integration
type

Service
integration
pattern

Execution

Description

States in a workflow receive JSON data as input and usually pass JSON data as
output to the next state. Step Functions provides filters to control the data flow
between states.

For more information, see Processing input and output in Step Functions.

You can call AWS service API actions from your workflow.

For more information, see Integrating services with Step Functions.

« AWS SDK integrations — Standard way to call any of over two hundred AWS
services and over nine thousand API actions directly from your state machine.

« Optimized integrations — Custom integrations that streamline calling and

exchanging data with certain services. For example, Lambda Invoke will
automatically convert the Payload field of the response from an escaped
JSON string into a JSON object.

When calling an AWS service, you use one of the following service integration
patterns:

» Request a response (default) — Call a service and move to the next state

immediately after receiving an HTTP response.

« Run ajob (.sync) — Call a service and have Step Functions wait for a job to
complete.

« Wait for a callback with a task token (.waitForTaskToken) — Call a service with

a task token and have Step Functions wait until the task token returns with a
callback.

State machine executions are instances where you run your workflow to
perform tasks.

For more information, see Starting state machine executions in Step Functions.

State Machine Data

State machine data takes the following forms:

State Machine Data

12

AWS Step Functions Developer Guide

« The initial input into a state machine
» Data passed between states

o The output from a state machine

This section describes how state machine data is formatted and used in AWS Step Functions.

Topics
e Data Format

» State Machine Input/Output

« State Input/Output

Data Format

State machine data is represented by JSON text. You can provide values to a state machine using
any data type supported by JSON.

® Note

« Numbers in JSON text format conform to JavaScript semantics. These numbers typically
correspond to double-precision IEEE-854 values.

« The following is valid JSON text:
« Standalone, quote-delimited strings
« Objects
» Arrays
« Numbers
» Boolean values
e null

» The output of a state becomes the input for the next state. However, you can restrict
states to work on a subset of the input data by using Input and Output Processing.

Data Format 13

https://standards.ieee.org/findstds/standard/854-1987.html

AWS Step Functions Developer Guide

State Machine Input/Output

You can give your initial input data to an AWS Step Functions state machine in one of two ways.
You can pass the data to a StartExecution action when you start an execution. You can also
pass the data to the state machine from the Step Functions console. Initial data is passed to the
state machine's StartAt state. If no input is provided, the default is an empty object ({3}).

The output of the execution is returned by the last state (terminal). This output appears as JSON
text in the execution's result.

For Standard Workflows, you can retrieve execution results from the execution history using
external callers, such as the DescribeExecution action. You can view execution results on the
Step Functions console.

For Express Workflows, if you enabled logging, you can retrieve results from CloudWatch Logs,
or view and debug the executions in the Step Functions console. For more information, see Using
CloudWatch Logs to log execution history in Step Functions and Viewing execution details in the

Step Functions console.

You should also consider quotas related to your state machine. For more information, see Service
quotas

State Input/Output

Each state's input consists of JSON text from the preceding state or, for the StartAt state, the
input into the execution. Certain flow-control states echo their input to their output.

In the following example, the state machine adds two numbers together.

1. Define the AWS Lambda function.

function Add(input) {
var numbers = JSON.parse(input).numbers;
var total = numbers.reduce(
function(previousValue, currentValue, index, array) {
return previousValue + currentValue; });
return JSON.stringify({ result: total });
}

2. Define the state machine.

State Machine Input/Output 14

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

"Comment": "An example that adds two numbers together.",
"StartAt": "Add",

"Version": "1.0",

"TimeoutSeconds": 10,

"States":

{
"Add": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Add",
"End": true

}

3. Start an execution with the following JSON text.
{ "numbers": [3, 4] }
The Add state receives the JSON text and passes it to the Lambda function.

The Lambda function returns the result of the calculation to the state.

The state returns the following value in its output.

{ "result": 7 }

Because Add is also the final state in the state machine, this value is returned as the state
machine's output.

If the final state returns no output, then the state machine returns an empty object ({3}).

For more information, see Processing input and output in Step Functions.

Invoke AWS Step Functions from other services

You can configure several other services to invoke state machines. Based on the state machine's
workflow type, you can invoke state machines asynchronously or synchronously. To invoke

state machines synchronously, use the StartSyncExecution API call or Amazon API Gateway

Invoke Step Functions 15

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html

AWS Step Functions Developer Guide

integration with Express Workflows. With asynchronous invocation, Step Functions pauses the
workflow execution until a task token is returned. However, waiting for a task token does make the
workflow synchronous.

Services that you can configure to invoke Step Functions include:

« AWS Lambda, using the StartExecution call.

« Amazon API Gateway

« Amazon EventBridge

o AWS CodePipeline

o AWS loT Rules Engine

o AWS Step Functions

Step Functions invocations are governed by the StartExecution quota. For more information,
see:

« Step Functions service quotas

Transitions in state machines

When you start a new execution of your state machine, the system begins with the state referenced
in the top-level StartAt field. This field, given as a string, must exactly match, including case, the
name of a state in the workflow.

After a state runs, AWS Step Functions uses the value of the Next field to determine the next state
to advance to.

Next fields also specify state names as strings. This string is case-sensitive and must match the
name of a state specified in the state machine description exactly

For example, the following state includes a transition to NextState.

"SomeState" : {

ooy

"Next" : "NextState"

Transitions in state machines 16

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-api-gateway.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StepFunctions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-stepfunctions.html

AWS Step Functions Developer Guide

Most states permit only a single transition rule with the Next field. However, certain flow-control
states, such as a Choice state, allow you to specify multiple transition rules, each with its own
Next field. The Amazon States Language provides details about each of the state types you can

specify, including information about how to specify transitions.
States can have multiple incoming transitions from other states.

The process repeats until it either reaches a terminal state (a state with "Type": Succeed,
"Type": Fail, or "End": true), or a runtime error occurs.

When you redrive an execution, it's considered as a state transition. In addition, all states that are
rerun in a redrive are also considered as state transitions.

The following rules apply to states within a state machine:

 States can occur in any order within the enclosing block. However, the order in which they're
listed doesn't affect the order in which they're run. That order is determined by the contents of
the states.

« Within a state machine, there can be only one state designated as the start state. The start
state is defined by the value of the StartAt field in the top-level structure.

» Depending on your state machine logic — for example, if your state machine has multiple logic
branches — you may have more than one end state.

« If your state machine consists of only one state, it can be both the start and end state.

Transitions in Distributed Map state

When you use the Map state in Distributed mode, you'll be charged one state transition for each
child workflow execution that the Distributed Map state starts. When you use the Map state in Inline
mode, you aren't charged a state transition for each iteration of the Inline Map state.

You can optimize cost by using the Map state in Distributed mode and include a nested workflow
in the Map state definition. The Distributed Map state also adds more value when you start child
workflow executions of type Express. Step Functions stores the response and status of the Express
child workflow executions, which reduces the need to store execution data in CloudWatch Logs.
You can also get access to flow controls available with a Distributed Map state, such as defining
error thresholds or batching a group of items. For information about Step Functions pricing, see
AWS Step Functions pricing.

Transitions in Distributed Map state 17

https://aws.amazon.com/step-functions/pricing/

AWS Step Functions Developer Guide

Read Consistency in Step Functions

State machine updates in AWS Step Functions are eventually consistent. All StartExecution
calls within a few seconds will use the updated definition and roleArn (the Amazon Resource
Name for the IAM role). Executions started immediately after calling UpdateStateMachine might
use the previous state machine definition and roleAzrn.

For more information, see the following:

o UpdateStateMachine in the AWS Step Functions APl Reference

» Update a workflow in Learn how to get started with Step Functions.

Read Consistency 18

https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html

AWS Step Functions Developer Guide

Learn about Activities in Step Functions

With Step Functions activities, you can set up a task in your state machine where the actual work
is performed by a worker running outside of Step Functions. For example you could have a worker
program running on Amazon Elastic Compute Cloud (Amazon EC2), Amazon Elastic Container
Service (Amazon ECS), or even mobile devices.

Overview

In AWS Step Functions, activities are a way to associate code running somewhere (known as an
activity worker) with a specific task in a state machine. You can create an activity using the Step
Functions console, or by calling CreateActivity. This provides an Amazon Resource Name (ARN)
for your task state. Use this ARN to poll the task state for work in your activity worker.

® Note

Activities are not versioned and are expected to be backward compatible. If you must make
a backward-incompatible change to an activity, create a new activity in Step Functions
using a unique name.

An activity worker can be an application running on an Amazon EC2 instance, an AWS Lambda
function, a mobile device: any application that can make an HTTP connection, hosted anywhere.
When Step Functions reaches an activity task state, the workflow waits for an activity worker

to poll for a task. An activity worker polls Step Functions by using GetActivityTask, and
sending the ARN for the related activity. GetActivityTask returns a response including input
(a string of JSON input for the task) and a taskToken (a unique identifier for the task). After
the activity worker completes its work, it can provide a report of its success or failure by using
SendTaskSuccess or SendTaskFailure. These two calls use the taskToken provided by
GetActivityTask to associate the result with that task.

APIs Related to Activity Tasks

Step Functions provides APIs for creating and listing activities, requesting a task, and for managing
the flow of your state machine based on the results of your worker.

The following are the Step Functions APIs that are related to activities:

Overview 19

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html#StepFunctions-GetActivityTask-response-taskToken
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html

AWS Step Functions Developer Guide

e CreateActivity

o GetActivityTask

e ListActivities

e SendTaskFailure

e SendTaskHeartbeat

e SendTaskSuccess

(® Note

Polling for activity tasks with GetActivityTask can cause latency in some
implementations. See Avoiding latency when polling for activity tasks.

Waiting for an Activity Task to Complete

Configure how long a state waits by setting TimeoutSeconds in the task definition. To keep
the task active and waiting, periodically send a heartbeat from your activity worker using
SendTaskHeartbeat within the time configured in TimeoutSeconds. By configuring a long

timeout duration and actively sending a heartbeat, an activity in Step Functions can wait up to a
year for an execution to complete.

For example, if you need a workflow that waits for the outcome of a long process, do the following:

1. Create an activity by using the console, or by using CreateActivity. Make a note of the
activity ARN.

2. Reference that ARN in an activity task state in your state machine definition and set
TimeoutSeconds.

3. Implement an activity worker that polls for work by using GetActivityTask, referencing that
activity ARN.

4. Use SendTaskHeartbeat periodically within the time you set in HeartbeatSeconds in your

state machine task definition to keep the task from timing out.
5. Start an execution of your state machine.

6. Start your activity worker process.

Waiting for an Activity Task to Complete 20

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListActivities.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html

AWS Step Functions Developer Guide

The execution pauses at the activity task state and waits for your activity worker to poll for
a task. Once a taskToken is provided to your activity worker, your workflow will wait for
SendTaskSuccess or SendTaskFailure to provide a status. If the execution doesn't receive

either of these or a SendTaskHeartbeat call before the time configured in TimeoutSeconds,

the execution will fail and the execution history will contain an ExecutionTimedOut event.

Example: Activity Worker in Ruby

The following example activity worker code implements a consumer-producer pattern with a
configurable number of threads for pollers and activity workers. The poller threads are constantly
long polling the activity task in Step Functions. When an activity task is retrieved, it is passed
through a bounded blocking queue for the activity thread to pick up.

« For more information, see the AWS SDK for Ruby API Reference.

» To download this code and related resources, see the step-functions-ruby-activity-worker

repository on GitHub.

The following code is the main entry point for this example Ruby activity worker.

require_relative '../lib/step_functions/activity
credentials = Aws::SharedCredentials.new

region = 'us-west-2'

activity_arn = 'ACTIVITY_ARN'

activity = StepFunctions::Activity.new(
credentials: credentials,
region: region,
activity_arn: activity_arn,
workers_count: 1,
pollers_count: 1,
heartbeat_delay: 30

Start method block contains your custom implementation to process the input
activity.start do |input|

{ result: :SUCCESS, echo: input['value'] }
end

Example: Activity Worker in Ruby 21

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/
https://github.com/aws-samples/step-functions-ruby-activity-worker

AWS Step Functions

Developer Guide

You must specify your activity ARN and region. The code includes defaults that you can set, such as

number of threads and heartbeat delay.

Item

require_relative

region

workers_count

pollers_count

heartbeat_delay

input

Next Steps

Description

Relative path to the following example activity
worker code.

AWS Region of your activity.

The number of threads for your activity
worker. For most implementations, between
10 and 20 threads should be sufficient. The
longer the activity takes to process, the
more threads it might need. As an estimate,
multiply the number of process activities
per second by the 99th percentile activity
processing latency, in seconds.

The number of threads for your pollers.
Between 10 and 20 threads should be sufficien
t for most implementations.

The delay in seconds between heartbeats.

Implementation logic of your activity.

For a more detailed look at creating state machines that use an activity workers, see:

» Creating an Activity state machine using Step Functions

Next Steps

22

AWS Step Functions Developer Guide

Discover use cases for Step Functions workflows

With AWS Step Functions, you can build workflows that manage state over time, make decisions
based on incoming data, and handle errors and exceptions.

Use case categories

« Data processing

« Machine learning

« Microservice orchestration

 IT and security automation

Data processing

As the volume of data grows from diverse sources, organizations need to process their data faster
so they can quickly make well-informed business decisions. To process data at scale, organizations
need to elastically provision resources to manage the information they receive from mobile
devices, applications, satellites, marketing and sales, operational data stores, infrastructure, and
more.

With horizontal scaling and fault-tolerant workflows, Step Functions can operate millions of
concurrent executions. You an process your data faster using parallel executions with Parallel
workflow state state. Or, you can use the dynamic parallelism of the Map workflow state
state to iterate over large data sets in a data stores, such as Amazon S3 buckets. Step Functions
also provide the capability to retry failed executions, or choose a specific path to handle errors
without managing complex error handling processes.

Step Functions directly integrates with other data processing services provided by AWS such
as AWS Batch for batch processing, Amazon EMR for big data processing, AWS Glue for data
preparation, Athena for data analysis, and AWS Lambda for compute.

Examples of the types of data processing workflows that customers use Step Functions to
accomplish include:

File, video, and image processing

» Take a collection of video files and convert them to other sizes or resolutions that are ideal for
the device they will be displayed on, such as mobile phones, laptops, or a television.

Data processing 23

AWS Step Functions Developer Guide

« Take a large collection of photos uploaded by users and convert them into thumbnails or various
resolution images that can then be displayed on users' websites.

» Take semi-structured data, such as a CSV file, and combine it with unstructured data, such as an
invoice, to produce a business report that is sent to business stakeholders monthly.

» Take earth observing data collected from satellites, convert it into formats that align with each
other and then add other data sources collected on earth for additional insight.

» Take the transportation logs from various modes of transportation for products and look for
optimizations using Monte Carlo Simulations and then send reports back to the organizations
and people that are relying on you to ship their goods.

Coordinate extract, transform and load (ETL) jobs:

« Combine sales opportunity records with marketing metric datasets through a series of data
preparation steps using AWS Glue, and produce business intelligence reports that can be used
across the organization.

» Create, start, and terminate an Amazon EMR cluster for big data processing.

Batch processing and High Performance Computing (HPC) workloads:

 Build a genomics secondary analysis pipeline that processes raw whole genome sequences
into variant calls. Align raw files to a reference sequence, and call variants on a specified list of
chromosomes using dynamic parallelism.

 Find efficiencies in the production of your next mobile device or other electronics by simulating
various layouts using different electric and chemical compounds. Run large batch processing of
your workloads through various simulations to get the optimal design.

Machine learning

Machine learning provides a way for organizations to quickly analyze collected data to identify
patterns and make decisions with minimal human intervention. Machine learning starts with an
initial set of data, known as training data. Training data increases a machine learning model's
prediction accuracy and acts as the foundation through which the model learns. After the trained
model is considered accurate enough to meet business needs, you can deploy the model into
production. The AWS Step Functions Data Science Project on Github is an open-source library

Machine learning 24

https://github.com/aws/aws-step-functions-data-science-sdk-python

AWS Step Functions Developer Guide

that provides workflows to preprocess data, train, and then publish your models using Amazon
SageMaker and Step Functions.

Preprocessing existing data sets is how an organization often creates training data. This
preprocessing method adds information, such as by labeling objects in an image, annotating text
or processing audio. To preprocess data you can use AWS Glue, or you can create an SageMaker
notebook instance that runs in a Jupyter Notebook. After your data is ready, it can be uploaded to
Amazon S3 for access. As machine learning models are trained, you can make adjustments to each
model's parameters to improve accuracy.

Step Functions provides a way to orchestrate end-to-end machine learning workflows on
SageMaker. These workflows can include data preprocessing, post-processing, feature engineering,
data validation, and model evaluation. After the model has been deployed to production, you

can refine and test new approaches to continually improve business outcomes. You can create
production-ready workflows directly in Python, or you can use the Step Functions Data Science
SDK to copy that workflow, experiment with new options, and place the refined workflow in
production.

Some types of machine learning workflows that customers use Step Functions for include:
Fraud Detection

« Identify and prevent fraudulent transactions, such as credit fraud, from occurring.
» Detect and prevent account takeovers using trained machine learning models.

« Identify promotional abuse, including the creation of fake accounts, so you can quickly take
action.

Personalization and Recommendations

« Recommend products to targeted customers based upon what is predicted to attract their
interest.

» Predict whether a customer will upgrade their account from a free tier to a paid subscription.

Data Enrichment

» Use data enrichment as part of preprocessing to provide better training data for more accurate
machine learning models.

« Annotate text and audio excerpts to add syntactical information, such as sarcasm and slang.

Machine learning 25

AWS Step Functions Developer Guide

» Label additional objects in images to provide critical information for the model to learn from,
such as whether an object is an apple, a basketball, a rock, or an animal.

Microservice orchestration

Step Functions gives you options to manage your microservice workflows.

Microservice architecture breaks applications into loosely coupled services. Benefits include
improved scalability, increased resiliency, and faster time to market. Each microservice is
independent, making it easy to scale up a single service or function without needing to scale the
entire application. Individual services are loosely coupled, so that independent teams can focus on
a single business process, without needing to understand the entire application.

Microservices also provide individual components that suit your business needs, giving you
flexibility without rewriting your entire workflow. Different teams can use the programming
languages and frameworks of their choice to work with their microservice.

For long-running workflows you can use Standard Workflows with AWS Fargate integration to
orchestrate applications running in containers. For short-duration, high-volume workflows that
need an immediate response, Synchronous Express Workflows are ideal. One example are web-
based or mobile applications, which require the completion of a series of steps before they return
a response. You can directly trigger a Synchronous Express Workflows from Amazon APl Gateway,
and the connection is held open until the workflow completes or timeouts. For short duration
workflows that do not require an immediate response, Step Functions provides Asynchronous
Express Workflows.

Examples of some API orchestrations that use Step Functions include:

Synchronous or real-time workflows
« Change a value in a record; such as updating an employee’s last name and making the change
immediately visible.

» Update an order during checkout, for example, adding, removing, or changing the quantity of an
item; then immediately showing the updated cart to your customer.

« Run a quick processing job and immediately return the result back to the requester.

Container Orchestration

Microservice orchestration 26

AWS Step Functions Developer Guide

e Run jobs on Kubernetes with Amazon Elastic Kubernetes Service or on Amazon Elastic Container
Service (ECS) with Fargate and integrate with other AWS services, such as sending notifications
with Amazon SNS, as part of the same workflow.

IT and security automation

With Step Functions, you can create workflows that automatically scale and react to errors in your
workflow. Your workflows can automatically retry failed tasks and use an exponential backoff to
handle errors.

Error handling is essential in IT automation scenarios to manage complex and time-consuming
operations, such as upgrading and patching software, deploying security updates to address
vulnerabilities, selecting infrastructure, synchronizing data, and routing support tickets. By
automating repetitive and time-consuming tasks, your organization can complete routine
operations quickly and consistently at scale. Your focus can shift to strategic efforts such as feature
development, complex support requests, and innovation while meeting your operational demands.

When human intervention is required for the workflow to proceed, for example approving a
substantial credit increase, you can define branching logic in Step Functions, so that requests under
a limit are automatically approved, and requests of the limit require human approval. When human
approval is required, Step Functions can pause the workflow, wait for a human response, then
continue the workflow after a response is received.

Some examples automation workflows include the following:
IT automation

« Auto-remediate incidents like open SSH ports, low disk space, or when public access an Amazon
S3 bucket is granted public access.

« Automate the deployment of AWS CloudFormation StackSets.

Security automation

« Automate the response to a scenario where a user and user access key has been exposed.

« Auto-remediate security incident responses according to policy actions, such as restricting action
to specific ARNs.

« Warn employees of phishing emails within seconds of receiving them.

IT and security automation 27

AWS Step Functions Developer Guide

Human Approval

« Automate machine learning model training, then get approval of the model by a data scientist
before deploying the updated model.

« Automate customer feedback routing based on sentiment analysis so negative comments are
quickly escalated for review.

IT and security automation 28

AWS Step Functions Developer Guide

Choosing workflow type in Step Functions

When you create a state machine, you select a Type of either Standard or Express. The default
Type for state machines is Standard. A state machine whose Type is Standard is called a Standard
workflow and a state machine whose Type is Express is called an Express workflow.

For both Standard and Express workflows, you define your state machine using the Using Amazon
States Language to define Step Functions workflows. Your state machine executions will behave
differently depending on the Type that you select.

/A Important

The workflow type you choose can not be changed after you create the state machine.

Standard and Express Workflows can automatically start in response to events such as HTTP
requests from Amazon API Gateway (fully-managed APIs at scale), IoT Rules and over 140 other
event sources in Amazon EventBridge.

Standard Workflows are ideal for long-running (up to one year), durable, and auditable workflows.
You can retrieve the full execution history using the Step Functions API for up to 90 days after your

execution completes. Standard Workflows follow an exactly-once model, where your tasks and
states are never run more than once, unless you have specified Retry behavior in ASL. This makes
Standard Workflows suited to orchestrating non-idempotent actions, such as starting an Amazon
EMR cluster or processing payments. Standard Workflow executions are billed according to the
number of state transitions processed.

Express Workflows are ideal for high-volume, event-processing workloads such as loT data
ingestion, streaming data processing and transformation, and mobile application backends.

They can run for up to five minutes. Express Workflows employ an at-least-once model, where

an execution could potentially run more than once. This makes Express Workflows ideal for
orchestrating idempotent actions such as transforming input data and storing by way of a PUT
action in Amazon DynamoDB. Express Workflow executions are billed by the number of executions,
the total duration of execution, and the memory consumed while the execution ran.

29

https://docs.aws.amazon.com/step-functions/latest/apireference

AWS Step Functions

Developer Guide

® Tip

To deploy an example Express workflow, see Parallel State in The AWS Step Functions

Workshop.

Comparison of Standard and Express workflow types

Type / Category

Maximum duration

Supported execution start
rate

Supported state transition
rate

Pricing

Execution history

Standard Workflows

One year

For information about
quotas related to supported
execution start rate, see
Quotas related to API action

Express Workflows:
Synchronous and Asynchron
ous

Five minutes

For information about
quotas related to supported
execution start rate, see
Quotas related to API action

throttling.

For information about quotas
related to supported state
transition rate, see Quotas
related to state throttling.

Priced by number of state
transitions. A state transition
is counted each time a step in
your execution is completed.

Executions can be listed and
described with Step Functions
APIs. Executions can be
visually debugged through
the console. They can also be
inspected in CloudWatch Logs
by enabling logging on your
state machine.

throttling.

No limit

Priced by the number of
executions you run, their
duration, and memory
consumption.

Unlimited execution history,
that is, as many execution
history entries are maintained
as you can generate within a
5-minute period.

Executions can be inspected
in CloudWatch Logs or the

30

https://s12d.com/sfn-ws-standard-express-workflows
https://aws.amazon.com/step-functions/pricing

AWS Step Functions

Developer Guide

Type / Category

Execution semantics

Service integrations

Distributed Map

Activities

Standard Workflows

For more information
about debugging Standard
Workflow executions in the
console, see Standard and

Express console experienc

e differences and Viewing

workflow runs.

Exactly-once workflow
execution.

Supports all service integrati
ons and patterns.

Supported

Supported

Express Workflows:
Synchronous and Asynchron
ous

Step Functions console by
enabling logging on your
state machine.

For more information about

debugging Express Workflow
executions in the console, see
Standard and Express console

experience differences and

Viewing workflow runs.

Asynchronous Express
Workflows: At-least-once
workflow execution.

Synchronous Express
Workflows: At-most-once
workflow execution.

Supports all service integrati
ons.

(® Note

Express Workflows
do not support
Job-run (.sync) or
Callback (.waitForT
askToken) service
integration patterns.

Not supported

Not supported

31

AWS Step Functions Developer Guide

@ Optimize workflow type

In the large-scale data processing workshop, see the Choosing workflow type (workshop)
module for a comparison by type, checklist for converting from Standard to Express, and an
example cost impact analysis.

Synchronous and Asynchronous Express Workflows in Step
Functions

There are two types of Express Workflows that you can choose: Asynchronous Express Workflows
and Synchronous Express Workflows.

« Asynchronous Express Workflows return confirmation that the workflow was started, but don't
wait for the workflow to complete. To get the result, you must poll the service's CloudWatch
Logs. You can use Asynchronous Express Workflows when you don't require immediate response
output, such as messaging services or data processing that other services don't depend on. You
can start Asynchronous Express Workflows in response to an event, by a nested workflow in Step
Functions, or by using the StartExecution API call.

» Synchronous Express Workflows start a workflow, wait until it completes, and then return
the result. Synchronous Express Workflows can be used to orchestrate microservices. With
Synchronous Express Workflows, you can develop applications without the need to develop
additional code to handle errors, retries, or run parallel tasks. You can run Synchronous
Express Workflows invoked from Amazon APl Gateway, AWS Lambda, or by using the
StartSyncExecution API call.

(@ Note

If you run Step Functions Express Workflows synchronously from the console, the
StartSyncExecution request expires after 60 seconds. To run the Express Workflows
synchronously for a duration of up to five minutes, make the StartSyncExecution
request using the AWS SDK or AWS Command Line Interface (AWS CLI) instead of the
Step Functions console.

Express Workflow types 32

https://catalog.workshops.aws/serverless-data-processing/en-US/advanced/optimization/workflow-type
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html

AWS Step Functions

Developer Guide

Synchronous Express execution API calls don't contribute to existing account capacity limits.
Step Functions provides capacity on demand and automatically scales with sustained workload.

Surges in workload may be throttled until capacity is available.

Execution guarantees in Step Functions workflows

Standard Workflows

Exactly-once workflow
execution

Execution state internall
y persists between state
transitions.

Automatically returns an
idempotent response on
starting an execution with the
same name as a currently-
running workflow. The new
workflow doesn't start and an
exception is thrown once the
currently-running workflow is
complete.

Execution history data
removed after 90 days.
Workflow names can be
reused after removal of out-
of-date execution data.

To meet compliance,
organizational, or regulator
y requirements, you can
reduce the execution history

Asynchronous Express
Workflows

At-least-once workflow
execution

Execution state doesn't
persist between state
transitions.

Idempotency is not automatic
ally managed. Starting
multiple workflows with

the same name results

in concurrent execution

s. Can result in loss of
internal workflow state if
state machine logic is not
idempotent.

Execution history is not
captured by Step Functions

. Logging must be enabled
through Amazon CloudWatch
Logs.

Synchronous Express
Workflows

At-most-once workflow
execution

Execution state doesn't
persist between state
transitions.

Idempotency is not automatic
ally managed. Step Functions
waits once an execution
starts and returns the state
machine’s result on completio
n. Workflows don't restart if
an exception occurs.

Execution history is not
captured by Step Functions

. Logging must be enabled
through Amazon CloudWatch
Logs.

Execution guarantees

33

AWS Step Functions Developer Guide

Standard Workflows Asynchronous Express Synchronous Express
Workflows Workflows

retention period to 30 days by
sending a quota request. To
do this, use the AWS Support
Center Console and create a
new case.

Execution guarantees 34

AWS Step Functions Developer Guide

Using Amazon States Language to define Step Functions

workflows

The Amazon States Language is a JSON-based, structured language used to define your state
machine, a collection of states, that can do work (Task states), determine which states to
transition to next (Choice states), stop an execution with an error (Fail states), and so on.

For more information, see the Amazon States Language Specification and Statelint, a tool that
validates Amazon States Language code.

To create a state machine on the Step Functions console using Amazon States Language, see
Getting Started.

(@ Note

If you define your state machines outside the Step Functions' console, such as in an editor

of your choice, you must save your state machine definitions with the extension .asl.json.

Example Amazon States Language Specification

{
"Comment": "An example of the Amazon States Language using a choice state.",
"StartAt": "FirstState",
"States": {

"FirstState": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FUNCTION_NAME",
"Next": "ChoiceState"
},
"ChoiceState": {
"Type" : "Choice",
"Choices": [
{
"Variable": "$.foo",
"NumericEquals": 1,
"Next": "FirstMatchState"
},

Example Amazon States Language Specification

35

https://states-language.net/spec.html
https://github.com/awslabs/statelint
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

{
"Variable": "$.foo",
"NumericEquals": 2,
"Next": "SecondMatchState"
}

1,
"Default": "DefaultState"

iy

"FirstMatchState": {
HTypeH : HTaSkH’
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:0OnFirstMatch",
"Next": "NextState"

iy

"SecondMatchState": {
HTypeH : HTaSkH’
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:0nSecondMatch",
"Next": "NextState"

iy

"DefaultState": {
HTypeH: HFailH’
"Error": "DefaultStateError",
"Cause": "No Matches!"

},
"NextState": {
HTypeH: HTaSkH’

"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FUNCTION_NAME",
"End": true

State machine structure in Amazon States Language for Step
Functions workflows

State machines are defined using JSON text that represents a structure containing the following
fields.

State machine structure 36

AWS Step Functions Developer Guide

Comment (Optional)

A human-readable description of the state machine.

StartAt (Required)

A string that must exactly match (is case sensitive) the name of one of the state objects.

TimeoutSeconds (Optional)

The maximum number of seconds an execution of the state machine can run. If it runs longer
than the specified time, the execution fails with a States.Timeout Error Name.

Version (Optional)

The version of the Amazon States Language used in the state machine (default is "1.0").

States (Required)

An object containing a comma-delimited set of states.

The States field contains States.

{
"Statel" : {
i
"State2" : {
1,

}

A state machine is defined by the states it contains and the relationships between them.

The following is an example.

{
"Comment": "A Hello World example of the Amazon States Language using a Pass state",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {
IITypell: IIPassll’
"Result": "Hello World!",

State machine structure 37

AWS Step Functions Developer Guide

"End": true

When an execution of this state machine is launched, the system begins with the state referenced
in the StartAt field ("HelloWoxr1ld"). If this state has an "End": true field, the execution stops
and returns a result. Otherwise, the system looks for a "Next" : field and continues with that
state next. This process repeats until the system reaches a terminal state (a state with "Type":
"Succeed", "Type": "Fail", or "End": true), or a runtime error occurs.

The following rules apply to states within a state machine:

 States can occur in any order within the enclosing block, but the order in which they're listed
doesn't affect the order in which they're run. The contents of the states determines this order.

« Within a state machine, there can be only one state that's designated as the start state,
designated by the value of the StartAt field in the top-level structure. This state is the one that
is executed first when the execution starts.

« Any state for which the End field is true is considered an end (or terminal) state. Depending
on your state machine logic—for example, if your state machine has multiple branches of
execution—you might have more than one end state.

« If your state machine consists of only one state, it can be both the start state and the end
state.

Common state fields in workflows

The following fields are common to all state elements.
Type (Required)

The state's type.
Next

The name of the next state that is run when the current state finishes. Some state types, such as
Choice, allow multiple transition states.

If the current state is the last state in your workflow, or a terminal state, such as Succeed
workflow state or Fail workflow state, you don't need to specify the Next field.

Common state fields 38

AWS Step Functions Developer Guide

End

Designates this state as a terminal state (ends the execution) if set to true. There can be any
number of terminal states per state machine. Only one of Next or End can be used in a state.
Some state types, such as Choice, or terminal states, such as Succeed workflow state and Fail
workflow state, don't support or use the End field.

Comment (Optional)

Holds a human-readable description of the state.

InputPath (Optional)

A path that selects a portion of the state's input to be passed to the state's task for processing.
If omitted, it has the value $ which designates the entire input. For more information, see Input
and Output Processing.

OutputPath (Optional)

A path that selects a portion of the state's output to be passed to the next state. If omitted, it
has the value $ which designates the entire output. For more information, see Input and Output

Processing.

Intrinsic functions in Amazon States Language for Step
Functions workflows

The Amazon States Language provides several intrinsic functions, also known as intrinsics, that
help you perform basic data processing operations without using a Task state. Intrinsics are
constructs that look similar to functions in programming languages. They can be used to help
payload builders process the data going to and from the Resouxrce field of a Task state.

In Amazon States Language, intrinsic functions are grouped into the following categories, based on
the type of data processing task that you want to perform:

o Intrinsics for arrays

o Intrinsics for data encoding and decoding

« Intrinsic for hash calculation

o Intrinsics for JSON data manipulation

o Intrinsics for Math operations

Intrinsic functions 39

AWS Step Functions Developer Guide

o Intrinsic for String operation

o Intrinsic for unique identifier generation

« Intrinsic for generic operation

® Note

« To use intrinsic functions you must specify . $ in the key value in your state machine
definitions, as shown in the following example:

"KeyId.$": "States.Array($.Id)"

« You can nest up to 10 intrinsic functions within a field in your workflows. The following
example shows a field named myArn that includes nine nested intrinsic functions:

"myArn.$": "States.Format('{}.{}.{3}',
States.ArrayGetItem(States.StringSplit(States.ArrayGetItem(States.StringSplit($.ImageRe
/'), 2), '."), 0),
States.ArrayGetItem(States.StringSplit(States.ArrayGetItem(States.StringSplit($.ImageRe
/'), 2), '.Y), D"

® Tip
If you use Step Functions in a local development environment, make sure you're using
version 1.12.0 or higher to be able to include all the intrinsic functions in your workflows.

Fields that support intrinsic functions

The following states support intrinsic functions in the following fields:

Pass state : Parameters

Task state : Parameters, ResultSelector, Credentials

Parallel state: Parameters, ResultSelector

Map state: Parameters, ResultSelector

Fields that support intrinsic functions 40

https://hub.docker.com/layers/amazon/aws-stepfunctions-local/1.12.0/images/sha256-23df777f44837432603a22eaab9ca473718579cacb289ee9d2431ab431c7cedf?context=explore

AWS Step Functions Developer Guide

Intrinsics for arrays
Use the following intrinsics for performing array manipulations.
States.Array

The States.Array intrinsic function takes zero or more arguments. The interpreter returns a
JSON array containing the values of the arguments in the order provided. For example, given
the following input:

{
"Id": 123456

You could use

"BuildId.$": "States.Array($.Id)"

Which would return the following result:
“BuildId”: [123456]

States.ArrayPartition

Use the States.ArrayPartition intrinsic function to partition a large array. You can also use
this intrinsic to slice the data and then send the payload in smaller chunks.

This intrinsic function takes two arguments. The first argument is an array, while the second
argument defines the chunk size. The interpreter chunks the input array into multiple arrays of
the size specified by chunk size. The length of the last array chunk may be less than the length
of the previous array chunks if the number of remaining items in the array is smaller than the
chunk size.

Input validation

» You must specify an array as the input value for the function's first argument.

» You must specify a non-zero, positive integer for the second argument representing the
chunk size value.

Intrinsics for arrays 41

AWS Step Functions Developer Guide

If you specify a non-integer value for the second argument, Step Functions will round it off to
the nearest integer.

« The input array can't exceed Step Functions' payload size limit of 256 KB.

For example, given the following input array:

{"inputArray": [1,2,3,4,5,6,7,8,9] }

You could use the States.ArrayPartition function to divide the array into chunks of four
values:

"inputArray.$": "States.ArrayPartition($.inputArray,4)"

Which would return the following array chunks:
{"inputArray": [[1,2,3,4], [5,6,7,8], [911 }

In the previous example, the States.ArrayPartition function outputs three arrays. The
first two arrays each contain four values, as defined by the chunk size. A third array contains the
remaining value and is smaller than the defined chunk size.

States.ArrayContains

Use the States.ArrayContains intrinsic function to determine if a specific value is present
in an array. For example, you can use this function to detect if there was an error in a Map state
iteration.

This intrinsic function takes two arguments. The first argument is an array, while the second
argument is the value to be searched for within the array.

Input validation

» You must specify an array as the input value for function's first argument.
» You must specify a valid JSON object as the second argument.

« The input array can't exceed Step Functions' payload size limit of 256 KB.

For example, given the following input array:

Intrinsics for arrays 42

AWS Step Functions Developer Guide

"inputArray": [1,2,3,4,5,6,7,8,9],
"lookingFor": 5

You could use the States.ArrayContains function to find the 1lookingFor value within the
inputArray:
"contains.$": "States.ArrayContains($.inputArray, $.lookingFor)"

Because the value stored in 1ookingFor is included in the inputArray,
States.ArrayContains returns the following result:

{"contains": true }

States.ArrayRange

Use the States.ArrayRange intrinsic function to create a new array containing a specific
range of elements. The new array can contain up to 1000 elements.

This function takes three arguments. The first argument is the first element of the new array,
the second argument is the final element of the new array, and the third argument is the
increment value between the elements in the new array.

Input validation

« You must specify integer values for all of the arguments.

If you specify a non-integer value for any of the arguments, Step Functions will round it off to
the nearest integer.

» You must specify a non-zero value for the third argument.

« The newly generated array can't contain more than 1000 items.

For example, the following use of the States.ArrayRange function will create an array with
a first value of 1, a final value of 9, and values in between the first and final values increase by
two for each item:

"array.$": "States.ArrayRange(l, 9, 2)"

Which would return the following array:

Intrinsics for arrays 43

AWS Step Functions Developer Guide

{"array": [1,3,5,7,9] }

States.ArrayGetItem

This intrinsic function returns a specified index's value. This function takes two arguments. The
first argument is an array of values and the second argument is the array index of the value to
return.

For example, use the following inputArray and index values:

"inputArray": [1,2,3,4,5,6,7,8,9],
"index": 5

From these values, you can use the States.ArrayGetItem function to return the value in the
index position 5 within the array:
"item.$": "States.ArrayGetItem($.inputArray, $.index)"
In this example, States.ArrayGetItem would return the following result:
{ "item": 6 }
States.ArraylLength

The States.ArraylLength intrinsic function returns the length of an array. It has one
argument, the array to return the length of.

For example, given the following input array:

"inputArray": [1,2,3,4,5,6,7,8,9]

You can use States.ArraylLength to return the length of inputArray:

"length.$": "States.ArraylLength($.inputArray)"

Intrinsics for arrays 44

AWS Step Functions Developer Guide

In this example, States.ArrayLength would return the following JSON object that
represents the array length:

{ "length": 9 }

States.ArrayUnique

The States.ArrayUnique intrinsic function removes duplicate values from an array and
returns an array containing only unique elements. This function takes an array, which can be
unsorted, as its sole argument.

For example, the following inputArray contains a series of duplicate values:
{"inputArray": [1,2,3,3,3,3,3,3,4] }

You could use the States.ArrayUnique function as and specify the array you want to remove

duplicate values from:

"array.$": "States.ArrayUnique($.inputArray)"
y y q p y

The States.ArrayUnique function would return the following array containing only unique
elements, removing all duplicate values:

{"array": [1,2,3,4] }

Intrinsics for data encoding and decoding

Use the following intrinsic functions to encode or decode data based on the Base64 encoding
scheme.

States.Base64Encode

Use the States.Base64Encode intrinsic function to encode data based on MIME Base64
encoding scheme. You can use this function to pass data to other AWS services without using an
AWS Lambda function.

This function takes a data string of up to 10,000 characters to encode as its only argument.

For example, consider the following input string:

Intrinsics for data encoding and decoding 45

AWS Step Functions Developer Guide

{"input": "Data to encode" }

You can use the States.Base64Encode function to encode the input string as a MIME
Base64 string:

"base64.$": "States.Base64Encode($.input)”

The States.Base64Encode function returns the following encoded data in response:
{"base64": "RGFOYSBObyBlbmNvZGU=" }

States.Base64Decode

Use the States.Base64Decode intrinsic function to decode data based on MIME Base64
decoding scheme. You can use this function to pass data to other AWS services without using a
Lambda function.

This function takes a Base64 encoded data string of up to 10,000 characters to decode as its
only argument.

For example, given the following input:

{"base64": "RGFOYSBObyBlbmNvZGU=" }

You can use the States.Base64Decode function to decode the base64 string to a human-
readable string:

"data.$": "States.Base64Decode($.base64)"
The States.Base64Decode function would return the following decoded data in response:

{"data": "Decoded data" }

Intrinsic for hash calculation

States.Hash

Use the States.Hash intrinsic function to calculate the hash value of a given input. You can
use this function to pass data to other AWS services without using a Lambda function.

Intrinsic for hash calculation 46

AWS Step Functions Developer Guide

This function takes two arguments. The first argument is the data you want to calculate the
hash value of. The second argument is the hashing algorithm to use to perform the hash
calculation. The data you provide must be an object string containing 10,000 characters or less.

The hashing algorithm you specify can be any of the following algorithms:
 MD5

SHA-1

SHA-256

SHA-384

SHA-512

For example, you can use this function to calculate the hash value of the Data string using the
specified Algorithm:

"Data": "input data",
"Algorithm": "SHA-1"

You can use the States.Hash function to calculate the hash value:

"output.$": "States.Hash($.Data, $.Algorithm)"

The States.Hash function returns the following hash value in response:

{"output": "aaff4a450al104cd177d28d18d7485e8cae@74b7" }

Intrinsics for JSON data manipulation

Use these functions to perform basic data processing operations on JSON objects.
States.JsonMerge

Use the States.JsonMerge intrinsic function to merge two JSON objects into a single object.
This function takes three arguments. The first two arguments are the JSON objects that you
want to merge. The third argument is a boolean value of false. This boolean value determines
if the deep merging mode is enabled.

Intrinsics for JSON data manipulation 47

AWS Step Functions Developer Guide

Currently, Step Functions only supports the shallow merging mode; therefore, you must specify
the boolean value as false. In the shallow mode, if the same key exists in both JSON obijects,
the latter object's key overrides the same key in the first object. Additionally, objects nested
within a JSON object are not merged when you use shallow merging.

For example, you can use the States.JsonMexrge function to merge the following JSON
objects that share the key a.

njsonln: { nan: {”al”: 1’ nazn: 2}’ nbn: 2 }’
njsonzn: { nan: {"83": 1, "84": 2}’ "C": 3 }

You can specify the json1 and json2 objects as inputs in the States.JsonMerge function to
merge them together:

"output.$": "States.JsonMerge($.jsonl, $.json2, false)"

The States. JsonMerge returns the following merged JSON object as result. In the merged
JSON object output, the json2 object's key a replaces the jsonl object's key a. Also, the
nested object in jsonl object's key a is discarded because shallow mode doesn't support
merging nested objects.

{
"output": {
"a": {"33": 1, "a4": 2},
"b": 2,
"' 3
}
}
States.StringToJson

The States.StringToJson function takes a reference path to an escaped JSON string as its
only argument.

The interpreter applies a JSON parser and returns the input's parsed JSON form. For example,
you can use this function to escape the following input string:

Intrinsics for JSON data manipulation 48

AWS Step Functions Developer Guide

"escaped]JsonString": "{\"foo\": \"bar\"}"
}

Use the States.StringToJson function and specify the escapedJsonString as the input
argument:

States.StringToJson($.escapedlsonString)

The States.StringToJson function returns the following result:
{ II.FOOII: "baI" }

States.JsonToString

The States.JsonToString function takes only one argument, which is the path that contains
the JSON data to return as an unescaped string. The interpreter returns a string that contains
JSON text representing the data specified by the Path. For example, you can provide the
following JSON Path containing an escaped value:

{
"unescapedlson": {
"foo": "bar"
}
}

Provide the States.JsonToString function with the data contained within unescapedJson:

States.JsonToString($.unescapedlson)

The States.JsonToString function returns the following response:

{\Ilfoo\ll: \Ilbar\ll}

Intrinsics for Math operations

Use these functions to perform Math operations.

Intrinsics for Math operations 49

AWS Step Functions Developer Guide

States.MathRandom

Use the States.MathRandom intrinsic function to return a random number between the
specified start number (inclusive) and end number (exclusive).

You can use this function to distribute a specific task between two or more resources.

This function takes three arguments. The first argument is the start number, the second
argument is the end nhumber, and the last argument controls the optional seed value, Note that
if you use this function with the same seed value, it will return identical numbers.

/A Important

Because the States.MathRandom function does not return cryptographically
secure random numbers, we recommend that you don't use it for security sensitive
applications.

Input validation

» You must specify integer values for the start number and end number arguments.

If you specify a non-integer value for the start number or end number argument, Step
Functions will round it off to the nearest integer.

For example, to generate a random number between one and 999, you can use the following
input values:

"start": 1,
"end": 999

To generate the random number, provide the start and end values to the
States.MathRandom function:

"random.$": "States.MathRandom($.start, $.end)"

The States.MathRandom function returns the following random number as a response:

Intrinsics for Math operations 50

AWS Step Functions Developer Guide

{"random": 456 }

States.MathAdd

Use the States.MathAdd intrinsic function to return the sum of two numbers. For example,
you can use this function to increment values inside a loop without invoking a Lambda function.

Input validation

« You must specify integer values for all the arguments.

If you specify a non-integer value for one or both the arguments, Step Functions will round it
off to the nearest integer.

» You must specify integer values in the range of -2147483648 and 2147483647.

For example, you can use the following values to subtract one from 111:

"valuel": 111,
"step": -1

Then, use the States.MathAdd function defining valuel as the starting value, and step as
the value to increment valuel by:

"valuel.$": "States.MathAdd($.valuel, $.step)"

The States.MathAdd function would return the following number in response:

{"valuel": 110 }

Intrinsic for String operation

States.StringSplit

Use the States.StringSplit intrinsic function to split a string into an array of values. This
function takes two arguments. The first argument is a string and the second argument is the
delimiting character that the function will use to divide the string.

Intrinsic for String operation 51

AWS Step Functions Developer Guide

Example - Split an input string using a single delimiting character

For this example, use States.StringSplit to divide the following inputString, which
contains a series of comma separated values:

"inputString": "1,2,3,4,5",

"splitter": ",

Use the States.StringSplit function and define inputString as the first argument, and
the delimiting character splitter as the second argument:

"array.$": "States.StringSplit($.inputString, $.splitter)"

The States.StringSplit function returns the following string array as result:
{"arrayll: ["1", nzn’ ||3||’ ||4||’ ||5||:| }

Example - Split an input string using multiple delimiting characters

For this example, use States.StringSplit to divide the following inputString, which
contains multiple delimiting characters:

{
"inputString": "This.is+a, test=string",
"splitter": ".+,="

}

Use the States.StringSplit function as follows:

{
"myStringArray.$": "States.StringSplit($.inputString, $.splitter)"
}

The States.StringSplit function returns the following string array as result:

{"myStringArray": [
"This",

Intrinsic for String operation 52

AWS Step Functions Developer Guide

1s’,

a’,
"test",
"string"

1}

Intrinsic for unique identifier generation

States.UUID

Use the States.UUID intrinsic function to return a version 4 universally unique identifier (v4
UUID) generated using random numbers. For example, you can use this function to call other
AWS services or resources that need a UUID parameter or insert items in a DynamoDB table.

The States.UUID function is called with no arguments specified:

"uuid.$": "States.UUID()"

The function returns a randomly generated UUID, as in the following example:

{"uuid": "ca4cll4@-dccl-40cd-ad@5-7b4aa23df4a8" }

Intrinsic for generic operation

States.Format

Use the States.Format intrinsic function to construct a string from both literal and
interpolated values. This function takes one or more arguments. The value of the first argument
must be a string, and may include zero or more instances of the character sequence {}.

There must be as many remaining arguments in the intrinsic function invocation as there are
occurrences of {}. The interpreter returns the string defined in the first argument with each {}
replaced by the value of the positionally-corresponding argument in the Intrinsic invocation.

For example, you can use the following inputs of an individual's name, and a template
sentence to have their name inserted into:

{

"name": "Arnav",

Intrinsic for unique identifier generation 53

AWS Step Functions Developer Guide

"template": "Hello, my name is {}."

}

Use the States.Format function and specify the template string and the string to insert in
place of the {} characters:

States.Format('Hello, my name is {}.', $.name)

or

States.Format($.template, $.name)

With either of the previous inputs, the States.Format function returns the completed string
in response:

Hello, my name is Azrnav.

Reserved characters in intrinsic functions

The following characters are reserved for intrinsic functions, and must be escaped with a backslash
("\') if you want them to appear in the Value: '{}, and \.

If the character \ needs to appear as part of the value without serving as an escape character, you
must escape it with a backslash. The following escaped character sequences are used with intrinsic
functions:

« The literal string \' represents '.
« The literal string \{ represents {.
« The literal string \} represents }.
« The literal string \\ represents \.

In JSON, backslashes contained in a string literal value must be escaped with another backslash.
The equivalent list for JSON is:

» The escaped string \\\' represents \'.
« The escaped string \\\{ represents \ {.

Reserved characters in intrinsic functions 54

AWS Step Functions Developer Guide

» The escaped string \\\\} represents \}.
» The escaped string \\\\ represents \\.

(@ Note

If an open escape backslash \ is found in the intrinsic invocation string, the interpreter will
return a runtime error.

You must use square bracket notation for a Path passed as an argument to an Intrinsic Function
if the field name contains any character that is not included in the member -name-shorthand
definition of the JsonPath ABNF rule. If your Path contains non-alphanumeric characters, besides _,

you must use square bracket notation. For example, $.abc.['def ghi'].

Reserved characters in intrinsic functions 55

https://www.ietf.org/archive/id/draft-ietf-jsonpath-base-21.html#jsonpath-abnf

AWS Step Functions Developer Guide

Discovering workflow states to use in Step Functions

States are elements in your state machine. A state is referred to by its name, which can be any
string, but which must be unique within the scope of the entire state machine.

States take input from the invocation or a previous state. States can filter the input and then
manipulate the output that is sent to the next state.

The following is an example state named HelloWorld that invokes an AWS Lambda function.

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",
"Next": "AfterHelloWorldState",
"Comment": "Run the HelloWorld Lambda function"

Individual states can make decisions based on their input, perform actions from those inputs, and
pass output to other states. In AWS Step Functions, you define your workflows in the Amazon
States Language (ASL). The Step Functions console provides a graphical representation of your
state machine to help visualize your application’s logic.

The following screenshot shows some of the most popular Actions and the seven Flow states from
Workflow Studio:

56

AWS Step Functions Developer Guide

Actions Flow Patterns Info Actions Flow Patterns Info
MOST POPULAR H SQZ Choice
Adds if-then-else logic.

AWS Lambda

Invoke ‘ | Parallel
Adds separate branches.

Amazon SNS
| KA pubiish Map info

H A 2 1 Runs p-E;I:E-!l-lel workflows for each
item in a dataset.

=

1 Amazon ECS

RunTask Pass
H Cl:l Transforms data or acts as
AWS Step Functions placeholder.
” SZE: StartExecution
Wait
0% AWS Glue H CL) Delays for a specified time.

StartJobRun

.

H Success
@ Stops and marks as success.

THIRD-PARTY API

H Fail
HTTP Endpoint ® Stops and marks as failure.
” AP Call third-party API

States share many common features:

« A Type field indicating what type of state it is.

« An optional Comment field to hold a human-readable comment about, or description of, the
state.

« Each state (except Succeed or Fail states) requires a Next field that specifies the next state
in the workflow. Choice states can actually have more than one Next within each Choice Rule.
Alternatively, a state can become a terminal state by setting the End field to true.

Certain state types require additional fields, or may redefine common field usage.

To access log information for workflows

« After you have created and run Standard workflows, you can access information about each
state, its input and output, when it was active and for how long, by viewing the Execution Details
page in the Step Functions console.

57

AWS Step Functions Developer Guide

« After you have created and Express Workflow executions and if logging is enabled, you can see
execution history in the Step Functions console or Amazon CloudWatch Logs.

For information about viewing and debugging executions, see Viewing workflow runs and the

section called “Logging in CloudWatch Logs".

Reference list of workflow states

States are separated in Workflow Studio into Actions, also known as Task states, and seven

Flow states. Using Task states, or actions in Workflow Studio, you can call third party services,
invoke functions, and use hundreds of AWS service endpoints. With Flow states, you can direct
and control your workflow. All states take input from the previous state, and many provide input
filtering, and filtering/transformation for output that is passed to the next state in your workflow.

» Task workflow state: Add a single unit of work to be performed by your state machine.

o Choice workflow state: Add a choice between branches of execution to your workflow.

» Parallel workflow state: Add parallel branches of execution to your workflow.

« Map workflow state: Dynamically iterate steps for each element of an input array. Unlike a

Parallel flow state, a Map state will execute the same steps for multiple entries of an array in
the state input.

» Pass workflow state: Pass state input through to the output. Optionally, filter, transform, and
add fixed data into the output.

« Wait workflow state: Pause your workflow for a certain amount of time or until a specified time
or date.

» Succeed workflow state: Stops your workflow with a success.

« Fail workflow state: Stops your workflow with a failure.

Task workflow state

A Task state ("Type": "Task") represents a single unit of work performed by a state machine.
A task performs work by using an activity or an AWS Lambda function, by integrating with other
supported AWS services, or by invoking a third-party API, such as Stripe.

The Amazon States Language represents tasks by setting a state's type to Task and by providing
the task with the Amazon Resource Name (ARN) of the activity, Lambda function, or the third-

Reference list of workflow states 58

AWS Step Functions Developer Guide

party APl endpoint. The following Task state definition invokes a Lambda function named
HelloFunction.

"Lambda Invoke": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:us-east-2:123456789012:function:HelloFunction:
$LATEST"
b

"End": true

Task types

Step Functions supports the following task types that you can specify in a Task state definition:

Activity
Lambda functions

A supported AWS service
An HTTP Task

You specify a task type by providing its ARN in the Resource field of a Task state definition. The
following example shows the syntax of the Resouxrce field. All Task types except the one that
invokes an third-party API, use the following syntax. For information about syntax of the HTTP
Task, see Call third-party APIs in Step Functions workflows.

In your Task state definition, replace the italicized text in the following syntax with the AWS
resource-specific information.

arn:partition:service:region:account:task_type:name

The following list explains the individual components in this syntax:

« partition is the AWS Step Functions partition to use, most commonly aws.

« service indicates the AWS service used to execute the task, and can be one of the following
values:

Task types 59

AWS Step Functions Developer Guide

« states for an activity.

« lambda for a Lambda function. If you integrate with other AWS services, for example, Amazon

SNS or Amazon DynamoDB, use sns or dynamodb.

« regionis the AWS Region code in which the Step Functions activity or state machine type,

Lambda function, or any other AWS resource has been created.

« account is the AWS account ID in which you've defined the resource.

« task_type is the type of task to run. It can be one of the following values:
e activity - An activity.

e« function - A Lambda function.

« servicename — The name of a supported connected service (see Integrating services with
Step Functions).

« name is the registered resource name (activity name, Lambda function name, or service API
action).

® Note

Step Functions doesn't support referencing ARNs across partitions or regions. For example,
aws-cn can't invoke tasks in the aws partition, and the other way around.

The following sections provide more detail about each task type.
Activity

Activities represent workers (processes or threads), implemented and hosted by you, that perform a
specific task. They are supported only by Standard Workflows, not Express Workflows.

Activity Resource ARNs use the following syntax.

arn:partition:states:region:account:activity:name

(® Note

You must create activities with Step Functions (using a CreateActivity, APl action, or the

Step Functions console) before their first use.

Task types 60

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

For more information about creating an activity and implementing workers, see Activities.

Lambda functions

Lambda tasks execute a function using AWS Lambda. To specify a Lambda function, use the ARN of
the Lambda function in the Resouzrce field.

Depending on the type of integration (Optimized integration or AWS SDK integration) you use for
specifying a Lambda function, the syntax of your Lambda function's Resouxrce field varies.

The following Resource field syntax is an example of an optimized integration with a Lambda
function.

"arn:aws:states:::lambda:invoke"

The following Resource field syntax is an example of an AWS SDK integration with a Lambda
function.

"arn:aws:states:::aws-sdk:lambda:invoke"

The following Task state definition shows an example of an optimized integration with a Lambda
function named HelloWorld.

"LambdaState": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:us-east-1:function:HelloWorld:$LATEST"

+
"Next": "NextState"

After the Lambda function specified in the Resource field completes, its output is sent to the
state identified in the Next field ("NextState").

A supported AWS service

When you reference a connected resource, Step Functions directly calls the API actions of a
supported service. Specify the service and action in the Resource field.

Task types 61

AWS Step Functions Developer Guide

Connected service Resource ARNs use the following syntax.

arn:partition:states:region:account:servicename:APIname

® Note

To create a synchronous connection to a connected resource, append . sync to the
APIname entry in the ARN. For more information, see Integrating services.

For example:

{
"StartAt": "BATCH_JOB",
"States": {
"BATCH_JOB": {
"Type": "Task",
"Resource": "arn:aws:states:::batch:submitJob.sync",
"Parameters": {
"JobDefinition": "preprocessing",
"JobName": "PreprocessingBatchJob",
"JobQueue": "SecondaryQueue",
"Parameters.$": "$.batchjob.parameters",
"RetryStrategy": {
"attempts": 5

iy

"End": true

}

Task state fields

In addition to the common state fields, Task states have the following fields.

Resource (Required)

A URI, especially an ARN that uniquely identifies the specific task to execute.

Task state fields 62

AWS Step Functions Developer Guide

Parameters (Optional)

Used to pass information to the API actions of connected resources. The parameters can use a
mix of static JSON and JsonPath. For more information, see Passing parameters to a service API
in Step Functions.

Credentials (Optional)

Specifies a target role the state machine's execution role must assume before invoking the
specified Resource. Alternatively, you can also specify a JSONPath value or an intrinsic
function that resolves to an IAM role ARN at runtime based on the execution input. If you
specify a JSONPath value, you must prefix it with the $. notation.

For examples of using this field in the Task state, see Task state's Credentials field examples.
For an example of using this field to access a cross-account AWS resource from your state
machine, see Accessing cross-account AWS resources in Step Functions.

(® Note

This field is supported by the Task types that use Lambda functions and a supported
AWS service.

ResultPath (Optional)

Specifies where (in the input) to place the results of executing the task that's specified in
Resource. The input is then filtered as specified by the OutputPath field (if present) before
being used as the state's output. For more information, see Input and Output Processing.

ResultSelector (Optional)

Pass a collection of key value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy if the state encounters runtime
errors. For more information, see State machine examples using Retry and using Catch.

Task state fields 63

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. This state is executed if the
state encounters runtime errors and its retry policy is exhausted or isn't defined. For more
information, see Fallback States.

TimeoutSeconds (Optional)

Specifies the maximum time an activity or a task can run before it times out with the
States.Timeout error and fails. The timeout value must be positive, non-zero integer. The
default value is 99999999.

The timeout count begins after a task starts, for example, when ActivityStarted or
LambdaFunctionStarted events are logged in the execution event history. For Activities, the
count begins when GetActivityTask receives a token and ActivityStarted is loggedin
the execution event history.

When a task starts, Step Functions waits for a success or failure response from the task or
activity worker within the specified TimeoutSeconds duration. If the task or activity worker
fails to respond within this time, Step Functions marks the workflow execution as failed.

(® Note

HTTP task timeout has a maximum of 60 seconds, even if TimeoutSeconds exceeds
that limit. See the section called “Quotas related to HTTP Task”

TimeoutSecondsPath (Optional)

If you want to provide a timeout value dynamically from the state input using a reference path,
use TimeoutSecondsPath. When resolved, the reference path must select fields whose values
are positive integers.

® Note
A Task state cannot include both TimeoutSeconds and TimeoutSecondsPath. HTTP
task timeout has a maximum of 60 seconds, even if the TimeoutSecondsPath value
exceeds that limit.

Task state fields 64

AWS Step Functions Developer Guide

HeartbeatSeconds (Optional)

Determines the frequency of heartbeat signals an activity worker sends during the execution
of a task. Heartbeats indicate that a task is still running and it needs more time to complete.
Heartbeats prevent an activity or task from timing out within the TimeoutSeconds duration.

HeartbeatSeconds must be a positive, non-zero integer value less than the
TimeoutSeconds field value. The default value is 99999999. If more time than the specified
seconds elapses between heartbeats from the task, the Task state fails with a States.Timeout

error.

For Activities, the count begins when GetActivityTask receives a token and
ActivityStarted is logged in the execution event history.

HeartbeatSecondsPath (Optional)

If you want to provide a heartbeat value dynamically from the state input using a reference
path, use HeartbeatSecondsPath. When resolved, the reference path must select fields
whose values are positive integers.

(® Note

A Task state cannot include both HeartbeatSeconds and HeartbeatSecondsPath.

A Task state must set either the End field to true if the state ends the execution, or must provide
a state in the Next field that is run when the Task state is complete.

Task state definition examples

The following examples show how you can specify the Task state definition based on your
requirement.

» Specifying Task state timeouts and heartbeat intervals

« Static timeout and heartbeat notification example

« Dynamic task timeout and heartbeat notification example

» Using Credentials field

» Specifying hard-coded IAM role ARN

Task state definition examples 65

AWS Step Functions Developer Guide

» Specifying JSONPath as IAM role ARN

» Specifying an intrinsic function as IAM role ARN

Task state timeouts and heartbeat intervals

It's a good practice to set a timeout value and a heartbeat interval for long-running activities. This
can be done by specifying the timeout and heartbeat values, or by setting them dynamically.

Static timeout and heartbeat notification example
When HelloWorld completes, the next state (here called NextState) will be run.

If this task fails to complete within 300 seconds, or doesn't send heartbeat notifications in intervals
of 60 seconds, the task is marked as failed.

"ActivityState": {
"Type": "Task",
"Resource": "arn:aws:states:us-east-1:123456789012:activity:HelloWorld",
"TimeoutSeconds": 300,
"HeartbeatSeconds": 60,
"Next": "NextState"

Dynamic task timeout and heartbeat notification example
In this example, when the AWS Glue job completes, the next state will be run.

If this task fails to complete within the interval set dynamically by the AWS Glue job, the task is
marked as failed.

"GlueJobTask": {
"Type": "Task",
"Resource": "arn:aws:states:::glue:startJobRun.sync",
"Parameters": {
"JobName": "myGlueJob"
},
"TimeoutSecondsPath": "$.params.maxTime",
"Next": "NextState"

Task state definition examples 66

AWS Step Functions Developer Guide

Task state's Credentials field examples
Specifying hard-coded IAM role ARN

The following example specifies a target IAM role that a state machine's execution role must
assume to access a cross-account Lambda function named Echo. In this example, the target role
ARN is specified as a hard-coded value.

{
"StartAt": "Cross-account call",
"States": {
"Cross-account call": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Credentials": {
"RoleArn": "arn:aws:iam::111122223333:role/LambdaRole"
},
"Parameters": {
"FunctionName": "arn:aws:lambda:us-east-2:111122223333:function:Echo"
1,
"End": true
}
}
}

Specifying JSONPath as IAM role ARN

The following example specifies a JSONPath value, which will resolve to an IAM role ARN at

runtime.
{
"StartAt": "Lambda",
"States": {
"Lambda": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",

"Credentials": {
"RoleArn.$": "$.roleArn"
},

Task state definition examples 67

AWS Step Functions Developer Guide

}

Specifying an intrinsic function as IAM role ARN

The following example uses the States.Format intrinsic function, which resolves to an IAM role
ARN at runtime.

"StartAt": "Lambda",
"States": {
"Lambda": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Credentials": {
"RoleArn.$": "States.Format('arn:aws:iam::{}:role/ROLENAME', $.accountId)"
1,

Choice workflow state

A Choice state ("Type": "Choice") adds conditional logic to a state machine.

In addition to most of the common state fields, Choice states contains the following additional
fields.

Choices (Required)

An array of Choice Rules that determines which state the state machine transitions to next. You
use a comparison operator in a Choice Rule to compare an input variable with a specific value.
For example, using Choice Rules you can compare if an input variable is greater than or less
than 100.

When a Choice state is run, it evaluates each Choice Rule to true or false. Based on the result
of this evaluation, Step Functions transitions to the next state in the workflow.

You must define at least one rule in the Choice state.

Choice 68

AWS Step Functions Developer Guide

Default (Optional, Recommended)

The name of the state to transition to if none of the transitions in Choices is taken.

/A Important

Choice states don't support the End field. In addition, they use Next only inside their
Choices field.

® Tip
To deploy an example of a workflow that uses a Choice state to your AWS account, see
Module 5 - Choice State and Map State of The AWS Step Functions Workshop.

Choice Rules

A Choice state must have a Choices field whose value is a non-empty array. Each element in this
array is an object called Choice Rule, which contains the following:

« A comparison — Two fields that specify an input variable to compare, the type of comparison,
and the value to compare the variable to. Choice Rules support comparison between two
variables. Within a Choice Rule, the value of variable can be compared with another value from
the state input by appending Path to name of supported comparison operators. The values of
Variable and Path fields in a comparison must be valid Reference Paths.

« A Next field — The value of this field must match a state name in the state machine.

The following example checks whether the numerical value is equal to 1.

{
"Variable": "$.foo",
"NumericEquals": 1,
"Next": "FirstMatchState"

The following example checks whether the string is equal to MyString.

Choice Rules 69

https://s12d.com/sfn-ws-choice-and-map

AWS Step Functions

Developer Guide

{
"Variable": "$.foo",
"StringEquals": "MyString",
"Next": "FirstMatchState"

}

The following example checks whether the string is greater than MyStringABC.

{
"Variable": "$.foo",
"StringGreaterThan": "MyStringABC",
"Next": "FirstMatchState"

}

The following example checks whether the string is null.

{
"Variable": "$.possiblyNullValue",
"IsNull": true

}

The following example shows how the StringEquals rule is only evaluated when

$.keyThatMightNotExist exists because of the preceding IsPresent Choice Rule.

"And": [
{
"Variable": "$.keyThatMightNotExist",
"IsPresent": true
},
{
"Variable": "$.keyThatMightNotExist",
"StringEquals": "foo"
}
]

The following example checks whether a pattern with a wildcard matches.

{
"Variable": "$.foo",
"StringMatches": "log-*.txt"
}
Choice Rules 70

AWS Step Functions Developer Guide

The following example checks whether the timestamp is equal to 2001-01-01T12:00:00Z.

{
"Variable": "$.foo",
"TimestampEquals": "2001-01-01T12:00:00Z2",
"Next": "FirstMatchState"

The following example compares a variable with another value from the state input.

{
"Variable": "$.foo",
"StringEqualsPath": "$.bar"

}

Step Functions examines each of the Choice Rules in the order listed in the Choices field. Then
it transitions to the state specified in the Next field of the first Choice Rule in which the variable
matches the value according to the comparison operator.

The following comparison operators are supported:

« And

« BooleanEquals,BooleanEqualsPath

« IsBoolean

o IsNull

e IsNumeric

e IsPresent

o IsString

o IsTimestamp

» Not

e NumericEquals,NumericEqualsPath

e NumericGreaterThan,NumericGreaterThanPath

e NumericGreaterThanEquals,NumericGreaterThanEqualsPath
e NumericLessThan,NumericLessThanPath

e NumericLessThanEquals,NumericLessThanEqualsPath
o Or

Choice Rules 71

AWS Step Functions

Developer Guide

StringEquals,StringEqualsPath
StringGreaterThan,StringGreaterThanPath
StringGreaterThanEquals,StringGreaterThanEqualsPath
StringLessThan,StringlLessThanPath
StringlLessThanEquals,StringLessThanEqualsPath
StringMatches

TimestampEquals,TimestampEqualsPath
TimestampGreaterThan,TimestampGreaterThanPath
TimestampGreaterThanEquals, TimestampGreaterThanEqualsPath
TimestamplLessThan,TimestamplLessThanPath

TimestamplLessThanEquals, TimestampLessThanEqualsPath

For each of these operators, the corresponding value must be of the appropriate type: string,
number, Boolean, or timestamp. Step Functions doesn't attempt to match a numeric field to a

string value. However, because timestamp fields are logically strings, it's possible that a field
considered to be a timestamp can be matched by a StringEquals comparator.

(@ Note

For interoperability, don't assume that numeric comparisons work with values outside
the magnitude or precision that the IEEE 754-2008 binary64 data type represents. In
particular, integers outside of the range [-253+l, 253-1] might fail to compare in the

expected way.
Timestamps (for example, 2016-08-18T17:33:00Z) must conform to RFC3339 profile
ISO 8601, with further restrictions:

« An uppercase T must separate the date and time portions.

« An uppercase Z must denote that a numeric time zone offset isn't present.

To understand the behavior of string comparisons, see the Java compareTo

documentation.

The values of the And and Or operators must be non-empty arrays of Choice Rules that
must not themselves contain Next fields. Likewise, the value of a Not operator must be a
single Choice Rule that must not contain Next fields.

Choice Rules

72

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-

AWS Step Functions Developer Guide

You can create complex, nested Choice Rules using And, Not, and Or. However, the Next
field can appear only in a top-level Choice Rule.

String comparison against patterns with one or more wildcards (“*") can be performed with
the StringMatches comparison operator. The wildcard character is escaped by using the
standard \\ (Ex: “*”). No characters other than “*" have any special meaning during
matching.

Choice State Example

The following is an example of a Choice state and other states that it transitions to.

(® Note

You must specify the $. type field. If the state input doesn't contain the $. type field,
the execution fails and an error is displayed in the execution history. You can only
specify a string in the StringEquals field that matches a literal value. For example,
"StringEquals": "Buy".

"ChoiceStateX": {
"Type": "Choice",
"Choices": [

{
"Not": {
"Variable": "$.type",
"StringEquals": "Private"
},
"Next": "Public"
},
{
"Variable": "$.value",
"NumericEquals": 0,
"Next": "ValuelIsZero"
.
{
"And": [
{
"Variable": "$.value",

"NumericGreaterThanEquals": 20

Choice State Example 73

AWS Step Functions Developer Guide

iy
{
"Variable": "$.value",
"NumericlLessThan": 30
}
15

"Next": "ValueInTwenties"

}
1,
"Default": "DefaultState"

}I

"Public": {
"Type" : "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Foo",
"Next": "NextState"

},

"ValueIsZero": {
"Type" : "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Zero",
"Next": "NextState"

},

"ValueInTwenties": {
"Type" : "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Bar",
"Next": "NextState"

},

"DefaultState": {
"Type": "Fail"’
"Cause": "No Matches!"

In this example, the state machine starts with the following input value.

"type": "Private",
"value": 22

Step Functions transitions to the ValueInTwenties state, based on the value field.

Choice State Example 74

AWS Step Functions Developer Guide

If there are no matches for the Choice state's Choices, the state provided in the Default field
runs instead. If the Default state isn't specified, the execution fails with an error.

Parallel workflow state

The Parallel state ("Type": "Parallel") can be used to add separate branches of execution
in your state machine.

In addition to the common state fields, Parallel states include these additional fields.

Branches (Required)

An array of objects that specify state machines to execute in parallel. Each such state machine
object must have fields named States and StartAt, whose meanings are exactly like those in
the top level of a state machine.

ResultPath (Optional)

Specifies where (in the input) to place the output of the branches. The input is then filtered as
specified by the QutputPath field (if present) before being used as the state's output. For more
information, see Input and Output Processing.

ResultSelector (Optional)

Pass a collection of key value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy in case the state encounters
runtime errors. For more information, see State machine examples using Retry and using Catch.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state that is executed if the
state encounters runtime errors and its retry policy is exhausted or isn't defined. For more
information, see Fallback States.

A Parallel state causes AWS Step Functions to execute each branch, starting with the state
named in that branch's StartAt field, as concurrently as possible, and wait until all branches
terminate (reach a terminal state) before processing the Parallel state's Next field.

Parallel 75

AWS Step Functions Developer Guide

Parallel State Example

"Comment": "Parallel Example.",
"StartAt": "LookupCustomerInfo",
"States": {
"LookupCustomerInfo": {
"Type": "Parallel",
"End": true,
"Branches": [
{
"StartAt": "LookupAddress",
"States": {
"LookupAddress": {
"Type": "Task",
"Resource":
"arn:aws:lambda:us-east-1:123456789012:function:AddressFinder",
"End": true

}
.
{
"StartAt": "LookupPhone",
"States": {
"LookupPhone": {
"Type": "Task",
"Resource":
"arn:aws:lambda:us-east-1:123456789012:function:PhoneFinder",
"End": true

In this example, the LookupAddress and LookupPhone branches are executed in parallel. Here is
how the visual workflow looks in the Step Functions console.

Parallel State Example 76

AWS Step Functions Developer Guide

Parallel state
[||| LookupCustomerinfo

-/’&

Lambda: Invoke Lambda: Invoke
& LookupAddress & LookupPhone

Each branch must be self-contained. A state in one branch of a Parallel state must not have a
Next field that targets a field outside of that branch, nor can any other state outside the branch
transition into that branch.

Parallel State Input and Output Processing

A Parallel state provides each branch with a copy of its own input data (subject to modification
by the InputPath field). It generates output that is an array with one element for each branch,
containing the output from that branch. There is no requirement that all elements be of the same
type. The output array can be inserted into the input data (and the whole sent as the Parallel
state's output) by using a ResultPath field in the usual way (see Input and Output Processing).

{

"Comment": "Parallel Example.",
"StartAt": "FunWithMath",

Parallel State Input and Output Processing 77

AWS Step Functions Developer Guide

"States": {
"FunWithMath": {
"Type": "Parallel",
"End": true,
"Branches": [

{
"StartAt": "Add",
"States": {
"Add": {
"Type": "Task",
"Resource": "arn:aws:states:us-east-1:123456789012:activity:Add",
"End": true
}
}
},
{
"StartAt": "Subtract",
"States": {
"Subtract": {
"Type": "Task",
"Resource": "arn:aws:states:us-east-1:123456789012:activity:Subtract",
"End": true
}
}
}
]

If the FunwWithMath state was given the array [3, 2] as input, then both the Add and Subtract
states receive that array as input. The output of the Add and Subtract tasks would be the sum
of and difference between the array elements 3 and 2, which is 5 and 1, while the output of the
Parallel state would be an array.

[5 1]

Parallel State Input and Output Processing 78

AWS Step Functions Developer Guide

® Tip
If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,

see Flattening an array of arrays.

Error Handling

If any branch fails, because of an unhandled error or by transitioning to a Fail state, the entire
Parallel state is considered to have failed and all its branches are stopped. If the error is not
handled by the Parallel state itself, Step Functions stops the execution with an error.

(® Note

When a parallel state fails, invoked Lambda functions continue to run and activity workers
processing a task token are not stopped.

» To stop long-running activities, use heartbeats to detect if its branch has been
stopped by Step Functions, and stop workers that are processing tasks. Calling
SendTaskHeartbeat, SendTaskSuccess, or SendTaskFailure will throw an error if
the state has failed. See Heartbeat Errors.

» Running Lambda functions cannot be stopped. If you have implemented a fallback, use a
Wait state so that cleanup work happens after the Lambda function has finished.

Map workflow state

Use the Map state to run a set of workflow steps for each item in a dataset. The Map state's
iterations run in parallel, which makes it possible to process a dataset quickly. Map states can use a
variety of input types, including a JSON array, a list of Amazon S3 objects, or a CSV file.

Step Functions provides two types of processing modes for using the Map state in your workflows:
Inline mode and Distributed mode.

Error Handling 79

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html#API_SendTaskHeartbeat_Errors

AWS Step Functions Developer Guide

® Tip
To deploy an example of a workflow that uses a Map state to your AWS account, see Module
5 - Choice State and Map State of The AWS Step Functions Workshop.

Map state processing modes

Step Functions provides the following processing modes for the Map state depending on how you
want to process the items in a dataset.

« Inline - Limited-concurrency mode. In this mode, each iteration of the Map state runs in the
context of the workflow that contains the Map state. Step Functions adds the execution history
of these iterations to the parent workflow's execution history. By default, Map states run in Inline
mode.

In this mode, the Map state accepts only a JSON array as input. Also, this mode supports up to 40
concurrent iterations.

For more information, see Using Map state in Inline mode in Step Functions workflows.

 Distributed - High-concurrency mode. In this mode, the Map state runs each iteration as a child
workflow execution, which enables high concurrency of up to 10,000 parallel child workflow
executions. Each child workflow execution has its own, separate execution history from that of
the parent workflow.

In this mode, the Map state can accept either a JSON array or an Amazon S3 data source, such as
a CSV file, as its input.

For more information, see Distributed mode.

The mode you should use depends on how you want to process the items in a dataset. Use the
Map state in Inline mode if your workflow's execution history won't exceed 25,000 entries, or if you
don't require more than 40 concurrent iterations.

Use the Map state in Distributed mode when you need to orchestrate large-scale parallel workloads
that meet any combination of the following conditions:

» The size of your dataset exceeds 256 KB.

Map processing modes 80

https://s12d.com/sfn-ws-choice-and-map
https://s12d.com/sfn-ws-choice-and-map

AWS Step Functions

Developer Guide

» The workflow's execution event history exceeds 25,000 entries.

» You need a concurrency of more than 40 parallel iterations.

Inline mode and Distributed mode differences

The following table highlights the differences between the Inline and Distributed modes.

Inline mode
Supported data sources

Accepts a JSON array passed from a previous
step in the workflow as input.

Map iterations

In this mode, each iteration of the Map state
runs in the context of the workflow that
contains the Map state. Step Functions adds
the execution history of these iterations to the
parent workflow's execution history.

Maximum concurrency for parallel iterations
Lets you run up to 40 iterations as concurren

tly as possible.

Input payload and event history sizes

Distributed mode

Accepts the following data sources as input:

« JSON array passed from a previous step in
the workflow

« JSON file in an Amazon S3 bucket that
contains an array

« CSV file in an Amazon S3 bucket
« Amazon S3 object list

« Amazon S3 inventory

In this mode, the Map state runs each iteration
as a child workflow execution, which enables
high concurrency of up to 10,000 parallel child

workflow executions. Each child workflow
execution has its own, separate execution
history from that of the parent workflow.

Lets you run up to 10,000 parallel child
workflow executions to process millions of
data items at one time.

Map processing modes

81

AWS Step Functions

Developer Guide

Inline mode

Enforces a limit of 256 KB on the input
payload size and 25,000 entries in the
execution event history.

Monitoring and observability

You can review the workflow's execution
history from the console or by invoking the

GetExecutionHistory APl action.

You can also view the execution history
through CloudWatch and X-Ray.

Distributed mode

Lets you overcome the payload size limitation
because the Map state can read input directly
from Amazon S3 data sources.

In this mode, you can also overcome execution
history limitations because the child workflow
executions started by the Map state maintain
their own, separate execution histories from
the parent workflow's execution history.

When you run a Map state in Distributed
mode, Step Functions creates a Map Run
resource. A Map Run refers to a set of child
workflow executions that a Distributed Map
state starts. You can view a Map Run in the
Step Functions console. You can also invoke

the DescribeMapRun API action. A Map Run
also emits metrics to CloudWatch.

For more information, see Viewing a Distribut

ed Map Run execution in Step Functions.

Using Map state in Inline mode in Step Functions workflows

By default, Map states runs in Inline mode. In Inline mode, the Map state accepts only a JSON array
as input. It receives this array from a previous step in the workflow. In this mode, each iteration of
the Map state runs in the context of the workflow that contains the Map state. Step Functions adds
the execution history of these iterations to the parent workflow's execution history.

In this mode, the Map state supports up to 40 concurrent iterations.

A Map state set to Inline is known as an Inline Map state. Use the Map state in Inline mode if your
workflow's execution history won't exceed 25,000 entries, or if you don't require more than 40
concurrent iterations.

Inline mode 82

https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeMapRun.html

AWS Step Functions Developer Guide

For an introduction to using the Inline Map state, see the tutorial Repeat actions with Inline Map.

Contents

» Key concepts in this topic

« Inline Map state fields

o Deprecated fields

« Inline Map state example

« Inline Map state example with ItemSelector

« Inline Map state input and output processing

Key concepts in this topic
Inline mode

A limited-concurrency mode of the Map state. In this mode, each iteration of the Map state runs
in the context of the workflow that contains the Map state. Step Functions adds the execution
history of these iterations to the parent workflow's execution history. Map states run in the
Inline mode by default.

This mode accepts only a JSON array as input and supports up to 40 concurrent iterations.

Inline Map state

A Map state set to the Inline mode.

Map workflow

The set of steps that the Map state runs for each iteration.

Map state iteration

A repetition of the workflow defined inside of the Map state.

Inline Map state fields

To use the Inline Map state in your workflows, specify one or more of these fields. You specify these
fields in addition to the common state fields.

Type (Required)

Sets the type of state, such as Map.

Inline mode 83

AWS Step Functions Developer Guide

ItemProcessor (Required)
Contains the following JSON objects that specify the Map state processing mode and definition.

The definition contains the set of steps to repeat for processing each array item.

« ProcessorConfig - An optional JSON object that specifies the processing mode for the Map
state. This object contains the Mode sub-field. This field defaults to INLINE, which uses the
Map state in Inline mode.

In this mode, the failure of any iteration causes the Map state to fail. All iterations stop when
the Map state fails.

« StartAt - Specifies a string that indicates the first state in a workflow. This string is case-
sensitive and must match the name of one of the state objects. This state runs first for each
item in the dataset. Any execution input that you provide to the Map state passes to the
StartAt state first.

« States — A JSON object containing a comma-delimited set of states. In this object, you
define the Map workflow.

(@ Note

 States within the ItemProcessor field can only transition to each other. No state
outside the ItemProcessor field can transition to a state within it.

« The ItemProcessor field replaces the now deprecated Iterator field. Although
you can continue to include Map states that use the Iterator field, we highly
recommend that you replace this field with ItemProcessor.

Step Functions Local doesn't currently support the ItemProcessor field. We
recommend that you use the Iterator field with Step Functions Local.

ItemsPath (Optional)

Specifies a reference path using the JsonPath syntax. This path selects the JSON node that
contains the array of items inside the state input. For more information, see ItemsPath (Map).

ItemSelector (Optional)

Overrides the values of the input array items before they're passed on to each Map state
iteration.

Inline mode 84

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

In this field, you specify a valid JSON that contains a collection of key-value pairs. These pairs
can contain any of the following:

« Static values you define in your state machine definition.
» Values selected from the state input using a path.

» Values accessed from the context object.

For more information, see ItemSelector (Map).

The ItemSelector field replaces the now deprecated Parameters field. Although you can
continue to include Map states that use the Parameters field, we highly recommend that you
replace this field with ItemSelector.

MaxConcurrency (Optional)

Specifies an integer value that provides the upper bound on the number of Map state iterations
that can run in parallel. For example, a MaxConcurrency value of 10 limits the Map state to 10
concurrent iterations running at one time.

(® Note
Concurrent iterations may be limited. When this occurs, some iterations won't begin
until previous iterations are complete. The likelihood of this occurring increases when
your input array has more than 40 items.
To achieve a higher concurrency, consider Distributed mode.

The default value is @, which places no limit on concurrency. Step Functions invokes iterations
as concurrently as possible.

A MaxConcurrency value of 1 invokes the ItemProcessor once for each array element. Items
in the array are processed in the order of their appearance in the input. Step Functions doesn't
start a new iteration until it completes the previous iteration.

MaxConcurrencyPath (Optional)
If you want to provide a maximum concurrency value dynamically from the state input using a

reference path, use MaxConcurrencyPath. When resolved, the reference path must select a
field whose value is a non-negative integer.

Inline mode 85

AWS Step Functions Developer Guide

® Note

A Map state cannot include both MaxConcurrency and MaxConcurrencyPath.

ResultPath (Optional)

Specifies where in the input to store the output of the Map state's iterations. The Map state
then filters the input as specified by the OutputPath field, if specified. Then, it uses the filtered
input as the state's output. For more information, see Input and Output Processing.

ResultSelector (Optional)

Pass a collection of key value pairs, where the values are either static or selected from the
result. For more information, see ResultSelector.

® Tip
If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,

see Flattening an array of arrays.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy. States use a retry policy when they
encounter runtime errors. For more information, see State machine examples using Retry and

using Catch.

(® Note
If you define Retriers for the Inline Map state, the retry policy applies to all Map state
iterations, instead of only failed iterations. For example, your Map state contains two
successful iterations and one failed iteration. If you have defined the Retry field for the
Map state, the retry policy applies to all three Map state iterations instead of only the
failed iteration.

Inline mode 86

AWS Step Functions Developer Guide

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. States run a catcher if they
encounter runtime errors and either don't have a retry policy, or their retry policy is exhausted.
For more information, see Fallback States.

Deprecated fields

(@ Note

Although you can continue to include Map states that use the following fields, we highly
recommend that you replace Iterator with ItemProcessor and Parameters with

ItemSelector.

Iterator

Specifies a JSON object that defines a set of steps that process each element of the array.

Parameters

Specifies a collection of key-value pairs, where the values can contain any of the following:
« Static values that you define in your state machine definition.

« Values selected from the input using a path.

Inline Map state example

Consider the following input data for a Map state running in Inline mode.

{
"ship-date": "2016-03-14T01:59:002",
"detail": {
"delivery-partner": "UQS",
"shipped": [

{ "prod": "R31", "dest-code": 9511, "quantity": 1344 },
{ "prod": "S39", "dest-code": 9511, "quantity": 40 3},

{ "prod": "R31", "dest-code": 9833, "quantity": 12 },

{ "prod": "R40@", "dest-code": 9860, "quantity": 887 },

{ "prod": "R4Q", "dest-code": 9511, "quantity": 1220 }

Inline mode 87

AWS Step Functions Developer Guide

]

Given the previous input, the Map state in the following example invokes an AWS Lambda function
named ship-val once for each item of the array in the shipped field.

"Validate All": {
"Type": "Map",
"InputPath": "$.detail",
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "INLINE"

},
"StartAt": "Validate",
"States": {
"Validate": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"FunctionName": "arn:aws:lambda:us-
east-2:123456789012: function:ship-val:$LATEST"
},
"End": true
}
}

},

"End": true,

"ResultPath": "$.detail.shipped",
"ItemsPath": "$.shipped"

Each iteration of the Map state sends an item in the array, selected with the ItemsPath field, as
input to the ship-val Lambda function. The following values are an example of input the Map
state sends to an invocation of the Lambda function:

{
"prod": "R31",
"dest-code": 9511,
"quantity": 1344
}

Inline mode 88

AWS Step Functions Developer Guide

When complete, the output of the Map state is a JSON array, where each item is the output of an
iteration. In this case, this array contains the output of the ship-val Lambda function.

Inline Map state example with ItemSelector

Suppose that the ship-val Lambda function in the previous example also needs information
about the shipment's courier. This information is in addition to the items in the array for each
iteration. You can include information from the input, along with information specific to the
current iteration of the Map state. Note the ItemSelector field in the following example:

"Validate-All": {
"Type": "Map",
"InputPath": "$.detail",
"ItemsPath": "$.shipped",
"MaxConcurrency": 0,
"ResultPath": "$.detail.shipped",
"ItemSelector": {
"parcel.$": "$$.Map.Item.Value",
"courier.$": "$.delivery-partner"
},
"ItemProcessor": {
"StartAt": "Validate",
"States": {
"Validate": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:ship-val",
"End": true
}
}
},

"End": true

The ItemSelector block replaces the input to the iterations with a JSON node. This node
contains both the current item data from the context object and the courier information from

the Map state input's delivery-partner field. The following is an example of input to a single
iteration. The Map state passes this input to an invocation of the ship-val Lambda function.

{
"parcel": {
Ilprodll: IIR31II’

Inline mode 89

AWS Step Functions Developer Guide

"dest-code": 9511,
"quantity": 1344
},

"courier": "UQS"

In the previous Inline Map state example, the ResultPath field produces output in the same
format as the input. However, it overwrites the detail.shipped field with an array in which each
element is the output of each iteration's ship-val Lambda invocation.

For more information about using the Inline Map state state and its fields, see the following.

Repeat actions with Inline Map

Processing input and output in Step Functions

ltemsPath (Map)

Context Object Data for Map States

Inline Map state input and output processing
For a given Map state, InputPath selects a subset of the state's input.

The input of a Map state must include a JSON array. The Map state runs the ItemProcessor
section once for each item in the array. If you specify the ItemsPath field, the Map state selects
where in the input to find the array to iterate over. If not specified, the value of ItemsPath is

$, and the ItemProcessor section expects that the array is the only input. If you specify the
ItemsPath field, its value must be a Reference Path. The Map state applies this path to the
effective input after it applies the InputPath. The ItemsPath must identify a field whose value is
a JSON array.

The input to each iteration, by default, is a single element of the array field identified by the
ItemsPath value. You can override this value with the ItemSelector (Map) field.

When complete, the output of the Map state is a JSON array, where each item is the output of an
iteration.

For more information about Inline Map state inputs and outputs, see the following:

» Repeat actions with Inline Map

Inline mode 90

AWS Step Functions Developer Guide

 Inline Map state example with ItemSelector

e Processing input and output in Step Functions

» Context Object Data for Map States

» Process data from a queue with a Map state in Step Functions

Using Map state in Distributed mode for large-scale parallel workloads
in Step Functions

With Step Functions, you can orchestrate large-scale parallel workloads to perform tasks, such

as on-demand processing of semi-structured data. These parallel workloads let you concurrently
process large-scale data sources stored in Amazon S3. For example, you might process a single
JSON or CSV file that contains large amounts of data. Or you might process a large set of Amazon
S3 objects.

To set up a large-scale parallel workload in your workflows, include a Map state in Distributed
mode. The Map state processes items in a dataset concurrently. A Map state set to Distributed

is known as a Distributed Map state. In Distributed mode, the Map state allows high-concurrency
processing. In Distributed mode, the Map state processes the items in the dataset in iterations
called child workflow executions. You can specify the number of child workflow executions that can
run in parallel. Each child workflow execution has its own, separate execution history from that

of the parent workflow. If you don't specify, Step Functions runs 10,000 parallel child workflow
executions in parallel.

The following illustration explains how you can set up large-scale parallel workloads in your
workflows.

Distributed mode 91

AWS Step Functions Developer Guide

Define your data processing
workflow using AWS Lambda or
any of the 220 AWS SDK

| |
I]
I]
I I
| |
| |
I. X |
! integrations :
O —— , | l .
| |
| |
| |
I]
I]
I I
| I

Parent workflow Choose an input data
source, such as an
Amazon S3 bucket

Concurrently process data
using 10,000+ API actions
from over 220 AWS services

b _ _ __ __ __ __ _ _ __ __ __ __ _ __ 1

@._

Write execution results
to an S3 bucket

i .-|;r
i)

Iterate and batch

Step Functions batches the Amazon S3 dataset
and iterates over the collection of dataset items to
execute concurrent child workflows.

Concurrent child
workflow executions

(@ Learn in a workshop

Learn how serverless technologies such as Step Functions and Lambda can simplify
management and scaling, offload undifferentiated tasks, and address the challenges of
large-scale distributed data processing. Along the way, you will work with distributed map
for high concurrency processing. The workshop also presents best practices for optimizing
your workflows, and practical use cases for claims processing, vulnerability scanning, and
Monte Carlo simulation.

Workshop: Large-scale Data Processing with Step Functions

Distributed mode 92

https://catalog.workshops.aws/serverless-data-processing

AWS Step Functions Developer Guide

In this topic

» Key terms
» Distributed Map state definition example

o Permissions to run Distributed Map

» Distributed Map state fields

» Setting failure thresholds for Distributed Map states in Step Functions

» Learn more about distributed maps

Key terms
Distributed mode

A processing mode of the Map state. In this mode, each iteration of the Map state runs as a child
workflow execution that enables high concurrency. Each child workflow execution has its own
execution history, which is separate from the parent workflow's execution history. This mode
supports reading input from large-scale Amazon S3 data sources.

Distributed Map state

A Map state set to Distributed processing mode.

Map workflow

A set of steps that a Map state runs.

Parent workflow

A workflow that contains one or more Distributed Map states.

Child workflow execution

An iteration of the Distributed Map state. A child workflow execution has its own execution
history, which is separate from the parent workflow's execution history.

Map Run

When you run a Map state in Distributed mode, Step Functions creates a Map Run resource. A
Map Run refers to a set of child workflow executions that a Distributed Map state starts, and
the runtime settings that control these executions. Step Functions assigns an Amazon Resource
Name (ARN) to your Map Run. You can examine a Map Run in the Step Functions console. You
can also invoke the DescribeMapRun API action. A Map Run also emits metrics to CloudWatch.

Distributed mode 93

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeMapRun.html

AWS Step Functions Developer Guide

For more information, see Viewing Map Runs.

Distributed Map state definition example

Use the Map state in Distributed mode when you need to orchestrate large-scale parallel workloads
that meet any combination of the following conditions:

» The size of your dataset exceeds 256 KB.
» The workflow's execution event history exceeds 25,000 entries.

» You need a concurrency of more than 40 parallel iterations.

The following Distributed Map state definition example specifies the dataset as a CSV file stored in
an Amazon S3 bucket. It also specifies a Lambda function that processes the data in each row of
the CSV file. Because this example uses a CSV file, it also specifies the location of the CSV column
headers. To view the complete state machine definition of this example, see the tutorial Copying
large-scale CSV data using Distributed Map.

"Map": {
"Type": "Map",
"ItemReader": {
"ReaderConfig": {
"InputType": "CSV",
"CSVHeaderLocation": "FIRST_ROW"

1,
"Resource": "arn:aws:states:::s3:getObject",
"Parameters": {

"Bucket": "amzn-s3-demo-bucket",

"Key": "csv-dataset/ratings.csv"

}
.
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "DISTRIBUTED",
"ExecutionType": "EXPRESS"
},
"StartAt": "LambdaTask",
"States": {
"LambdaTask": {
"Type": "Task",

Distributed mode 94

AWS Step Functions Developer Guide

"Resource": "arn:aws:states:::lambda:invoke",
"OQutputPath": "$.Payload",
"Parameters": {

"Payload.$": "$",

"FunctionName": "arn:aws:lambda:us-
east-2:123456789012:function:processCSVData"
},
"End": true
}
}
},

"Label": "Map",
"End": true,
"ResultWriter": {

"Resource": "arn:aws:states:::s3:putObject",

"Parameters": {
"Bucket": "amzn-s3-demo-destination-bucket",
"Prefix": "csvProcessJobs"

}

}
}
}

Permissions to run Distributed Map

When you include a Distributed Map state in your workflows, Step Functions needs appropriate
permissions to allow the state machine role to invoke the StartExecution API action for the
Distributed Map state.

The following IAM policy example grants the least privileges required to your state machine role
for running the Distributed Map state.

(@ Note

Make sure that you replace stateMachineName with the name of the state machine
in which you're using the Distributed Map state. For example, arn:aws:states:us-
east-2:123456789012:stateMachine:mystateMachine.

"Version": "2012-10-17",

Distributed mode 95

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

"Statement": [

{
"Effect": "Allow",
"Action": [
"states:StartExecution"
1,

"Resource": [
"arn:aws:states:region:accountID:stateMachine:stateMachineName"
]
I

{
"Effect": "Allow",

"Action": [
"states:DescribeExecution",
"states:StopExecution"

1,

"Resource": "arn:aws:states:region:accountID:execution:stateMachineName:*"

}

In addition, you need to make sure that you have the least privileges necessary to access the AWS
resources used in the Distributed Map state, such as Amazon S3 buckets. For information, see IAM
policies for using Distributed Map states.

Distributed Map state fields

To use the Distributed Map state in your workflows, specify one or more of these fields. You specify
these fields in addition to the common state fields.

Type (Required)

Sets the type of state, such as Map.

ItemProcessor (Required)

Contains the following JSON objects that specify the Map state processing mode and definition.

ProcessorConfig - JSON object that specifies the mode for processing items, with the
following sub-fields:

» Mode - Set to DISTRIBUTED to use the Map state in Distributed mode.

Distributed mode 96

AWS Step Functions Developer Guide

/A Warning
Distributed mode is supported in Standard workflows but not supported in Express
workflows.

« ExecutionType - Specifies the execution type for the Map workflow as either STANDARD
or EXPRESS. You must provide this field if you specified DISTRIBUTED for the Mode sub-
field. For more information about workflow types, see Choosing workflow type in Step

Functions.

« StartAt - Specifies a string that indicates the first state in a workflow. This string is case-
sensitive and must match the name of one of the state objects. This state runs first for each
item in the dataset. Any execution input that you provide to the Map state passes to the
StartAt state first.

« States — A JSON object containing a comma-delimited set of states. In this object, you
define the Map workflow.

ItemReader

Specifies a dataset and its location. The Map state receives its input data from the specified
dataset.

In Distributed mode, you can use either a JSON payload passed from a previous state or a large-
scale Amazon S3 data source as the dataset. For more information, see ItemReader (Map).

ItemsPath (Optional)

Specifies a reference path using the JsonPath syntax to select the JSON node that contains an
array of items inside the state input.

In Distributed mode, you specify this field only when you use a JSON array from a previous step
as your state input. For more information, see ItemsPath (Map).

ItemSelector (Optional)

Overrides the values of individual dataset items before they're passed on to each Map state
iteration.

In this field, you specify a valid JSON input that contains a collection of key-value pairs.
These pairs can either be static values that you define in your state machine definition, values

Distributed mode 97

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

selected from the state input using a path, or values accessed from the context object. For more
information, see ItemSelector (Map).

ItemBatcher (Optional)

Specifies to process the dataset items in batches. Each child workflow execution then receives a
batch of these items as input. For more information, see ItemBatcher (Map).

MaxConcurrency (Optional)

Specifies the number of child workflow executions that can run in parallel. The interpreter only
allows up to the specified number of parallel child workflow executions. If you don't specify a
concurrency value or set it to zero, Step Functions doesn't limit concurrency and runs 10,000

parallel child workflow executions.

(® Note

While you can specify a higher concurrency limit for parallel child workflow executions,
we recommend that you don't exceed the capacity of a downstream AWS service, such

as AWS Lambda.

MaxConcurrencyPath (Optional)

If you want to provide a maximum concurrency value dynamically from the state input using a
reference path, use MaxConcurrencyPath. When resolved, the reference path must select a

field whose value is a non-negative integer.

(® Note
A Map state cannot include both MaxConcurrency and MaxConcurrencyPath.

ToleratedFailurePercentage (Optional)

Defines the percentage of failed items to tolerate in a Map Run. The Map Run automatically
fails if it exceeds this percentage. Step Functions calculates the percentage of failed items as
the result of the total number of failed or timed out items divided by the total number of items.
You must specify a value between zero and 100. For more information, see Setting failure
thresholds for Distributed Map states in Step Functions.

Distributed mode 98

AWS Step Functions Developer Guide

ToleratedFailurePercentagePath (Optional)

If you want to provide a tolerated failure percentage value dynamically from the state input
using a reference path, use ToleratedFailurePercentagePath. When resolved, the
reference path must select a field whose value is between zero and 100.

ToleratedFailureCount (Optional)

Defines the number of failed items to tolerate in a Map Run. The Map Run automatically fails if
it exceeds this number. For more information, see Setting failure thresholds for Distributed Map

states in Step Functions.

ToleratedFailureCountPath (Optional)

If you want to provide a tolerated failure count value dynamically from the state input using a
reference path, use ToleratedFailureCountPath. When resolved, the reference path must
select a field whose value is a non-negative integer.

Label (Optional)

A string that uniquely identifies a Map state. For each Map Run, Step Functions adds the label to
the Map Run ARN. The following is an example of a Map Run ARN with a custom label named
demolLabel:

arn:aws:states:us-east-1:123456789012 :mapRun:demoWorkflow/
demolLabel:3c39a231-69bb-3d89-8607-9el24eddbbdb

If you don't specify a label, Step Functions automatically generates a unique label.

® Note

Labels can't exceed 40 characters in length, must be unique within a state machine
definition, and can't contain any of the following characters:

» Whitespace

e Wildcard characters (? *)

 Bracketcharacters(< > { } [1)

o Specialcharacters(: ; , \ | *~$ #% & ~ ")

e Control characters (\\u@000 - \\u@01f or \\u@07f - \\u@@9f).
Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASClII characters. Because such characters will not work with Amazon

Distributed mode 99

AWS Step Functions Developer Guide

CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

ResultWriter (Optional)

Specifies the Amazon S3 location where Step Functions writes all child workflow execution
results.

Step Functions consolidates all child workflow execution data, such as execution input and
output, ARN, and execution status. It then exports executions with the same status to their
respective files in the specified Amazon S3 location. For more information, see ResultWriter

(Map).

If you don't export the Map state results, it returns an array of all the child workflow execution
results. For example:

[1, 2, 3, 4, 5]

ResultPath (Optional)

Specifies where in the input to place the output of the iterations. The input is then filtered as
specified by the OutputPath field if present, before it is passed as the state's output. For more
information, see Input and Output Processing.

ResultSelector (Optional)

Pass a collection of key-value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

® Tip
If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,

see Flattening an array of arrays.

Distributed mode 100

AWS Step Functions Developer Guide

Retry (Optional)

An array of objects, called Retriers, that define a retry policy. An execution uses the retry policy
if the state encounters runtime errors. For more information, see State machine examples using

Retry and using Catch.

(@ Note

If you define Retriers for the Distributed Map state, the retry policy applies to all of the
child workflow executions the Map state started. For example, imagine your Map state
started three child workflow executions, out of which one fails. When the failure occurs,
the execution uses the Retry field, if defined, for the Map state. The retry policy applies
to all the child workflow executions and not just the failed execution. If one or more
child workflow executions fails, the Map Run fails.

When you retry a Map state, it creates a new Map Run.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. Step Functions uses the
Catchers defined in Catch if the state encounters runtime errors. When an error occurs,

the execution first uses any retriers defined in Retry. If the retry policy isn't defined or is
exhausted, the execution uses its Catchers, if defined. For more information, see Fallback States.

Setting failure thresholds for Distributed Map states in Step Functions

When you orchestrate large-scale parallel workloads, you can also define a tolerated failure
threshold. This value lets you specify the maximum number of, or percentage of, failed items
as a failure threshold for a Map Run. Depending on which value you specify, your Map Run fails
automatically if it exceeds the threshold. If you specify both values, the workflow fails when it
exceeds either value.

Specifying a threshold helps you fail a specific number of items before the entire Map Run fails.
Step Functions returns a States.ExceedToleratedFailureThreshold error when the Map
Run fails because the specified threshold is exceeded.

Distributed mode 101

AWS Step Functions Developer Guide

® Note

Step Functions may continue to run child workflows in a Map Run even after the tolerated
failure threshold is exceeded, but before the Map Run fails.

To specify the threshold value in Workflow Studio, select Set a tolerated failure threshold in
Additional configuration under the Runtime settings field.

Tolerated failure percentage

Defines the percentage of failed items to tolerate. Your Map Run fails if this value is exceeded.
Step Functions calculates the percentage of failed items as the result of the total number

of failed or timed out items divided by the total number of items. You must specify a value
between zero and 100. The default percentage value is zero, which means that the workflow
fails if any one of its child workflow executions fails or times out. If you specify the percentage
as 100, the workflow won't fail even if all child workflow executions fail.

Alternatively, you can specify the percentage as a reference path to an existing key-value pair
in your Distributed Map state input. This path must resolve to a positive integer between 0 and
100 at runtime. You specify the reference path in the ToleratedFailurePercentagePath
sub-field.

For example, given the following input:

"percentage": 15

}

You can specify the percentage using a reference path to that input as follows:

{
IIMapII: {
IITypell: IIMapII’
"ToleratedFailurePercentagePath": "$.percentage"
}
}

Distributed mode 102

AWS Step Functions Developer Guide

/A Important

You can specify either ToleratedFailurePercentage or
ToleratedFailurePercentagePath, but not both in your Distributed Map state

definition.

Tolerated failure count
Defines the number of failed items to tolerate. Your Map Run fails if this value is exceeded.

Alternatively, you can specify the count as a reference path to an existing key-value pair in your
Distributed Map state input. This path must resolve to a positive integer at runtime. You specify
the reference path in the ToleratedFailureCountPath sub-field.

For example, given the following input:

"count": 10

You can specify the number using a reference path to that input as follows:

"Map": {
nTypen: "Map",

"ToleratedFailureCountPath": "$.count"

/A Important

You can specify either ToleratedFailureCount or ToleratedFailureCountPath,
but not both in your Distributed Map state definition.

Distributed mode 103

AWS Step Functions Developer Guide

Learn more about distributed maps

To continue learning more about Distributed Map state, see the following resources:

 Input and output processing

To configure the input that a Distributed Map state receives and the output that it generates,
Step Functions provides the following fields:

IltemReader (Map)

IltemsPath (Map)

ItemSelector (Map)

IltemBatcher (Map)

ResultWriter (Map)

How Step Functions parses input CSV files

In addition to these fields, Step Functions also provides you the ability to define a tolerated
failure threshold for Distributed Map. This value lets you specify the maximum number of, or

percentage of, failed items as a failure threshold for a Map Run. For more information about
configuring the tolerated failure threshold, see Setting failure thresholds for Distributed Map
states in Step Functions.

« Using Distributed Map state

Refer the following tutorials and sample projects to get started with using Distributed Map state.

Copy large-scale CSV using Distributed Map

Processing batch data with a Lambda function in Step Functions

Processing individual items with a Lambda function in Step Functions

Sample project: Process a CSV file with Distributed Map

Sample project: Process data in an Amazon S3 bucket with Distributed Map

« Examine Distributed Map state execution

The Step Functions console provides a Map Run Details page, which displays all the information

related to a Distributed Map state execution. For information about how to examine the
information displayed on this page, see Viewing Map Runs.

Distributed mode 104

AWS Step Functions Developer Guide

Pass workflow state

A Pass state ("Type": "Pass'") passes its input to its output, without performing work. Pass
states are useful when constructing and debugging state machines.

You can also use a Pass state to transform JSON state input using filters, and then pass the
transformed data to the next state in your workflows. For information about input transformation,
see Manipulate state data using parameters in Step Functions workflows.

In addition to the common state fields, Pass states allow the following fields.

Result (Optional)

Refers to the output of a virtual task that is passed on to the next state. If you include
the ResultPath field in your state machine definition, Result is placed as specified by
ResultPath and passed on to the next state.

ResultPath (Optional)

Specifies where to place the output (relative to the input) of the virtual task specified in
Result. The input is further filtered as specified by the OutputPath field (if present) before
being used as the state's output. For more information, see Input and Output Processing.

Parameters (Optional)

Creates a collection of key-value pairs that will be passed as input. You can specify Parameters
as a static value or select from the input using a path. For more information, see Manipulate
state data using parameters in Step Functions workflows.

Pass State Example

Here is an example of a Pass state that injects some fixed data into the state machine, probably
for testing purposes.

"No-op": {
IlTypell: "PaSS",
"Result": {

"x-datum": 0.381018,
"y-datum": 622.2269926397355
I,

Pass 105

AWS Step Functions

Developer Guide

"ResultPath": "$.coords",
"End": true

Suppose the input to this state is the following.

{

"georefOf": "Home"

}

Then the output would be this.

{
"georefOf": "Home",
"coords": {
"x-datum": 0.381018,
"y-datum": 622.2269926397355
}
}

Wait workflow state

AWait state ("Type": "Wait") delays the state machine from continuing for a specified time.
You can choose either a relative time, specified in seconds from when the state begins, or an

absolute end time, specified as a timestamp.

In addition to the common state fields, Wait states have one of the following fields.

Seconds

A time, in seconds, to wait before beginning the state specified in the Next field. You must

specify time as a positive, integer value from 0 up to 99999999.

Timestamp

An absolute time to wait until beginning the state specified in the Next field.

Timestamps must conform to the RFC3339 profile of ISO 8601, with the further restrictions
that an uppercase T must separate the date and time portions, and an uppercase Z must denote
that a numeric time zone offset is not present, for example, 2024-08-18T17:33:00Z.

Wait

106

AWS Step Functions Developer Guide

® Note

Currently, if you specify the wait time as a timestamp, Step Functions considers the time
value up to seconds and truncates milliseconds.

SecondsPath

A time, in seconds, to wait before beginning the state specified in the Next field, specified using
a path from the state's input data.

You must specify an integer value for this field.

TimestampPath

An absolute time to wait until beginning the state specified in the Next field, specified using a
path from the state's input data.

(® Note

You must specify exactly one of Seconds, Timestamp, SecondsPath, or
TimestampPath. In addition, the maximum wait time that you can specify for Standard
Workflows and Express workflows is one year and five minutes respectively.

Wait State Examples

The following Wait state introduces a 10-second delay into a state machine.

"wait_ten_seconds": {
"Type": "Wait",
"Seconds": 10,
"Next": "NextState"

In the next example, the Wait state waits until an absolute time: March 14, 2024, at 1:59 AM UTC.

"wait_until" : {
IlTypell: "Wait",

Wait State Examples 107

AWS Step Functions Developer Guide

"Timestamp": "2024-03-14T01:59:002",
"Next": "NextState"

You don't have to hard-code the wait duration. For example, given the following input data:

{
"expirydate": "2024-03-14T01:59:00Z"

}

You can select the value of "expirydate" from the input using a reference path to select it from the
input data.

"wait_until" : {
IlTypell: "Wait",
"TimestampPath": "$.expirydate",
"Next": "NextState"

Succeed workflow state

A Succeed state ("Type": "Succeed") stops an execution successfully. The Succeed state is a
useful target for Choice state branches that don't do anything but stop the execution.

Because Succeed states are terminal states, they have no Next field, and don't need an End field,
as shown in the following example.

"SuccessState": {
"Type": "Succeed"

}

Fail workflow state

A Fail state ("Type": "Fail") stops the execution of the state machine and marks it as a
failure, unless it is caught by a Catch block.

The Fail state only allows the use of Type and Comment fields from the set of common state
fields. In addition, the Fail state allows the following fields.

Succeed 108

AWS Step Functions Developer Guide

Cause (Optional)

A custom string that describes the cause of the error. You can specify this field for operational
or diagnostic purposes.

CausePath (Optional)

If you want to provide a detailed description about the cause of the error dynamically from the
state input using a reference path, use CausePath. When resolved, the reference path must
select a field that contains a string value.

You can also specify CausePath using an intrinsic function that returns a string. These
intrinsics are: States.Format, States.JsonToString, States.ArrayGetltem, States.Base64Encode,
States.Base64Decode, States.Hash, and States.UUID.

/A Important

» You can specify either Cause or CausePath, but not both in your Fail state definition.

« As an information security best practice, we recommend that you remove any
sensitive information or internal system details from the cause description.

Exrror (Optional)

An error name that you can provide to perform error handling using Retry or Catch fields. You

can also provide an error name for operational or diagnostic purposes.

ExrrorPath (Optional)

If you want to provide a name for the error dynamically from the state input using a reference
path, use ExrorPath. When resolved, the reference path must select a field that contains a
string value.

You can also specify ErrorPath using an intrinsic function that returns a string. These
intrinsics are: States.Format, States.JsonToString, States.ArrayGetltem, States.Base64Encode,
States.Base64Decode, States.Hash, and States.UUID.

/A Important

« You can specify either Exror or ExrorPath, but not both in your Fail state definition.

Fail 109

AWS Step Functions Developer Guide

« As an information security best practice, we recommend that you remove any
sensitive information or internal system details from the error name.

Because Fail states always exit the state machine, they have no Next field and don't require an
End field.

Fail state definition examples
The following Fail state definition example specifies static Error and Cause field values.

"FailState": {
"Type": "Fail",
"Cause": "Invalid response.",
"Error": "ErrorA"

The following Fail state definition example uses reference paths dynamically to resolve the Error
and Cause field values.

"FailState": {
IlTypell: IlFailll’
"CausePath": "$.Cause",
"ErrorPath": "$.Error"

The following Fail state definition example uses the States.Format intrinsic function to specify the
Error and Cause field values dynamically.

"FailState": {

"Type": "Fail",

"CausePath": "States.Format('This is a custom error message for {}, caused by {}.',
$.Error, $.Cause)",

"ErrorPath": "States.Format('{}', $.Error)"

Fail state definition examples 110

AWS Step Functions Developer Guide

Developing workflows with Step Functions

We recommend starting to build workflows in the Step Functions console and Workflow Studio
visual editor. You can start from a blank canvas or choose starter templates for common scenarios.

Building your workflows require the following tasks:

» Defining your workflow
« Running and debugging your workflow

» Deploying your workflow

You define a state machine in Amazon States Language. You can manually create your Amazon
States Language definitions, but Workflow Studio will be featured in tutorials. With Workflow
Studio, you can define, your machine definition, visualize and edit the steps, run and debug your
workflow, and view the results all from within the Step Functions console.

You can also use many Step Functions features from the AWS Command Line Interface (AWS CLI).
For example, you can create a state machine and list your existing state machines. You can use
Step Functions commands in the AWS CLI to start and manage executions, poll for activities, record
task heartbeats, and more. For a complete list of Step Functions commands, descriptions of the
available arguments, and examples showing their use, see the AWS CLI Command Reference. AWS
CLI Command Reference

AWS CLI commands follow the Amazon States Language closely, so you can use the AWS CLI
to learn about the Step Functions API actions. You can also use your existing APl knowledge to
prototype code or perform Step Functions actions from the command line.

@ Validating state machine definitions

You can use the API to validate state machines and find potential problems before creating
your workflow.

To learn more about validating workflows, see ValidateStateMachineDefinition in the Step
Functions API Reference.

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ValidateStateMachineDefinition.html

AWS Step Functions Developer Guide

To get started with minimal setup, you can follow the Creating a Lambda State Machine tutorial,
which shows you how to define a workflow with a single step that calls a Lambda function, then
run the workflow, and view the results.

Defining your workflow

The first step in developing your workflow is defining the steps in Amazon States Language.
Depending on your preference and tool, you can define your Step Functions state machines in
JSON, YAML, or as a stringified Amazon States Language (ASL) definition.

The following table shows ASL-based definition format support by tool.

AWS Tool Supported format(s)

Step Functions Console JSON

HTTPS Service API Stringified ASL

AWS CLI Stringified ASL

Step Functions Local Stringified ASL

AWS Toolkit for Visual Studio Code JSON, YAML

AWS SAM JSON, YAML

AWS CloudFormation JSON, YAML, Stringified ASL

YAML single line comments in the state machine definition of a template will not be carried
forward into the created resource’s definition. If you need to persist a comment, you should use
the Comment property within the state machine definition. For information, see State machine

structure.

With AWS CloudFormation and AWS SAM, you can upload your state machine definitions to
Amazon S3 (JSON or YAML format) and provide the definition's Amazon S3 location in the
template. For information see the AWS::StepFunctions::StateMachine S3Location page.

The following example AWS CloudFormation templates show how you can provide the same state
machine definition using different input formats.

Defining your workflow 112

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-stepfunctions-statemachine-s3location.html

AWS Step Functions Developer Guide

JSON with Definition

"AWSTemplateFormatVersion": "2010-09-09",
"Description": "AWS Step Functions sample template.",
"Resources": {
"MyStateMachine": {
"Type": "AWS::StepFunctions::StateMachine",
"Properties": {
"RoleArn": {
"Fn::GetAtt": ["StateMachineRole", "Arn"]
},
"TracingConfiguration": {
"Enabled": true
I
"Definition": {
"StartAt": "HelloWorld",
"States": {
"HelloWorld": {
"Type": "Pass",
"End": true

}
},
"StateMachineRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"sts:AssumeRole"
1,
"Effect": "Allow",
"Principal": {
"Service": [
"states.amazonaws.com"

Defining your workflow

AWS Step Functions

Developer Guide

},
"ManagedPolicyArns": [],
"Policies": [

{
"PolicyName": "StateMachineRolePolicy",
"PolicyDocument": {
"Statement": [
{
"Action": [
"lambda:InvokeFunction"
1,
"Resource": "*",
"Effect": "Allow"
}
]
}
}
]
}
}
},
"Outputs": {
"StateMachineArn": {
"Value": {
"Ref": "MyStateMachine"
}
}

JSON with DefinitionString

"AWSTemplateFormatVersion": "2010-09-09",

"Description": "AWS Step Functions sample template.",

"Resources": {
"MyStateMachine": {
"Type": "AWS::StepFunctions::StateMachine",
"Properties": {
"RoleArn": {

"Fn::GetAtt": ["StateMachineRole", "Arn"]

},

"TracingConfiguration": {

Defining your workflow

AWS Step Functions

Developer Guide

"Enabled": true

.
"DefinitionString": "{\n \"StartAt\": \"HelloWorld\",\n
\"HelloWorld\": {\n \"Type\": \"Pass\",\n
}
.

"StateMachineRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"sts:AssumeRole"
1,
"Effect": "Allow",
"Principal": {
"Service": [
"states.amazonaws.com"

]

},
"ManagedPolicyArns": [],
"Policies": [

{
"PolicyName": "StateMachineRolePolicy",
"PolicyDocument": {
"Statement": [
{
"Action": [
"lambda:InvokeFunction"
1,
"Resource": "*",
"Effect": "Allow"
}
]
}
}

\"States\":
\"End\": true\n

Defining your workflow

AWS Step Functions Developer Guide

},
"Outputs": {
"StateMachineArn": {
"Value": {
"Ref": "MyStateMachine"
}
}
}

YAML with Definition

AWSTemplateFormatVersion: 2010-09-09
Description: AWS Step Functions sample template.

Resources:
MyStateMachine:
Type: 'AWS::StepFunctions::StateMachine'
Properties:
RoleArn: !GetAtt
- StateMachineRole
- Arn

TracingConfiguration:
Enabled: true
Definition:
This is a YAML comment. This will not be preserved in the state machine
resource's definition.
Comment: This is an ASL comment. This will be preserved in the state machine
resource's definition.
StartAt: HelloWorld

States:
HelloWorld:
Type: Pass
End: true
StateMachineRole:
Type: 'AWS::IAM::Role'
Properties:

AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:

- Action:
- 'sts:AssumeRole'
Effect: Allow
Principal:

Defining your workflow 116

AWS Step Functions

Developer Guide

Service:
- states.amazonaws.com
ManagedPolicyArns: []
Policies:
- PolicyName: StateMachineRolePolicy
PolicyDocument:
Statement:
- Action:
- 'lambda:InvokeFunction'
Resource: "*"
Effect: Allow

Outputs:
StateMachineArn:

Value:
Ref: MyStateMachine

YAML with DefinitionString

AWSTemplateFormatVersion: 2010-09-09

Description: AWS Step Functions sample template.

Resources:
MyStateMachine:
Type: 'AWS::StepFunctions::StateMachine'
Properties:
RoleArn: !GetAtt
- StateMachineRole
- Arn

TracingConfiguration:
Enabled: true
DefinitionString: |
{
"StartAt": "HelloWorld",
"States": {
"HelloWorld": {
"Type": "Pass",

"End": true
}
}
}
StateMachineRole:
Type: 'AWS::IAM::Role'
Properties:

Defining your workflow

AWS Step Functions Developer Guide

AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
- Action:
- 'sts:AssumeRole'
Effect: Allow
Principal:
Service:
- states.amazonaws.com
ManagedPolicyArns: []

Policies:
- PolicyName: StateMachineRolePolicy
PolicyDocument:
Statement:
- Action:
- 'lambda:InvokeFunction'
Resource: "*"
Effect: Allow
Outputs:
StateMachineArn:
Value:

Ref: MyStateMachinele

Develop workflows with AWS SDKs

Step Functions is supported by the AWS SDKs for Java, .NET, Ruby, PHP, Python (Boto 3),
JavaScript, Go, and C++. These SDKs provide a convenient way to use the Step Functions HTTPS
API actions in multiple programming languages. You can develop state machines, activities, or
state machine starters using the API actions exposed by these SDK libraries. You can also access
visibility operations using these libraries to develop your own Step Functions monitoring and
reporting tools. See the reference documentation for the current AWS SDKs and Tools for Amazon

Web Services.
Develop workflows through HTTPS requests

Step Functions provides service operations that are accessible through HTTPS requests. You can
use these operations to communicate directly with Step Functions from your own libraries. You
can develop state machines, workers, or state machine starters using the service API actions. You
can also access visibility operations through the API actions to develop your own monitoring and
reporting tools. For details see the AWS Step Functions API Reference.

Defining your workflow 118

http://aws.amazon.com/tools/
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/step-functions/latest/apireference/

AWS Step Functions Developer Guide

Develop workflows with the AWS Step Functions Data Science SDK

Data scientists can create workflows that process and publish machine learning models using
SageMaker and Step Functions. You can also create multi-step machine learning workflows in
Python that orchestrate AWS infrastructure at scale. The AWS Step Functions Data Science SDK
provides a Python API that can create and invoke Step Functions workflows. You can manage and
execute these workflows directly in Python, as well as Jupyter notebooks. For more information,
see: AWS Step Functions Data Science Project on Github, data science SDK documentation, and

example Jupyter notebooks and SageMaker examples on GitHub.

Running and debugging your workflows

You can start workflows in a number of ways, including from the console, an API call (for example,
from a Lambda function), from Amazon EventBridge and EventBridge Scheduler, from another
Step Functions state machine. Running workflows can connect to third party services, use AWS
SDKs, and manipulate data while running. Various tools exist to both run and debug the execution
steps and data flowing through your state machine. The following sections provide additional
resources for running and debugging your workflows.

To learn more about the ways to start state machine executions, see Starting state machines.

Choose an endpoint to run your workflows

To reduce latency and store data in a location that meets your requirements, Step Functions
provides endpoints in different AWS Regions. Each endpoint in Step Functions is completely
independent. A state machine or activity exists only within the Region where it was created. Any
state machines and activities that you create in one Region do not share any data or attributes with
those created in another Region. For example, you can register a state machine named STATES-
Flows-1 in two different Regions. The STATES-Flows-1 state machine in one region won't share
data or attributes with the STATES-Flow-1 state machine in the other region. For a list of Step
Functions endpoints, see AWS Step Functions Regions and Endpoints in the AWS General Reference.

Control the flow of data in your workflows

You can use the data flow simulator in the Step Functions console to see how information flows
from state to state, and to understand how to filter and manipulate data. With the data flow
simulator, you can simulate each of the fields that Step Functions uses to process data, such as
InputPath, Parameters, ResultSelector, OutputPath, and ResultPath. For information,
see Using data flow simulator to test data flow in Step Functions.

Running and debugging your workflows 119

https://github.com/aws/aws-step-functions-data-science-sdk-python
https://aws-step-functions-data-science-sdk.readthedocs.io/
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/step-functions-data-science-sdk
https://docs.aws.amazon.com/general/latest/gr/step-functions.html
https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

Local development version of Step Functions

For testing and development purposes, you have the option to install and run Step Functions on
your local machine. The local version of Step Functions can invoke AWS Lambda functions, both in
AWS and when running locally. You can also coordinate other supported AWS services. For more

information, see Testing state machines locally in Step Functions.

Local and remote development with VS Code

You can also use VS Code to interact with remote state machines and develop state machines
locally. You can create or update state machines, list existing state machines, and execute or
download a state machine. VS Code also lets you create new state machines from templates, see
a visualization of your state machine, and provides code snippets, code completion, and code
validation. For more information, see the AWS Toolkit for Visual Studio Code User Guide

Deploying your workflows

After you have defined and debugged your workflows, you'll probably want to deploy using
Infrastructure as Code frameworks. You can choose to deploy your state machines using a variety
of 1aC options, including: AWS Serverless Application Model, AWS CloudFormation, AWS CDK, and
Terraform.

AWS Serverless Application Model

You can use AWS Serverless Application Model with Step Functions to build workflows and
deploy the infrastructure you need, including Lambda functions, APIs and events, to create
serverless applications. You can also use the AWS SAM CLI in conjunction with the AWS Toolkit
for Visual Studio Code as part of an integrated experience.

For more information, see Using AWS SAM to build Step Functions workflows.

AWS CloudFormation

You can use your state machine definitions directly in AWS CloudFormation templates.

For more information, see Using AWS CloudFormation to create a workflow in Step Functions.

AWS CDK

You can build Standard and Express state machines with AWS CDK.

To build a Standard workflow, see Using CDK to create a Standard workflow.

Deploying your workflows 120

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/bulding-stepfunctions.html

AWS Step Functions Developer Guide

To build an Express workflow, see Using CDK to create an Express workflow.

Terraform

Terraform by HashiCorp is a framework for building applications using infrastructure as code
(laC). With Terraform, you can create state machines and use features, such as previewing
infrastructure deployments and creating reusable templates. Terraform templates help you
maintain and reuse the code by breaking it down into smaller chunks.

For more information, see Using Terraform to deploy state machines in Step Functions.

Developing workflows in Step Functions Workflow Studio

Using Workflow Studio for AWS Step Functions, you can drag-and-drop states onto a canvas to
visually build your workflows. You can visually add and edit states, configure input and output
filters, transform the results, and set up error handling.

As you modify states in your workflow, Workflow Studio will validate and auto-generate the state
machine definition. You can review the generated code, edit the configuration, and even modify
the text definition with the built-in code editor. When you're finished, you can save your workflow,
run it, and then examine the results.

You can access Workflow Studio from the Step Functions console, when you create or edit a
workflow.

You can also use Workflow Studio from within AWS Infrastructure Composer, a visual designer to
create infrastructure as code with AWS Serverless Application Model and AWS CloudFormation. To
discover the benefits of this approach, see Using Workflow Studio in Infrastructure Composer.

(® Note

Workflow Studio does not support Internet Explorer 11, so you must choose another
browser.

Workflow Studio has three modes: Design, Code, and Config. In Design mode, you can drag-and-
drop states onto the canvas. Code mode provides a built-in code editor for editing your workflow
definitions within the console. In Config mode, you can manage your workflow configuration.

Using Workflow Studio 121

https://www.terraform.io/intro/

AWS Step Functions

Developer Guide

Design mode

Design mode provides a graphical interface to visualize your workflows as you build their

prototypes. The following image shows the states browser, workflow canvas, inspector, and
contextual help panels in the Design mode of Workflow Studio.

MyStateMachine ./
®

S Design & Config | 1

|-;, Undo ¢ Redo Zoomin @ Zoom out @ Center Duplicate | 3 I}zlet:p

L2 _r

Patterns Info

| Q search

Actions Flow

MOST POPULAR

AWS Lambda
BN e
5

Amazon ECS
RunTask
AWS Step Functions
i? StartExecution
P 7w Glue
? StartJobRun

COMPUTE

E Amazon Data Lifecycle Manager b

E Amazon EBS >
@ Amazon EC2 »>

Srecom

B

Lambda: Invoke
Check Stock Price

Lambda: Invoke
Generate Buy/Sell Recommendation

Lambda: imvoke
Buy Stock

- A
- 5Q5: SendMessage
LGV Request Human Approval

Choice state
Buy or Sell?

&

§.recoe z ype ~= “sell
Lambda Invoke
& Sell Stock
5

SNS: Publish
Report Result

(= |

El Feedback

Check Stock Price (P Definition >

Configuration Input Output Error handling

State name

‘ Check Stock Price

API
Lambda: Invoke

Integration type Info
The type of service integration to use. Leam more [

‘ Optimized v

APl Parameters (P Editas JSON

Function name
The Lambda function to invake

‘ Enter function name v ‘

‘ arm:aws:lambda:ius-east-1:12345678901 Z:function:StepFunctionsSamg. ‘

Must be 2 valid function name.

View function [£

Integration types ° x

AWS Step Functions integrates
with all AWS services so that
you can call AP| actions from
your workflow. There are 2
types of service integrations in
Step Functions: Optimized
integrations and AWS SDK
integrations

Optimized integrations

Optimized integrations have
been customized by Step
Functions to provide special
functionality for a workflow
context. For example, Lambda
Invake will convert its API
output from an escaped JSON
string te a JSON object, and
Batch SubmitJob provides the
ability to pause the execution
until the job is complete. The
first set of Optimized
integrations were released in
2018, and there are over 50 APIs
today.

AWS SDK integrations

1. Mode buttons switch between the three modes. You cannot switch modes if your ASL workflow

definition is invalid.

2. The States browser contains the following three tabs:

« The Actions tab provides a list of AWS APIs that you can drag and drop into your workflow
graph in the canvas. Each action represents a Task workflow state state.

» The Flow tab provides a list of flow states that you can drag and drop into your workflow
graph in the canvas.

« The Patterns tab provides several ready-to-use, reusable building blocks that you can use for

a variety of use cases. For example, you can use these patterns to iteratively process data in an
Amazon S3 bucket.

3. The Canvas and workflow graph is where you drag and drop states into your workflow graph,

change the order of states, and select states to configure or view.

4. The Inspector panel panel is where you can view and edit the properties of any state you've

selected on the canvas. Turn on the Definition toggle to view the Amazon States Language code
for your workflow, with the currently selected state highlighted.

Design mode

122

AWS Step Functions

Developer Guide

5. Info links open a panel with contextual information when you need help. These panels also

include links to related topics in the Step Functions documentation.

6. Design toolbar — Contains a set of buttons to perform common actions, such as undo, delete,

and zoom in.

7. Utility buttons — A set of buttons to perform tasks, such as saving your workflows or exporting

their ASL definitions in a JSON or YAML file.

States browser

From the States browser, you can select states to drag and drop on to your workflow canvas. The
Actions tab provides a list of task states that connect to 3rd party HTTP endpoints and AWS APIs.
The Flow tab provides a list of states with which you can direct and control your workflow. Flow
states include: Choice, Parallel, Map, Pass, Wait, Success, and Fail. The Patterns tab provides ready-
to-use, reusable pre-defined building blocks. You can search among all state types with the search

box at the top of the panel.

Q, Search
—

Actions Flow Patterns Info

—

MOST POPULAR

Q Search

Flow Patterns Info

AWS Lambda
Invoke

Choice

Adds if-then-else logic

(|3

Amazon SNS
CE Publish

Parallel

Adds separate branches.

Q, Search

Actions Flow Patterns Info

|Qsage ><|(

Actions Flow Patterns Info

53 DATA PROCESSING

Process S3 objects New

9 Use Map state and Lambda to
(=] t| process the objectsin an 53
bucket.

(—]

L

Amazon ECS
RunTask

Map Updated

Runs parallel workflows for each

item in a dataset.

AWS Step Functions
é:-az' StartExecution

(_{]_

Pass
Transforms data or acts as
placeholder.

AWS Glue
StartJobRun

REEEE

\C

Wait

Delays for a specified time.

COMPUTE
m Amazon Data Lifecycle Manager »
@ Amazon EBS >

m Amazon EC2 »

©

Success

Stops and marks as success.

Process JSON file in 53 New
9 Use Map state and Lambda to
(=] &| process the data in a JSON file in
S3.

Process CSV file in S3 New
‘5-&] Use Map state and Lambda to
process the data in a CSV file in 3.

GENERAL

o Job poller New

&y | Manage anasynchronous job using

e

N

Fail

Stops and marks as failure.

Canvas and workflow graph

a polling loop

Showing top 100 items. Refine your search for more
targeted results.

Amazon Sagemaker

CreateEndpoint

Amazon Sagemaker

CreateEndpointConfig

Amazon Sagemaker
CreateHyperParameterTuni...

Amazon Sagemaker

CreateLabelingJob

Amazon Sagemaker
CreateModel

=
5

nazon Sagemaker

CreateProcessingJob

Amazon Sagemaker

CreateTrainingJob

Amazon Sagemaker
CreateTransformJob

alalalalalalale

After you choose a state to add to your workflow, you can drag it to the canvas and drop it into

your workflow graph. You can also drag and drop states to move them within your workflow. If

Design mode

123

AWS Step Functions Developer Guide

your workflow is large, you can zoom in or out to view different parts of your workflow graph in
the canvas.

Inspector panel

You can configure any states that you add to your workflow from the Inspector panel on the right.
Choose the state you want to configure, and you will see its configuration options in the Inspector
panel. To see the auto-generated ASL definition for your workflow code, turn on the Definition
toggle. The ASL definition associated with the state you've selected will appear highlighted.

Check Stock Price (P Definition 3
Configuration Input Output Errer handling
Start
State name
- L Check Stock Price
Lambda: Invoke
m Check Stock Price ‘
APl
- ¥ Lambda: Invoke
Lambda: Imvoke
ﬁ' Generate Buy/Sell recommendation
. . Integration type Info
) The type of service integration to use. Learn more B

505 SendMescage ‘ Optimized v
Request Human Approval

x H API| Parameters (P Edit as JSON

Ohoice stabe
Buy or Sell? Function name
The Lambda function to invoke
$.recommended |'.rl-'.' —= "hagy” 5 ||’.‘.'.’III'T|¢.IE':E by == Tsall” ‘ Enter function name v |
L/ ; |

Lambda: Invoke Lambda: Invoke : :
m Buy Stock ‘m Sell Stock \ ‘ arn:awslambdaus-east-1: function:StepFunctionsSample-Hello |

| Must be a valid function name.
A

SM5: Publish ‘ View function [4
Report Result

Payload
T The JSOM that you want to provide to your Lambda function.
Ene ‘ Use state input as payload v

Additional configuration

Wait for callback - optional
Pause the execution at this state until the execution receives a callback from
SendTaskSuccess or SendTaskFailure AP|s with the task token.

Design mode 124

AWS Step Functions

Developer Guide

Start

= L)

[Lambda: Invoke
| Check Stock Price

¥
Lambda: Irvoke
& Generate Buy.l'Sellrecurnrnendatlon
T
505 SendMessage
Reguest Human Approval

L i
Choice state ‘

Buy or Sell?

S.recommended_ty

L

: L
Lamibda: Invake Larmbdac Invoke
Buy Stock Sell Stock

Srecommended_typs —= "ell”

SM5: Publish
Report Result

End

Definition (read-only)

@O Definition %

Copy
o
"Resource": "arn:ows:stotes:::lombda:invoke”,
"OutputPath™: "$.Paoylood”,
"Parameters”: {
"Payload.§": "5",
“FunctionName™: “arn:aws:lombda:us-east
1: :function: StepFunctionsSanple-HelloLam
CheckStockPricelombda-LMIMULEB kI3 SLATEST"
I,
"Retry™: [
"ErrorEquals": [
“Lambda. ServiceException",
“Lombda. ANSLombdoException”,
“Lambda. SdkClientException”™,
“Lambda. TooManyRequestsException”
1,
"IntervalSeconds": 2,
"MaxAttempts": &,
"BackoffRate": 2
¥
1.
"Mext": "Generote Buy/5ell recommendation”
k,
“Generate Buy/Sell recommendation”: {
"Type": "Task",
"Rescurce”: "orn:ows:stotes:::lombda:inwoke®,
"OutputPath": "%, Payload",

"Parameters": {
"Payload. §": "$",
"FunctionMame": "arn:ows:lambda:us-east

1: fun;tLun StepFunctionsSample-Hello
GenerateBuySellRecommend-3dL8 JabulgvE - SLATEST”

I,

"Retry™: [

"ErrorEquals": [
“Lambda . ServiceException”,
"Lombda . ANSLambdaException”,
“Lambda. SdkClientException”,
"Lombda . TooManyRequestsException™

1,

"Interval Seconds": 2,

"MoxAttempts": &

Code mode

In Code mode of Workflow Studio, you can use an integrated code editor to view, write, and edit

the Using Amazon States Language to define Step Functions workflows (ASL) definition of your

workflows within the Step Functions console. The following screenshot shows the components in

the Code mode.

Code mode

125

AWS Step Functions

Developer Guide

MyStateMachine ./

9 Unde " Redo *= Format Capy «» Commands A View docsp

oW oR R

Bl B ORJ R ORD R ORD RIR
g i)

@ @@ oW

"Comment": "“A description of my state machine",
“StartAt": “Check Stock Price",
"Slrates": {
"Check Stock Price": {
"Type": "Task",
"Resource™: "arn:iaws:states:::lambda: invoke",
"OutputPath": "3i.Payload”,
"Parameters”: {
YPayload.$": "§",
"FunctionMame™: “arn:aws: lambda:us-east-1:123456789012: function:Stepl

b
"Retry": [
{

"ErrorEquals": [
“Lambda.ServiceException”,
"Lambda. AWSLambdaExe ion"™,
"Lambda.SdkClientException™,

"Lambda.TeoManyRequestsException"
1,
"IntervalSeconds": 2,
"MaxAttempts": 6,
"BackoffRate": 2

": "Generate Buy/5ell Recommendation®

"Generate Buy/Sell Recommendation™: {
"Type": "Task",
"Resource™: "arn:iaws:states:::lambda: invoke",
"OutputPath":
"Parameters":

“Payload.$": "3",
"FunctionMame™: "arn:aws: lambda:us-east-1:1234567890812: function:Step!

+

"3.Payload",

e

definition is invalid.

Q- e

Zoom in @ Zoom out & Center o

E] Feedback

o Start
- L J
Lambda: Inmvoke
& Check Stock Price

[Lambda: Iny
b\ Buy Stock

L |

Lambda: invoke |
& Generate Buy/Sell Recommendation

¥
Pl 505 SendMessage
C'E.EE'/O Request Human Approval
¥
Choice state
Buy or Sell?

Srecommended_type ~= “sell”

L

ioke | Lambda: Invoke |
& Sell Stock

ol SNS: Publish
‘ Report Result

¥

End

. Mode buttons switch between the three modes. You cannot switch modes if your ASL workflow

. The Code editor is where you write and edit the ASL definition of your workflows within the
Workflow Studio. The code editor also provides features, such as syntax highlighting and auto-
completion.

3. Graph visualization — Shows a real-time graphical visualization of your workflow.

or formatting the code.

Code editor

. Utility buttons — A set of buttons to perform tasks, such as saving your workflows or exporting
their ASL definitions in a JSON or YAML file.

. Code toolbar - Contains a set of buttons to perform common actions, such as undoing an action

. Graph toolbar — Contains a set of buttons to perform common actions, such as zooming in and
zooming out the workflow graph.

The code editor provides an IDE-like experience to write and edit your workflow definitions using
JSON within the Workflow Studio. The code editor includes several features, such as syntax

Code mode

126

AWS Step Functions Developer Guide

highlighting, auto-complete suggestions, ASL definition validation, and context-sensitive help

display. As you update your workflow definition, the Graph visualization renders a real-time graph
of your workflow. You can also see the updated workflow graph in the Design mode.

If you select a state in the Design mode or the graph visualization pane, the ASL definition of that
state appears highlighted in the code editor. The ASL definition of your workflow is automatically
updated if you reorder, delete, or add a state in the Design mode or the graph visualization pane.

The code editor can make suggestions to auto-complete fields and states.

» To see a list of fields you can include within a specific state, press Ctrl+Space.

» To generate a code snippet for a new state in your workflow press Ctxl+Space after the current
state's definition.

» To display a list of all available commands and keyboard shortcuts, press F1.

Graph visualization

The graph visualization panel shows your workflow in a graphical format. When you write your
workflow definitions in the Code editor of Workflow Studio, the graph visualization pane renders a
real-time graph of your workflow.

As you reorder, delete, or duplicate a state in the graph visualization pane, the workflow definition
in the Code editor is automatically updated. Similarly, as you update your workflow definitions,
reorder, delete, or add a state in the Code editor, the visualization is automatically updated.

If the JSON in the ASL definition of your workflow is invalid, the graph visualization panel pauses
the rendering and displays a status message at the bottom of the pane.

Config mode

In the Config mode of Workflow Studio, you can manage the general configuration of your state
machines. In this mode, you can specify settings, such as the following:

» Details: Set the workflow name and type. Note that both cannot be changed after you create
the state machine.

» Permissions : you can create a new role (recommended), choose an existing role, or enter an
ARN for a specific role. If you select the option to create a new role, Step Functions creates an
execution role for your state machines using least privileges. The generated IAM roles are valid

Config mode 127

AWS Step Functions Developer Guide

for the AWS Region in which you create the state machine. Prior to creation, you can review the
permissions that Step Functions will automatically generate for your state machine.

Logging: You can enable and set a log level for your state machine. Step Functions logs the
execution history events based on your selection. You can optionally use a customer managed
key to encrypt your logs. For more information about log levels, see Log levels for Step Functions

execution events.

In Additional configuration, you can set one or more of the following optional configuration
options:

Enable X-Ray tracing: You can send traces to X-Ray for state machine executions, even when a
trace ID is not passed by an upstream service. For more information, see Trace Step Functions
request data in AWS X-Ray.

Publish version on creation: A version is a numbered, immutable snapshot of a state machine
that you can run. Choose this option to publish a version of your state machine while creating
the state machine. Step Functions publishes version 1 as the first revision of the state machine.
For more information about versions, see State machine versions in Step Functions workflows.

Encrypt with customer managed key : You can provide a key that you mange directly to encrypt
your data. For information, see Data at rest encryption

Tags: Choose this box to add tags that can help you track and manage the costs associated with
your resources, and provide better security in your IAM policies. For more information about tags,
see Tagging state machines and activities in Step Functions.

Creating a workflow with Workflow Studio in Step Functions

Learn to create, edit, and run workflows using Step Functions Workflow Studio. After your

workflow is ready, you can save, run, and export it.

In this topic

Create a state machine

Design a workflow

Run your workflow

Edit your workflow

Export your workflow

Creating a workflow prototype with placeholders

Create a workflow 128

AWS Step Functions Developer Guide

Create a state machine

In Workflow Studio, you can either choose a starter template or a blank template to create a
workflow.

A starter template is a ready-to-run sample project that automatically creates the workflow
prototype and definition, and deploys all the related AWS resources that your project needs to
your AWS account. You can use these starter templates to deploy and run them as is, or use the
workflow prototypes to build on them. For more information about starter templates, see Deploy a
state machine using a starter template for Step Functions.

With a blank template, you use the Design or Code mode to create your custom workflow.

Create a state machine using a starter template

—

Open the Step Functions console and choose Create state machine.

N

In the Choose a template dialog box, do one of the following to choose a sample project:

« Type Task Timer in the Search by keyword box, and then choose Task Timer from the
search results.

» Browse through the sample projects listed under All on the right pane, and then choose
Task Timer.

Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

Create a workflow 129

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Create a workflow using a blank template
When you want to start from a clean canvas, create a workflow from the blank template.

1. Open the Step Functions console.

2. Choose Create state machine.
3. Inthe Choose a template dialog box, select Blank.
4

Choose Select to open Workflow Studio in Design mode.

You can now start designing your workflow in Design mode or writing your workflow definition
in Code mode.

5. Choose Config to manage the configuration of your workflow in the Config mode. For
example, provide a name for your workflow and choose its type.

Design a workflow

When you know the name of the state you want to add, use the search box at the top of the
States browser to find it. Otherwise, look for the state you need in the browser and add it onto the

canvas.

You can reorder states in your workflow by dragging them to a different location in your workflow.
As you drag a state onto the canvas, a line appears to show where the state will be inserted into
your workflow, as shown in the following screenshot:

Create a workflow 130

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Start

l

Lambda: Invoke
Process data

Choice
e T
e '-aH
Rule #1 Default
i
¥ ¥
SMN5: Publish Lambda: Invoke
I Send alert & Run backup
N J
.H“““-h_,_q__ _____,_r-""
-______HH " e
End

After a state is dropped onto the canvas, its code is auto-generated and added inside the workflow
definition. To see the definition, turn on the Definition toggle on the Inspector panel. You can
choose Code mode to edit the definition with the built-in code editor.

After you drop a state onto the canvas, you can configure it in the Inspector panel panel on the
right. This panel contains the Configuration, Input, Output, and Error Handling tabs for each of
the state or API action that you place on the canvas. You configure the states you include in your
workflows in the Configuration tab.

For example, the Configuration tab for Lambda Invoke API action provides the following options:

» State name: You can identify the state with a custom name or accept the default generated
name.

« API shows which API action is used by the state.

« Integration type: You can choose the service integration type used to call APl actions on other
services.

« Function name provides options to:

Create a workflow 131

AWS Step Functions Developer Guide

Enter a function name: You can enter your function name or its ARN.

Get function name at runtime from state input: You can use this option to dynamically get
the function name from the state input based on the path you specify.

Select function name: You can directly select from the functions available in your account and
region.

» Payload : you can choose to use the state input, a JSON object, or no payload to pass as the
payload to your Lambda function. If you choose JSON, you can include both static values and

values selected from the state input.

» (Optional) Some states will have an option to select Wait for task to complete or Wait for
callback. When available, you can choose one of the following service integration patterns:

No option selected: Step Functions will use the Request Response integration pattern. Step

Functions will wait for an HTTP response and then progress to the next state. Step Functions
will not wait for a job to complete. When no options are available, the state will use this
pattern.

Wait for task to complete: Step Functions will use the Run a Job (.sync) integration pattern.

Wait for callback: Step Functions will use the Wait for a Callback with Task Token integration
pattern.

» (Optional) To access resources configured in different AWS accounts within your workflows, Step

Functions provides cross-account access. IAM role for cross-account access provides options to:

Provide IAM role ARN: Specify the IAM role that contains appropriate resource access
permissions. These resources are available in a target account, which is an AWS account to
which you make cross-account calls.

Get IAM role ARN at runtime from state input: Specify a reference path to an existing key-
value pair in the state’s JSON input which contains the IAM role.

» Next state lets you to select the state you want to transition to next.

» (Optional) Comment field will not affect the workflow, but you can be use it to annotate your

workflow.

Some states will have additional generic configuration options. For example, the Amazon ECS

RunTask state configuration contains an API Parameters field populated with placeholder

values. For these states, you can replace the placeholder values with configurations that are suited

to your needs.

To delete a state

Create a workflow 132

AWS Step Functions Developer Guide

You can press backspace, right-click and choose Delete state, or choose Delete on the Design
toolbar.

Run your workflow

When your workflow is ready to go, you can run it and view its execution from the Step Functions

console.
To run a workflow in Workflow Studio

1. Inthe Design, Code, or Config mode, choose Execute.

The Start execution dialog box opens in a new tab.

2. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.
3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Edit your workflow

You can edit an existing workflow visually in the Design mode of Workflow Studio.

Create a workflow 133

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

In the Step Functions console, choose the workflow you want to edit from the State machines
page. The workflow opens in Design mode of Workflow Studio.

You can also edit the workflow definition in Code mode. Choose the Code button to view or edit
the workflow definition in Workflow Studio.

(@ Note

If you see errors in your workflow, you must fix them in Design mode. You can't switch to
the Code or Config mode if any errors exist in your workflow.

When you save changes to your workflow, you have the option to also publish a new version. With
versions, you can choose to run the original or alternate versions of your workflow. To learn more
about managing workflows with versions, see State machine versions in Step Functions workflows

Export your workflow

You can export your workflow's Amazon States Language (ASL) definition and your workflow
graph:

1. Choose your workflow in the Step Functions console.

2. On the State machine detail page, choose Edit.
3. Choose the Actions dropdown button, and then do one or both of the following:

» To export the workflow graph to an SVG or PNG file, under Export graph, select the format
you want.

« To export the workflow definition as a JSON or YAML file, under Export definition, select the
format you want.

Creating a workflow prototype with placeholders

You can use Workflow Studio or Workflow Studio in Infrastructure Composer to create prototypes

of new workflows that contain placeholder resources which are named resources that do not exist
yet.

To create a workflow prototype:

1. Sign in to the Step Functions console.

Create a workflow 134

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

2. Choose Create state machine.
3. In the Choose a template dialog box, select Blank.
4. Choose Select to open Workflow Studio in Design mode.

5. The Design mode of Workflow Studio opens. Design your workflow in Workflow Studio. To
include placeholder resources:

a. Choose the state for which you want to include a placeholder resource, and then in
Configuration:

« For Lambda Invoke states, choose Function name, then choose Enter function name. You
can also enter a custom name for your function.

« For Amazon SQS Send Message states, choose Queue URL, then choose Enter queue URL.
Enter a placeholder queue URL.

« For Amazon SNS Publish states, from Topic, choose a topic ARN.

« For all other states listed under Actions, you can use the default configuration.

(® Note

If you see errors in your workflow, you must fix them in Design mode. You can't switch
to the Code or Config mode if any errors exist in your workflow.

b. (Optional) To view the auto-generated ASL definition of your workflow, choose Definition.

c. (Optional) To update the workflow definition in Workflow Studio, choose the Code button.

(® Note

If you see errors in your workflow definition, you must fix them in Code mode.
You can't switch to the Design or Config mode if any errors exist in your workflow
definition.

6. (Optional) To edit the state machine name, choose the edit icon next to the default state
machine name of MyStateMachine and specify a name in the State machine name box.

You can also switch to the Config mode to edit the default state machine name.
7. Specify your workflow settings, such as state machine type and its execution role.

8. Choose Create.

Create a workflow 135

AWS Step Functions

Developer Guide

You've now created a new workflow with placeholder resources that can be used to prototype. You
can export your workflow definition and the workflow graph.

» To export your workflow definition as a JSON or YAML file, in the Design or Code mode, choose
the Actions dropdown button. Then, under Export definition, select the format you want to
export. You can use this exported definition as the starting point for local development with the
AWS Toolkit for Visual Studio Code.

» To export your workflow graph to an SVG or PNG file, in the Design or Code mode, choose the
Actions dropdown button. Then, under Export definition, select the format you want.

Configure states inputs and outputs with Workflow Studio in Step

Functions

Each state makes a decision or performs an action based on input that it receives. In most cases, it
then passes output to other states. In Workflow Studio, you can configure how a state filters and

manipulates its input and output data in the Input and Output tabs of the Inspector panel panel.
Use the Info links to access contextual help when configuring inputs and outputs.

4 Undo ¢ Redo @ Zoomin 2, Zoom out
Q, Search ¢
Actions Flow Patterns Info

MOST POPULAR

AWS Lambda
5_\. Invoke

J

Amazon SNS

\‘?_, Publish

L=
5

WS Step Functions
StartExecution

& Center

Duplicate in]

Start

|

|

¥
Lambda: Invoke
Get data

Choice state
Choice

Delete

v

Tl AWS Glue
StartJobRun

\h Amazon ECS
(,,:- RunTask

COMPUTE

E‘ Amazon Data Lifecycle Manager b

isd Amazon EBS »
Eﬁ Amazon EC2 »

SNS: Publish
SNS Publish

E] Feedback

Get data (' Definition 3

Configuration Input Qutput Error handling

During workflow execution, a Task state's input comes from the
previous state's output.

] Filter input with InputPath - optional
Use the InputPath filter to select a portion of the state input to use. Info

Task state input X

Individual states receive JSON as
input from the previous state. If
a state is first, it receives the
execution input. A Task state can
filter the JSON input, and parts
of the input can be used as API
parameters. The following
diagram shows the order in
which JSON input is processed
by the state ahead of the API
call.

v

For detailed information about how Step Functions processes input and output, see Processing
input and output in Step Functions.

Configure input and output

136

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/building-stepfunctions.html

AWS Step Functions Developer Guide

Configure input to a state

Each state receives input from the previous state as JSON. If you want to filter the input, you can
use the InputPath filter under the Input tab in the Inspector panel panel. The InputPathis a
string, beginning with $, that identifies a specific JSON node. These are called reference paths, and
they follow JsonPath syntax.

To filter the input:

» Choose Filter input with InputPath.
« Enter a valid JsonPath for the InputPath filter. For example, $.data.

Your InputPath filter will be added to your workflow.
Example Example 1: Use InputPath filter in Workflow Studio

Say the input to your state includes the following JSON data.

"comment": "Example for InputPath",
"datasetl": {
Dyglld®g L,
"val2": 2,
"val3": 3
},
"dataset2": {
"vall": "a",
"val2": "b",
"val3": "c"

To apply the InputPath filter, choose Filter input with InputPath, then enter an appropriate
reference path. If you enter $.dataset2.vall, the following JSON is passed as input to the state.

{"a"}

A reference path can also have a selection of values. If the data you referenceis { "a": [1, 2,
3, 4] } andyou apply the reference path $.a[0:2] as the InputPath filter, the following is the
result.

Configure input and output 137

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

[1, 2]

Parallel workflow state, Map workflow state, and Pass workflow state flow states have an
additional input filtering option called Parameters under their Input tab. This filter takes effect
after the InputPath filter and can be used to construct a custom JSON object consisting of one or
more key-value pairs. The values of each pair can either be static values, can be selected from the
input, or can be selected from the Context object with a path.

(@ Note

To specify that a parameter uses a reference path to point to a JSON node in the input, the
parameter name must end with . $.

Example Example 2: Create custom JSON input for Parallel state

Say the following JSON data is the input to a Parallel state.

{
"comment": "Example for Parameters",
"product": {
"details": {
"color": "blue",
"size": "small",
"material": "cotton"
},
"availability": "in stock",
"sku": "2317",
"cost": "$23"
}
}

To select part of this input and pass additional key-value pairs with a static value, you can specify
the following in the Parameters field, under the Parallel state's Input tab.

{

"comment": "Selecting what I care about.",
"MyDetails": {
"size.$": "$.product.details.size",

Configure input and output 138

AWS Step Functions Developer Guide

"exists.$": "$.product.availability",
"StaticValue": "foo"

}

The following JSON data will be the result.

{
"comment": "Selecting what I care about.",
"MyDetails": {
"size": "small",
"exists": "in stock",
"StaticValue": "foo"
}
}

Configure output of a state

Each state produces JSON output that can be filtered before it is passed to the next state. There
are several filters available, and each affects the output in a different way. Output filters available
for each state are listed under the Output tab in the Inspector panel. For Task workflow state
states, any output filters you select are processed in this order:

1. ResultSelector: Use this filter to manipulate the state’s result. You can construct a new JSON

object with parts of the result.

2. Specifying state output using ResultPath in Step Functions workflows: Use
this filter to select a combination of the state input and the task result to pass to the output.

3. Filtering state output using OQutputPath in Step Functions workflows: Use
this filter to filter the JSON output to choose which information from the result will be passed to
the next state.

Use ResultSelector

ResultSelector is an optional output filter for the following states:

» Task workflow state states, which are all states listed in the Actions tab of the States browser.

« Map workflow state states, in the Flow tab of the States browser.

« Parallel workflow state states, in the Flow tab of the States browser.

Configure input and output 139

AWS Step Functions Developer Guide

ResultSelector can be used to construct a custom JSON object consisting of one or more key-
value pairs. The values of each pair can either be static values or selected from the state's result
with a path.

(@ Note

To specify that a parameter uses a path to reference a JSON node in the result, the
parameter name must end with . $.

Example Example to use ResultSelector filter

In this example, you use ResultSelector to manipulate the response from the Amazon EMR
CreateCluster API call for an Amazon EMR CreateCluster state. The following is the result from
the Amazon EMR CreateCluster API call.

"resourceType": "elasticmapreduce",
"resource": "createCluster.sync",
"output": {
"SdkHttpMetadata": {
"HttpHeaders": {
"Content-Length": "1112",
"Content-Type": "application/x-amz-JSON-1.1",
"Date": "Mon, 25 Nov 2019 19:41:29 GMT",
"x-amzn-RequestId": "1234-5678-9012"
1,
"HttpStatusCode": 200
1,
"SdkResponseMetadata": {
"RequestId": "1234-5678-9012"
b
"ClusterId": "AKIAIOSFODNN7EXAMPLE"

To select part of this information and pass an additional key-value pair with a static value, specify
the following in the ResultSelector field, under the state’s Output tab.

Configure input and output 140

AWS Step Functions Developer Guide

"result": "found",

"ClusterId.$": "$.output.ClusterId",
"ResourceType.$": "$.resourceType"

}

Using ResultSelector produces the following result.

{
"result": "found",
"ClusterId": "AKIAIOSFODNN7EXAMPLE",
"ResourceType": "elasticmapreduce"

}

Use ResultPath

The output of a state can be a copy of its input, the result it produces, or a combination of its input
and result. Use ResultPath to control which combination of these is passed to the state output.
For more use cases of ResultPath, see Specifying state output using ResultPath in Step Functions

workflows.

ResultPath is an optional output filter for the following states:

Task workflow state states, which are all states listed in the Actions tab of the States browser.

Map workflow state states, in the Flow tab of the States browser.

Parallel workflow state states, in the Flow tab of the States browser.

Pass workflow state states, in the Flow tab of the States browser.

ResultPath can be used to add the result into the original state input. The specified path
indicates where to add the result.

Example Example to use ResultPath filter

Say the following is the input to a Task state.

{
"details": "Default example",
"who": "AWS Step Functions"

Configure input and output 141

AWS Step Functions Developer Guide

The result of the Task state is the following.

Hello, AWS Step Functions

You can add this result to the state's input by applying ResultPath and entering a reference path
that indicates where to add the result, such as $.taskresult:

With this ResultPath, the following is the JSON that is passed as the state’s output.

{

"details": "Default example",

"who": "AWS Step Functions",

"taskresult": "Hello, AWS Step Functions!"
}

Use OutputPath

The OQutputPath filter lets you filter out unwanted information, and pass only the portion of JSON
that you need. The OutputPath is a string, beginning with $, that identifies nodes within JSON
text.

Example Example to use OutputPath filter

Imagine a Lambda Invoke API call returns metadata in addition to the Lambda function’s result.

{
"ExecutedVersion": "$LATEST",
"Payload": {
"foo": "bar",
"colors": [
"red",
"blue",
"green"
1,
"car": {
"year": 2008,
"make": "Toyota",
"model": "Matrix"
}
.

"SdkHttpMetadata": {

Configure input and output 142

AWS Step Functions Developer Guide

"AllHttpHeaders": {
"X-Amz-Executed-Version": ["$LATEST"]

You can use OutputPath to filter out the additional metadata. By default, the value of
OutputPath filter for Lambda Invoke states created through the Workflow Studio is $. Payload.
This default value removes the additional metadata and returns an output equivalent to running
the Lambda function directly.

The Lambda Invoke task result example and the value of $.Payload for the Output filter pass the
following JSON data as the output.

{

"foo": "bar",

"colors": [
"red",
"blue",
"green"

1,

"car": {
"year": 2008,
"make": "Toyota",
"model": "Matrix"

(@ Note

The OQutputPath filter is the last output filter to take effect, so if you use additional output
filters such as ResultSelector or ResultPath, you should modify the default value of
$.Payload for the OutputPath filter accordingly.

Set up execution roles with Workflow Studio in Step Functions

You can use Workflow Studio to set up execution roles for your workflows. Every Step Functions
state machine requires an AWS Identity and Access Management (IAM) role which grants the state
machine permission to perform actions on AWS services and resources or call third-party APIs. This
role is called an execution role.

Set up execution roles 143

AWS Step Functions Developer Guide

The execution role must contain IAM policies for each action, for example, policies that allow the
state machine to invoke an AWS Lambda function, run an AWS Batch job, or call the Stripe API.
Step Functions requires you to provide an execution role in the following cases:

» You create a state machine in the console, AWS SDKs or AWS CLI using the CreateStateMachine
API.

 You test a state in the console, AWS SDKs, or AWS CLI using the TestState API.

Topics

« About auto-generated roles

» Automatically generating roles

» Resolving role generation problems

» Role for testing HTTP Tasks in Workflow Studio

» Role for testing an optimized service integration in Workflow Studio

» Role for testing an AWS SDK service integration in Workflow Studio

» Role for testing flow states in Workflow Studio

About auto-generated roles

When you create a state machine in the Step Functions console, Workflow Studio can automatically

create an execution role for you which contains the necessary IAM policies. Workflow Studio
analyzes your state machine definition and generates policies with the least privileges necessary to
execute your workflow.

Workflow Studio can generate IAM policies for the following:

« HTTP Tasks that call third-party APIs.

» Task states that call other AWS services using optimized integrations, such as Lambda Invoke,
DynamoDB Getltem, or AWS Glue StartJobRun.

» Task states that run nested workflows.

« Distributed Map states, including policies to start child workflow executions, list Amazon S3
buckets, and read or write S3 objects.

« X-Ray tracing. Every role that is auto-generated in Workflow Studio contains a policy which
grants permissions for the state machine to send traces to X-Ray.

Set up execution roles 144

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html

AWS Step Functions Developer Guide

» Using CloudWatch Logs to log execution history in Step Functions when logging is enabled on

the state machine.

Workflow Studio can't generate IAM policies for Task states that call other AWS services using AWS
SDK integrations.

Automatically generating roles

1.

i A W

Open the Step Functions console and choose Create state machine.

You can also update an existing state machine. Refer Step 4 if you're updating a state machine.
In the Choose a template dialog box, select Blank.

Choose Select to open Workflow Studio in Design mode.

Choose the Config tab.

Scroll down to the Permissions section, and do the following:

a. For Execution role, make sure you keep the default selection of Create new role.

Workflow Studio automatically generates all the required IAM policies for every valid state
in your state machine definition. It displays a banner in with the message, An execution
role will be created with full permissions.

Set up execution roles 145

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

MyStateMachine-zt9v7smr7 .2 S Design {} Code Cancel Create

State machine configuration E] Feedback

Permissions infe

Execution role
The 1AM role that defines which resources your state machine has permission to access during execution. To create a custom role, go te the 1AM console [

| Create new role v |

@ An execution role will be created with full permissions.
A new execution role named StepFunctions-MyStateMachine-zt9v7Zsmr7-role-w8u477ccc will be created. All required permissions for the actions specified in your state machine will be
auto-generated.

¥ Review auto-generated permissions

Service Action(s) Status Documentation links

Call Glue with Step Functions [4

Glue policies for Step Functions [4

-

VA AWS Glue glue:StartJobRun @ Policy will be generated to perform the action for any Glue resource
¥

— Call SNS with Step Functions [4

E-E Amazon SNS sns:Publish @ Policy will be generated to perform the action for any SNS resource

o

SNS policies for Step Functions [

Call Lambda with Step Functions [

Lambda policies for Step Functions [4

AWS Lambda lambda:InvokeFunction @ Policy will be generated to perform the action for specified Lambda resources only

B

xray:PutTraceSegments

AWS X-Ray xray:PutTelemetryRecords (@ Policies will be generated for X-Ray tracing X-Ray policies for Step Functions [
o] 3 xray:GetsamplingRules a s <

xray:GetSamplingTargets

® Tip
To review the permissions that Workflow Studio automatically generates for your
state machine, choose Review auto-generated permissions.

® Note

If you delete the IAM role that Step Functions creates, Step Functions can't
recreate it later. Similarly, if you modify the role (for example, by removing Step
Functions from the principals in the IAM policy), Step Functions can't restore its
original settings later.

If Workflow Studio can't generate all the required IAM policies, it displays a banner with
the message Permissions for certain actions cannot be auto-generated. An IAM role will

Set up execution roles 146

AWS Step Functions Developer Guide

be created with partial permissions only. For information about how to add the missing
permissions, see Resolving role generation problems.

b. Choose Create if you're creating a state machine. Otherwise, choose Save.

c. Choose Confirm in the dialog box that appears.

Workflow Studio saves your state machine and creates the new execution role.

Resolving role generation problems

Workflow Studio can't automatically generate an execution role with all the required permissions in
the following cases:

» There are errors in your state machine. Make sure to resolve all validation errors in Workflow
Studio. Also, make sure that you address any server-side errors you encounter in the course of
saving.

» Your state machine contains tasks use AWS SDK integrations. Workflow Studio can't auto-
generate IAM policies in this case. Workflow Studio displays a banner with the message,
Permissions for certain actions cannot be auto-generated. An IAM role will be created with
partial permissions only. In the Review auto-generated permissions table, choose the content

in Status for more information about the policies your execution role is missing. Workflow Studio
can still generate an execution role, but this role will not contain IAM policies for all actions. See
the links under Documentation links to write your own policies and add them to the role after it
is generated. These links are available even after you save the state machine.

Role for testing HTTP Tasks in Workflow Studio

You require an execution role to test an HTTP Task state. If you don’t have a role with sufficient
permissions, use one of the following options to create a role:

« Auto-generate a role with Workflow Studio (recommended) - This is the secure option. Close
the Test state dialog box and follow the instructions in Automatically generating roles. This will

require you to create or update your state machine first, then go back into Workflow Studio to
test your state.

« Use a role with Administrator access - If you have permissions to create a role with full
access to all services and resources in AWS, you can use that role to test any type of state
in your workflow. To do this, you can create a Step Functions service role and add the
AdministratorAccess policy to it in the IAM console https://console.aws.amazon.com/iam/.

Set up execution roles 147

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

Role for testing an optimized service integration in Workflow Studio

You require an execution role to Task states that call optimized service integrations. If you don't

have a role with sufficient permissions, use one of the following options to create a role:

» Auto-generate a role with Workflow Studio (recommended) - This is the secure option. Close
the Test state dialog box and follow the instructions in Automatically generating roles. This will
require you to create or update your state machine first, then go back into Workflow Studio to
test your state.

« Use a role with Administrator access - If you have permissions to create a role with full
access to all services and resources in AWS, you can use that role to test any type of state
in your workflow. To do this, you can create a Step Functions service role and add the
AdministratorAccess policy to it in the IAM console https://console.aws.amazon.com/iam/.

Role for testing an AWS SDK service integration in Workflow Studio

You require an execution role to Task states that call AWS SDK integrations. If you don't have a role
with sufficient permissions, use one of the following options to create a role:

» Auto-generate a role with Workflow Studio (recommended) - This is the secure option. Close
the Test state dialog box and follow the instructions in Automatically generating roles. This will
require you to create or update your state machine first, then go back into Workflow Studio to
test your state. Do the following:

1. Close the Test state dialog box

2. Choose the Config tab to view the Config mode.
3. Scroll down to the Permissions section.
4

. Workflow Studio displays a banner with the message, Permissions for certain actions cannot
be auto-generated. An IAM role will be created with partial permissions only. Choose
Review auto-generated permissions.

5. The Review auto-generated permissions table displays a row that shows the action
corresponding to the task state you want to test. See the links under Documentation links to
write your own IAM policies into a custom role.

» Use a role with Administrator access - If you have permissions to create a role with full
access to all services and resources in AWS, you can use that role to test any type of state
in your workflow. To do this, you can create a Step Functions service role and add the
AdministratorAccess policy to it in the IAM console https://console.aws.amazon.com/iam/.

Set up execution roles 148

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

Role for testing flow states in Workflow Studio

You require an execution role to test flow states in Workflow Studio. Flow states are those states
that direct execution flow, such as Choice workflow state, Parallel workflow state, Map workflow

state, Pass workflow state, Wait workflow state, Succeed workflow state, or Fail workflow state.
The TestState APl doesn't work with Map or Parallel states. Use one of the following options to
create a role for testing a flow state:

» Use any role in your AWS account (recommended) - Flow states do not require any specific IAM
policies, because they don't call AWS actions or resources. Therefore, you can use any IAM role in
your AWS account.

1. In the Test state dialog box, select any role from the Execution role dropdown list.
2. If no roles appear in the dropdown list, do the following:

a. In the 1AM console https://console.aws.amazon.com/iam/, choose Roles.

b. Choose a role from the list, and copy its ARN from the role details page. You will need to
provide this ARN in the Test state dialog box.

c. In the Test state dialog box, select Enter a role ARN from the Execution role dropdown list.
d. Paste the ARN in Role ARN.

» Use a role with Administrator access - If you have permissions to create a role with full
access to all services and resources in AWS, you can use that role to test any type of state
in your workflow. To do this, you can create a Step Functions service role and add the
AdministratorAccess policy to it in the IAM console https://console.aws.amazon.com/iam/.

Configure error handling with Workflow Studio in Step Functions

You can configure error handling within the Workflow Studio visual editor. By default, when a state
reports an error, Step Functions causes the workflow execution to fail entirely. For actions and
some flow states, you can configure how Step Functions handles errors.

Even if you have configured error handling, some errors may still cause a workflow execution to
fail. For more information, see Handling errors in Step Functions workflows. In Workflow Studio,

configure error handling in the Error handling tab of the Inspector panel.

Configure error handling 149

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

Retry on errors

You can add one or more rules to action states and the Parallel workflow state flow state to retry

the task when an error occurs. These rules are called retriers. To add a retrier, choose the edit icon
in Retrier #1 box, then configure its options:

» (Optional) In the Comment field, add your comment. It will not affect the workflow, but can be
used to annotate your workflow.

» Place the cursor in the Errors field and choose an error that will trigger the retrier, or enter a
custom error name. You can choose or add multiple errors.

 (Optional) Set an Interval. This is the time in seconds before Step Functions make its first retry.
Additional retries will follow at intervals that you can configure with Max attempts and Backoff
rate.

» (Optional) Set Max attempts. This is the maximum number of retries before Step Functions will
cause the execution to fail.

 (Optional) Set the Backoff rate. This is a multiplier that determines by how much the retry
interval will increase with each attempt.

(® Note

Not all error handling options are available for all states. Lambda Invoke has one retrier
configured by default.

Catch errors

You can add one or more rules to action states and to the Parallel workflow state and Map

workflow state flow states to catch an error. These rules are called catchers. To add a catcher,
choose Add new catcher, then configure its options:

» (Optional) In the Comment field, add your comment. It will not affect the workflow, but can be
used to annotate your workflow.

» Place the cursor in Errors field and choose an error that will trigger the catcher, or enter a
custom error name. You can choose or add multiple errors.

« In the Fallback state field, choose a fallback state. This is the state that the workflow will move

to next, after an error is caught.

Configure error handling 150

AWS Step Functions Developer Guide

« (Optional) In the ResultPath field, add a ResultPath filter to add the error to the original state
input. The ResultPath must be a valid JsonPath. This will be sent to the fallback state.

Timeouts

You can configure a timeout for action states to set the maximum number of seconds your state
can run before it fails. Use timeouts to prevent stuck executions. To configure a timeout, enter the
number of seconds your state should wait before the execution fails. For more information about
timeouts, see TimeoutSeconds in Task workflow state state.

HeartbeatSeconds

You can configure a Heartbeat or periodic notification sent by your task. If you set a heartbeat
interval, and your state doesn't send heartbeat notifications in the configured intervals, the task is
marked as failed. To configure a heartbeat, set a positive, non-zero integer number of seconds. For
more information, see HeartBeatSeconds in Task workflow state state.

Using Workflow Studio in Infrastructure Composer to build Step
Functions workflows

Workflow Studio is available in Infrastructure Composer to help you design and build your
workflows. Workflow Studio in Infrastructure Composer provides a visual infrastructure as
code (l1aC) environment that makes it easy for you to incorporate workflows in your serverless
applications built using IaC tools, such as CloudFormation templates.

AWS Infrastructure Composer is a visual builder that helps you develop AWS SAM and AWS
CloudFormation templates using a simple graphical interface. With Infrastructure Composer,
you design an application architecture by dragging, grouping, and connecting AWS services in a
visual canvas. Infrastructure Composer then creates an IaC template from your design that you
can use to deploy your application with the AWS SAM Command Line Interface (AWS SAM CLI)
or CloudFormation. To learn more about Infrastructure Composer, see What is Infrastructure

Composer.

When you use Workflow Studio in Infrastructure Composer, Infrastructure Composer connects
the individual workflow steps to AWS resources and generates the resource configurations in an
AWS SAM template. Infrastructure Composer also adds the IAM permissions required for your
workflow to run. Using Workflow Studio in Infrastructure Composer, you can create prototypes of
your applications and turn them into production-ready applications.

Using Workflow Studio in Infrastructure Composer 151

https://datatracker.ietf.org/wg/jsonpath/about/
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html

AWS Step Functions Developer Guide

When you use Workflow Studio in Infrastructure Composer, you can switch back and forth between
the Infrastructure Composer canvas and Workflow Studio.

Topics

» Using Workflow Studio in Infrastructure Composer to build a serverless workflow

» Dynamically reference resources using CloudFormation definition substitutions in Workflow
Studio

« Connect service integration tasks to enhanced component cards

» Import existing projects and sync them locally

« Unavailable Workflow Studio features in AWS Infrastructure Composer

Using Workflow Studio in Infrastructure Composer to build a serverless workflow

1. Open the Infrastructure Composer console and choose Create project to create a project.

In the search field in the Resources palette, enter state machine.

Drag the Step Functions State machine resource onto the canvas.

H WD

Choose Edit in Workflow Studio to edit your state machine resource.

The following animation shows how you can switch to the Workflow Studio for editing your
state machine definition.
An animation that illustrates how you can use Workflow Studio in Infrastructure Composer.

The integration with Workflow Studio to edit state machines resources created in
Infrastructure Composer is only available for AWS: :Serverless: :StateMachine

resource. This integration is not available for templates that use the
AWS: :StepFunctions: :StateMachine resource.

Dynamically reference resources using CloudFormation definition substitutions in
Workflow Studio

In Workflow Studio, you can use CloudFormation definition substitutions in your workflow
definition to dynamically reference resources that you've defined in your laC template. You can
add placeholder substitutions to your workflow definition using the ${dollar_sign_brace}
notation and they are replaced with actual values during the CloudFormation stack creation

Using Workflow Studio in Infrastructure Composer 152

https://console.aws.amazon.com/composer/home
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html

AWS Step Functions Developer Guide

process. For more information about definition substitutions, see DefinitionSubstitutions in AWS
SAM templates.

The following animation shows how you can add placeholder substitutions for the resources in
your state machine definition.
Animation showing how to add placeholder substitutions for resources in your state machine.

Connect service integration tasks to enhanced component cards

You can connect the tasks that call optimized service integrations to enhanced component

cards in Infrastructure Composer canvas. Doing this automatically maps any placeholder
substitutions specified by the ${dollar_sign_brace} notation in your workflow definition
and the DefinitionSubstitution property for your StateMachine resource. It also adds the
appropriate AWS SAM policies for the state machine.

If you map optimized service integration tasks with standard component cards, the connection line
doesn't appear on the Infrastructure Composer canvas.

The following animation shows how you can connect an optimized task to an enhanced component
card and view the changes in Change Inspector.

Animation showing how to connect tasks and optimized service integrations.

You can't connect AWS SDK integrations in your Task state with enhanced component cards or

optimized service integrations with standard component cards. For these tasks, you can map the
substitutions in the Resource properties panel in Infrastructure Composer canvas, and add policies
in the AWS SAM template.

® Tip
Alternatively, you can also map placeholder substitutions for your state machine under
Definition Substitutions in the Resource properties panel. When you do this, you must
add the required permissions for the AWS service your Task state calls in the state machine
execution role. For information about permissions your execution role might need, see Set
up execution roles with Workflow Studio in Step Functions.

The following animation shows how you can manually update the placeholder substitution
mapping in the Resource properties panel.

Animation showing how to update placeholder substitution mapping in the resource properties
panel.

Using Workflow Studio in Infrastructure Composer 153

https://docs.aws.amazon.com/application-composer/latest/dg/reference-cards.html#reference-cards-enhanced-components
https://docs.aws.amazon.com/application-composer/latest/dg/reference-cards.html#reference-cards-enhanced-components
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-cards.html#using-composer-cards-component-intro
https://docs.aws.amazon.com/application-composer/latest/dg/using-change-inspector.html

AWS Step Functions Developer Guide

Import existing projects and sync them locally

You can open existing CloudFormation and AWS SAM projects in Infrastructure Composer to
visualize them for better understanding and modify their designs. Using Infrastructure Composer's
local sync feature, you can automatically sync and save your template and code files to your local
build machine. Using the local sync mode can compliment your existing development flows. Make
sure that your browser supports the File System Access API, which allows web applications to

read, write, and save files in your local file system. We recommend using either Google Chrome or
Microsoft Edge.

Unavailable Workflow Studio features in AWS Infrastructure Composer

When you use Workflow Studio in Infrastructure Composer, some of the Workflow Studio features
are unavailable. In addition, the APl Parameters section available in the Inspector panel panel

supports CloudFormation definition substitutions. You can add the substitutions in the Code mode
using the ${dollar_sign_brace} notation. For more information about this notation, see
DefinitionSubstitutions in AWS SAM templates.

The following list describes the Workflow Studio features that are unavailable when you use
Workflow Studio in Infrastructure Composer:

« Starter templates — Starter templates are ready-to-run sample projects that automatically create

the workflow prototypes and definitions. These templates deploys all the related AWS resources
that your project needs to your AWS account.

« Config mode - This mode lets you manage the configuration of your state machines. You can
update your state machine configurations in your IaC templates or use the Resource properties
panel in Infrastructure Composer canvas. For information about updating configurations in the
Resource properties panel, see Connect service integration tasks to enhanced component cards.

o TestState API

« Option to import or export workflow definitions from the Actions dropdown button in Workflow
Studio. Instead, from the Infrastructure Composer menu, select Open > Project folder. Make
sure that you've enabled the local sync mode to automatically save your changes in the
Infrastructure Composer canvas directly to your local machine.

» Execute button. When you use Workflow Studio in Infrastructure Composer, Infrastructure
Composer generates the laC code for your workflow. Therefore, you must first deploy the
template. Then, run the workflow in the console or through the AWS Command Line Interface
(AWS CLI).

Using Workflow Studio in Infrastructure Composer 154

https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-fsa.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html

AWS Step Functions Developer Guide

Using AWS SAM to build Step Functions workflows

You can use AWS Serverless Application Model with Step Functions to build workflows and deploy
the infrastructure you need, including Lambda functions, APIs and events, to create serverless
applications.

You can also use the AWS Serverless Application Model CLI in conjunction with the AWS Toolkit for
Visual Studio Code as part of an integrated experience to build and deploy AWS Step Functions
state machines. You can build a serverless application with AWS SAM, then build out your state
machine in the VS Code IDE. Then you can validate, package, and deploy your resources.

® Tip
To deploy a sample serverless application that starts a Step Functions workflow using
AWS SAM to your AWS account, see Module 11 - Deploy with AWS SAM of The AWS Step
Functions Workshop.

Why use Step Functions with AWS SAM?

When you use Step Functions with AWS SAM you can:

» Get started using a AWS SAM sample template.
« Build your state machine into your serverless application.

« Use variable substitution to substitute ARNs into your state machine at the time of deployment.

AWS CloudFormation supports DefinitionSubstitutions that let you add dynamic
references in your workflow definition to a value that you provide in your CloudFormation

template. You can add dynamic references by adding substitutions to your workflow definition
using the ${dollar_sign_brace} notation. You also need to define these dynamic

references in the DefinitionSubstitutions property for the StateMachine resource in

your CloudFormation template. These substitutions are replaced with actual values during the
CloudFormation stack creation process. For more information, see DefinitionSubstitutions in AWS
SAM templates.

» Specify your state machine's role using AWS SAM policy templates.

« Initiate state machine executions with APl Gateway, EventBridge events, or on a schedule within
your AWS SAM template.

Using AWS SAM 155

https://s12d.com/sfn-ws-sam
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html#cfn-stepfunctions-statemachine-definitionsubstitutions

AWS Step Functions Developer Guide

Step Functions integration with the AWS SAM specification

You can use the AWS SAM Policy Templates to add permissions to your state machine. With these

permissions, you can orchestrate Lambda functions and other AWS resources to form complex and
robust workflows.

Step Functions integration with the SAM CLI

Step Functions is integrated with the AWS SAM CLI. Use this to quickly develop a state machine
into your serverless application.

Try the Create a Step Functions state machine using AWS SAM tutorial to learn how to use AWS
SAM to create state machines.

Supported AWS SAM CLI functions include:

CLI Command Description

sam init Initializes a Serverless Application with an
AWS SAM template. Can be used with a SAM
template for Step Functions.

sam validate Validates an AWS SAM template.

sam package Packages an AWS SAM application. It creates
a ZIP file of your code and dependencies, and
then uploads it to Amazon S3. It then returns
a copy of your AWS SAM template, replacing
references to local artifacts with the Amazon
S3 location where the command uploaded the

artifacts.
sam deploy Deploys an AWS SAM application.
sam publish Publish an AWS SAM application to the

AWS Serverless Application Repository.

This command takes a packaged AWS SAM
template and publishes the application to the
specified region.

Step Functions integration with the AWS SAM specification 156

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-templates.html

AWS Step Functions Developer Guide

® Note

When using AWS SAM local, you can emulate Lambda and API Gateway locally. However,
you can't emulate Step Functions locally using AWS SAM.

DefinitionSubstitutions in AWS SAM templates

You can define state machines using CloudFormation templates with AWS SAM. Using AWS

SAM, you can define the state machine inline in the template or in a separate file. The following
AWS SAM template includes a state machine that simulates a stock trading workflow. This state
machine invokes three Lambda functions to check the price of a stock and determine whether

to buy or sell the stock. This transaction is then recorded in an Amazon DynamoDB table. The
ARNs for the Lambda functions and DynamoDB table in the following template are specified using
DefinitionSubstitutions.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: |
step-functions-stock-trader
Sample SAM Template for step-functions-stock-trader
Resources:
StockTradingStateMachine:
Type: AWS::Serverless::StateMachine
Properties:
DefinitionSubstitutions:
StockCheckerFunctionArn: !GetAtt StockCheckerFunction.Arn
StockSellerFunctionArn: !GetAtt StockSellerFunction.Azrn
StockBuyerFunctionArn: !GetAtt StockBuyerFunction.Azrn
DDBPutItem: !Sub arn:${AWS::Partition}:states:::dynamodb:putItem
DDBTable: !Ref TransactionTable
Policies:
- DynamoDBWritePolicy:
TableName: !Ref TransactionTable
LambdaInvokePolicy:
FunctionName: !Ref StockCheckerFunction
LambdaInvokePolicy:
FunctionName: !Ref StockBuyerFunction
LambdaInvokePolicy:
FunctionName: !Ref StockSellerFunction
DefinitionUri: statemachine/stock_trader.asl.json

DefinitionSubstitutions in AWS SAM templates 157

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html#cfn-stepfunctions-statemachine-definitionsubstitutions

AWS Step Functions Developer Guide

StockCheckerFunction:
Type: AWS::Serverless::Function
Properties:
CodeUri: functions/stock-checker/
Handler: app.lambdaHandler
Runtime: nodejsl8.x
Architectures:
- x86_64
StockSellerFunction:
Type: AWS::Serverless::Function
Properties:
CodeUri: functions/stock-seller/
Handler: app.lambdaHandler
Runtime: nodejsl8.x
Architectures:
- x86_64
StockBuyerFunction:
Type: AWS::Serverless::Function
Properties:
CodeUri: functions/stock-buyer/
Handler: app.lambdaHandler
Runtime: nodejsl8.x
Architectures:
- x86_64
TransactionTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
- AttributeName: id
AttributeType: S

The following code is the state machine definition in the file stock_trader.asl. json

which is used in the Create a Step Functions state machine using AWS SAM tutorial.This

state machine definition contains several DefinitionSubstitutions denoted by the
${dollar_sign_brace} notation. For example, instead of specifying a static Lambda function
ARN for the Check Stock Value task, the substitution ${StockCheckerFunctionArn}

is used. This substitution is defined in the DefinitionSubstitutions property of the template.
DefinitionSubstitutions is a map of key-value pairs for the state machine resource.

In DefinitionSubstitutions, ${StockCheckerFunctionArn} maps to the ARN of the
StockCheckerFunction resource using the CloudFormation intrinsic function ! GetAtt. When

DefinitionSubstitutions in AWS SAM templates 158

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-getatt.html

AWS Step Functions

Developer Guide

you deploy the AWS SAM template, the DefinitionSubstitutions in the template are replaced

with the actual values.

"Comment": "A state machine that does mock stock trading.",

"StartAt": "Check Stock Value",
"States": {
"Check Stock Value": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "${StockCheckerFunctionArn}"
},
"Next": "Buy or Sell?"
},
"Buy or Sell?": {
"Type": "Choice",
"Choices": [

{
"Variable": "$.stock_price",
"NumericlLessThanEquals": 50,
"Next": "Buy Stock"

}

1)

"Default": "Sell Stock"
b
"Buy Stock": {

"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",

"Parameters": {

"Payload.$": "$",

"FunctionName": "${StockBuyerFunctionArn}"
b
"Retry": [

{

"ErrorEquals": [
"Lambda.ServiceException",
"Lambda.AWSLambdaException",
"Lambda.SdkClientException",
"Lambda.TooManyRequestsException"

DefinitionSubstitutions in AWS SAM templates

159

AWS Step Functions Developer Guide

iF

"IntervalSeconds": 1,
"MaxAttempts": 3,
"BackoffRate": 2

1,
"Next": "Record Transaction"
I
"Sell Stock": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "${StockSellerFunctionArn}"
I
"Next": "Record Transaction"
I
"Record Transaction": {
"Type": "Task",
"Resource": "arn:aws:states:::dynamodb:putItem",
"Parameters": {
"TableName": "${DDBTable}",

"Item": {
"Id": {
"S.$r: "$.id”
},
"Type": {
"S.$": "$.type"
.
"Price": {
"N.$": "$.price"
},
"Quantity": {
"N.$": "$.qty"
.

"Timestamp": {
"S.$": "$.timestamp"

}I

"End": true

DefinitionSubstitutions in AWS SAM templates 160

AWS Step Functions Developer Guide

}

Next steps
You can learn more about using Step Functions with AWS SAM with the following resources:

o Complete the Create a Step Functions state machine using AWS SAM tutorial to create a state
machine with AWS SAM.

« Specify a AWS::Serverless::StateMachine resource.

« Find AWS SAM Policy Templates to use.

» Use AWS Toolkit for Visual Studio Code with Step Functions.

« Review the AWS SAM CLI reference to learn more about the features available in AWS SAM.

You can also design and build your workflows in infrastructure as code (l1aC) using visual builders,
such as Workflow Studio in Infrastructure Composer. For more information, see Using Workflow
Studio in Infrastructure Composer to build Step Functions workflows.

Using AWS CloudFormation to create a workflow in Step
Functions

In this tutorial, you will create a AWS Lambda function using AWS CloudFormation. You'll use
the AWS CloudFormation console and a YAML template to create a stack (IAM roles, the Lambda
function, and the state machine). Then, you'll use the Step Functions console to start the state
machine execution.

For more information, see Working with CloudFormation Templates and the

AWS: :StepFunctions: :StateMachine resource in the AWS CloudFormation User Guide.

Step 1: Set up your AWS CloudFormation template

Before you use the example templates, you should understand how to declare the different parts

of an AWS CloudFormation template.
To create an 1AM role for Lambda

Define the trust policy associated with the IAM role for the Lambda function. The following
examples define a trust policy using either YAML or JSON.

Next steps 161

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-templates.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/stepfunctions.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-command-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html

AWS Step Functions Developer Guide

YAML

LambdaExecutionRole:
Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"

Statement:
- Effect: Allow
Principal:

Service: lambda.amazonaws.com
Action: "sts:AssumeRole"

JSON

"LambdaExecutionRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
1,
"Action": "sts:AssumeRole"
}

To create a Lambda function

Define the following properties for a Lambda function that will print the message Hello World.

/A Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

Step 1: Set up your AWS CloudFormation template 162

AWS Step Functions Developer Guide

YAML

MyLambdaFunction:
Type: "AWS::Lambda::Function"
Properties:
Handler: "index.handler"
Role: !GetAtt [LambdaExecutionRole, Arn]
Code:
ZipFile: |
exports.handler = (event, context, callback) => {
callback(null, "Hello World!");
};
Runtime: "nodejsl12.x"
Timeout: "25"

JSON

"MyLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Handler": "index.handler",
"Role": {
"Fn::GetAtt": [
"LambdaExecutionRole",
"Arn"

.
"Code": {
"ZipFile": "exports.handler = (event, context, callback) =>
{\n callback(null, \"Hello World!\");\n};\n"

Iy

"Runtime": "nodejsl2.x",
"Timeout": "25"

Iy

To create an 1AM role for the state machine execution

Define the trust policy associated with the IAM role for the state machine execution.

Step 1: Set up your AWS CloudFormation template 163

AWS Step Functions Developer Guide

YAML

StatesExecutionRole:
Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Principal:
Service:
- !Sub states.${AWS::Region}.amazonaws.com
Action: "sts:AssumeRole"
Path: "/"
Policies:
- PolicyName: StatesExecutionPolicy
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Action:
- "lambda:InvokeFunction"
Resource: "*"

JSON

"StatesExecutionRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": [
{
"Fn::Sub": "states.
${AWS: :Region}.amazonaws.com"

iy

"Action": "sts:AssumeRole"

Step 1: Set up your AWS CloudFormation template 164

AWS Step Functions

Developer Guide

}
]
},
"Path": "/",
"Policies": [
{
"PolicyName": "StatesExecutionPolicy",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"lambda:InvokeFunction"
1,
"Resource": "*"
}
]
}
}
]
}
},
To create a Lambda state machine
Define the Lambda state machine.
YAML
MyStateMachine:
Type: "AWS::StepFunctions::StateMachine"
Properties:
DefinitionString:
!Sub
= [l=
{
"Comment": "A Hello World example using an AWS Lambda function",
"StartAt": "HelloWorld",
"States": {

"HelloWorld": {

"Type":

"Task",

Step 1: Set up your AWS CloudFormation template

165

AWS Step Functions Developer Guide

"Resource": "${lambdaArn}",
"End": true

}
- {lambdaArn: !GetAtt [MyLambdaFunction, Arn]}

RoleArn: !GetAtt [StatesExecutionRole, Arn]

JSON

"MyStateMachine": {
"Type": "AWS::StepFunctions::StateMachine",
"Properties": {
"DefinitionString": {
"Fn::Sub": [
"{\n \"Comment\": \"A Hello World example using an
AWS Lambda function\",\n \"StartAt\": \"HelloWorld\",\n \"States\": {\n
\"HelloWorld\": {\n \"Type\": \"Task\",\n \"Resource\": \"${lambdaArn}\",
\n \"End\": true\n N\n I\n}",
{
"lambdaArn": {
"Fn::GetAtt": [

"MyLambdaFunction",
"Arn"
]
}
}
]
1,
"RoleArn": {
"Fn::GetAtt": [
"StatesExecutionRole",
"Arn"
]
}

Step 1: Set up your AWS CloudFormation template 166

AWS Step Functions Developer Guide

Step 2: Use the AWS CloudFormation template to create a Lambda
State Machine

Once you understand the components of the AWS CloudFormation template, you can put them
together and use the template to create an AWS CloudFormation stack.

To create the Lambda state machine

1. Copy the following example data to a file named MyStateMachine.yaml for the YAML
example, or M\yStateMachine. json for JSON.

YAML

AWSTemplateFormatVersion: "2010-09-09"
Description: "An example template with an IAM role for a Lambda state
machine."
Resources:
LambdaExecutionRole:
Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"

Statement:
- Effect: Allow
Principal:

Service: lambda.amazonaws.com
Action: "sts:AssumeRole"

MyLambdaFunction:
Type: "AWS::Lambda::Function"
Properties:

Handler: "index.handler"
Role: !GetAtt [LambdaExecutionRole, Arn]
Code:
ZipFile: |
exports.handler = (event, context, callback) => {
callback(null, "Hello World!");
};
Runtime: "nodejsl2.x"
Timeout: "25"

StatesExecutionRole:

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 167

AWS Step Functions Developer Guide

Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Principal:
Service:
- !Sub states.${AWS::Region}.amazonaws.com
Action: "sts:AssumeRole"
Path: "/"
Policies:
- PolicyName: StatesExecutionPolicy
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Action:
- "lambda:InvokeFunction"
Resource: "*"

MyStateMachine:
Type: "AWS::StepFunctions::StateMachine"
Properties:
DefinitionString:
1Sub
- -
{
"Comment": "A Hello World example using an AWS Lambda function",
"StartAt": "HelloWorld",
"States": {
"HelloWorld": {
"Type": "Task",
"Resource": "${lambdaArn}",
"End": true

}
- {lambdaArn: !GetAtt [MyLambdaFunction, Arn]}
RoleArn: !GetAtt [StatesExecutionRole, Arn]

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 168

AWS Step Functions Developer Guide

JSON

"AWSTemplateFormatVersion": "2010-09-09",
"Description": "An example template with an IAM role for a Lambda state
machine.",
"Resources": {
"LambdaExecutionRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}

},
"MyLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Handler": "index.handler",
"Role": {
"Fn::GetAtt": [
"LambdaExecutionRole",
"Arn"

},
"Code": {
"ZipFile": "exports.handler = (event, context, callback)
=> {\n callback(null, \"Hello World!\");\n};\n"
},
"Runtime": "nodejs12.x",
"Timeout": "25"

+

"StatesExecutionRole": {

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 169

AWS Step Functions

Developer Guide

"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": [

{
"Fn::Sub": "states.
${AWS: :Region}.amazonaws.com"
}
]
},
"Action": "sts:AssumeRole"
}
]
},
"Path": "/",
"Policies": [
{
"PolicyName": "StatesExecutionPolicy",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"lambda:InvokeFunction"
1,
"Resource": "*"
}
]
}
}
]

},
"MyStateMachine": {
"Type": "AWS::StepFunctions::StateMachine",
"Properties": {
"DefinitionString": {
"Fn::Sub": [

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine

170

AWS Step Functions Developer Guide

"{\n \"Comment\": \"A Hello World example using
an AWS Lambda function\",\n \"StartAt\": \"HelloWorld\",\n \"States\":

{\n \"HelloWorld\": {\n \"Type\": \"Task\",\n \"Resource\":
\"${lambdaArn}\",\n \"End\": true\n N\n I\n}",
{

"lambdaArn": {
"Fn::GetAtt": [

"MyLambdaFunction",
"Arn"
]
}
}
]
.
"RoleArn": {
"Fn::GetAtt": [
"StatesExecutionRole",
"Azn"
]
}

}

2. Open the AWS CloudFormation console and choose Create Stack.

3. On the Select Template page, choose Upload a template to Amazon S3. Choose your
MyStateMachine file, and then choose Next.

4. On the Specify Details page, for Stack name, enter MyStateMachine, and then choose Next.
5. On the Options page, choose Next.

6. On the Review page, choose | acknowledge that AWS CloudFormation might create IAM
resources. and then choose Create.

AWS CloudFormation begins to create the MyStateMachine stack and displays the
CREATE_IN_PROGRESS status. When the process is complete, AWS CloudFormation displays
the CREATE_COMPLETE status.

7. (Optional) To display the resources in your stack, select the stack and choose the Resources
tab.

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 171

https://console.aws.amazon.com/cloudformation/home

AWS Step Functions Developer Guide

Step 3: Start a State Machine execution
After you create your Lambda state machine, you can start its execution.

To start the state machine execution

1. Open the Step Functions console and choose the name of the state machine that you created
using AWS CloudFormation.

2. Onthe MyStateMachine-ABCDEFGHIJ1K page, choose New execution.

The New execution page is displayed.

3. (Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

4. Choose Start Execution.

A new execution of your state machine starts, and a new page showing your running execution
is displayed.

5. (Optional) In the Execution Details, review the Execution Status and the Started and Closed
timestamps.

6. To view the results of your execution, choose Output.

Using AWS CDK to create a Standard workflow in Step
Functions

You can use the AWS Cloud Development Kit (AWS CDK) Infrastructure as Code (IAC) framework, to
create an AWS Step Functions state machine that contains an AWS Lambda function.

You will define AWS infrastructure using one of the CDK's supported languages. After you define
your infrastructure, you will synthesize your app to an AWS CloudFormation template and deploy it
to your AWS account.

Step 3: Start a State Machine execution 172

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

You will use this method to define a Step Functions state machine containing a Lambda function,
and then run the state machine from the use the Step Functions AWS Management Console.

Before you begin this tutorial, you must set up your AWS CDK development environment as
described in Getting Started With the AWS CDK - Prerequisites in the AWS Cloud Development Kit
(AWS CDK) Developer Guide. Then, install the AWS CDK with the following command at the AWS
CLI:

npm install -g aws-cdk

This tutorial produces the same result as the section called “Create a state machine with
CloudFormation”. However, in this tutorial, the AWS CDK doesn't require you to create any IAM
roles; the AWS CDK does it for you. The AWS CDK version also includes a Succeed workflow state
step to illustrate how to add additional steps to your state machine.

® Tip
To deploy a sample serverless application that starts a Step Functions workflow using AWS

CDK with TypeScript to your AWS account, see Module 10 - Deploy with AWS CDK of The
AWS Step Functions Workshop.

Step 1: Set up your AWS CDK project

1. In your home directory, or another directory if you prefer, run the following command to
create a directory for your new AWS CDK app.

/A Important

Be sure to name the directory step. The AWS CDK application template uses the name
of the directory to generate names for source files and classes. If you use a different
name, your app will not match this tutorial.

TypeScript

mkdir step && cd step

Step 1: Set up your AWS CDK project 173

https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html#getting_started_prerequisites
https://s12d.com/sfn-ws-cdk

AWS Step Functions Developer Guide

JavaScript

mkdir step && cd step
Python

mkdir step && cd step
Java

mkdir step && cd step

CH#

Make sure you've installed .NET version 6.0 or higher. For information, see Supported
versions.

mkdir step && cd step

2. Initialize the app by using the cdk init command. Specify the desired template ("app") and
programming language as shown in the following examples.

TypeScript

cdk init --language typescript
JavaScript

cdk init --language javascript
Python

cdk init --language python

After the project is initialized, activate the project's virtual environment and install the AWS
CDK's baseline dependencies.

source .venv/bin/activate

Step 1: Set up your AWS CDK project 174

https://dotnet.microsoft.com/en-us/download/dotnet
https://dotnet.microsoft.com/en-us/download/dotnet

AWS Step Functions Developer Guide

python -m pip install -r requirements.txt
Java

cdk init --language java
C#

cdk init --language cshazrp

Step 2: Use AWS CDK to create a state machine

First, we'll present the individual pieces of code that define the Lambda function and the Step
Functions state machine. Then, we'll explain how to put them together in your AWS CDK app.
Finally, you'll see how to synthesize and deploy these resources.

To create a Lambda function
The following AWS CDK code defines the Lambda function, providing its source code inline.
TypeScript

const helloFunction = new lambda.Function(this, 'MyLambdaFunction', {
code: lambda.Code.fromInline("
exports.handler = (event, context, callback) => {
callback(null, "Hello World!");
};
),
runtime: lambda.Runtime.NODEJS_18_X,
handler: "index.handler",
timeout: cdk.Duration.seconds(3)

1)
JavaScript

const helloFunction = new lambda.Function(this, 'MyLambdaFunction', {
code: lambda.Code.fromInline("
exports.handler = (event, context, callback) => {
callback(null, "Hello World!");
};

Step 2: Use AWS CDK to create a state machine 175

AWS Step Functions Developer Guide

)y
runtime: lambda.Runtime.NODEJS_18_X,
handler: "index.handler",
timeout: cdk.Duration.seconds(3)

1)

Python

hello_function = lambda_.Function(

self, "MyLambdaFunction",

code=lambda_.Code.from_inline("""

exports.handler = (event, context, callback) => {
callback(null, "Hello World!");
),
runtime=lambda_.Runtime.NODEJS_18_X,
handler="index.handler",
timeout=Duration.seconds(25))

Java

final Function helloFunction = Function.Builder.create(this, "MyLambdaFunction")
.code(Code.fromInline(
"exports.handler = (event, context, callback) => { callback(null,
'Hello World!');1}"))
.runtime(Runtime.NODEJS_18_X)
.handler("index.handlexr")
.timeout(Duration.seconds(25))
.build();

CH#

var helloFunction = new Function(this, "MyLambdaFunction", new FunctionProps
{
Code = Code.FromInline(@""
exports.handler = (event, context, callback) => {
callback(null, 'Hello World!');

),
Runtime = Runtime.NODEJS_12_X,
Handler = "index.handler",

Timeout = Duration.Seconds(25)

1)

Step 2: Use AWS CDK to create a state machine

176

AWS Step Functions Developer Guide

You can see in this short example code:

» The function's logical name, MyLambdaFunction.

» The source code for the function, embedded as a string in the source code of the AWS CDK app.

« Other function attributes, such as the runtime to be used (Node 18.x), the function's entry point,

and a timeout.

To create a state machine

Our state machine has two states: a Lambda function task, and a Succeed workflow state state.

The function requires that we create a Step Functions the section called “Task” that invokes our

function. This Task state is used as the first step in the state machine. The success state is added
to the state machine using the Task state's next () method. The following code first invokes the
function named MyLambdaTask, then uses the next () method to define a success state named
GreetedWorld.

TypeScript

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
definition: new tasks.LambdaInvoke(this, "MyLambdaTask", {
lambdaFunction: helloFunction
}) .next(new sfn.Succeed(this, "GreetedWorld"))
3

JavaScript

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
definition: new tasks.LambdaInvoke(this, "MyLambdaTask", {
lambdaFunction: helloFunction
}) .next(new sfn.Succeed(this, "GreetedwWorld"))

1)
Python

state_machine = sfn.StateMachine(
self, "MyStateMachine",
definition=tasks.LambdaInvoke(
self, "MyLambdaTask",
lambda_function=hello_function)

Step 2: Use AWS CDK to create a state machine

177

AWS Step Functions Developer Guide

.next(sfn.Succeed(self, "GreetedWorld")))
Java

final StateMachine stateMachine = StateMachine.Builder.create(this,
"MyStateMachine")
.definition(LambdaInvoke.Builder.create(this, "MyLambdaTask")
.lambdaFunction(helloFunction)
.build()
.next(new Succeed(this, "GreetedWorld")))
.build();

CH#

var stateMachine = new StateMachine(this, "MyStateMachine", new StateMachineProps {
DefinitionBody = DefinitionBody.FromChainable(new LambdaInvoke(this,
"MyLambdaTask", new LambdaInvokeProps
{

LambdaFunction = helloFunction

)
.Next(new Succeed(this, "GreetedWorld")))

1)

To build and deploy the AWS CDK app

In your newly created AWS CDK project, edit the file that contains the stack’s definition to look like
the following example code. You'll recognize the definitions of the Lambda function and the Step
Functions state machine from previous sections.

1. Update the stack as shown in the following examples.
TypeScript

Update 1ib/step-stack. ts with the following code.

import * as cdk from 'aws-cdk-1lib';

import * as lambda from 'aws-cdk-lib/aws-lambda';

import * as sfn from 'aws-cdk-lib/aws-stepfunctions';

import * as tasks from 'aws-cdk-lib/aws-stepfunctions-tasks';

export class StepStack extends cdk.Stack {

Step 2: Use AWS CDK to create a state machine 178

AWS Step Functions Developer Guide

constructor(app: cdk.App, id: string) {
super(app, id);

const helloFunction = new lambda.Function(this, 'MyLambdaFunction', {
code: lambda.Code.fromInline("
exports.handler = (event, context, callback) => {
callback(null, "Hello World!");
I
),
runtime: lambda.Runtime.NODEJS_18_X,
handler: "index.handler",
timeout: cdk.Duration.seconds(3)

1)

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
definition: new tasks.LambdaInvoke(this, "MyLambdaTask", {
lambdaFunction: helloFunction
}) .next(new sfn.Succeed(this, "GreetedWorld"))

1)

JavaScript

Update 1ib/step-stack. js with the following code.

*

import as cdk from 'aws-cdk-1lib';
import
import * as sfn from 'aws-cdk-lib/aws-stepfunctions';

import * as tasks from 'aws-cdk-lib/aws-stepfunctions-tasks';

*

as lambda from 'aws-cdk-lib/aws-lambda’';

export class StepStack extends cdk.Stack {
constructor(app, id) {
super(app, id);

const helloFunction = new lambda.Function(this, 'MyLambdaFunction', {
code: lambda.Code.fromInline("
exports.handler = (event, context, callback) => {
callback(null, "Hello World!");
¥
),
runtime: lambda.Runtime.NODEJS_18_X,
handler: "index.handler",

Step 2: Use AWS CDK to create a state machine 179

AWS Step Functions Developer Guide

timeout: cdk.Duration.seconds(3)

1)

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine’', {
definition: new tasks.LambdaInvoke(this, "MyLambdaTask", {
lambdaFunction: helloFunction
}) .next(new sfn.Succeed(this, "GreetedWorld"))
1)

Python

Update step/step_stack.py with the following code.

from aws_cdk import (
Duration,
Stack,
aws_stepfunctions as sfn,
aws_stepfunctions_tasks as tasks,
aws_lambda as lambda_

)

class StepStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

hello_function = lambda_.Function(

self, "MyLambdaFunction",

code=lambda_.Code.from_inline("""

exports.handler = (event, context, callback) => {
callback(null, "Hello World!");
),
runtime=lambda_.Runtime.NODEJS_18_X,
handler="index.handler",
timeout=Duration.seconds(25))

state_machine = sfn.StateMachine(
self, "MyStateMachine",
definition=tasks.LambdaInvoke(
self, "MyLambdaTask",
lambda_function=hello_function)
.next(sfn.Succeed(self, "GreetedWorld")))

Step 2: Use AWS CDK to create a state machine 180

AWS Step Functions Developer Guide

Java

Update strc/main/java/com.myorg/StepStack. java with the following code.

package com.myorg;

import software.constructs.Construct;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.Duration;

import software.amazon.awscdk.services.lambda.Code;

import software.amazon.awscdk.services.lambda.Function;

import software.amazon.awscdk.services.lambda.Runtime;

import software.amazon.awscdk.services.stepfunctions.StateMachine;
import software.amazon.awscdk.services.stepfunctions.Succeed;

import software.amazon.awscdk.services.stepfunctions.tasks.LambdaInvoke;

public class StepStack extends Stack {
public StepStack(final Construct scope, final String id) {
this(scope, id, null);

public StepStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

final Function helloFunction = Function.Builder.create(this,

"MyLambdaFunction™)

.code(Code.fromInline(

"exports.handler = (event, context, callback) =>

{ callback(null, 'Hello World!');1}"))

.runtime(Runtime.NODEJS_18_X)

.handler("index.handler")

.timeout(Duration.seconds(25))

.build();

final StateMachine stateMachine = StateMachine.Builder.create(this,
"MyStateMachine")
.definition(LambdaInvoke.Builder.create(this, "MyLambdaTask")
.lambdaFunction(helloFunction)
.build()
.next(new Succeed(this, "GreetedWorld")))
.build();

Step 2: Use AWS CDK to create a state machine 181

AWS Step Functions

Developer Guide

}

CH

Update src/Step/StepStack.cs with the following code.

using Amazon.CDK;

using Constructs;

using Amazon.CDK.AWS.Lambda;

using Amazon.CDK.AWS.StepFunctions;

using Amazon.CDK.AWS.StepFunctions.Tasks;

namespace Step

{
public class StepStack : Stack

{

internal StepStack(Construct scope, string id, IStackProps props

null) : base(scope, id, props)
{

var helloFunction = new Function(this, "MyLambdaFunction", new

FunctionProps

{

Code = Code.FromInline(@"exports.handler = (event, context,

callback) => {
callback(null, 'Hello World!');

),
Runtime = Runtime.NODEJS_18_X,
Handler = "index.handler",
Timeout = Duration.Seconds(25)
3
var stateMachine = new StateMachine(this, "MyStateMachine", new
StateMachineProps
{

DefinitionBody = DefinitionBody.FromChainable(new
LambdaInvoke(this, "MyLambdaTask", new LambdaInvokeProps
{

LambdaFunction = helloFunction

1)
.Next(new Succeed(this, "GreetedWorld")))

1)

Step 2: Use AWS CDK to create a state machine

182

AWS Step Functions Developer Guide

}

2. Save the source file, and then run the cdk synth command in the app's main directory.

AWS CDK runs the app and synthesizes an AWS CloudFormation template from it. AWS CDK
then displays the template.

® Note

If you used TypeScript to create your AWS CDK project, running the cdk synth
command may return the following error.

TSError: # Unable to compile TypeScript:
bin/step.ts:7:33 - error TS2554: Expected 2 arguments, but got 3.

Modify the bin/step. ts file as shown in the following example to resolve this error.

#!/usr/bin/env node

import 'source-map-support/register’;

import * as cdk from 'aws-cdk-1lib';

import { StepStack } from '../lib/step-stack’;

const app = new cdk.App();

new StepStack(app, 'StepStack');
app.synth();

3. To deploy the Lambda function and the Step Functions state machine to your AWS account,
issue cdk deploy. You'll be asked to approve the IAM policies the AWS CDK has generated.

Step 3: Start a state machine execution
After you create your state machine, you can start its execution.

To start the state machine execution

1. Open the Step Functions console and choose the name of the state machine that you created
using AWS CDK.

2. On the state machine page, choose Start execution.

Step 3: Start a state machine execution 183

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

The Start execution dialog box is displayed.

3. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

4. Choose Start Execution.

Your state machine's execution starts, and a new page showing your running execution is
displayed.

5. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,
and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution details overview.

Step 4: Clean Up

After you've tested your state machine, we recommend that you remove both your state machine
and the related Lambda function to free up resources in your AWS account. Run the cdk destroy
command in your app's main directory to remove your state machine.

Next steps

To learn more about developing AWS infrastructure using AWS CDK, see the AWS CDK Developer
Guide.

For information about writing AWS CDK apps in your language of choice, see:

Step 4: Clean Up 184

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html

AWS Step Functions Developer Guide

TypeScript

Working with AWS CDK in TypeScript

JavaScript

Working with AWS CDK in JavaScript

Python

Working with AWS CDK in Python

Java

Working with AWS CDK in Java
C#

Working with AWS CDK in C#

For more information about the AWS Construct Library modules used in this tutorial, see the
following AWS CDK API Reference overviews:

e aws-lambda

» aws-stepfunctions

» aws-stepfunctions-tasks

Using AWS CDK to create an Express workflow in Step
Functions

In this tutorial, you learn how to create an APl Gateway REST API with a synchronous express
state machine as the backend integration, using the AWS Cloud Development Kit (AWS CDK)
Infrastructure as Code (IAC) framework.

You will use the StepFunctionsRestApi construct to connect the State Machine to the API
Gateway. The StepFunctionsRestApi construct will set up a default input/output mapping and
the API Gateway REST API, with required permissions and an HTTP “ANY"” method.

With AWS CDK is an Infrastructure as Code (IAC) framework, you define AWS infrastructure using
a programming language. You define an app in one of the CDK's supported languages, synthesize

Using CDK to create an Express workflow 185

https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-typescript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-javascript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-java.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-csharp.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_stepfunctions-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_stepfunctions_tasks-readme.html

AWS Step Functions Developer Guide

the code into an AWS CloudFormation template, and then deploy the infrastructure to your AWS
account.

You will use AWS CloudFormation to define an APl Gateway REST API, which is integrated with
Synchronous Express State Machine as the backend, then use the AWS Management Console to
initiate execution.

Before starting this tutorial, set up your AWS CDK development environment as described in
Getting Started With the AWS CDK - Prerequisites, then install the AWS CDK by issuing:

npm install -g aws-cdk

Step 1: Set Up Your AWS CDK Project
First, create a directory for your new AWS CDK app and initialize the project.
TypeScript

mkdir stepfunctions-rest-api

cd stepfunctions-rest-api
cdk init --language typescript

JavaScript

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language javascript

Python

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language python

After the project has been initialized, activate the project's virtual environment and install the
AWS CDK's baseline dependencies.

source .venv/bin/activate
python -m pip install -r requirements.txt

Step 1: Set Up Your AWS CDK Project 186

https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html#getting_started_prerequisites

AWS Step Functions Developer Guide

Java

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language java

CH#

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language csharp

Go

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language go

® Note

Be sure to name the directory stepfunctions-rest-api. The AWS CDK application
template uses the name of the directory to generate names for source files and classes. If
you use a different name, your app will not match this tutorial.

Now install the construct library modules for AWS Step Functions and Amazon API Gateway.

TypeScript

npm install @aws-cdk/aws-stepfunctions @aws-cdk/aws-apigateway
JavaScript

npm install @aws-cdk/aws-stepfunctions aws-cdk/aws-apigateway
Python

python -m pip install aws-cdk.aws-stepfunctions

Step 1: Set Up Your AWS CDK Project 187

AWS Step Functions Developer Guide

python -m pip install aws-cdk.aws-apigateway

Java

Edit the project's pom. xml to add the following dependencies inside the existing
<dependencies> container.

<dependency>
<groupId>software.amazon.awscdk</groupId>
<artifactId>stepfunctions</artifactId>
<version>${cdk.version}</version>

</dependency>

<dependency>
<groupId>software.amazon.awscdk</groupId>
<artifactId>apigateway</artifactId>
<version>${cdk.version}</version>

</dependency>

Maven automatically installs these dependencies the next time you build your app. To build,
issue mvn compile or use your Java IDE's Build command.

C#

dotnet add src/StepfunctionsRestApi package Amazon.CDK.AWS.Stepfunctions
dotnet add src/StepfunctionsRestApi package Amazon.CDK.AWS.APIGateway

You may also install the indicated packages using the Visual Studio NuGet GUI, available via
Tools > NuGet Package Manager > Manage NuGet Packages for Solution.

Once you have installed the modules, you can use them in your AWS CDK app by importing the
following packages.

TypeScript

@aws-cdk/aws-stepfunctions
@aws-cdk/aws-apigateway

JavaScript

@aws-cdk/aws-stepfunctions
@aws-cdk/aws-apigateway

Step 1: Set Up Your AWS CDK Project

188

AWS Step Functions Developer Guide

Python

aws_cdk.aws_stepfunctions
aws_cdk.aws_apigateway

Java

software.amazon.awscdk.services.apigateway.StepFunctionsRestApi
software.amazon.awscdk.services.stepfunctions.Pass
software.amazon.awscdk.services.stepfunctions.StateMachine
software.amazon.awscdk.services.stepfunctions.StateMachineType

CH#

Amazon.CDK.AWS.StepFunctions
Amazon.CDK.AWS.APIGateway

Go

Add the following to import inside stepfunctions-rest-api.go.

"github.com/aws/aws-cdk-go/awscdk/awsapigateway"
"github.com/aws/aws-cdk-go/awscdk/awsstepfunctions"

Step 2: Use the AWS CDK to create an APl Gateway REST API with
Synchronous Express State Machine backend integration

First, we'll present the individual pieces of code that define the Synchronous Express State Machine
and the API Gateway REST API, then explain how to put them together into your AWS CDK app.
Then you'll see how to synthesize and deploy these resources.

® Note

The State Machine that we will show here will be a simple State Machine with a Pass state.

To create an Express State Machine

This is the AWS CDK code that defines a simple state machine with a Pass state.

Step 2: Use the AWS CDK to create an APl Gateway REST API with Synchronous Express State Machine 189
backend integration

AWS Step Functions Developer Guide

TypeScript

const machineDefinition = new stepfunctions.Pass(this, 'PassState', {
result: {value:"Hello!"},

1)

const stateMachine = new stepfunctions.StateMachine(this, 'MyStateMachine', {
definition: machineDefinition,
stateMachineType: stepfunctions.StateMachineType.EXPRESS,

1);

JavaScript

const machineDefinition = new sfn.Pass(this, 'PassState', {
result: {value:"Hello!"},

1)

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
definition: machineDefinition,
stateMachineType: stepfunctions.StateMachineType.EXPRESS,

});

Python

machine_definition = sfn.Pass(self, "PassState",
result = sfn.Result("Hello"))

state_machine = sfn.StateMachine(self, 'MyStateMachine’,
definition = machine_definition,
state_machine_type = sfn.StateMachineType.EXPRESS)

Java

Pass machineDefinition = Pass.Builder.create(this, '"PassState")
.result(Result.fromString("Hello"))
.build();

StateMachine stateMachine = StateMachine.Builder.create(this, "MyStateMachine")
.definition(machineDefinition)
.stateMachineType(StateMachineType.EXPRESS)
Lbuild();

Step 2: Use the AWS CDK to create an APl Gateway REST API with Synchronous Express State Machine 190
backend integration

AWS Step Functions Developer Guide

CH#

Go

var machineDefinition = new Pass(this, "PassState", new PassProps

Result = Result.FromString("Hello")
1)

var stateMachine = new StateMachine(this, "MyStateMachine", new StateMachineProps

Definition = machineDefinition,
StateMachineType = StateMachineType.EXPRESS
1)

var machineDefinition = awsstepfunctions.NewPass(stack, jsii.String("PassState"),
&awsstepfunctions.PassProps

{

Result: awsstepfunctions.NewResult(jsii.String("Hello")),

1)

var stateMachine = awsstepfunctions.NewStateMachine(stack,
jsii.String("StateMachine"), &awsstepfunctions.StateMachineProps
{

Definition: machineDefinition,

StateMachineType: awsstepfunctions.StateMachineType_EXPRESS,
b

You can see in this short snippet:

The machine definition named PassState, which is a Pass State.
The State Machine's logical name, MyStateMachine.
The machine definition is used as the State Machine definition.

The State Machine Type is set as EXPRESS because StepFunctionsRestApi will only allow a

Synchronous Express state machine.

Step 2: Use the AWS CDK to create an APl Gateway REST APl with Synchronous Express State Machine 191
backend integration

AWS Step Functions Developer Guide

To create the APl Gateway REST API using StepFunctionsRestApi construct

We will use StepFunctionsRestApi construct to create the APl Gateway REST API with required
permissions and default input/output mapping.

TypeScript

const api = new apigateway.StepFunctionsRestApi(this,
'StepFunctionsRestApi', { stateMachine: stateMachine });

JavaScript

const api = new apigateway.StepFunctionsRestApi(this,
'StepFunctionsRestApi', { stateMachine: stateMachine });

Python

api = apigw.StepFunctionsRestApi(self, "StepFunctionsRestApi",
state_machine = state_machine)

Java

StepFunctionsRestApi api = StepFunctionsRestApi.Builder.create(this,
"StepFunctionsRestApi")
.stateMachine(stateMachine)

.build();
C#
var api = new StepFunctionsRestApi(this, "StepFunctionsRestApi", new
StepFunctionsRestApiProps
{
StateMachine = stateMachine
});
Go
awsapigateway.NewStepFunctionsRestApi(stack, jsii.String("StepFunctionsRestApi"),
&awsapigateway.StepFunctionsRestApiProps
{
Step 2: Use the AWS CDK to create an APl Gateway REST APl with Synchronous Express State Machine 192

backend integration

AWS Step Functions Developer Guide

StateMachine = stateMachine,

1)

To build and deploy the AWS CDK app

In the AWS CDK project you created, edit the file containing the definition of the stack to look like
the code below. You'll recognize the definitions of the Step Functions state machine and the API
Gateway from above.

TypeScript

Update lib/stepfunctions-rest-api-stack.ts to read as follows.

import * as cdk from 'aws-cdk-1lib';
import * as stepfunctions from 'aws-cdk-1lib/aws-stepfunctions'
import * as apigateway from 'aws-cdk-lib/aws-apigateway';

export class StepfunctionsRestApiStack extends cdk.Stack {
constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
super(scope, id, props);

const machineDefinition = new stepfunctions.Pass(this, 'PassState', {
result: {value:"Hello!"},

1)

const stateMachine = new stepfunctions.StateMachine(this, 'MyStateMachine', {
definition: machineDefinition,
stateMachineType: stepfunctions.StateMachineType.EXPRESS,

1)

const api = new apigateway.StepFunctionsRestApi(this,
'StepFunctionsRestApi', { stateMachine: stateMachine });

JavaScript

Update 1ib/stepfunctions-rest-api-stack. js to read as follows.

const cdk = require('eaws-cdk/core');
const stepfunctions = require('e@aws-cdk/aws-stepfunctions');
const apigateway = require('@aws-cdk/aws-apigateway');

Step 2: Use the AWS CDK to create an APl Gateway REST API with Synchronous Express State Machine 193
backend integration

AWS Step Functions

Developer Guide

clas

modu

Python

s StepfunctionsRestApiStack extends cdk.Stack {

constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {

super(scope, id, props);

const machineDefinition = new stepfunctions.Pass(this, "PassState",
result: {value:"Hello!"},

D

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine’', {
definition: machineDefinition,
stateMachineType: stepfunctions.StateMachineType.EXPRESS,

1);

const api = new apigateway.StepFunctionsRestApi(this,
'StepFunctionsRestApi', { stateMachine: stateMachine });

le.exports = { StepStack }

{

Update stepfunctions_rest_api/stepfunctions_rest_api_stack.py toread as

follows.

from
from
from
from

clas

aws_cdk import App, Stack

constructs import Construct

aws_cdk import aws_stepfunctions as sfn
aws_cdk import aws_apigateway as apigw

s StepfunctionsRestApiStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:

super().__init_ (scope, construct_id, **kwargs)

machine_definition = sfn.Pass(self, "PassState",
result = sfn.Result("Hello"))

state_machine = sfn.StateMachine(self, 'MyStateMachine’,
definition = machine_definition,

Step 2: Use the AWS CDK to create an APl Gateway REST APl with Synchronous Express State Machine
backend integration

194

AWS Step Functions Developer Guide

state_machine_type = sfn.StateMachineType.EXPRESS)
api = apigw.StepFunctionsRestApi(self,

"StepFunctionsRestApi",
state_machine = state_machine)

Java

Update stc/main/java/com.myorg/StepfunctionsRestApiStack. java to read as

follows.

package com.myorg;

import software.amazon.awscdk.core.Construct;

import software.amazon.awscdk.core.Stack;

import software.amazon.awscdk.core.StackProps;

import software.amazon.awscdk.services.stepfunctions.Pass;

import software.amazon.awscdk.services.stepfunctions.StateMachine;
import software.amazon.awscdk.services.stepfunctions.StateMachineType;
import software.amazon.awscdk.services.apigateway.StepFunctionsRestApi;

public class StepfunctionsRestApiStack extends Stack {
public StepfunctionsRestApiStack(final Construct scope, final String id) {
this(scope, id, null);

public StepfunctionsRestApiStack(final Construct scope, final String id, final

StackProps props) {
super(scope, id, props);

Pass machineDefinition = Pass.Builder.create(this, '"PassState")
.result(Result.fromString("Hello"))
.build();

StateMachine stateMachine = StateMachine.Builder.create(this,
"MyStateMachine")
.definition(machineDefinition)
.stateMachineType(StateMachineType.EXPRESS)
.build();

StepFunctionsRestApi api = StepFunctionsRestApi.Builder.create(this,
"StepFunctionsRestApi")

Step 2: Use the AWS CDK to create an APl Gateway REST APl with Synchronous Express State Machine
backend integration

195

AWS Step Functions Developer Guide

.stateMachine(stateMachine)
.build();

CH#

Update src/StepfunctionsRestApi/StepfunctionsRestApiStack.cs toread as
follows.

using Amazon.CDK;
using Amazon.CDK.AWS.StepFunctions;
using Amazon.CDK.AWS.APIGateway;

namespace StepfunctionsRestApi
{
public class StepfunctionsRestApiStack : Stack
{
internal StepfunctionsRestApi(Construct scope, string id, IStackProps props
= null) : base(scope, id, props)
{
var machineDefinition = new Pass(this, "PassState", new PassProps
{
Result = Result.FromString("Hello")
19F

var stateMachine = new StateMachine(this, "MyStateMachine", new
StateMachineProps
{
Definition = machineDefinition,
StateMachineType = StateMachineType.EXPRESS
D)8

var api = new StepFunctionsRestApi(this, "StepFunctionsRestApi", new
StepFunctionsRestApiProps

{
StateMachine = stateMachine
});
}
}
}
Step 2: Use the AWS CDK to create an APl Gateway REST API with Synchronous Express State Machine 196

backend integration

AWS Step Functions Developer Guide

Go

Update stepfunctions-rest-api.go to read as follows.

package main

import (
"github.com/aws/aws-cdk-go/awscdk"
"github.com/aws/aws-cdk-go/awscdk/awsapigateway"
"github.com/aws/aws-cdk-go/awscdk/awsstepfunctions"
"github.com/aws/constructs-go/constructs/v3"
"github.com/aws/jsii-runtime-go"

type StepfunctionsRestApiGoStackProps struct {
awscdk.StackProps

func NewStepfunctionsRestApiGoStack(scope constructs.Construct, id string, props

*StepfunctionsRestApiGoStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// The code that defines your stack goes here
var machineDefinition = awsstepfunctions.NewPass(stack,
jsii.String("PassState"), &awsstepfunctions.PassProps
{
Result: awsstepfunctions.NewResult(jsii.String("Hello")),

1)

var stateMachine = awsstepfunctions.NewStateMachine(stack,
jsii.String("StateMachine"), &awsstepfunctions.StateMachineProps{
Definition: machineDefinition,
StateMachineType: awsstepfunctions.StateMachineType_EXPRESS,

1)

awsapigateway.NewStepFunctionsRestApi(stack,
jsii.String("StepFunctionsRestApi"), &awsapigateway.StepFunctionsRestApiProps{
StateMachine = stateMachine,

1

Step 2: Use the AWS CDK to create an APl Gateway REST APl with Synchronous Express State Machine
backend integration

197

AWS Step Functions Developer Guide

return stack

func main() {
app := awscdk.NewApp(nil)

NewStepfunctionsRestApiGoStack(app, "StepfunctionsRestApiGoStack",
&StepfunctionsRestApiGoStackProps{

D

awscdk.StackProps{
Env: env(),

}I

app.Synth(nil)

// env

determines the AWS environment (account+region) in which our stack is to

// be deployed. For more information see: https://docs.aws.amazon.com/cdk/latest/
guide/environments.html
func env() *awscdk.Environment {

//
//
//

If unspecified, this stack will be "environment-agnostic".
Account/Region-dependent features and context lookups will not work, but a
single synthesized template can be deployed anywhere.

return nil

// Uncomment if you know exactly what account and region you want to deploy
// the stack to. This is the recommendation for production stacks.
/===
// return &awscdk.Environment{
// Account: jsii.String("123456789012"),
// Region: jsii.String("us-east-1"),
// %
// Uncomment to specialize this stack for the AWS Account and Region that are
// implied by the current CLI configuration. This is recommended for dev
// stacks.
/=== = = e e
// return &awscdk.Environment{
// Account: jsii.String(os.Getenv("CDK_DEFAULT_ACCOUNT")),
// Region: jsii.String(os.Getenv("CDK_DEFAULT_REGION")),
// 3
}
Step 2: Use the AWS CDK to create an APl Gateway REST API with Synchronous Express State Machine 198

backend integration

AWS Step Functions Developer Guide

Save the source file, then issue cdk synth in the app's main directory. The AWS CDK runs the app
and synthesizes an AWS CloudFormation template from it, then displays the template.

To actually deploy the Amazon APl Gateway and the AWS Step Functions state machine to your
AWS account, issue cdk deploy. You'll be asked to approve the IAM policies the AWS CDK has
generated.

Step 3: Test the APl Gateway

After you create your APl Gateway REST API with Synchronous Express State Machine as the
backend integration, you can test the APl Gateway.

To test the deployed APl Gateway using APl Gateway console

1.

o A~ WN

Open the Amazon API Gateway console and sign in.

Choose your REST APl named StepFunctionsRestApi.

In the Resources pane, choose the ANY method.

Choose the Test tab. You might need to choose the right arrow button to show the tab.
For Method, choose POST.

For Request body, copy the following request parameters.

{
"key": "Hello"

}
Choose Test. The following information will be displayed:

» Request is the resource's path that was called for the method.
o Status is the response's HTTP status code.

» Latency is the time between the receipt of the request from the caller and the returned
response.

» Response body is the HTTP response body.
« Response headers are the HTTP response headers.

« Log shows the simulated Amazon CloudWatch Logs entries that would have been written if
this method were called outside of the APl Gateway console.

Step 3: Test the API Gateway 199

https://console.aws.amazon.com/apigateway/

AWS Step Functions Developer Guide

® Note

Although the CloudWatch Logs entries are simulated, the results of the method call
are real.

The Response body output should be something like this:

"Hello"

® Tip
Try the API Gateway with different methods and an invalid input to see the error output.

You may want to change the state machine to look for a particular key and during testing

provide the wrong key to fail the State Machine execution and generate an error message
in the Response body output.

To test the deployed API using cURL

1. Open a terminal window.
2. Copy the following cURL command and paste it into the terminal window, replacing <api-id>

with your API's API ID and <region> with the region where your API is deployed.

curl -X POST\

'https://<api-id>.execute-api.<region>.amazonaws.com/prod' \
_d I{Ilkeyll:llHelloll}l \
-H 'Content-Type: application/json'

The Response Body output should be something like this:

"Hello"

Step 3: Test the API Gateway 200

AWS Step Functions Developer Guide

® Tip
Try the API Gateway with different methods and an invalid input to see the error output.
You may want to change the state machine to look for a particular key and during testing
provide the wrong key to fail the State Machine execution and generate an error message
in the Response Body output.

Step 4: Clean Up

When you're done trying out your APl Gateway, you can tear down both the state machine and the
API Gateway using the AWS CDK. Issue cdk destroy in your app's main directory.

Using Terraform to deploy state machines in Step Functions

Terraform by HashiCorp is a framework for building applications using infrastructure as code (laC).
With Terraform, you can create state machines and use features, such as previewing infrastructure
deployments and creating reusable templates. Terraform templates help you maintain and reuse
the code by breaking it down into smaller chunks.

If you're familiar with Terraform, you can follow the development lifecycle described in this topic
as a model for creating and deploying your state machines in Terraform. If you aren't familiar with
Terraform, we recommend that you first complete the workshop Introduction to Terraform on AWS
for getting acquainted with Terraform.

® Tip
To deploy an example of a state machine built using Terraform to your AWS account,
see the module Managing state machines with infrastructure as code of The AWS Step

Functions Workshop.

In this topic

« Prerequisites
» State machine development lifecycle with Terraform

» |IAM roles and policies for your state machine

Step 4: Clean Up 201

https://www.terraform.io/intro/
https://catalog.workshops.aws/terraform101/en-US
https://catalog.workshops.aws/stepfunctions/en-US/development/iac/deploy-with-terraform

AWS Step Functions Developer Guide

Prerequisites

Before you get started, make sure you complete the following prerequisites:

« Install Terraform on your machine. For information about installing Terraform, see Install
Terraform.

« Install Step Functions Local on your machine. We recommend that you install the Step Functions
Local Docker image to use Step Functions Local. For more information, see Testing state
machines locally in Step Functions.

« Install AWS SAM CLI. For installation information, see Installing the AWS SAM CLI in the AWS
Serverless Application Model Developer Guide.

« Install the AWS Toolkit for Visual Studio Code to view the workflow diagram of your state
machines. For installation information, see Installing the AWS Toolkit for Visual Studio Code in
the AWS Toolkit for Visual Studio Code User Guide.

State machine development lifecycle with Terraform

The following procedure explains how you can use a state machine prototype that you build using
Workflow Studio in the Step Functions console as a starting point for local development with
Terraform and the AWS Toolkit for Visual Studio Code.

To view the complete example that discusses the state machine development with Terraform
and presents the best practices in detail, see Best practices for writing Step Functions Terraform

projects.

To start the development lifecycle of a state machine with Terraform

1. Bootstrap a new Terraform project with the following command.

terraform init

2. Open the Step Functions console to create a prototype for your state machine.

3. In Workflow Studio, do the following:

a. Create your workflow prototype.

b. Export the Amazon States Language (ASL) definition of your workflow. To do this, choose
the Import/Export dropdownlist, and then select Export JSON definition.

Prerequisites 202

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html
https://aws.amazon.com/blogs/devops/best-practices-for-writing-step-functions-terraform-projects/
https://aws.amazon.com/blogs/devops/best-practices-for-writing-step-functions-terraform-projects/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

4. Save the exported ASL definition within your project directory.

You pass the exported ASL definition as an input parameter to the aws_sfn_state_machine
Terraform resource that uses the templatefile function. This function is used inside the
definition field that passes the exported ASL definition and any variable substitutions.

® Tip
Because the ASL definition file can contain lengthy blocks of text, we recommend you
avoid the inline EOF method. This makes it easier to substitute parameters into your
state machine definition.

5. (Optional) Update the ASL definition within your IDE and visualize your changes using the AWS
Toolkit for Visual Studio Code.

Users Downloads > = MyStateMachine.asl.json > ...
Publish to Step Functions | Render graph
@ "Comment": "A description of my state machine",
"StartAt": "Lambda Invoke",
"States": {
"Lambda Invoke": iLambdand@
"Type": "Task", S)
"Resource": "arn:aws:states:::lambda:invoke",

"QutputPath": "$.Payload", @
"Parameters": {
"Payload.$": "$",
"FunctionName": "${LambdaFunction}"
}l
"End": true

1
2
3
4
5
6
7
8
9

el e e ol
oA WNR®

To avoid continuously exporting your definition and refactoring it into your project, we
recommend that you make updates locally in you IDE and track these updates with Git.

6. Test your workflow using Step Functions Local.

® Tip
You can also locally test service integrations with Lambda functions and APl Gateway
APIs in your state machine using AWS SAM CLI Local.

Development lifecycle with Terraform 203

https://registry.terraform.io/modules/terraform-aws-modules/step-functions/aws/latest
https://developer.hashicorp.com/terraform/language/functions/templatefile
https://git-scm.com/

AWS Step Functions Developer Guide

7. Preview your state machine and other AWS resources before deploying the state machine. To
do this, run the following command.

terraform plan

8. Deploy your state machine from your local environment or through CI/CD pipelines using the

following command.

terraform apply

9. (Optional) Clean up your resources and delete the state machine using the following
command.

terraform destroy

IAM roles and policies for your state machine

Use the Terraform service integration policies to add necessary IAM permissions to your state

machine, for example, permission to invoke Lambda functions. You can also define explicit roles
and policies and associate them with your state machine.

The following IAM policy example grants your state machine access to invoke a Lambda function
named myFunction.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"lambda:InvokeFunction"

1,

"Resource": "arn:aws:lambda:us-east-1:123456789012:function:myFunction"

IAM roles and policies for your state machine 204

https://aws.amazon.com/blogs/developer/build-infrastructure-ci-for-terraform-code-leveraging-aws-developer-tools-and-terratest/
https://registry.terraform.io/modules/terraform-aws-modules/step-functions/aws/latest#service-integration-policies

AWS Step Functions Developer Guide

We also recommend using the aws_iam_policy document data source when defining IAM
policies for your state machines in Terraform. This helps you check if your policy is malformed and
substitute any resources with variables.

The following IAM policy example uses the aws_iam_policy_document data source and grants
your state machine access to invoke a Lambda function named myFunction.

data "aws_iam_policy_document" "state_machine_role_policy" {

statement {
effect = "Allow"

actions = [
"lambda:InvokeFunction"

resources = ["${aws_lambda_function.[[myFunction]].arn}:*"]

}

® Tip
To view more advanced AWS architectural patterns deployed with Terraform, see Terraform
examples at Serverless Land Workflows Collection.

IAM roles and policies for your state machine 205

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/data-sources/iam_policy_document
https://serverlessland.com/workflows?framework=Terraform
https://serverlessland.com/workflows?framework=Terraform

AWS Step Functions Developer Guide

Workshops and tutorials for learning Step Functions

Learn from this guide, workshops, and practical tutorials how to integrate and orchestrate services
with Step Functions.

206

AWS Step Functions Developer Guide

1 Orchestrate tasks 2 Choosetasks 3 Retry tasks
o " based on data o

Y\
C D

4 Add a human in the loop 5 Process data in parallel
° _ Data
e —fg—F | 1] |
T | |
P1 P2 P3 Pn |

Data[0] —» M1 —» M2 —» Mn
D/v [o] i

¢ [Results]

—> Data[1] —» M1 —»> M2 —» Mn

a i
~ Data[n] —» M1 —» M2 — Mn

Workshops for learning Step Functions

Workshop: The Step Functions Workshop

Workshops for learning Step Functions 207

https://catalog.workshops.aws/stepfunctions/en-US

AWS Step Functions Developer Guide

In this workshop, you will learn to use the primary features of Step Functions while building
workflows. A series of interactive modules start by introducing you to basic workflows, task
states, and error handling. You can continue to learn choice states for branch logic, map states for
processing arrays, and parallel states for running multiple branches in parallel.

Workshop: Large-scale Data Processing with Step Functions

Learn how serverless technologies such as Step Functions and Lambda can simplify management
and scaling, offload undifferentiated tasks, and address the challenges of large-scale distributed
data processing. Along the way, you will work with distributed map for high concurrency
processing. The workshop also presents best practices for optimizing your workflows, and practical
use cases for claims processing, vulnerability scanning, and Monte Carlo simulation.

Tutorials for learning Step Functions

For an introduction to Step Functions, see Getting started tutorial.

For specific scenarios, see the following tutorials:

« the section called “"Design with Workflow Studio”

« the section called “Create a state machine using AWS SAM"

« the section called “Create a state machine with CloudFormation”

 the section called “Using CDK to create an Express workflow”

 the section called "Using CDK to create a Standard workflow"

« the section called “Examine executions”

+ the section called “Create a state machine that uses Lambda”

 the section called "Wait for human approval”

» the section called “"Repeat actions with Inline Map”

» the section called “Copy large-scale CSV using Distributed Map

» the section called "“lterate a loop with Lambda”

« the section called “Process batch data with Lambda”

« the section called “Process individual items with Lambda”

 the section called “Start a workflow from EventBridge”

» the section called “Create an APl using APl Gateway”

Workshops 208

https://catalog.workshops.aws/serverless-data-processing

AWS Step Functions Developer Guide

« the section called “Handle error conditions”

the section called “Create an Activity state machine”

the section called “View X-Ray traces”

the section called “Gather Amazon S3 bucket info”

the section called “Continue long-running workflows using Step Functions APl (recommended)”

the section called “Using Lambda to continue a workflow"

the section called “Access cross-account resources”

@ Learn with starter templates

To deploy and learn from ready-to-run state machines for a variety of use cases, see Starter
templates.

Design a state machine in Workflow Studio

In this tutorial, you will learn the basics of working with Workflow Studio for AWS Step Functions.
In Design mode of Workflow Studio, you'll create a state machine containing multiple states,
including Pass, Choice, Fail, Wait, and Parallel. You'll use the drag and drop feature to
search for, select, and configure these states. Then, you'll view the auto-generated Amazon States

Language (ASL) definition of your workflow. You'll also use the Code mode of Workflow Studio to
edit the workflow definition. Then, you'll exit Workflow Studio, run the state machine, and review
the execution details.

In this tutorial, you'll also learn how to update the state machine and view the changes in the
execution output. Finally, you'll perform a clean-up step and delete your state machine.

After you complete this tutorial, you'll know how to use Workflow Studio to create and configure a
workflow using both the Design and Code modes. You'll also know how to update, run, and delete
your state machine.

Step 1: Navigate to Workflow Studio

1. Open the Step Functions console and choose Create state machine.

2. Inthe Choose a template dialog box, select Blank.

3. Choose Select to open Workflow Studio in Design mode.

Design with Workflow Studio 209

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

Step 2: Create a state machine

In Workflow Studio, a state machine is a graphical representation of your workflow. With Workflow
Studio, you can define, configure, and examine the individual steps of your workflow. In the
following steps, you use the Design mode of Workflow Studio to create your state machine.

To create a state machine

1.
2.

Make sure you're in the Design mode of Workflow Studio.

From the States browser on the left, choose the Flow tab. Then, drag a Pass state to the empty
state labelled Drag first state here.

Drag a Choice state from the Flow tab and drop it below the Pass state.

For State name, replace the default name of Choice. For this tutorial, use the name
IsHelloWoxrldExample.

Drag another Pass state and drop it to one branch of the IsHelloWorldExample state. Then,
drag a Fail state and drop it below the other branch of the IsHelloWorldExample state.

Choose the Pass (1) state, and rename it to Yes. Rename the Fail state as No.

Specify the IsHelloWorldExample state's branching logic using the boolean variable
IsHelloWorldExample.

If IsHelloWorldExample is False, the workflow will enter the No state. Otherwise, the
workflow will continue its execution flow in the Yes state.

To define the branching logic, do the following:

a. Choose the IsHelloWorldExample state on the Canvas and workflow graph, and then
under Choice Rules, choose the edit icon in the Rule #1 box to define the first choice rule.

b. Choose Add conditions.

c. Inthe Conditions for rule #1 dialog box, enter $.IsHelloWorldExample under
Variable.

d. Choose is equal to under Operator.

e. Choose Boolean constant under Value, and then choose true from the dropdown list.
f. Choose Save conditions.

g. Make sure the Then next state is: dropdown list has Yes selected.

h. Choose Add new choice rule, then choose Add conditions.

Step 2: Create a state machine 210

AWS Step Functions Developer Guide

i. Inthe Rule #2 box, define the second choice rule when the IsHelloWorldExample
variable's value is false by repeating substeps 7.c through 7.f. For step 7.e, choose false
instead of true.

j- Inthe Rule #2 box, choose No from the Then next state is: dropdown list.

k. In the Default rule box, choose the edit icon to define the default choice rule, and then
choose Yes from the dropdown list.

8. Add a Wait state after the Yes state, and name it Wait 3 sec. Then, configure the wait time
to be three seconds by doing the following steps:

a. Under Options, keep the default selection of Wait for a fixed interval.
b. Under Seconds, make sure Enter seconds is selected, and then enter 3 in the box.

9. After the Wait 3 sec state, add a Parallel state. Add two Pass states in its two branches. Name
the first Pass state Hello. Name the second Pass state Woxr1ld.

The completed workflow should look like the following diagram:

* Undo ¢ Redo Zoom in @ Zoom out @ Center Duplicate O Delete (] Feedback

|Q Search | < . IsHelloworldExample (B Definition

Actions

Flaw

Patterns Info

Choice
.Q. Adds if-then-else logic.
aralle

L J

0 Pass state
P pass

Py Vaitstate
L) wait 3 seconds

L i

Choice state
g?z IsHelloWerldExample

Fail state

r:{“)No

Configuration Input Output

State name

IsHelloWorldExample

State type
Choice

Choice Rules
Choice rules !
workf

ment, de
<+ Add new choice rule

Comment - optional

Step 3: Review the auto-generated Amazon States Language definition

As you drag and drop states from the Flow tab onto the canvas, Workflow Studio automatically

composes the Amazon States Language (ASL) definition of your workflow in real-time. In the

Inspector panel panel, choose the Definition toggle button to view this definition or switch to

Step 3: Review the auto-generated Amazon States Language definition

211

AWS Step Functions

Developer Guide

the Code mode to edit this definition as required. For information about editing the workflow

definition, see Step 4 of this tutorial.

o (Optional) Choose Definition on the Inspector panel and view the state machine's workflow.

The following example code shows the auto-generated Amazon States Language definition
for the IsHelloWorldExample state machine. The Choice state that you added in Workflow
Studio is used to determine the execution flow based on the branching logic you defined in

Step 2.
{
"Comment": "A Hello World example of the Amazon States Language using Pass
states",
"StartAt": "Pass",
"States": {
"Pass": {

"Type": "PaSS",

"Next": "IsHelloWorldExample",

"Comment": "A Pass state passes its input to its output, without performing
work. Pass states are useful when constructing and debugging state machines."

b
"IsHelloWorldExample": {
"Type": "Choice",

"Comment": "A Choice state adds branching logic to a state machine. Choice
rules can implement 16 different comparison operators, and can be combined using

And, Or, and Not\"",
"Choices": [

{
"Variable": "$.IsHelloWorldExample",
"BooleanEquals": false,
"Next": "No"
},
{
"Variable": "$.IsHelloWorldExample",
"BooleanEquals": true,
"Next": "Yes"
}
1,
"Default": "Yes"
},
"No": {

IlTypell: IlFailll'
"Cause": "Not Hello World"

Step 3: Review the auto-generated Amazon States Language definition

212

AWS Step Functions Developer Guide

}I
"Yes": {
"Type": "Pass",
"Next": "Wait 3 sec"
}I

"Wait 3 sec": {
"Type": "Wait",
"Seconds": 3,
"Next": "Parallel"

.

"Parallel": {

"Type": "Parallel",
"End": true,
"Branches": [

{
"StartAt": "Hello",
"States": {
"Hello": {
"Type": "Pass",
"End": true
}
}
},
{
"StartAt": "World",
"States": {
"World": {
"Type": "Pass",
"End": true
}
}
}
]
}
}

Step 4: Edit the workflow definition in Code mode

The Code mode of Workflow Studio provides an integrated code editor to view and edit the ASL
definition of your workflows.

Step 4: Edit the workflow definition in Code mode 213

AWS Step Functions Developer Guide

1. Choose Code to switch to the Code mode.

2. After the Parallel state's definition, place the cursor and press Enter.

3. Press Ctrl+space to see the list of states that you can add after the Parallel state.
4

Choose Pass State from the list of options. The code editor adds boilerplate code for the Pass
State.

5. The addition of this state results in errors in your workflow definition. In the Parallel state's
definition, replace "End" : true with "Next": "PassState".

6. In the Pass State definition you added, make the following changes:

a. Remove the Result node.
b. Remove "ResultPath": "$.result", and "Next": "NextState".
c. After "Type": "Pass",, enter "End": true.

d. Adda, after the Pass State definition.

Your workflow definition should now look similar to the following definition.

{
"Comment": "A description of my state machine",
"StartAt": "Pass",
"States": {
"Pass": {

"Type": "Pass",
"Next": "IsHelloWorldExample"
1,
"IsHelloWorldExample": {
"Type": "Choice",
"Choices": [

{
"Variable": "$.IsHelloWorldExample",
"BooleanEquals": true,
"Next": "Yes"

},

{
"Variable": "$.IsHelloWorldExample",
"BooleanEquals": false,
"Next": "No"

}

1,

"Default": "Yes"

Step 4: Edit the workflow definition in Code mode 214

AWS Step Functions Developer Guide

}I
"Yes": {

"Type": "Pass",

"Next": "Wait 3 seconds"
}I

"Wait 3 seconds": {
"Type": "Wait",
"Seconds": 3,
"Next": "Parallel"

.

"Parallel": {

"Type": "Parallel",
"Branches": [

{
"StartAt": "Hello",
"States": {
"Hello": {
"Type": "Pass",
"End": true
}
}
I
{
"StartAt": "World",
"States": {
"World": {
"Type": "Pass",
"End": true
}
}
}
1,

"Next": "PassState"
iy
"PassState": {
IlTypell: IlPassll’
"End": true
iy
IINOII: {
IlTypell: IIFailll

Step 4: Edit the workflow definition in Code mode 215

AWS Step Functions Developer Guide

Step 5: Save the state machine

1. Choose the Config more or choose the edit icon next to the default state machine name
of MyStateMachine. In State machine configuration, specify a name. For example, enter
HelloWorld.

2. (Optional) Specify other workflow settings, such as state machine type and its execution role.
For this tutorial, keep all the default selections in State machine configuration.

3. Choose Create.

4. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role configuration to go back to the Config mode.

For more information about the Config mode, see Config mode of Workflow Studio.

Step 6: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1. On the State machines page, choose the HelloWorld state machine.
2. On the HelloWorld page, choose Start execution.

3. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

4. Inthe Input box, enter input values for your execution in JSON format. Based on your input,
the IsHelloWorldExample variable determines which state machine flow will be executed.
For now, use the following input value:

"IsHelloWorldExample": true

Step 5: Save the state machine 216

AWS Step Functions Developer Guide

® Note

While specifying an execution input is optional, in this tutorial, it is mandatory to
specify an execution input similar to the above example input. This input value is
referenced in the Choice state when you run the state machine.

5. Choose Start execution.

6. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,
and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution details overview.

For this tutorial, if you entered an input value of "IsHelloWorldExample": true, you
should see the following output:

{

"IsHelloWorldExample": true
1,
{

"IsHelloWorldExample": true
}

Step 7: Update your state machine

When you update a state machine, your updates are eventually consistent. After a short amount of
time, all newly started executions will reflect your state machine's updated definition. All currently
running executions will run to completion under the previous definition.

In this step, you'll update your state machine in the Design mode mode of Workflow Studio. You'll
add a Result field in the Pass state named World.

1. On the page titled with your execution ID, choose Edit state machine.

2. Make sure you're in the Design mode.

Step 7: Update your state machine 217

AWS Step Functions Developer Guide

3. Choose the Pass state named World on the canvas, and then choose Output.
4. Inthe Result box, enter "World has been updated!".

5. Choose Save.
6

(Optional) In the Definition area, view the updated Amazon States Language definition of your
workflow.

"Type": "Parallel",
"End": true,
"Branches": [

{
"StartAt": "Hello",
"States": {
"Hello": {
"Type": "Pass",
"End": true
}
}
b
{
"StartAt": "World",
"States": {
"World": {
"Type": "Pass",
"Result": "World has been updated!",
"End": true
}
}
}

1,

"Next": "PassState"

7. Choose Execute.

8. In the Start execution dialog box that opens in a new tab, provide the following execution
input.

"IsHelloWorldExample": true

Step 7: Update your state machine 218

AWS Step Functions Developer Guide

9. Choose Start Execution.

10. (Optional) In the Graph view, choose the World step, and then choose Output. The output is
World has been updated!

Step 8: Clean up

To delete your state machine

1. From the navigation menu, choose State machines.

2. On the State machines page, select HelloWorld, and then choose Delete.
3. In the Delete state machine dialog box, type delete to confirm deletion.
4

Choose Delete.

If deletion is successful, a green status bar appears at the top of your screen. The green status
bar tells you that your state machine is marked for deletion. Your state machine will be deleted
when all of its in-progress executions stop running.

To delete your execution role

1. Open the Roles page for IAM.

2. Choose the IAM role that Step Functions created for you. For example, StepFunctions-
HelloWorld-role-EXAMPLE.

3. Choose Delete role.

4. Choose Yes, delete.

Create a Step Functions state machine using AWS SAM

In this guide, you download, build, and deploy a sample AWS SAM application that contains an
AWS Step Functions state machine. This application creates a mock stock trading workflow which
runs on a pre-defined schedule (note that the schedule is disabled by default to avoid incurring
charges).

The following diagram shows the components of this application:

Step 8: Clean up 219

https://console.aws.amazon.com/iam/home?#/roles

AWS Step Functions Developer Guide

i StockTradingStateMachine
=
_t; StockSellerFunction :

HourlyTradingSchedule StockCheckerFunction & TransactionTable

StockBuyerFunction

The following is a preview of commands that you run to create your sample application. For more
details about each of these commands, see the sections later in this page

Step 1 - Download a sample application. For this tutorial you

will follow the prompts to select an AWS Quick Start Template
called 'Multi-step workflow'

sam init

Step 2 - Build your application
cd project-directory

sam build

Step 3 - Deploy your application
sam deploy --guided

Prerequisites

This guide assumes that you've completed the steps in the Installing the AWS SAM CLI for your OS.
It assumes that you've done the following:

1. Created an AWS account.
2. Configured IAM permissions.
3. Installed Homebrew. Note: Homebrew is only a prerequisite for Linux and macOS.

4. Installed the AWS SAM CLI. Note: Make sure you have version 0.52.0 or later. You can check
which version you have by executing the command sam --version.

Prerequisites 220

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

AWS Step Functions Developer Guide

Step 1: Download a Sample AWS SAM Application

Command to run:
sam init

Follow the on-screen prompts to select the following:

1. Template: AWS Quick Start Templates
2. Language: Python, Ruby, NodelS, Go, Java, or .NET
3. Project name: (name of your choice - default is sam-app)

4. Quick start application: Multi-step workflow

What AWS SAM is doing:

This command creates a directory with the name you provided for the 'Project name' prompt
(default is sam-app). The specific contents of the directory will depend on the language you
choose.

Following are the directory contents when you choose one of the Python runtimes:

README.md

functions

__init__ .py

stock_buyer

__init__ .py

app.py

requirements.txt
stock_checker

__init__ .py

app.py

requirements.txt
stock_seller

__init__ .py

app.py

requirements.txt
statemachine

stock_trader.asl.json
template.yaml

tests

HOoH OHF O OB OHF O OH OH O B OH R
+*

Step 1: Download a Sample AWS SAM Application 221

AWS Step Functions Developer Guide

unit
__init__ .py
test_buyer.py
test_checker.py
test_seller.py

There are two especially interesting files that you can take a look at:

« template.yaml: Contains the AWS SAM template that defines your application's AWS
resources.

« statemachine/stockTrader.asl. json: Contains the application's state machine definition,
which is written in Using Amazon States Language to define Step Functions workflows.

You can see the following entry in the template.yaml file, which points to the state machine
definition file:

Properties:
DefinitionUri: statemachine/stock_trader.asl.json

It can be helpful to keep the state machine definition as a separate file instead of embedding it in
the AWS SAM template. For example, tracking changes to the state machine definition is easier if
you don't include the definition in the template. You can use the Workflow Studio to create and
maintain the state machine definition, and export the definition from the console directly to the
Amazon States Language specification file without merging it into the template.

For more information about the sample application, see the README . md file in the project
directory.

Step 2: Build Your Application
Command to run:

First change into the project directory (that is, the directory where the template.yaml file for the
sample application is located; by default is sam-app), then run this command:

sam build

Example output:

Step 2: Build Your Application 222

AWS Step Functions Developer Guide

Build Succeeded

Built Artifacts : .aws-sam/build
Built Template : .aws-sam/build/template.yaml

Commands you can use next

[*] Invoke Function: sam local invoke
[*] Deploy: sam deploy --guided

What AWS SAM is doing:

The AWS SAM CLI comes with abstractions for a number of Lambda runtimes to build your
dependencies, and copies all build artifacts into staging folders so that everything is ready to be
packaged and deployed. The sam build command builds any dependencies that your application
has, and copies the build artifacts to folders under .aws-sam/build.

Step 3: Deploy Your Application to the AWS Cloud

Command to run:

sam deploy --guided

Follow the on-screen prompts. You can just respond with Enter to accept the default options
provided in the interactive experience.

What AWS SAM is doing:

This command deploys your application to the AWS cloud. It take the deployment artifacts you
build with the sam build command, packages and uploads them to an Amazon S3 bucket created
by AWS SAM CLI, and deploys the application using AWS CloudFormation. In the output of the
deploy command you can see the changes being made to your AWS CloudFormation stack.

You can verify the example Step Functions state machine was successfully deployed by following
these steps:

1. Sign in to the AWS Management Console and open the Step Functions console at https://
console.aws.amazon.com/states/.

Step 3: Deploy Your Application to the AWS Cloud 223

https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide

2. In the left navigation, choose State machines.

3. Find and choose your new state machine in the list. It will be named
StockTradingStateMachine-<unique-hash>.

4. Choose the Definition tab.

You should now see a visual representation of your state machine. You can verify that the
visual representation matches the state machine definition found in the statemachine/
stockTrader.asl. json file of your project directory.

Troubleshooting

SAM CLI error: "no such option: --guided"

When executing sam deploy, you see the following error:

Error: no such option: --guided

This means that you are using an older version of the AWS SAM CLI that does not support the - -
guided parameter. To fix this, you can either update your version of AWS SAM CLI to 0.33.0 or
later, or omit the - -guided parameter from the sam deploy command.

SAM CLI error: "Failed to create managed resources: Unable to locate credentials”

When executing sam deploy, you see the following error:

Error: Failed to create managed resources: Unable to locate credentials

This means that you have not set up AWS credentials to enable the AWS SAM CLI to make AWS
service calls. To fix this, you must set up AWS credentials. For more information, see Setting Up
AWS Credentials in the AWS Serverless Application Model Developer Guide.

Clean Up

If you no longer need the AWS resources you created by running this tutorial, you can remove them
by deleting the AWS CloudFormation stack that you deployed.

Troubleshooting 224

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started-set-up-credentials.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started-set-up-credentials.html

AWS Step Functions Developer Guide

To delete the AWS CloudFormation stack created with this tutorial using the AWS Management
Console, follow these steps:

1. Signin to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

2. In the left navigation pane, choose Stacks.
3. Inthe list of stacks, choose sam-app (or the name of stack you created).

4. Choose Delete.

When done, the status of the of the stack will change to DELETE_COMPLETE.

Alternatively, you can delete the AWS CloudFormation stack by executing the following AWS CLI
command:

aws cloudformation delete-stack --stack-name sam-app --region region

Verify Deleted Stack

For both methods of deleting the AWS CloudFormation stack, you can verify it was deleted
by going to the https://console.aws.amazon.com/cloudformation, choosing Stacks in the left

navigation pane, and choosing Deleted in the dropdown to the right of the search text box. You
should see your stack name sam-app (or the name of the stack you created) in the list of deleted
stacks.

Examining state machine executions in Step Functions

In this tutorial, you will learn how to inspect the execution information displayed on the Execution
Details page and view the reason for a failed execution. Then, you'll learn how to access different
iterations of a Map state execution. Finally, you'll learn how to configure the columns on the Table
view and apply suitable filters to view only the information of interest to you.

In this tutorial, you create a Standard type state machine, which obtains the price of a set of fruits.

To do this, the state machine uses three AWS Lambda functions which return a random list of four

fruits, the price of each fruit, and the average cost of the fruits. The Lambda functions are designed
to throw an error if the price of the fruits is less than or equal to a threshold value.

Examine executions 225

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

AWS Step Functions Developer Guide

® Note

While the following procedure contains instructions for how to examine the details of
a Standard workflow execution, you can also examine the details for Express workflow
executions. For information about the differences between the execution details for
Standard and Express workflow types, see Standard and Express console experience
differences.

Step 1: Create and test the required Lambda functions

1. Open the Lambda console and then perform steps 1 through 4 in the Step 1: Create a Lambda

function section. Make sure to name the Lambda function GetListOfFruits.

2. After you create your Lambda function, copy the function's Amazon Resource Name (ARN)
displayed in the upper-right corner of the page. To copy the ARN, click the copy icon to copy
the Lambda function's Amazon Resource Name. The following is an example ARN, where
function-name is the name of the Lambda function (in this case, GetListOfFruits):

arn:aws:lambda:us-east-1:123456789012:function: function-name

3. Copy the following code for the Lambda function into the Code source area of the
GetListOfFruits page.

function getRandomSubarray(arr, size) {
var shuffled = arr.slice(@), i = arr.length, temp, index;
while (i--) {
index = Math.floor((i + 1) * Math.random());
temp = shuffled[index];
shuffled[index] = shuffled[i];
shuffled[i] = temp;
}

return shuffled.slice(@, size);

exports.handler = async function(event, context) {

const fruits = ['Abiu', 'Acai', 'Acerola', 'Ackee’', 'African
cucumber', 'Apple', 'Apricot’', 'Avocado', 'Banana', 'Bilberry"', 'Blackberry', 'Blackcurrant', 'Jos

Step 1: Create and test the required Lambda functions 226

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

const errorChance = 45;
const waitTime = Math.floor(100 * Math.random());
await new Promise(r => setTimeout(() => r(), waitTime));
const num = Math.floor(100 * Math.random());
// const num = 51;

if (num <= errorChance) {
throw(new Error('Error'));

return getRandomSubarray(fruits, 4);

};

4. Choose Deploy, and then choose Test, to deploy the changes and see the output of your
Lambda function.

5. Create two additional Lambda functions, named GetFruitPrice and CalculateAverage
respectively, with the following steps:

a. Copy the following code into the Code source area of the GetFruitPrice Lambda function:

exports.handler = async function(event, context) {

const errorChance = 0;
const waitTime = Math.floor(100 * Math.random());

await new Promise(r => setTimeout(() => r(), waitTime));
const num = Math.floor(100 * Math.random());

if (num <= errorChance) {
throw(new Error('Error'));

return Math.floor(Math.random()*100)/10;
Iy

b. Copy the following code into the Code source area of the CalculateAverage Lambda
function:

function getRandomSubarray(arr, size) {
var shuffled = arr.slice(@), i = arr.length, temp, index;

Step 1: Create and test the required Lambda functions 227

AWS Step Functions Developer Guide

while (i--) {
index = Math.floor((i + 1) * Math.random());
temp = shuffled[index];
shuffled[index] = shuffled[i];
shuffled[i] = temp;
}

return shuffled.slice(@, size);

const average = arr => arr.reduce((p, ¢) =>p + c, 0) / arr.length;

exports.handler = async function(event, context) {
const errors = [
"Error getting data from DynamoDB",
"Error connecting to DynamoDB",
"Network error",
"MemoryError - Low memory"

]
const errorChance = 0;
const waitTime = Math.floor(100 * Math.random());
await new Promise(r => setTimeout(() => (), waitTime));
const num = Math.floor(100 * Math.random());

if (num <= errorChance) {
throw(new Error(getRandomSubarray(errors, 1)[0]));

return average(event);

};

c. Make sure to copy the ARNs of these two Lambda functions, and then Deploy and Test
them.

Step 2: Create and execute the state machine

Use the Step Functions console to create a state machine that invokes the Lambda functions you
created in Step 1. In this state machine, three Map states are defined. Each of these Map states
contains a Task state that invokes one of your Lambda functions. Additionally, a Retzry field is
defined in each Task state with a number of retry attempts defined for each state. If a Task state

Step 2: Create and execute the state machine 228

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

encounters a runtime error, it's executed again up to the number of retry attempts defined for that
Task.

1. Open the Step Functions console and choose Write your workflow in code.

/A Important

Ensure that your state machine is under the same AWS account and Region as the
Lambda function you created earlier.

2. For Type, keep the default selection of Standard.

3. Copy the following Amazon States Language definition and paste it under Definition. Make
sure to replace the ARNs shown with those of the Lambda functions that you previously
created.

"StartAt": "LoopOverStores",
"States": {
"LoopOverStores": {
"Type": "Map",
"Iterator": {
"StartAt": "GetListOfFruits",
"States": {
"GetListOfFruits": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {
"FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function:GetListofFruits:$LATEST",
"Payload": {
"storeName.$": "$"

Iy
"Retry": [

"ErrorEquals": [
"States.ALL"

1,

"IntervalSeconds": 2,

"MaxAttempts": 1,

"BackoffRate": 1.3

Step 2: Create and execute the state machine 229

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

1,
"Next": "LoopOverFruits"
.
"LoopOverFruits": {
"Type": "Map",
"Iterator": {
"StartAt": "GetFruitPrice",
"States": {
"GetFruitPrice": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {

"FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function:GetFruitPrice:$LATEST",
"Payload": {
"fruitName.$": "$"
}
I
"Retry": [
{
"ErrorEquals": [
"States.ALL"
1,
"IntervalSeconds": 2,
"MaxAttempts": 3,
"BackoffRate": 1.3
}
1,
"End": true
}
}
I
"ItemsPath": "$",
"End": true
}
}
},
"ItemsPath": "$.stores",
"Next": "LoopOverStoreFruitsPrice",
"ResultPath": "$.storesFruitsPrice"

}I

"LoopOverStoreFruitsPrice": {

Step 2: Create and execute the state machine 230

AWS Step Functions Developer Guide

"Type": "Map",
"End": true,
"Iterator": {
"StartAt": "CalculateAverage",
"States": {
"CalculateAverage": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {
"FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function:Calculate-average:$LATEST",
"Payload.$": "$"
I
"Retry": [
{
"ErrorEquals": [
"States.ALL"
1,
"IntervalSeconds": 2,
"MaxAttempts": 2,
"BackoffRate": 1.3

1,

"End": true

.

"ItemsPath": "$.storesFruitsPrice",
"ResultPath": "$.storesPriceAverage",
"MaxConcurrency": 1

4. Enter a name for your state machine. Keep the default selections for the other options on this
page and choose Create state machine.

5. Open the page titled with your state machine name. Perform steps 1 through 4 in the Step 4:
Run the state machine section, but use the following data as the execution input:

"stores": [
"Store A",

Step 2: Create and execute the state machine 231

AWS Step Functions Developer Guide

"Store B",
"Store C",
"Store D"

Step 3: View the state machine execution details

On the page titled with your execution ID, you can review the results of your execution and debug
any errors.

1. (Optional) Choose from the tabs displayed on the Execution Details page to see the information
present in each of them. For example, to view the state machine input and its execution output,
choose Execution input & output on the Execution summary section.

2. If your state machine execution failed, choose Cause or Show step detail on the error message.
Details about the error are displayed in the Step details section. Notice that the step that caused
the error, which is a Task state named GetListofFruits, is highlighted in the Graph view and
Table view.

(@ Note

Because the GetListofFruits step is defined inside a Map state, and the step failed to
execute successfully, the Status of Map state step is displayed as Failed.

Step 4: Explore the different View modes

You can choose a preferred mode to view either the state machine workflow or the execution event
history. Some of the tasks that you can perform in these View modes are as follows:

Graph view - Switch between different Map state iterations

If your Map state has five iterations and you want to view the execution details for the third and
fourth iterations, do the following:

1. Choose the Map state that you want to view the iteration data for.

Step 3: View the state machine execution details 232

AWS Step Functions Developer Guide

2. From Map iteration viewer, choose the iteration that you want to view. Iterations are counted
from zero. To choose the third iteration out of five, choose #2 from the dropdown list next to
the Map state's name.

(@ Note

If your state machine contains nested Map states, Step Functions displays the parent and
child Map state iterations as two separate dropdown lists representing the iteration data
for the nested states.

3. (Optional) If one or more of your Map state iterations failed to execute or was stopped in an
aborted state, you can view details about the failed iteration. To see these details, choose the
affected iteration numbers under Failed or Aborted in the dropdown list.

Table view - Switch between different Map state iterations

If your Map state has five iterations and you want to view the execution details for the iteration
number three and four, do the following:

1. Choose the Map state for which you want to view the different iteration data.

2. In the tree view display of the Map state iterations, choose the row for iteration named #2 for
iteration number three. Similarly, choose the row named #3 for iteration number four.

Table view - Configure the columns to display

Choose the settings icon. Then, in the Preferences dialog box, choose the columns you want to
display under Select visible columns.

By default, this mode displays the Name, Type, Status, Resource, and Started After columns.
Table view - Filter the results

Limit the amount of information displayed by applying one or more filters based on a property,
such as Status, or a date and time range. For example, to view the steps that failed execution,
apply the following filter:

1. Choose Filter by properties or search by keyword, and then choose Status under Properties.

2. Under Operators, choose Status =.

Step 4: Explore the different View modes 233

AWS Step Functions Developer Guide

3. Choose Status = Failed.

4. (Optional) Choose Clear filters to remove the applied filters.

Event view - Filter the results

Limit the amount of information displayed by applying one or more filters based on a property,
such as Type, or a date and time range. For example, to view the Task state steps that failed
execution, apply the following filter:

1. Choose Filter by properties or search by keyword, and then choose Type under Properties.
2. Under Operators, choose Type =.

3. Choose Type = TaskFailed.

4. (Optional) Choose Clear filters to remove the applied filters.

Event view - Inspect a TaskFailed event detail

Choose the arrow icon next to the ID of a TaskFailed event to inspect its details, including input,
output, and resource invocation that appear in a dropdown box.

Creating a Step Functions state machine that uses Lambda

In this tutorial, you will create a single-step workflow using AWS Step Functions to invoke an AWS
Lambda function.

(® Note

Step Functions is based on state machines and tasks. In Step Functions, state machines

are called workflows, which are a series of event-driven steps. Each step in a workflow is
called a state. For example, a Task state represents a unit of work that another AWS service
performs, such as calling another AWS service or API. Instances of running workflows
performing tasks are called executions in Step Functions.

For more information, see:

o What is Step Functions?

« Call other AWS services

Create a state machine that uses Lambda 234

AWS Step Functions Developer Guide

Lambda is well-suited for Task states, because Lambda functions are serverless and easy to write.
You can write code in the AWS Management Console or your favorite editor. AWS handles the
details of providing a computing environment for your function and running it.

Step 1: Create a Lambda function

Your Lambda function receives event data and returns a greeting message.

/A Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

1. Open the Lambda console and choose Create function.

On the Create function page, choose Author from scratch.
For Function name, enter HelloFunction.

Keep the default selections for all other options, and then choose Create function.

ok W

After your Lambda function is created, copy the function's Amazon Resource Name (ARN)
displayed in the upper-right corner of the page. The following is an example ARN:

arn:aws:lambda:us-east-1:123456789012:function:HelloFunction

6. Copy the following code for the Lambda function into the Code source section of the
HelloFunction page.

export const handler = async(event, context, callback) => {
callback(null, "Hello from " + event.who + "!");

};

This code assembles a greeting using the who field of the input data, which is provided by
the event object passed into your function. You add input data for this function later, when
you start a new execution. The callback method returns the assembled greeting from your
function.

7. Choose Deploy.

Step 1: Create a Lambda function 235

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

Step 2: Test the Lambda function

Test your Lambda function to see it in operation.

1. Choose Test.
2. For Event name, enter HelloEvent.

3. Replace the Event JSON data with the following.

"who": "AWS Step Functions"

The "who" entry corresponds to the event.who field in your Lambda function, completing
the greeting. You will input the same input data when you run your state machine.

4. Choose Save and then choose Test.

To review the test results, under Execution result, expand Details.

Step 3: Create a state machine

Use the Step Functions console to create a state machine that invokes the Lambda function that
you created in Step 1.

1. Open the Step Functions console and choose Create state machine.

/A Important

Make sure that your state machine is under the same AWS account and Region as the
Lambda function you created earlier.

2. Inthe Choose a template dialog box, select Blank.
Choose Select to open Workflow Studio in Design mode.

4. Inthe States browser on the left, make sure you've chosen the Actions tab. Then, drag and
drop the AWS Lambda Invoke API into the empty state labelled Drag first state here.

5. Inthe Inspector panel on the right, configure the Lambda function:

a. Inthe API Parameters section, choose the Lambda function that you created earlier in the

Function name dropdown list.

Step 2: Test the Lambda function 236

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

10.

b. Keep the default selection in the Payload dropdown list.

(Optional) Choose Definition to view the state machine's Amazon States Language (ASL)
definition, which is automatically generated based on your selections in the Actions tab and
Inspector panel.

Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For example, enter the name LambdaStateMachine.

(@ Note

Names of state machines, executions, and activity tasks must not exceed 80 characters
in length. These names must be unique for your account and AWS Region, and must
not contain any of the following:

Whitespace

Wildcard characters (? *)

Bracket characters(< > { } [])

Special characters (" # S\ * | ~ " $ &, ; : /)
Control characters (\\u@000 - \\u@01f or \\u0o7f - \\uoo9of).

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

(Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.
Choose Create.

In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Step 3: Create a state machine 237

AWS Step Functions Developer Guide

® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 4: Run the state machine

After you create your state machine, you can run it.

1. On the State machines page, choose LambdaStateMachine.

2. Choose Start execution.

The Start execution dialog box is displayed.

3. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

4. Inthe Input area, replace the example execution data with the following.

who" : "AWS Step Functions"

"who" is the key name that your Lambda function uses to get the name of the person to greet.

5. Choose Start Execution.

Your state machine's execution starts, and a new page showing your running execution is
displayed.

Step 4: Run the state machine 238

AWS Step Functions Developer Guide

6. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,
and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution details overview.

® Note

You can also pass payloads while invoking Lambda from a state machine. For more
information and examples about invoking Lambda by passing payload in the Parameters
field, see Invoke an AWS Lambda function with Step Functions.

Deploying a workflow that waits for human approval in Step
Functions

This tutorial shows you how to deploy a human approval project that allows an AWS Step
Functions execution to pause during a task, and wait for a user to respond to an email. The
workflow progresses to the next state once the user has approved the task to proceed.

Deploying the AWS CloudFormation stack included in this tutorial will create all necessary
resources, including:

« Amazon API Gateway resources

An AWS Lambda functions

An AWS Step Functions state machine

An Amazon Simple Notification Service email topic

Related AWS Identity and Access Management roles and permissions

Wait for human approval 239

AWS Step Functions Developer Guide

® Note

You will need to provide a valid email address that you have access to when you create the
AWS CloudFormation stack.

For more information, see Working with CloudFormation Templates and the
AWS: :StepFunctions: :StateMachine resource in the AWS CloudFormation User Guide.

Step 1: Create an AWS CloudFormation template

1. Copy the example code from the AWS CloudFormation Template Source Code section.

2. Paste the source of the AWS CloudFormation template into a file on your local machine.

For this example the file is called human-approval.yaml.

Step 2: Create a stack

1. Log into the AWS CloudFormation console.

2. Choose Create Stack, and then choose With new resources (standard).

3. On the Create stack page, do the following:

a. Inthe Prerequisite - Prepare template section, make sure Template is ready is selected.

b. In the Specify template section, choose Upload a template file and then choose Choose
file to upload the human-approval.yaml file you created earlier that includes the
template source code.

4. Choose Next.

5. On the Specify stack details page, do the following:

a. For Stack name, enter a name for your stack.

b. Under Parameters, enter a valid email address. You'll use this email address to subscribe
to the Amazon SNS topic.

6. Choose Next, and then choose Next again.

7. On the Review page, choose | acknowledge that AWS CloudFormation might create IAM
resources and then choose Create.

Step 1: Create a Template 240

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html
https://console.aws.amazon.com/cloudformation/home

AWS Step Functions Developer Guide

AWS CloudFormation begins to create your stack and displays the CREATE_IN_PROGRESS
status. When the process is complete, AWS CloudFormation displays the CREATE_COMPLETE
status.

8. (Optional) To display the resources in your stack, select the stack and choose the Resources
tab.

Step 3: Approve the Amazon SNS subscription

Once the Amazon SNS topic is created, you will receive an email requesting that you confirm
subscription.

1. Open the email account you provided when you created the AWS CloudFormation stack.

2. Open the message AWS Notification - Subscription Confirmation from no-
reply@sns.amazonaws.com

The email will list the Amazon Resource Name for the Amazon SNS topic, and a confirmation
link.

3. Choose the confirm subscription link.

amazon
webservices”

Subscription confirmed!

You have subscribed se=sssh@amazon.com to the topic:
HumanApprovalExample-SNSHumanApprovalEmailTopic:
AAIMNLKYAIM3.

Your subscription’s id is:

ArN:aws:SNs:us-east-1 ~SENTeins rHumanapproval Example=
SHSHumanApproval EmailTopic=ARIMNLEYAIMI:c358£d09%=-cebl=4cc?=be7f=
52ccfiecdcdf

If it was not yvour intention to subscribe, click here to unsubscribe.

Step 4: Run the state machine

1. On the HumanApprovalLambdaStateMachine page, choose Start execution.

Step 3: Approve the SNS subscription 241

AWS Step Functions Developer Guide

The Start execution dialog box is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

b. Inthe Input box, enter the following JSON input to run your workflow.

"Comment": "Testing the human approval tutorial."

c. Choose Start execution.

The ApprovalTest state machine execution starts, and pauses at the Lambda Callback
task.

d. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Step 4: Run the state machine 242

AWS Step Functions Developer Guide

Success M Failed Cancelted In Progress +
| start |
L -
Lambda Callback
. J
ManualApprovalChoiceState x
4 ¥
ApprovedPassState RejectedPassState
I\ﬂh\- -H-,/I
‘ e

3. In the email account you used for the Amazon SNS topic earlier, open the message with the
subject Required approval from AWS Step Functions.

The message includes separate URLs for Approve and Reject.

4. Choose the Approve URL.

The workflow continues based on your choice.

Step 4: Run the state machine 243

AWS Step Functions Developer Guide

M Success M Failed Can In Progress
:}eHﬁQ_I g
| Start j:

\‘\L -~

RejectedPass5tate

AWS CloudFormation Template Source Code

Use this AWS CloudFormation template to deploy an example of a human approval process
workflow.

AWSTemplateFormatVersion: "2010-09-09"
Description: "AWS Step Functions Human based task example. It sends an email with an
HTTP URL for approval."
Parameters:
Email:
Type: String
AllowedPattern: "~[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]1+\\.[a-zA-Z0-9-.]+$"
ConstraintDescription: Must be a valid email address.
Resources:
Begin API Gateway Resources
ExecutionApi:
Type: "AWS::ApiGateway::RestApi"
Properties:
Name: "Human approval endpoint"
Description: "HTTP Endpoint backed by API Gateway and Lambda"
FailOnWarnings: true

ExecutionResource:

Template Source Code 244

AWS Step Functions Developer Guide

Type: 'AWS::ApiGateway: :Resource'

Properties:
RestApilId: !'Ref ExecutionApi
ParentId: !GetAtt "ExecutionApi.RootResourceId"
PathPart: execution

ExecutionMethod:
Type: "AWS::ApiGateway::Method"
Properties:

AuthorizationType: NONE
HttpMethod: GET
Integration:
Type: AWS
IntegrationHttpMethod: POST
Uri: !Sub "arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/
${LambdaApprovalFunction.Arn}/invocations"
IntegrationResponses:
- StatusCode: 302
ResponseParameters:
method.response.header.Location:
"integration.response.body.headers.Location"
RequestTemplates:
application/json: |
{
"body" : $input.json('$'),
"headers": {
#foreach($header in $input.params().header.keySet())
"$header":
"$util.escapelavaScript($input.params().header.get($header))"
#if($foreach.hasNext), #end

#end
},
"method": "$context.httpMethod",
"params": {
#foreach($param in $input.params().path.keySet())
"$param": "$util.escapelavaScript($input.params().path.get($param))"
#if($foreach.hasNext), #end

#end
},
"query": {
#foreach($queryParam in $input.params().querystring.keySet())

Template Source Code 245

AWS Step Functions

Developer Guide

"$queryParam":

"$util.escapelavaScript($input.params().querystring.get($queryParam))"

#if($foreach.hasNext), #end

#end

}

ResourceId: !Ref ExecutionResource
RestApilId: !'Ref ExecutionApi
MethodResponses:
- StatusCode: 302
ResponseParameters:
method.response.header.Location: true

ApiGatewayAccount:
Type: 'AWS::ApiGateway::Account'
Properties:

CloudWatchRoleArn: !GetAtt "ApiGatewayCloudWatchLogsRole.Arn"

ApiGatewayCloudWatchLogsRole:
Type: 'AWS::IAM::Role'
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Principal:
Service:
- apigateway.amazonaws.com
Action:
- 'sts:AssumeRole'
Policies:
- PolicyName: ApiGatewaylLogsPolicy
PolicyDocument:
Version: 2012-10-17
Statement:
- Effect: Allow
Action:
- "logs:*"
Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"

ExecutionApiStage:
DependsOn:
- ApiGatewayAccount

Template Source Code

246

AWS Step Functions Developer Guide

Type: 'AWS::ApiGateway::Stage'
Properties:
DeploymentId: !Ref ApiDeployment
MethodSettings:

- DataTraceEnabled: true
HttpMethod: '*'
LogginglLevel: INFO
ResourcePath: /*

RestApilId: !'Ref ExecutionApi
StageName: states

ApiDeployment:
Type: "AWS::ApiGateway: :Deployment"
DependsOn:
- ExecutionMethod
Properties:
RestApilId: !'Ref ExecutionApi
StageName: DummyStage
End API Gateway Resources

Begin
Lambda that will be invoked by API Gateway
LambdaApprovalFunction:
Type: 'AWS::Lambda::Function'
Properties:
Code:
ZipFile:
Fn::Sub: |
const { SFN: StepFunctions } = require("@aws-sdk/client-sfn");
var redirectToStepFunctions = function(lambdaArn, statemachineName,
executionName, callback) {
const lambdaArnTokens = lambdaArn.split(":");
const partition = lambdaArnTokens[1];
const region = lambdaArnTokens[3];
const accountId = lambdaArnTokens[4];

console.log("partition=" + partition);
console.log("region=" + region);
console.log("accountId=" + accountId);

const executionArn = "arn:" + partition + ":states:" + region + ":" +
accountId + ":execution:" + statemachineName + ":" + executionName;
console.log("executionArn=" + executionArn);

Template Source Code 247

AWS Step Functions Developer Guide

const url = "https://console.aws.amazon.com/states/home?region=" + region
+ "#/executions/details/" + executionArn;
callback(null, {
statusCode: 302,
headers: {
Location: url

1)
i

exports.handler = (event, context, callback) => {
console.log('Event= ' + JSON.stringify(event));
const action = event.query.action;
const taskToken = event.query.taskToken;
const statemachineName = event.query.sm;
const executionName event.query.ex;

const stepfunctions = new StepFunctions();

var message = "";
if (action === "approve") {
message = { "Status": "Approved! Task approved by ${Emaill}" 3};
} else if (action === "reject") {
message = { "Status": "Rejected! Task rejected by ${Emaill}" 3};
} else {
console.error("Unrecognized action. Expected: approve, reject.");
callback({"Status": "Failed to process the request. Unrecognized
Action."});
}

stepfunctions.sendTaskSuccess({
output: JSON.stringify(message),
taskToken: event.query.taskToken

)

.then(function(data) {
redirectToStepFunctions(context.invokedFunctionArn, statemachineName,

executionName, callback);

}) .catch(function(err) {
console.error(err, err.stack);
callback(err);

1)

}
Description: Lambda function that callback to AWS Step Functions

Template Source Code 248

AWS Step Functions Developer Guide

FunctionName: LambdaApprovalFunction
Handler: index.handler

Role: !GetAtt "LambdaApiGatewayIAMRole.Arn"
Runtime: nodejsl8.x

LambdaApiGatewayInvoke:

Type: "AWS::Lambda::Permission"

Properties:
Action: "lambda:InvokeFunction"
FunctionName: !GetAtt "LambdaApprovalFunction.Arn"
Principal: "apigateway.amazonaws.com"
SourceArn: !Sub "arn:aws:execute-api:${AWS: :Region}:${AWS: :AccountId}:

${ExecutionApi}/*"

LambdaApiGatewayIAMRole:
Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Action:
- "sts:AssumeRole"
Effect: "Allow"
Principal:
Service:
- "lambda.amazonaws.com"
Policies:
- PolicyName: CloudWatchLogsPolicy
PolicyDocument:
Statement:
- Effect: Allow
Action:
- "logs:*"
Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"
- PolicyName: StepFunctionsPolicy
PolicyDocument:
Statement:
- Effect: Allow
Action:
- "states:SendTaskFailure"
- "states:SendTaskSuccess"
Resource: "*"
End Lambda that will be invoked by API Gateway

Template Source Code 249

AWS Step Functions Developer Guide

Begin state machine that publishes to Lambda and sends an email with the 1link for
approval
HumanApprovallLambdaStateMachine:
Type: AWS::StepFunctions::StateMachine
Properties:
RoleArn: !GetAtt LambdaStateMachineExecutionRole.Arn
DefinitionString:
Fn::Sub: |
{
"StartAt": "Lambda Callback",
"TimeoutSeconds": 3600,
"States": {
"Lambda Callback": {
"Type": "Task",
"Resource": "arn:
${AWS: :Partition}:states:::lambda:invoke.waitForTaskToken",
"Parameters": {
"FunctionName": "${LambdaHumanApprovalSendEmailFunction.Arn}",
"Payload": {
"ExecutionContext.$": "$$",
"APIGatewayEndpoint": "https://${ExecutionApi}.execute-api.
${AWS: :Region}.amazonaws.com/states"
}
I
"Next": "ManualApprovalChoiceState"
I
"ManualApprovalChoiceState": {
"Type": "Choice",
"Choices": [

{
"Variable": "$.Status",
"StringEquals": "Approved! Task approved by ${Emaill}",
"Next": "ApprovedPassState"

1,

{
"Variable": "$.Status",
"StringEquals": "Rejected! Task rejected by ${Emaill}",
"Next": "RejectedPassState"

}

]
1,

"ApprovedPassState": {
IlTypell: IIPaSSII’
"End": true

Template Source Code 250

AWS Step Functions Developer Guide

},
"RejectedPassState": {

IlTypell: IIPaSSII’
"End": true

SNSHumanApprovalEmailTopic:
Type: AWS::SNS::Topic
Properties:

Subscription:
Endpoint: !Sub ${Email}
Protocol: email

LambdaHumanApprovalSendEmailFunction:
Type: "AWS::Lambda::Function"
Properties:
Handler: "index.lambda_handler"
Role: !GetAtt LambdaSendEmailExecutionRole.Arn
Runtime: "nodejsl18.x"
Timeout: "25"
Code:
ZipFile:
Fn::Sub: |
console.log('Loading function');
const { SNS } = require("@aws-sdk/client-sns");
exports.lambda_handler = (event, context, callback) => {
console.log('event= ' + JSON.stringify(event));
console.log('context= ' + JSON.stringify(context));

const executionContext = event.ExecutionContext;
console.log('executionContext= ' + executionContext);

const executionName = executionContext.Execution.Name;
console.log('executionName= ' + executionName);

const statemachineName = executionContext.StateMachine.Name;
console.log('statemachineName= ' + statemachineName);

const taskToken = executionContext.Task.Token;
console.log('taskToken= ' + taskToken);

Template Source Code 251

AWS Step Functions Developer Guide

const apigwEndpint = event.APIGatewayEndpoint;
console.log('apigwEndpint = ' + apigwEndpint)

const approveEndpoint = apigwEndpint + "/execution?
action=approve&ex=" + executionName + "&sm=" + statemachineName + "&taskToken=" +
encodeURIComponent(taskToken);

console.log('approveEndpoint=

+ approveEndpoint);

const rejectEndpoint = apigwEndpint + "/execution?
action=reject&ex=" + executionName + "&sm=" + statemachineName + "&taskToken=" +
encodeURIComponent(taskToken);

console.log('rejectEndpoint= ' + rejectEndpoint);

const emailSnsTopic = "${SNSHumanApprovalEmailTopic}";
console.log('emailSnsTopic= ' + emailSnsTopic);

var emailMessage = 'Welcome! \n\n';

emailMessage += 'This is an email requiring an approval for a step
functions execution. \n\n'

emailMessage += 'Check the following information and click "Approve"
link if you want to approve. \n\n'

emailMessage += 'Execution Name -> ' + executionName + '\n\n'

emailMessage += 'Approve ' + approveEndpoint + '\n\n'

emailMessage 'Reject ' + rejectEndpoint + '\n\n'

emailMessage 'Thanks for using Step functions!'

+ o+
o

const sns = new SNS();

var params = {
Message: emailMessage,
Subject: "Required approval from AWS Step Functions",
TopicArn: emailSnsTopic

};

sns.publish(params)

.then(function(data) {
console.log("MessageID is " + data.Messageld);
callback(null);

}) .catch(
function(err) {
console.error(err, err.stack);
callback(err);

18

Template Source Code 252

AWS Step Functions

Developer Guide

LambdaStateMachineExecutionRole:

Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"

Statement:
- Effect: Allow
Principal:

Service: states.amazonaws.com
Action: "sts:AssumeRole"

Policies:

- PolicyName: InvokeCallbackLambda

PolicyDocument:
Statement:
- Effect: Allow
Action:

- "lambda:InvokeFunction"

Resource:

- 1Sub "${LambdaHumanApprovalSendEmailFunction.Arn}"

LambdaSendEmailExecutionRole:
Type: "AWS::IAM::Role"
Properties:

AssumeRolePolicyDocument:
Version: "2012-10-17"

Statement:
- Effect: Allow
Principal:

Service: lambda.amazonaws.com
Action: "sts:AssumeRole"

Policies:

- PolicyName: CloudWatchLogsPolicy

PolicyDocument:
Statement:
- Effect: Allow
Action:

- "logs:CreateLogGroup"
- "logs:CreatelLogStream"
- "logs:PutLogEvents"
Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"
- PolicyName: SNSSendEmailPolicy

PolicyDocument:
Statement:
- Effect: Allow

Template Source Code

253

AWS Step Functions Developer Guide

Action:
- "SNS:Publish"
Resource:
- !Sub "${SNSHumanApprovalEmailTopic}"

End state machine that publishes to Lambda and sends an email with the link for
approval
Outputs:
ApiGatewayInvokeURL:
Value: !Sub "https://${ExecutionApi}.execute-api.${AWS: :Region}.amazonaws.com/
states"”
StateMachineHumanApprovalArn:
Value: !Ref HumanApprovallLambdaStateMachine

Using Inline Map state to repeat an action in Step Functions

This tutorial helps you get started with using the Map state in Inline mode. You use the Inline Map
state in your workflows to repeatedly perform an action. For more information about Inline mode,
see Map state in Inline mode.

In this tutorial, you use the Inline Map state to repeatedly generate version 4 universally unique
identifiers (v4 UUID). You start by creating a workflow that contains two Pass workflow state

states and an Inline Map state in the Workflow Studio. Then, you configure the input and output,
including the input JSON array for the Map state. The Map state returns an output array that
contains the v4 UUIDs generated for each item in the input array.

Step 1: Create the workflow prototype

In this step, you create the prototype for your workflow using Workflow Studio. Workflow Studio
is a visual workflow designer available in the Step Functions console. You'll choose the required
states from the Flow tab and use the drag and drop feature of Workflow Studio to create the
workflow prototype.

1. Open the Step Functions console and choose Create state machine.

2. Inthe Choose a template dialog box, select Blank.
3. Choose Select to open Workflow Studio in Design mode.
4

From the Flow tab, drag a Pass state and drop it to the empty state labelled Drag first state
here.

Repeat actions with Inline Map 254

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

5. Drag a Map state and drop it below the Pass state. Rename the Map state to Map demo.
6. Drag a second Pass state and drop it inside of the Map demo state.

7. Rename the second Pass state to Generate UUID.

Step 2: Configure input and output

In this step, you configure input and output for all the states in your workflow prototype. First,
you inject some fixed data into the workflow using the first Pass state. This Pass state passes on
this data as input to the Map demo state. Within this input, you specify the node that contains the
input array the Map demo state should iterate over. Then you define the step that the Map demo
state should repeat to generate the v4 UUIDs. Finally, you configure the output to return for each
repetition.

1. Choose the first Pass state in your workflow prototype. In the Output tab, enter the following
under Result:

{

"foo": "bar",
"colors": [
"red",
"green",
"blue",

"yellow",
"white"
]
}

2. Choose the Map demo state and in the Configuration tab, do the following:

a. Choose Provide a path to items array.

b. Specify the following reference path to select the node that contains the input array:

$.colors
3. Choose the Generate UUID state and in the Input tab, do the following:

a. Choose Transform input with Parameters.

b. Enter the following JSON input to generate the v4 UUIDs for each of the input array
items. You use the States.UUID intrinsic function to generate the UUIDs.

Step 2: Configure input and output 255

AWS Step Functions Developer Guide

{
"uuid.$": "States.UUID()"
}
4. For the Generate UUID state, choose the Output tab and do the following:

a. Choose Filter output with OutputPath.

b. Enter the following reference path to select the JSON node that contains the output array
items:

$.uuid

Step 3: Review and save auto-generated definition

As you drag and drop states from the Flow panel onto the canvas, Workflow Studio automatically
composes the Amazon States Language (ASL) definition of your workflow in real-time. You can edit

this definition as required.

1. (Optional) Choose Definition on the Inspector panel panel to view the automatically-
generated Amazon States Language definition of your workflow.

® Tip
You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

The following example shows the automatically generated Amazon States Language definition
for your workflow.

{
"Comment": "Using Map state in Inline mode",
"StartAt": "Pass",
"States": {
"Pass": {

IlTypell: IIPaSSIl’
"Next": "Map demo",
"Result": {

Step 3: Review and save auto-generated definition 256

AWS Step Functions

Developer Guide

"foo": "bar",

"colors": [
"red",
"green",
"blue",
"yellow",
"white"

}
.
"Map demo": {
"Type": "Map",
"ItemsPath": "$.colors",
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "INLINE"
},
"StartAt": "Generate UUID",
"States": {
"Generate UUID": {
"Type": "Pass",
"End": true,
"Parameters": {
"uuid.$": "States.UUID()"

},
"OutputPath": "$.uuid"

}
}I

"End": true

2. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a

name in the State machine name box.

For this tutorial, enter the name InlineMapDemo.

3. (Optional) In State machine configuration, specify other workflow settings, such as state

machine type and its execution role.

For this tutorial, keep all the default selections in State machine configuration.

Step 3: Review and save auto-generated definition

257

AWS Step Functions Developer Guide

4. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 4: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1. On the InlineMapDemo page, choose Start execution.

2. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.
3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Step 4: Run the state machine 258

AWS Step Functions Developer Guide

To view the execution input and output side-by-side, choose Execution input and output.
Under Output, view the output array returned by the Map state. The following is an example of
the output array:

[
"a85cbc7b-4e65-4ac2-97af-80ed504adcld"”,
"b@5bcall-d481-414e-aa9a-88285ec6590d",
"f42d59f7-bd32-480f-b270-caddb518ce2a",
"15f18616-517d-4b69-b7c3-bf22222d2efd",
"690bcfee-6d58-408c-abb4-1995ccafdbd2”
]

Copying large-scale CSV data using Distributed Map in Step
Functions

This tutorial helps you start using the Map state in Distributed mode. A Map state set to Distributed
is known as a Distributed Map state. You use the Distributed Map state in your workflows to iterate
over large-scale Amazon S3 data sources. The Map state runs each iteration as a child workflow
execution, which enables high concurrency. For more information about Distributed mode, see Map
state in Distributed mode.

In this tutorial, you use the Distributed Map state to iterate over a CSV file in an Amazon S3 bucket.
You then return its contents, along with the ARN of a child workflow execution, in another Amazon
S3 bucket. You start by creating a workflow prototype in the Workflow Studio. Next, you set the
Map state's processing mode to Distributed, specify the CSV file as the dataset, and provide its
location to the Map state. You also specify the workflow type for the child workflow executions
that the Distributed Map state starts as Express.

In addition to these settings, you also specify other configurations, such as the maximum number
of concurrent child workflow executions and the location to export the Map result, for the example
workflow used in this tutorial.

Copy large-scale CSV using Distributed Map 259

AWS Step Functions Developer Guide

Prerequisites

» Upload a CSV file to an Amazon S3 bucket. You must define a header row within your CSV file.
For information about size limits imposed on the CSV file and how to specify the header row, see
CSV file in an Amazon S3 bucket.

» Create another Amazon S3 bucket and a folder within that bucket to export the Map state result
to.

/A Important

Make sure that your Amazon S3 buckets are under the same AWS account and AWS Region
as your state machine.

Step 1: Create the workflow prototype

In this step, you create the prototype for your workflow using Workflow Studio. Workflow Studio is
a visual workflow designer available in the Step Functions console. You choose the required state
and API action from the Flow and Actions tabs respectively. You'll use the drag and drop feature of
Workflow Studio to create the workflow prototype.

1. Open the Step Functions console and choose Create state machine.

2. Inthe Choose a template dialog box, select Blank.
3. Choose Select to open Workflow Studio in Design mode.
4

From the Flow tab, drag a Map state and drop it to the empty state labelled Drag first state
here.

b

In the Configuration tab, for State name, enter Process data.

6. From the Actions tab, drag an AWS Lambda Invoke API action and drop it inside the Process
data state.

7. Rename the AWS Lambda Invoke state to Process CSV data.

Step 2: Configure the required fields for Map state

In this step, you configure the following required fields of the Distributed Map state:

Prerequisites 260

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

» ItemReader - Specifies the dataset and its location from which the Map state can read input.

» ItemProcessor — Specifies the following values:

e ProcessorConfig - Set the Mode and ExecutionType to DISTRIBUTED and EXPRESS
respectively. This sets the Map state's processing mode and the workflow type for child
workflow executions that the Distributed Map state starts.

« StartAt - The first state in the Map workflow.

« States - Defines the Map workflow, which is a set of steps to repeat in each child workflow
execution.

o ResultWriter — Specifies the Amazon S3 location where Step Functions writes the Distributed Map
state results.

/A Important

Make sure that the Amazon S3 bucket you use to export the results of a Map Run is under
the same AWS account and AWS Region as your state machine. Otherwise, your state
machine execution will fail with the States.ResultWriterFailed error.

To configure the required fields:
1. Choose the Process data state and, in the Configuration tab, do the following:

a. For Processing mode, choose Distributed.

b. For Item source, choose Amazon S3, and then choose CSV file in S3 from the S3 item
source dropdown list.

c. Do the following to specify the Amazon S3 location of your CSV file:

i. For S3 object, select Enter bucket and key from the dropdown list.

ii. For Bucket, enter the name of the Amazon S3 bucket, which contains the CSV file. For
example, amzn-s3-demo-source-bucket.

iii. For Key, enter the name of the Amazon S3 object in which you saved the CSV file. You
must also specify the name of the CSV file in this field. For example, csvDataset/
ratings.csv.

d. For CSV files, you must also specify the location of the column header. To do this, choose
Additional configuration, and then for CSV header location keep the default selection of

Step 2: Configure the required fields for Map state 261

AWS Step Functions Developer Guide

First row if the first row of your CSV file is the header. Otherwise, choose Given to specify
the header within the state machine definition. For more information, see ReaderConfig.

e. For Child execution type, choose Express.

2. In Export location, to export the Map Run results to a specific Amazon S3 location, choose
Export Map state's output to Amazon S3.

3. Do the following:

a. For S3 bucket, choose Enter bucket name and prefix from the dropdown list.

b. For Bucket, enter the name of the Amazon S3 bucket where you want to export the
results to. For example, mapOutputs.

c. For Prefix, enter the folder name where you want to save the results to. For example,
resultData.

Step 3: Configure additional options

In addition to the required settings for a Distributed Map state, you can also specify other options.
These can include the maximum number of concurrent child workflow executions and the location
to export the Map state result to.

1. Choose the Process data state. Then, in Item source, choose Additional configuration.

2. Do the following:

a. Choose Modify items with ItemSelector to specify a custom JSON input for each child
workflow execution.

b. Enter the following JSON input:

{
"index.$": "$$.Map.Item.Index",
"value.$": "$$.Map.Item.Value"

}

For information about how to create a custom input, see ItemSelector (Map).

3. In Runtime settings, for Concurrency limit, specify the number of concurrent child workflow
executions that the Distributed Map state can start. For example, enter 100.

4. Open a new window or tab on your browser and complete the configuration of the Lambda
function you'll use in this workflow, as explained in Step 4: Configure the Lambda function.

Step 3: Configure additional options 262

AWS Step Functions Developer Guide

Step 4: Configure the Lambda function

/A Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

1. Open the Lambda console and choose Create function.

2. On the Create function page, choose Author from scratch.

3. Inthe Basic information section, configure your Lambda function:

For Function name, enter distributedMapLambda.

a
b. For Runtime, choose Node.js.

n

Keep all of the default selections and choose Create function.

d. After you create your Lambda function, copy the function's Amazon Resource Name
(ARN) displayed in the upper-right corner of the page. You'll need to provide this in your
workflow prototype. The following is an example ARN:

arn:aws:lambda:us-east-2:123456789012:function:distributedMaplLambda

4. Copy the following code for the Lambda function and paste it into the Code source section of
the distributedMapLambda page.

exports.handler = async function(event, context) {
console.log("Received Input:\n", event);

return {

'statusCode' : 200,

'"inputReceived' : event //returns the input that it received
}

1Y

5. Choose Deploy. Once your function deploys, choose Test to see the output of your Lambda
function.

Step 5: Update the workflow prototype

In the Step Functions console, you'll update your workflow to add the Lambda function's ARN.

Step 4: Configure the Lambda function 263

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

1. Return to the tab or window where you created the workflow prototype.

2. Choose the Process CSV data step, and in the Configuration tab, do the following:

a. For Integration type, choose Optimized.

b. For Function name, start to enter the name of your Lambda function. Choose the function
from the dropdown list that appears, or choose Enter function name and provide the
Lambda function ARN.

Step 6: Review the auto-generated Amazon States Language definition
and save the workflow

As you drag and drop states from the Action and Flow tabs onto the canvas, Workflow Studio
automatically composes the Amazon States Language definition of your workflow in real-time. You

can edit this definition as required.

1. (Optional) Choose Definition on the Inspector panel panel and view the state machine
definition.

® Tip
You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

The following example code shows the automatically generated Amazon States Language
definition for your workflow.

{
"Comment": "Using Map state in Distributed mode",
"StartAt": "Process data",
"States": {
"Process data": {
"Type": "Map",

"MaxConcurrency": 100,
"ItemReader": {
"ReaderConfig": {
"InputType": "CSV",
"CSVHeaderLocation": "FIRST_ROW"
1,

Step 6: Review the auto-generated Amazon States Language definition and save the workflow 264

AWS Step Functions Developer Guide

"Resource": "arn:aws:states:::s3:getObject",
"Parameters": {
"Bucket": "amzn-s3-demo-source-bucket",
"Key": "csvDataset/ratings.csv"
}
1,

"ItemProcessor": {
"ProcessorConfig": {
"Mode": "DISTRIBUTED",
"ExecutionType": "EXPRESS"
},
"StartAt": "Process CSV data",
"States": {
"Process CSV data": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:us-
east-2:123456789012:function:distributedMaplLambda"
I

"End": true

}
I
"Label": "Processdata",
"End": true,
"ResultWriter": {
"Resource": "arn:aws:states:::s3:putObject",
"Parameters": {
"Bucket": "mapOutputs",
"Prefix": "resultData"
}
},
"ItemSelector": {
"index.$": "$$.Map.Item.Index",
"value.$": "$$.Map.Item.Value"

Step 6: Review the auto-generated Amazon States Language definition and save the workflow 265

AWS Step Functions

Developer Guide

2.

Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name DistributedMapDemo.

(Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine configuration.

In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(@ Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 7: Run the state machine

An execution is an instance of your state machine where you run your workflow to perform tasks.

1.
2.

On the DistributedMapDemo page, choose Start execution.

In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

3. Choose Start execution.

Step 7: Run the state machine

266

AWS Step Functions Developer Guide

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

For example, choose the Map state, and then choose Map Run to open the Map Run Details
page. On this page, you can view all the execution details of the Distributed Map state and the
child workflow executions that it started. For information about this page, see Viewing Map
Runs.

Iterate a loop with a Lambda function in Step Functions

In this tutorial, you implement a design pattern that uses a state machine and an AWS Lambda
function to iterate a loop a specific number of times.

Use this design pattern any time you need to keep track of the number of loops in a state

machine. This implementation can help you break up large tasks or long-running executions into
smaller chunks, or to end an execution after a specific number of events. You can use a similar
implementation to periodically end and restart a long-running execution to avoid exceeding service
quotas for AWS Step Functions, AWS Lambda, or other AWS services.

Before you begin, go through the Creating a Step Functions state machine that uses Lambda

tutorial to ensure you are familiar with using Lambda and Step Functions together.

Step 1: Create a Lambda function to iterate a count

By using a Lambda function you can track the number of iterations of a loop in your state machine.
The following Lambda function receives input values for count, index, and step. It returns these
values with an updated index and a Boolean value named continue. The Lambda function sets
continue to true if the index is less than count.

Your state machine then implements a Choice state that executes some application logic if
continue is true, or exits if itis false.

Iterate a loop with Lambda 267

AWS Step Functions Developer Guide

To create the Lambda function

1. Signin to the Lambda console, and then choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function, as follows:

a. For Function name, enter Iterator.
b. For Runtime, choose Node.js.

c. In Change default execution role, choose Create a new role with basic Lambda
permissions.

d. Choose Create function.

4. Copy the following code for the Lambda function into the Code source.

export const handler = function (event, context, callback) {
let index = event.iterator.index
let step = event.iterator.step
let count = event.iterator.count

index = index + step

callback(null, {
index,
step,
count,
continue: index < count

1)

This code accepts input values for count, index, and step. It increments the index by the
value of step and returns these values, and the Boolean continue. The value of continue is
true if index is less than count.

5. Choose Deploy.

Step 2: Test the Lambda Function

Run your Lambda function with numeric values to see it in operation. You can provide input values
for your Lambda function that mimic an iteration.

Step 2: Test the Lambda Function 268

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

To test your Lambda function

1. Choose Test.
2. Inthe Configure test event dialog box, enter TestIterator in the Event name box.

3. Replace the example data with the following.

{

"Comment": "Test my Iterator function",
"iterator": {
"count": 10,
"index": 5,
"step": 1
}
}

These values mimic what would come from your state machine during an iteration. The
Lambda function will increment the index and return true for continue when the index is
less than count. For this test, the index has already incremented to 5. The test will increment
index to 6 and set continue to true.

4. Choose Create.

5. Choose Test to test your Lambda function.

The results of the test are displayed in the Execution results tab.

6. Choose the Execution results tab to see the output.

{
"index": 6,
"step": 1,
"count": 10,
"continue": true

}

(® Note

If you set index to 9 and test again, the index increments to 10, and continue will
be false.

Step 2: Test the Lambda Function 269

AWS Step Functions Developer Guide

Step 3: Create a State Machine

(& Before you leave the Lambda console...

Copy the Lambda function ARN. Paste it into a note. You'll need it in the next step.

Next, you will create a state machine with the following states:

« ConfigureCount - Sets default values for count, index, and step.

« Iterator - Refers to the Lambda function you created earlier, passing in the values configured
in ConfigureCount.

« IsCountReached - A choice state that continues the loop or proceeds to Done state, based on
the value returned from your Iterator function.

« ExampleWork — A stub for work that needs to be done. In this example, the workflow has a Pass
state, but in a real solution, you would likely use a Task.

« Done - End state of your workflow.

To create the state machine in the console:

1. Open the Step Functions console, and then choose Create a state machine.

/A Important

Your state machine must be in the same AWS account and Region as your Lambda
function.

2. Select the Blank template.
3. Inthe Code pane, paste the following JSON which defines the state machine.

For more information about the Amazon States Language, see State Machine Structure.

{
"Comment": "Iterator State Machine Example",
"StartAt": "ConfigureCount",
"States": {

Step 3: Create a State Machine 270

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

"ConfigureCount": {
"Type": "Pass",
"Result": {

"count": 10,
"index": 0,

"step": 1
},
"ResultPath": "$.iterator",
"Next": "Iterator"

I
"Iterator": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Iterate",
"ResultPath": "$.iterator",
"Next": "IsCountReached"
I
"IsCountReached": {
"Type": "Choice",
"Choices": [
{
"Variable": "$.iterator.continue",
"BooleanEquals": true,
"Next": "ExampleWork"

1,
"Default": "Done"
},
"ExampleWork": {
"Comment": "Your application logic, to run a specific number of times",
"Type": "Pass",
"Result": {
"success": true
},
"ResultPath": "$.result",
"Next": "Iterator"
I
"Done": {
"Type": "Pass",
"End": true

Step 3: Create a State Machine 271

AWS Step Functions Developer Guide

4. Replace the Iterator Resource field with the ARN for your Iterator Lambda function
that you created earlier.

5. Select Config, and enter a Name for your state machine, such as IterateCount.

(@ Note

Names of state machines, executions, and activity tasks must not exceed 80 characters
in length. These names must be unique for your account and AWS Region, and must
not contain any of the following:

Whitespace

Wildcard characters (? *)

Bracket characters(< > { } [])

Special characters (" # S\ * | ~ " $ &, ; : /)
Control characters (\\u@000 - \\u@01f or \\u0o7f - \\uoo9of).

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

6. For Type, accept default value of Standard. For Permissions, choose Create new role.

7. Choose Create, and then Confirm the role creations.

Step 4: Start a New Execution

After you create your state machine, you can start an execution.

1. On the IterateCount page, choose Start execution.

2. (Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon

Step 4: Start a New Execution 272

AWS Step Functions Developer Guide

CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

3. Choose Start Execution.

A new execution of your state machine starts, showing your running execution.

Iterator)

The execution increments in steps, tracking the count using your Lambda function. On each
iteration, it performs the example work referenced in the ExampleWork state in your state
machine.

When the count reaches the number specified in the ConfigureCount state in your state
machine, the execution quits iterating and ends.

Processing batch data with a Lambda function in Step
Functions

In this tutorial, you use the Distributed Map state's ltemBatcher (Map) field to process an entire
batch of items inside a Lambda function. Each batch contains a maximum of three items. The
Distributed Map state starts four child workflow executions, where each execution processes
three items, while one execution processes a single item. Each child workflow execution invokes a
Lambda function that iterates over the individual items present in the batch.

Process batch data with Lambda 273

AWS Step Functions Developer Guide

You'll create a state machine that performs multiplication on an array of integers. Say that

the integer array you provide as inputis [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the
multiplication factor is 7. Then, the resulting array formed after multiplying these integers with a
factor of 7, willbe [7, 14, 21, 28, 35, 42, 49, 56, 63, 70].

Step 1: Create the state machine

In this step, you create the workflow prototype of the state machine that passes an entire batch of
data to the Lambda function you'll create in Step 2.

« Use the following definition to create a state machine using the Step Functions console. For
information about creating a state machine, see Step 1: Create the workflow prototype in the
Getting started with using Distributed Map state tutorial.

In this state machine, you define a Distributed Map state that accepts an array of 10 integers
as input and passes this array to a Lambda function in batches of 3. The Lambda function
iterates over the individual items present in the batch and returns an output array named
multiplied. The output array contains the result of the multiplication performed on the
items passed in the input array.

/A Important

Make sure to replace the Amazon Resource Name (ARN) of the Lambda function in the
following code with the ARN of the function you'll create in Step 2.

{
"StartAt": "Pass",
"States": {
"Pass": {

"Type": "Pass",
"Next": "Map",
"Result": {
"MyMultiplicationFactor": 7,
"MyItems": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

IlMapll: {
IlTypell: IlMapll’
"ItemProcessor": {

Step 1: Create the state machine 274

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

"ProcessorConfig": {
"Mode": "DISTRIBUTED",
"ExecutionType": "STANDARD"

I
"StartAt": "Lambda Invoke",
"States": {
"Lambda Invoke": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function: functionName"
},
"Retry": [
{

"ErrorEquals": [
"Lambda.ServiceException",
"Lambda.AWSLambdaException",
"Lambda.SdkClientException",
"Lambda.TooManyRequestsException"

1,

"IntervalSeconds": 2,

"MaxAttempts": 6,

"BackoffRate": 2

}
1,
"End": true
}
}

I

"End": true,

"Label": "Map",

"MaxConcurrency": 1000,

"ItemBatcher": {
"MaxItemsPerBatch": 3,
"BatchInput": {

"MyMultiplicationFactor.$": "$.MyMultiplicationFactor"

}

},

"ItemsPath": "$.MyItems"

Step 1: Create the state machine 275

AWS Step Functions Developer Guide

}

Step 2: Create the Lambda function

In this step, you create the Lambda function that processes all the items passed in the batch.

/A Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

To create the Lambda function

1. Use the Lambda console to create a Python Lambda function named ProcessEntireBatch.

For information about creating a Lambda function, see Step 4: Configure the Lambda function

in the Getting started with using Distributed Map state tutorial.

2. Copy the following code for the Lambda function and paste it into the Code source section of
your Lambda function.

import json

def lambda_handler(event, context):
multiplication_factor = event['BatchInput']['MyMultiplicationFactor']
items = event['Items']

results = [multiplication_factor * item for item in items]

return {
'statusCode': 200,
'multiplied': results

}

3. After you create your Lambda function, copy the function's ARN displayed in the upper-right
corner of the page. The following is an example ARN, where function-name is the name of
the Lambda function (in this case, ProcessEntireBatch):

arn:aws:lambda:us-east-1:123456789012: function: function-name

You'll need to provide the function ARN in the state machine you created in Step 1.

Step 2: Create the Lambda function 276

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

4. Choose Deploy to deploy the changes.

Step 3: Run the state machine

When you run the state machine, the Distributed Map state starts four child workflow executions,
where each execution processes three items, while one execution processes a single item.

The following example shows the data passed to the ProcessEntireBatch function by one of
the child workflow executions.

{
"BatchInput": {
"MyMultiplicationFactor": 7
},
"Items": [1, 2, 3]
}

Given this input, the following example shows the output array named multiplied thatis
returned by the Lambda function.

{
"statusCode": 200,
"multiplied": [7, 14, 21]
}

The state machine returns the following output that contains four arrays named multiplied for
the four child workflow executions. These arrays contain the multiplication results of the individual
input items.

[
{
"statusCode": 200,
"multiplied": [7, 14, 21]
},
{
"statusCode": 200,
"multiplied": [28, 35, 42]
},
{

"statusCode": 200,

Step 3: Run the state machine 277

AWS Step Functions Developer Guide

"multiplied": [49, 56, 63]

.
{
"statusCode": 200,
"multiplied": [70]
}

To combine all the array items returned into a single output array, you can use the ResultSelector
field. Define this field inside the Distributed Map state to find all the multiplied arrays, extract all
the items inside these arrays, and then combine them into a single output array.

To use the ResultSelector field, update your state machine definition as shown in the following

example.
{
"StartAt": "Pass",
"States": {
IIMapII: {

IlTypell: IlMapll’

"ItemsPath": "$.MyItems",
"ResultSelector": {
"multiplied.$": "$..multiplied[*]"
}
}
}
}

The updated state machine returns a consolidated output array as shown in the following example.

"multiplied": [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]
3

Step 3: Run the state machine 278

AWS Step Functions Developer Guide

Processing individual items with a Lambda function in Step
Functions

In this tutorial, you use the Distributed Map state's ltemBatcher (Map) field to iterate over individual
items present in a batch using a Lambda function. The Distributed Map state starts four child
workflow executions. Each of these child workflows runs an Inline Map state. For its each iteration,
the Inline Map state invokes a Lambda function and passes a single item from the batch to the
function. The Lambda function then processes the item and returns the result.

You'll create a state machine that performs multiplication on an array of integers. Say that

the integer array you provide as inputis [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the
multiplication factor is 7. Then, the resulting array formed after multiplying these integers with a
factor of 7, willbe [7, 14, 21, 28, 35, 42, 49, 56, 63, 70].

Step 1: Create the state machine

In this step, you create the workflow prototype of the state machine that passes a single item from
a batch of items to each invocation of the Lambda function you'll create in Step 2.

« Use the following definition to create a state machine using the Step Functions console. For

information about creating a state machine, see Step 1: Create the workflow prototype in the
Getting started with using Distributed Map state tutorial.

In this state machine, you define a Distributed Map state that accepts an array of 10 integers
as input and passes these array items to the child workflow executions in batches. Each child
workflow execution receives a batch of three items as input and runs an Inline Map state. Every
iteration of the Inline Map state invokes a Lambda function and passes an item from the batch
to the function. This function then multiplies the item with a factor of 7 and returns the result.

The output of each child workflow execution is a JSON array that contains the multiplication
result for each of the items passed.

/A Important

Make sure to replace the Amazon Resource Name (ARN) of the Lambda function in the
following code with the ARN of the function you'll create in Step 2.

Process individual items with Lambda 279

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

"StartAt": "Pass",
"States": {
"Pass": {
"Type": "Pass",
"Next": "Map",
"Result": {
"MyMultiplicationFactor": 7,
"MyItems": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
}
.
"Map": {
"Type": "Map",
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "DISTRIBUTED",
"ExecutionType": "STANDARD"
},
"StartAt": "InnerMap",
"States": {
"InnerMap": {
"Type": "Map",
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "INLINE"
},
"StartAt": "Lambda Invoke",
"States": {
"Lambda Invoke": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function: functionName"
.
"Retry": [
{
"ErrorEquals": [
"Lambda.ServiceException",
"Lambda.AWSLambdaException",

Step 1: Create the state machine 280

AWS Step Functions Developer Guide

"Lambda.SdkClientException",
"Lambda.TooManyRequestsException"

1,

"IntervalSeconds": 2,

"MaxAttempts": 6,

"BackoffRate": 2

}
1,

"End": true

}

iy

"End": true,

"ItemsPath": "$.Items",

"ItemSelector": {
"MyMultiplicationFactor.$": "$.BatchInput.MyMultiplicationFactor",
"MyItem.$": "$$.Map.Item.Value"

}
},
"End": true,
"Label": "Map",
"MaxConcurrency": 1000,
"ItemsPath": "$.MyItems",
"ItemBatcher": {
"MaxItemsPerBatch": 3,
"BatchInput": {

"MyMultiplicationFactor.$": "$.MyMultiplicationFactor"

Step 2: Create the Lambda function

In this step, you create the Lambda function that processes each item passed from the batch.

Step 2: Create the Lambda function 281

AWS Step Functions Developer Guide

/A Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

To create the Lambda function

1. Use the Lambda console to create a Python Lambda function named ProcessSingleItem.
For information about creating a Lambda function, see Step 4: Configure the Lambda function
in the Getting started with using Distributed Map state tutorial.

2. Copy the following code for the Lambda function and paste it into the Code source section of
your Lambda function.

import json
def lambda_handler(event, context):

multiplication_factor = event['MyMultiplicationFactor']
item = event['MyItem']

result = multiplication_factor * item
return {

'statusCode': 200,
'multiplied': result

3. After you create your Lambda function, copy the function's ARN displayed in the upper-right
corner of the page. The following is an example ARN, where function-name is the name of
the Lambda function (in this case, ProcessSingleItem):

arn:aws:lambda:us-east-1:123456789012:function: function-name

You'll need to provide the function ARN in the state machine you created in Step 1.

4. Choose Deploy to deploy the changes.

Step 2: Create the Lambda function 282

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

Step 3: Run the state machine

When you run the state machine, the Distributed Map state starts four child workflow executions,
where each execution processes three items, while one execution processes a single item.

The following example shows the data passed to one of the ProcessSingleItem function
invocations inside a child workflow execution.

"MyMultiplicationFactor": 7,
"MyItem": 1
}

Given this input, the following example shows the output that is returned by the Lambda function.

{
"statusCode": 200,
"multiplied": 7

}

The following example shows the output JSON array for one of the child workflow executions.

[
{
"statusCode": 200,
"multiplied": 7
},
{
"statusCode": 200,
"multiplied": 14
},
{
"statusCode": 200,
"multiplied": 21
}
]

The state machine returns the following output that contains four arrays for the four child
workflow executions. These arrays contain the multiplication results of the individual input items.

Step 3: Run the state machine 283

AWS Step Functions

Developer Guide

Finally, the state machine output is an array named multiplied that combines all the
multiplication results returned for the four child workflow executions.

"statusCode":
"multiplied":

"statusCode":
"multiplied":

"statusCode":

"multiplied":

"statusCode":

"multiplied":

"statusCode":
"multiplied":

"statusCode":

"multiplied":

"statusCode":

"multiplied":

"statusCode":
"multiplied":

"statusCode":

200,

200,
14

200,

21

200,

28

200,
35

200,

42

200,

49

200,
56

200,

Step 3: Run the state machine

284

AWS Step Functions Developer Guide

"multiplied": 63

}
1,
[
{
"statusCode": 200,
"multiplied": 70
}
]

To combine all the multiplication results returned by the child workflow executions into a single
output array, you can use the ResultSelector field. Define this field inside the Distributed Map state
to find all the results, extract the individual results, and then combine them into a single output

array named multiplied.

To use the ResultSelector field, update your state machine definition as shown in the following
example.

"StartAt": "Pass",
"States": {

IlMapll: {
IlTypell: IlMapll’

"ItemBatcher": {
"MaxItemsPerBatch": 3,
"BatchInput": {
"MyMultiplicationFactor.$": "$.MyMultiplicationFactor"
}

iy
"ItemsPath": "$.MyItems",

"ResultSelectoxr": {
"multiplied.$": "$..multiplied"
}
}
}
}

Step 3: Run the state machine 285

AWS Step Functions Developer Guide

The updated state machine returns a consolidated output array as shown in the following example.

{
"multiplied": [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]
X

Starting a state machine in response to events in Step
Functions

You can execute an AWS Step Functions state machine in response to an Amazon EventBridge rule.

This tutorial shows you how to configure a state machine as a target for an Amazon EventBridge
rule. This rule will start a state machine execution when files are added to an Amazon Simple
Storage Service (Amazon S3) bucket.

For a practical application, you could launch a state machine that performs operations on files that
you add to the bucket, such as creating thumbnails or running Amazon Rekognition analysis on
image and video files.

In this tutorial, you start the execution of a Helloworld state machine by uploading a file
to an Amazon S3 bucket. Then you review the example input of that execution to identify
the information that is included in input from the Amazon S3 event notification delivered to
EventBridge.

Prerequisite: Create a State Machine

Before you can configure a state machine as an Amazon EventBridge target, you must create the
state machine.

« To create a basic state machine, use the Creating state machine that uses a Lambda function

tutorial.

« If you already have a Helloworld state machine, proceed to the next step.

Step 1: Create a Bucket in Amazon S3

Now that you have a Helloworld state machine, you need to create an Amazon S3 bucket which
stores your files. In Step 3 of this tutorial, you set up a rule so that when a file is uploaded to this
bucket, EventBridge triggers an execution of your state machine.

Start a workflow from EventBridge 286

AWS Step Functions Developer Guide

1. Navigate to the Amazon S3 console, and then choose Create bucket to create the bucket in
which you want to store your files and trigger an Amazon S3 event rule.

2. Enter a Bucket name, such as username-sfn-tutorial.

(® Note

Bucket names must be unique across all existing bucket names in all AWS Regions in
Amazon S3. Use your own username to make this name unique. You need to create all
resources in the same AWS Region.

3. Keep all the default selections on the page, and choose Create bucket.

Step 2: Enable Amazon S3 Event Notification with EventBridge

After you create the Amazon S3 bucket, configure it to send events to EventBridge whenever
certain events happen in your S3 bucket, such as file uploads.

1. Navigate to the Amazon S3 console.

2. In the Buckets list, choose the name of the bucket that you want to enable events for.
3. Choose Properties.
4

Scroll down the page to view the Event Notifications section, and then choose Edit in the
Amazon EventBridge subsection.

b

Under Send notifications to Amazon EventBridge for all events in this bucket, choose On.

6. Choose Save changes.

(@ Note

After you enable EventBridge, it takes around five minutes for the changes to take
effect.

Step 3: Create an Amazon EventBridge Rule

After you have a state machine, and have created the Amazon S3 bucket and configured it to send
event notifications to EventBridge, create an EventBridge rule.

Step 2: Enable Amazon S3 Event Notification with EventBridge 287

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS Step Functions Developer Guide

® Note

You must configure EventBridge rule in the same AWS Region as the Amazon S3 bucket.

To create the rule

1. Navigate to the Amazon EventBridge console, choose Create rule.

® Tip
Alternatively, in the navigation pane on the EventBridge console, choose Rules under
Buses, and then choose Create rule.

2. Enter a Name for your rule (for example, S3Step Functions) and optionally enter a
Description for the rule.

3. For Event bus and Rule type, keep the default selections.
4. Choose Next. This opens the Build event pattern page.
5. Scroll down to the Event pattern section, and do the following:
a. For Event source, keep the default selection of AWS events or EventBridge partner
events.
b. For AWS service, choose Simple Storage Service (S3).
c. For Event type, choose Amazon S3 Event Notification.
d. Choose Specific event(s), and then choose Object Created.

e. Choose Specific bucket(s) by name and enter the bucket name you created in Step 1
(username-sfn-tutorial) to store your files.

f. Choose Next. This opens the Select target(s) page.

To create the target

1. In Target 1, keep the default selection of AWS service.
2. Inthe Select a target dropdown list, select Step Functions state machine.

3. In the State machine list, select the state machine that you created earlier (for example,
Helloworld).

Step 3: Create an Amazon EventBridge Rule 288

https://console.aws.amazon.com/events/

AWS Step Functions Developer Guide

4. Keep all the default selections on the page, and choose Next. This opens the Configure tags
page.
5. Choose Next again. This opens the Review and create page.

6. Review the details of the rule and choose Create rule.

The rule is created and the Rules page is displayed, listing all your Amazon EventBridge rules.

Step 4: Test the Rule

Now that everything is in place, test adding a file to the Amazon S3 bucket, and then look at the
input of the resulting state machine execution.

1. Add a file to your Amazon S3 bucket.

Navigate to the Amazon S3 console, choose the bucket you created to store files (username-

sfn-tutorial), and then choose Upload.

2. Add afile, for example test. png, and then choose Upload.

This launches an execution of your state machine, passing information from AWS CloudTrail as
the input.

3. Check the execution for your state machine.

Navigate to the Step Functions console and select the state machine used in your Amazon
EventBridge rule (Helloworld).

4. Select the most recent execution of that state machine and expand the Execution Input
section.

This input includes information such as the bucket name and the object name. In a real-world
use case, a state machine can use this input to perform actions on that object.

Example of Execution Input

The following example shows a typical input to the state machine execution.

"version": "Q",
"id": "6c540ad4-0671-9974-6511-756fbd7771c3",

Step 4: Test the Rule 289

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide

"detail-type": "Object Created",

"source": "aws.s3",

"account": "123456789012",

"time": "2023-06-23T23:45:487",

"region": "us-east-2",

"resources": [
"arn:aws:s3:::username-sfn-tutorial”

1,
"detail": {
"version": "Q",
"bucket": {
"name": "username-sfn-tutorial"
},
"object": {
"key": "test.png",
"size": 800704,
"etag": "f31d8546bb67845b4d3048cde533b937",
"sequencer": "0Q0621049BASA8C712B"
},
"request-id": "79104EXAMPLEB723",
"requester": "123456789012",
"source-ip-address": "200.0.100.11",
"reason": "PutObject"
}
}

Creating a Step Functions API using APl Gateway

You can use Amazon APl Gateway to associate your AWS Step Functions APIs with methods in an
API Gateway API. When an HTTPS request is sent to an APl method, APl Gateway invokes your Step
Functions API actions.

This tutorial shows you how to create an API that uses one resource and the POST method to
communicate with the StartExecution API action. You'll use the AWS Identity and Access
Management (IAM) console to create a role for APl Gateway. Then, you'll use the API Gateway
console to create an API Gateway API, create a resource and method, and map the method to the
StartExecution API action. Finally, you'll deploy and test your API.

Create an APl using APl Gateway 290

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

® Note

Although Amazon APl Gateway can start a Step Functions execution by calling
StartExecution, you must call DescribeExecution to get the result.

Step 1: Create an IAM Role for API Gateway

Before you create your API Gateway API, you need to give APl Gateway permission to call Step
Functions API actions.

To set up permissions for APl Gateway

1. Signin to the IAM console and choose Roles, Create role.

2. On the Select trusted entity page, do the following:

a. For Trusted entity type, keep the default selection of AWS service.
b. For Use case, choose APl Gateway from the dropdown list.

3. Select APl Gateway, and then choose Next.

4. On the Add permissions page, choose Next.

5. (Optional) On the Name, review, and create page, enter details, such as the role name. For
example, enter APIGatewayToStepFunctions.

6. Choose Create role.

The IAM role appears in the list of roles.

7. Choose the name of your role and note the Role ARN, as shown in the following example.

arn:aws:iam::123456789012:ro0le/APIGatewayToStepFunctions

To attach a policy to the IAM role

1. On the Roles page, search for your role (APIGatewayToStepFunctions), and then choose
the role.

2. On the Permissions tab, choose Add permissions, and then choose Attach policies.

Step 1: Create an IAM Role for APl Gateway 291

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://console.aws.amazon.com/iam/home

AWS Step Functions Developer Guide

3. On the Attach Policy page, search for AWSStepFunctionsFullAccess, choose the policy,
and then choose Add permissions.

Step 2: Create your APl Gateway API

After you create your IAM role, you can create your custom APl Gateway API.
To create the API

1. Open the Amazon API Gateway console, and then choose Create API.

2. Onthe Choose an API type page, in the REST API pane, choose Build.

3. Onthe Create REST API page, select New API, and then enter StartExecutionAPI for the
APl name.

4. Keep API endpoint type as Regional, and then choose Create API.

To create a resource

1. On the Resources page of StartExecutionAPI, choose Create resource.

2. On the Create resource page, enter execution for Resource name, and then choose Create
resource.

To create a POST method

1. Choose the /execution resource, and then choose Create method.
For Method type, choose POST.

For Integration type, choose AWS service.

For AWS Region, choose a Region from the list.

For AWS service, choose Step Functions from the list.

Keep AWS subdomain blank.

N o u B W N

For HTTP method, choose POST from the list.

Step 2: Create your API Gateway API 292

https://console.aws.amazon.com/apigateway/

AWS Step Functions Developer Guide

® Note
All Step Functions API actions use the HTTP POST method.

8. For Action type, select Use action name.
9. For Action name, enter StartExecution.

10. For Execution role, enter the role ARN of the IAM role that you created earlier, as shown in the

following example.
arn:aws:iam::123456789012:role/APIGatewayToStepFunctions
11. Keep the default options for Credential cache and Default timeout, and then choose Save.

The visual mapping between APl Gateway and Step Functions is displayed on the /execution -
POST - Method execution page.

Step 3: Test and Deploy the API Gateway API

Once you have created the API, test and deploy it.
To test the communication between APl Gateway and Step Functions
1. On the /execution - POST - Method Execution page, choose the Test tab. You might need to

choose the right arrow button to show the tab.

2. On the /execution - POST - Method Test tab, copy the following request parameters into
the Request body section using the ARN of an existing state machine (or create a new state
machine that uses a Lambda function), and then choose Test.

{

"input": "{3}",

"name": "MyExecution",

"stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:HellolWorld"
}

For more information, see the StartExecution Request Syntax in the AWS Step Functions
API Reference.

Step 3: Test and Deploy the APl Gateway API 293

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestSyntax

AWS Step Functions Developer Guide

® Note

If you don't want to include the ARN of your state machine in the body of your API
Gateway call, you can configure a mapping template in the Integration request tab, as
shown in the following example.

"input": "$util.escapelavaScript($input.json('$'))",
"stateMachineArn": "$util.escapelavaScript($stageVariables.arn)"

With this approach, you can specify ARNs of different state machines based on your
development stage (for example, dev, test, and prod). For more information about
specifying stage variables in a mapping template, see $stageVariables in the API

Gateway Developer Guide.

3. The execution starts and the execution ARN and its epoch date are displayed under Response
body.

"executionArn": "arn:aws:states:us-
east-1:123456789012:execution:HelloWorld:MyExecution",
"startDate": 1486768956.878
}

(@ Note

You can view the execution by choosing your state machine on the AWS Step Functions

console.

To deploy your API

1. On the Resources page of StartExecutionAPI, choose Deploy API.
2. For Stage, select New stage.

3. For Stage name, enter alpha.

Step 3: Test and Deploy the API Gateway API 294

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html#stagevariables-template-reference
https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide

4.
5.

(Optional) For Description, enter a description.

Choose Deploy.

To test your deployment

1.

On the Stages page of StartExecutionAPI, expand alpha, /, /execution, POST, and then
choose the POST method.

Under Method overrides, choose the copy icon to copy your API's invoke URL. The full URL
should look like the following example.

https://alb2c3d4e5.execute-api.us-east-1.amazonaws.com/alpha/execution

From the command line, run the curl command using the ARN of your state machine, and
then invoke the URL of your deployment, as shown in the following example.

curl -X POST -d '{"input": "{3}","name": "MyExecution", "stateMachineArn":
"arn:aws:states:us-east-1:123456789012:stateMachine:HelloWorld"}' https://
alb2c3d4e5.execute-api.us-east-1.amazonaws.com/alpha/execution

The execution ARN and its epoch date are returned, as shown in the following example.

{"executionArn":"arn:aws:states:us-
east-1:123456789012:execution:HelloWorld:MyExecution", "startDate":1.486772644911E9}

® Note

If you get a "Missing Authentication Token" error, make sure that the invoke URL ends
with /execution.

Handling error conditions using a Step Functions state machine

In this tutorial, you create an AWS Step Functions state machine with a Fallback states field.
The Catch field uses an AWS Lambda function to respond with conditional logic based on error
message type. This is a technique called function error handling.

Handle error conditions 295

AWS Step Functions Developer Guide

For more information, see AWS Lambda function errors in Node.js in the AWS Lambda Developer
Guide.

(® Note

You can also create state machines that Retry on timeouts or those that use Catch to
transition to a specific state when an error or timeout occurs. For examples of these error
handling techniques, see Examples Using Retry and Using Catch.

Step 1: Create a Lambda function that fails

Use a Lambda function to simulate an error condition.

/A Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Use a blueprint, enter step-functions into the search box, and then choose the
Throw a custom error blueprint.

4. For Function name, enter FailFunction.
5. For Role, keep the default selection (Create a new role with basic Lambda permissions).

6. The following code is displayed in the Lambda function code pane.

exports.handler = async (event, context) => {
function CustomError(message) {
this.name = 'CustomError';
this.message = message;

}

CustomError.prototype = new Error();

throw new CustomError('This is a custom error!');

};

Step 1: Create a Lambda function that fails 296

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-exceptions.html
https://console.aws.amazon.com/lambda/

AWS Step Functions Developer Guide

The context object returns the error message This is a custom error!.
7. Choose Create function.

8. After your Lambda function is created, copy the function's Amazon Resource Name (ARN)
displayed in the upper-right corner of the page. The following is an example ARN:

arn:aws:lambda:us-east-1:123456789012:function:FailFunction

9. Choose Deploy.

Step 2: Test the Lambda function

Test your Lambda function to see it in operation.

1. On the FailFunction page, choose the Test tab, and then choose Test. You don't need to create
a test event.

2. Toreview the test results (the simulated error), under Execution result, expand Details.

Step 3: Create a state machine with a Catch field

Use the Step Functions console to create a state machine that uses a Task workflow state state
with a Catch field. Add a reference to your Lambda function in the Task state. The state machine
invokes the Lambda function, which fails during execution. Step Functions retries the function
twice using exponential backoff between retries.

Open the Step Functions console and choose Create state machine.

1
2. Inthe Choose a template dialog box, select Blank.

3. Choose Select to open Workflow Studio in Design mode.
4

Choose Code to open the code editor. In the code editor, you write and edit the Amazon States
Language (ASL) definition of your workflows.

5. Paste the following code, but replace the ARN of the Lambda function that you created earlier
in the Resouzrce field.

"Comment": "A Catch example of the Amazon States Language using an AWS Lambda
function",
"StartAt": "CreateAccount",

Step 2: Test the Lambda function 297

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

"States": {
"CreateAccount": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
"Catch": [{
"ErrorEquals": ["CustomError"],
"Next": "CustomErrorFallback"
o Aq
"ErrorEquals": ["States.TaskFailed"],
"Next": "ReservedTypeFallback"
Yo &
"ErrorEquals": ["States.ALL"],
"Next": "CatchAllFallback"
1,
"End": true
.
"CustomErrorFallback": {
"Type": "Pass",
"Result": "This is a fallback from a custom Lambda function exception",
"End": true
},
"ReservedTypeFallback": {
"Type": "Pass",
"Result": "This is a fallback from a reserved error code",
"End": true
.
"CatchAllFallback": {
"Type": "Pass",
"Result": "This is a fallback from any error code",
"End": true

This is a description of your state machine using the Amazon States Language. It defines a
single Task state named CreateAccount. For more information, see State Machine Structure.

For more information about the syntax of the Retry field, see State machine examples using
Retry and using Catch.

Step 3: Create a state machine with a Catch field 298

AWS Step Functions Developer Guide

® Note

Unhandled errors in Lambda are reported as Lambda . Unknown in the error

output. These include out-of-memory errors and function timeouts. You can

match on Lambda.Unknown, States.ALL, or States.TaskFailed to handle

these errors. When Lambda hits the maximum number of invocations, the error

is Lambda.TooManyRequestsException. For more information about Lambda
Handled and Unhandled errors, see FunctionError in the AWS Lambda Developer

Guide.

6. (Optional) In the Graph visualization, see the real-time graphical visualization of your

workflow.

7. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter Catchfailure.

8. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

9. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 4: Run the state machine

After you create your state machine, you can run it.

1. On the State machines page, choose Catchfailure.

Step 4: Run the state machine 299

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_ResponseSyntax
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_ResponseSyntax

AWS Step Functions Developer Guide

2. On the Catchfailure page, choose Start execution. The Start execution dialog box is
displayed.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.
3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

For example, to view your custom error message, choose the CreateAccount step in Graph
view, and then choose the Output tab.

Step 4: Run the state machine 300

AWS Step Functions

Developer Guide

Details Execution input and cutput Definition
Input
1+ {
2 “Comment": "Insert your JSON here"
3}

Graph view

Start

[=][e][=][2]

T HEd

(@ Note

—y

CatchAllFallback

Output
1 "This is a fallback from a custom Lambda function exception
CreateAccount

Logs | Lambda [A | Log group (3

Input Output Details Definition Events

(P Advanced view

1w Is
2 Error”: "CustomError”, p—

Cause”: "{\"errorType\":\"CustomBrror\”,\"errorMessage\”:\"This iz a custom

at Runtime.handler

trace\":[\"Error\

(file:///var/task/index.mjs:7:27)\" ,\ at Runtime.handleOnceNonStreaming
(file:///var/runtime/index.mjs:1083:29)\"]1}"

¢ |}

You can preserve the state input with the error by using ResultPath. See Use
ResultPath to Include Both Error and Input in a Catch.

Creating an Activity state machine using Step Functions

This tutorial shows you how to create an activity-based state machine using Java and AWS Step

Functions. Activities allow you to control worker code that runs somewhere else from your state

machine. For an overview, see Learn about Activities in Step Functions in Learn about state

machines in Step Functions.

To complete this tutorial, you need the following:

« The SDK for Java. The example activity in this tutorial is a Java application that uses the AWS
SDK for Java to communicate with AWS.

o AWS credentials in the environment or in the standard AWS configuration file. For more
information, see Set Up Your AWS Credentials in the AWS SDK for Java Developer Guide.

Create an Activity state machine

301

https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/set-up-creds.html

AWS Step Functions Developer Guide

Step 1: Create an Activity

You must make Step Functions aware of the activity whose worker (a program) you want to create.
Step Functions responds with an Amazon Resource Name(ARN) that establishes an identity for the
activity. Use this identity to coordinate the information passed between your state machine and
worker.

/A Important

Ensure that your activity task is under the same AWS account as your state machine.

1. Inthe Step Functions console, in the navigation pane on the left, choose Activities.

2. Choose Create activity.

3. Enter a Name for the activity, for example, get-greeting, and then choose Create activity.
4. When your activity task is created, make a note of its ARN, as shown in the following example.

arn:aws:states:us-east-1:123456789012:activity:get-greeting

Step 2: Create a state machine

Create a state machine that determines when your activity is invoked and when your worker should
perform its primary work, collect its results, and return them. To create the state machine, you'll
use the Code editor of Workflow Studio.

—

In the Step Functions console, in the navigation pane on the left, choose State machines.

On the State machines page, choose Create state machine.
In the Choose a template dialog box, select Blank.

Choose Select to open Workflow Studio in Design mode.

o W

For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the code editor. To do this, choose Code.

6. Remove the existing boilerplate code and paste the following code. Remember to replace
the example ARN in this code with the ARN of the activity task that you created earlier in the
Resource field.

Step 1: Create an Activity 302

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

{
"Comment": "An example using a Task state.",
"StartAt": "getGreeting",
"Version": "1.0",
"TimeoutSeconds": 300,
"States":
{
"getGreeting": {
"Type": "Task",
"Resource": "arn:aws:states:us-east-1:123456789012:activity:get-greeting",
"End": true
}
}
}

This is a description of your state machine using the Amazon States Language (ASL). It defines
a single Task state named getGreeting. For more information, see State Machine Structure.

7. On the Graph visualization, make sure the workflow graph for the ASL definition you added

looks similar to the following graph.

Step 2: Create a state machine 303

AWS Step Functions Developer Guide

Step Functions: Run Activity
getGreeting

8. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name ActivityStateMachine.

9. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

Step 2: Create a state machine 304

AWS Step Functions Developer Guide

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

10. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 3: Implement a Worker

Create a worker. A worker is a program that is responsible for:

 Polling Step Functions for activities using the GetActivityTask API action.

» Performing the work of the activity using your code, (for example, the getGreeting() method
in the following code).

» Returning the results using the SendTaskSuccess, SendTaskFailure, and
SendTaskHeartbeat API actions.

® Note

For a more complete example of an activity worker, see Example: Activity Worker in Ruby.
This example provides an implementation based on best practices, which you can use as a
reference for your activity worker. The code implements a consumer-producer pattern with
a configurable number of threads for pollers and activity workers.

To implement the worker

1. Create a file named GreeterActivities. java.

2. Add the following code to it.

Step 3: Implement a Worker 305

AWS Step Functions Developer Guide

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.EnvironmentVariableCredentialsProvider;

import com.amazonaws.regions.Regions;

import com.amazonaws.services.stepfunctions.AWSStepFunctions;

import com.amazonaws.services.stepfunctions.AWSStepFunctionsClientBuilder;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskRequest;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskResult;
import com.amazonaws.services.stepfunctions.model.SendTaskFailureRequest;
import com.amazonaws.services.stepfunctions.model.SendTaskSuccessRequest;
import com.amazonaws.util.json.Jackson;

import com.fasterxml.jackson.databind.JsonNode;

import java.util.concurrent.TimeUnit;

public class GreeterActivities {

public String getGreeting(String who) throws Exception {
IetUIn Il{\llHello\ll: \IIII + WhO + II\II}II;

public static void main(final String[] args) throws Exception {
GreeterActivities greeterActivities = new GreeterActivities();
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setSocketTimeout((int)TimeUnit.SECONDS.toMillis(70));

AWSStepFunctions client = AWSStepFunctionsClientBuilder.standard()
.withRegion(Regions.US_EAST_1)
.withCredentials(new EnvironmentVariableCredentialsProvider())
.withClientConfiguration(clientConfiguration)
.build();

while (true) {
GetActivityTaskResult getActivityTaskResult =
client.getActivityTask(
new
GetActivityTaskRequest().withActivityArn(ACTIVITY_ARN));

if (getActivityTaskResult.getTaskToken() != null) {
try {
JsonNode json =
Jackson.jsonNodeOf (getActivityTaskResult.getInput());
String greetingResult =

Step 3: Implement a Worker 306

AWS Step Functions Developer Guide

greeterActivities.getGreeting(json.get("who").textValue());
client.sendTaskSuccess(
new SendTaskSuccessRequest().withOutput(

greetingResult).withTaskToken(getActivityTaskResult.getTaskToken()));
} catch (Exception e) {
client.sendTaskFailure(new
SendTaskFailureRequest().withTaskToken(
getActivityTaskResult.getTaskToken()));

}
} else {
Thread.sleep(1000);
}
}
}
}
(@ Note

The EnvironmentVariableCredentialsProvider class in this example assumes
that the AWS_ACCESS_KEY_ID (or AWS_ACCESS_KEY) and AWS_SECRET_KEY (or
AWS_SECRET_ACCESS_KEY) environment variables are set. For more information
about providing the required credentials to the factory, see AWSCredentialsProvider
in the AWS SDK for Java API Reference and Set Up AWS Credentials and Region for
Development in the AWS SDK for Java Developer Guide.

By default the AWS SDK will wait up to 50 seconds to receive data from the server

for any operation. The GetActivityTask operation is a long-poll operation
that will wait up to 60 seconds for the next available task. To prevent receiving a
SocketTimeoutException error, set SocketTimeout to 70 seconds.

3. In the parameter list of the GetActivityTaskRequest().withActivityArn()
constructor, replace the ACTIVITY_ARN value with the ARN of the activity task that you
created earlier.

Step 4: Run the state machine

When you start the execution of the state machine, your worker polls Step Functions for activities,
performs its work (using the input that you provide), and returns its results.

Step 4: Run the state machine 307

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS Step Functions Developer Guide

1.

Onthe ActivityStateMachine page, choose Start execution.

The Start execution dialog box is displayed.

In the Start execution dialog box, do the following:

(Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

In the Input box, enter the following JSON input to run your workflow.

"who": "AWS Step Functions"

Choose Start execution.

The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Step 5: Run and Stop the Worker

To have the worker poll your state machine for activities, you must run the worker.

1.

On the command line, navigate to the directory in which you created
GreeterActivities.java.

Step 5: Run and Stop the Worker 308

AWS Step Functions Developer Guide

2. To use the AWS SDK, add the full path of the 1ib and third-paxrty directories to the
dependencies of your build file and to your Java CLASSPATH. For more information, see
Downloading and Extracting the SDK in the AWS SDK for Java Developer Guide.

3. Compile the file.

$ javac GreeterActivities.java

4. Run the file.

$ java GreeterActivities

5. On the Step Functions console, navigate to the Execution Details page.

6. When the execution completes, examine the results of your execution.

7. Stop the worker.

View X-Ray traces in Step Functions

In this tutorial, you will learn how to use X-Ray to trace errors that occur when running a state
machine. You can use AWS X-Ray to visualize the components of your state machine, identify
performance bottlenecks, and troubleshoot requests that resulted in an error. In this tutorial, you
will create several Lambda functions that randomly produce errors, which you can then trace and
analyze using X-Ray.

The Creating a Step Functions state machine that uses Lambda tutorial walks you though creating
a state machine that calls a Lambda function. If you have completed that tutorial, skip to Step 2
and use the AWS Identity and Access Management (IAM) role that you previously created.

Step 1: Create an IAM role for Lambda

Both AWS Lambda and AWS Step Functions can run code and access AWS resources (for example,
data stored in Amazon S3 buckets). To maintain security, you must grant Lambda and Step
Functions access to these resources.

Lambda requires you to assign an AWS Identity and Access Management (IAM) role when you
create a Lambda function, in the same way Step Functions requires you to assign an IAM role when
you create a state machine.

You use the |IAM console to create a service-linked role.

View X-Ray traces 309

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html#download-and-extract-sdk
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

AWS Step Functions Developer Guide

To create a role (console)

1. Signin to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Inthe navigation pane of the IAM console, choose Roles. Then choose Create role.
3. Choose the AWS Service role type, and then choose Lambda.

4. Choose the Lambda use case. Use cases are defined by the service to include the trust policy
required by the service. Then choose Next: Permissions.

5. Choose one or more permissions policies to attach to the role (for example,
AwWSLambdaBasicExecutionRole). See AWS Lambda Permissions Model.

Select the box next to the policy that assigns the permissions that you want the role to have,
and then choose Next: Review.

6. Enter a Role name.
7. (Optional) For Role description, edit the description for the new service-linked role.

8. Review the role, and then choose Create role.

Step 2: Create a Lambda function

Your Lambda function will randomly throw errors or time out, producing example data to view in
X-Ray.

/A Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

1. Open the Lambda console and choose Create function.

2. Inthe Create function section, choose Author from scratch.

3. Inthe Basic information section, configure your Lambda function:

a. For Function name, enter TestFunctionl.
b. For Runtime, choose Node.js 18.x.

c. For Role, select Choose an existing role.

Step 2: Create a Lambda function 310

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

d. For Existing role, select the Lambda role that you created earlier.

® Note

If the IAM role that you created doesn't appear in the list, the role might still need
a few minutes to propagate to Lambda.

e. Choose Create function.

When your Lambda function is created, note its Amazon Resource Name (ARN) in the
upper-right corner of the page. For example:

arn:aws:lambda:us-east-1:123456789012:function:TestFunctionl

4. Copy the following code for the Lambda function into the Function code section of the
TestFunctionl page.

function getRandomSeconds(max) {
return Math.floor(Math.random() * Math.floor(max)) * 1000;
}

function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms));

}
export const handler = async (event) => {
if(getRandomSeconds(4) === 0) {
throw new Error("Something went wrong!");
}
let wait_time = getRandomSeconds(5);
await sleep(wait_time);
return { 'response': true }
};

This code creates randomly timed failures, which will be used to generate example errors in
your state machine that can be viewed and analyzed using X-Ray traces.

5. Choose Save.

Step 3: Create two more Lambda functions

Create two more Lambda functions.

Step 3: Create two more Lambda functions 311

AWS Step Functions Developer Guide

1.

Repeat Step 2 to create two more Lambda functions. For the next function, in Function name,
enter TestFunction?2. For the last function, in Function name, enter TestFunction3.

In the Lambda console, check that you now have three Lambda functions, TestFunctionl,
TestFunction2, and TestFunction3.

Step 4: Create a state machine

In this step, you'll use the Step Functions console to create a state machine with three Task states.
Each Task state will a reference one of your three Lambda functions.

1.

Open the Step Functions console and choose Create state machine.

/A Important

Make sure that your state machine is under the same AWS account and Region as the
Lambda functions you created earlier in Step 2 and Step 3.

In the Choose a template dialog box, select Blank.
Choose Select to open Workflow Studio in Design mode.

For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the Code editor. To do this, choose Code.

Remove the existing boilerplate code and paste the following code. In the Task state definition,
remember to replace the example ARNs with the ARNs of the Lambda functions you created.

"StartAt": "CallTestFunctionl",

"States": {
"CallTestFunctionl": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:test-functionl",
"Catch": [
{

"ErrorEquals": [
"States.TaskFailed"
1,
"Next": "AfterTaskFailed"
}

1,
"Next": "CallTestFunction2"

Step 4: Create a state machine 312

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

},
"CallTestFunction2": {

"Type": "Task",

"Resource": "arn:aws:lambda:us-east-1:123456789012:function:test-function2",

"Catch": [

{
"ErrorEquals": [
"States.TaskFailed"

1,
"Next": "AfterTaskFailed"
}
1,
"Next": "CallTestFunction3"

iy
"CallTestFunction3": {

IlTypell: IITaSkll’

"Resource": "arn:aws:lambda:us-east-1:123456789012:function:test-function3",
"TimeoutSeconds": 5,
"Catch": [

{

"ErrorEquals": [
"States.Timeout"
1,
"Next": "AfterTimeout"
},
{
"ErrorEquals": [
"States.TaskFailed"
1,
"Next": "AfterTaskFailed"
}
1,
"Next": "Succeed"
.
"Succeed": {
"Type": "Succeed"
},
"AfterTimeout": {
"Type": "Fail"
.
"AfterTaskFailed": {
"Type": "Fail"

Step 4: Create a state machine 313

AWS Step Functions Developer Guide

}

This is a description of your state machine using the Amazon States Language. It defines three
Task states named CallTestFunctionl, CallTestFunction2 and CallTestFunction3.
Each calls one of your three Lambda functions. For more information, see State Machine

Structure.

6. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name TraceFunctions.

7. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, under Additional configuration, choose Enable X-Ray tracing. Keep all the
other default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine

and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

8. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 5: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1. Onthe TraceFunctions page, choose Start execution.

The New execution page is displayed.

Step 5: Run the state machine 314

AWS Step Functions Developer Guide

2. In the Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

b. Choose Start execution.

c. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Run several (at least three) executions.

3. After the executions have finished, follow the X-Ray trace map link. You can view the trace
while an execution is still running, but you may want to see the execution results before
viewing the X-Ray trace map.

4. View the service map to identify where errors are occurring, connections with high latency,
or traces for requests that were unsuccessful. In this example, you can see how much traffic
each function is receiving. TestFunction2 was called more often than TestFunction3, and
TestFunctionl was called more than twice as often as TestFunction2.

The service map indicates the health of each node by coloring it based on the ratio of
successful calls to errors and faults:

« Green for successful calls

« Red for server faults (500 series errors)

» Yellow for client errors (400 series errors)

o Purple for throttling errors (429 Too Many Requests)

Step 5: Run the state machine 315

AWS Step Functions Developer Guide

avg. 2.05s
0 8 t/min
TestFunction2
AWS::Lambda
. avg. 205‘{ L
- 2 tmin
_ TestFunctionl
Client TraceFunctions AWS:-Lambida
AWS:Lambda
AWS: StepFunctions:: StateMachine
1.09s
0.2 ymin
TestFunction3
AWS:Lambda

You can also choose a service node to view requests for that node, or an edge between two
nodes to view requests that traveled that connection.

View the X-Ray trace map to see what has happened for each execution. The Timeline view
shows a hierarchy of segments and subsegments. The first entry in the list is the segment,
which represents all data recorded by the service for a single request. Below the segment are
subsegments. This example shows subsegments recorded by the Lambda functions.

Name Res. Duration Status 0.0ms 200ms Wnlma Sﬂl}ms aDBIms l.lﬂs 1.2s 14ds 16s 185 2.0s 225 245
1 1 1 1 1 1 1 1 1
* TraceFunctions AwS::StepFunctions:StateMachine
TraceFunctions o I —
CallTestFunctionl - 000 0000
Lambda voke: TestFunctionl
CallTestFunction2 |
Lambda o Invoke: TestFuncion2
AfterTaskFailed o 1
¥ Lambda Aws:Lambda

For more information on understanding X-Ray traces and using X-Ray with Step Functions, see
the Trace Step Functions request data in AWS X-Ray

Step 5: Run the state machine 316

AWS Step Functions Developer Guide

Gather Amazon S3 bucket info using AWS SDK service
integrations

This tutorial shows you how to perform an AWS SDK integration with Amazon Simple Storage
Service. The state machine you create in this tutorial gathers information about your Amazon
S3 buckets, then list your buckets along with version information for each bucket in the current
region.

Step 1: Create the state machine

Using the Step Functions console, you'll create a state machine that includes a Task state to list all
the Amazon S3 buckets in the current account and region. Then, you'll add another Task state that
invokes the HeadBucket API to verify if the returned bucket is accessible in the current region. If
the bucket isn't accessible, the HeadBucket API call returns the S3.S3Exception error. You'll
include a Catch block to catch this exception and a Pass state as the fallback state.

Open the Step Functions console and choose Create state machine.

1
2. Inthe Choose a template dialog box, select Blank.

3. Choose Select to open Workflow Studio in Design mode.
4

For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the Code editor. To do this, choose Code.

5. Remove the existing boilerplate code and paste the following state machine definition.

{
"Comment": "A description of my state machine",
"StartAt": "ListBuckets",
"States": {
"ListBuckets": {
"Type": "Task",
"Parameters": {3},
"Resource": "arn:aws:states:::aws-sdk:s3:1listBuckets",
"Next": "Map"
},
"Map": {
"Type": "Map",

"ItemsPath": "$.Buckets",
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "INLINE"

Gather Amazon S3 bucket info 317

https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadBucket.html
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

},
"StartAt": "HeadBucket",
"States": {
"HeadBucket": {
"Type": "Task",
"ResultPath": null,
"Parameters": {
"Bucket.$": "$.Name"
},
"Resource": "arn:aws:states:::aws-sdk:s3:headBucket",
"Catch": [
{
"ErrorEquals": [
"S3.S3Exception”
1,
"ResultPath": null,
"Next": "Pass"
}
1,
"Next": "GetBucketVersioning"
},
"GetBucketVersioning": {
"Type": "Task",
"End": true,
"Parameters": {
"Bucket.$": "$.Name"
},
"ResultPath": "$.BucketVersioningInfo",
"Resource": "arn:aws:states:::aws-sdk:s3:getBucketVersioning"
I
"Pass": {
"Type": "Pass",
"End": true,
"Result": {
"Status": "Unknown"
I
"ResultPath": "$.BucketVersioningInfo"
}
}

iy

"End": true

Step 1: Create the state machine 318

AWS Step Functions Developer Guide

}

6. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name Gathexr-S3-Bucket-Info-Standaxd.

7. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

Keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine

and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

8. Inthe Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(@ Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

In Step 2, you'll add the missing permissions to the state machine role.

Step 2: Add the necessary IAM role permissions

To gather information about the Amazon S3 buckets in your current region, you must provide your
state machine the necessary permissions to access the Amazon S3 buckets.

1. On the state machine page, choose IAM role ARN to open the Roles page for the state
machine role.
2. Choose Add permissions and then choose Create inline policy.

3. Choose the JSON tab, and then paste the following permissions into the JSON editor.

Step 2: Add the necessary IAM role permissions 319

AWS Step Functions Developer Guide

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "VisualEditor@",
"Effect": "Allow",
"Action": [
"s3:ListAl1MyBuckets",
"s3:ListBucket",
"s3:GetBucketVersioning"
1,
"Resource": "*"
}
]
}

4. Choose Review policy.
5. Under Review policy, for the policy Name, enter s3-bucket-permissions.

6. Choose Create policy.

Step 3: Run a Standard state machine execution

1. On the Gather-S3-Bucket-Info-Standard page, choose Start execution.

2. In the Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

b. Choose Start execution.

c. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

Step 3: Run a Standard state machine execution 320

AWS Step Functions Developer Guide

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Step 4: Run an Express state machine execution

1.

Create an Express state machine using the state machine definition provided in Step 1. Make
sure that you also include the necessary IAM role permissions as explained in Step 2.

® Tip

To distinguish from the Standard machine you created earlier, name the Express state
machine as Gather-S3-Bucket-Info-Express.

On the Gather-S3-Bucket-Info-Standard page, choose Start execution.

In the Start execution dialog box, do the following:

(Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

Choose Start execution.

The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Step 4: Run an Express state machine execution 321

AWS Step Functions Developer Guide

Continue long-running workflows using Step Functions API
(recommended)
AWS Step Functions is designed to run workflows with a finite duration and number of steps.

Standard workflow executions have a maximum duration of one year and 25,000 events (see Step
Functions service quotas).

For long-running executions, you can avoid reaching the hard quota by starting a new workflow
execution from the Task state. You need to break your workflows up into smaller state machines
which continue ongoing work in a new execution.

To start new workflow executions, you will call the StartExecution API action from your Task
state and pass the necessary parameters.

Step Functions can start workflow executions by calling its own API as an integrated service.

We recommend that you use this approach to avoid exceeding service quotas for long-running
executions.

Step 1: Create a long-running state machine

Create a long-running state machine that you want to start from the Task state of a different state
machine. For this tutorial, use the state machine that uses a Lambda function.

(@ Note

Make sure to copy the name and Amazon Resource Name of this state machine in a text file
for later use.

Step 2: Create a state machine to call the Step Functions API action

To start workflow executions from a Task state

Open the Step Functions console and choose Create state machine.

1
2. Inthe Choose a template dialog box, select Blank.

3. Choose Select to open Workflow Studio in Design mode.
4

From the Actions tab, drag the StartExecution API action and drop it on the empty state
labelled Drag first state here.

Continue long-running workflows using Step Functions APl (recommended) 322

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

5. Choose the StartExecution state and do the following in the Configuration tab in Design
mode:

a. Rename the state to Start nested execution.
b. For Integration type, choose AWS SDK - new from the dropdown list.
c. In APl Parameters, do the following:

i. ForStateMachineAzrn, replace the sample Amazon Resource Name with the ARN
of your state machine. For example, enter the ARN of the state machine that uses

Lambda.

ii. For Input node, replace the existing placeholder text with the following value:

"Comment": "Starting workflow execution using a Step Functions API action"

iii. Make sure your inputs in APl Parameters look similar to the following:

{
"StateMachineArn": "arn:aws:states:us-
east-2:123456789012:stateMachine:LambdaStateMachine",
"Input": {
"Comment": "Starting workflow execution using a Step Functions API
action",
"AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"
}

6. (Optional) Choose Definition on the Inspector panel panel to view the automatically-
generated Amazon States Language (ASL) definition of your workflow.

® Tip
You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

7. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name ParentStateMachine.

Step 2: Create a state machine to call the Step Functions APl action 323

AWS Step Functions Developer Guide

8.

(Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(@ Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 3: Update the IAM policy

To make sure your state machine has permissions to start the execution of the state machine that
uses a Lambda function, you need to attach an inline policy to your state machine's IAM role. For

more information, see Embedding Inline Policies in the IAM User Guide.

1.

On the ParentStateMachine page, choose the IAM role ARN to navigate to the IAM Roles
page for your state machine.

Assign an appropriate permission to the IAM role of the ParentStateMachine for it to be able
to start execution of another state machine. To assign the permission, do the following:

a. On the IAM Roles page, choose Add permissions, and then choose Create inline policy.
b. On the Create policy page, choose the JSON tab.
c. Replace the existing text with the following policy.

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

Step 3: Update the IAM policy 324

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#embed-inline-policy-console

AWS Step Functions Developer Guide

d.

e.

"Action": [
"states:StartExecution"

1,
"Resource": [
"arn:aws:states:us-
east-2:123456789012:stateMachine:LambdaStateMachine"

]

Choose Review policy.

Specify a name for the policy, and then choose Create policy.

Step 4: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1. On the ParentStateMachine page, choose Start execution.

The Start execution dialog box is displayed.

2. Inthe Start execution dialog box, do the following:

a.

(Optional) Enter a custom execution name to override the generated default.

(& Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

(Optional) In the Input box, enter input values in JSON format to run your workflow.
Choose Start execution.

The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

Step 4: Run the state machine 325

AWS Step Functions Developer Guide

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

3. Open the LambdaStateMachine page and notice a new execution triggered by the
ParentStateMachine.

Using a Lambda function to continue a new execution in Step
Functions

® Tip
The following approach uses a Lambda function to start a new workflow execution. We
recommend using a Step Functions Task state to start new workflow executions. See how
in the following tutorial: the section called “Continue long-running workflows using
Step Functions APl (recommended)” .

You can create a state machine that uses a Lambda function to start a new execution before the
current execution terminates. With this approach to continue ongoing work in a new execution, you
can break large jobs into smaller workflows, or run a workflow indefinitely.

This tutorial builds on the concept of using an external Lambda function to modify your workflow,
which was demonstrated in the Iterate a loop with a Lambda function in Step Functions tutorial.
You use the same Lambda function (Iterator) to iterate a loop for a specific number of times. In
addition, you create another Lambda function to start a new execution of your workflow, and to
decrement a count each time it starts a new execution. By setting the number of executions in the
input, this state machine ends and restarts an execution a specified number of times.

The state machine you'll create implements the following states.

State Purpose

ConfigureCount A Pass state that configures the count, index, and step
values that the Iterator Lambda function uses to step through
iterations of work.

Using Lambda to continue a workflow 326

AWS Step Functions Developer Guide

State Purpose
Iterator A Task state that references the Iterator Lambda function.
IsCountReached A Choice state that uses a Boolean value from the Iterator

function to decide whether the state machine should continue the
example work, or move to the ShouldRestart state.

ExampleWork A Pass state that represents the Task state that would perform
work in an actual implementation.

ShouldRestart A Choice state that uses the executionCount value to decide
whether it should end one execution and start another, or simply
end.

Restart A Task state that uses a Lambda function to start a new

execution of your state machine. Like the Iterator function, this
function also decrements a count. The Restart state passes the
decremented value of the count to the input of the new execution.

Prerequisites

Before you begin, go through the Creating a Step Functions state machine that uses Lambda
tutorial to ensure that you're familiar with using Lambda and Step Functions together.

Step 1: Create a Lambda function to iterate a count

(® Note

If you have completed the Iterate a loop with a Lambda function in Step Functions tutorial,

you can skip this step and use that Lambda function.

This section and the Iterate a loop with a Lambda function in Step Functions tutorial show how you

can use a Lambda function to track a count, for example, the number of iterations of a loop in your
state machine.

Prerequisites 327

AWS Step Functions Developer Guide

The following Lambda function receives input values for count, index, and step. It returns
these values with an updated index and a Boolean named continue. The Lambda function sets
continue to true if the index is less than count.

Your state machine then implements a Choice state that executes some application logic if
continue is true, or moves on to ShouldRestart if continueis false.

Create the Iterate Lambda function

1. Open the Lambda console, and then choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function, as follows:

a. For Function name, enter Iterator.
b. For Runtime, choose Node.js 16.x.

c. Keep all the default selections on the page, and then choose Create function.

When your Lambda function is created, make a note of its Amazon Resource Name (ARN)
in the upper-right corner of the page, for example:

arn:aws:lambda:us-east-1:123456789012:function:Iterator

4. Copy the following code for the Lambda function into the Code source section of the
Iterator page in the Lambda console.

exports.handler = function iterator (event, context, callback) {
let index = event.iterator.index;
let step = event.iterator.step;
let count = event.iterator.count;

index = index + step;

callback(null, {
index,
step,
count,
continue: index < count

1)

Step 1: Create a Lambda function to iterate a count 328

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

This code accepts input values for count, index, and step. It increments the index by the
value of step and returns these values, and the Boolean value of continue. The value of
continueis true if index is less than count.

5. Choose Deploy to deploy the code.

Test the Iterate Lambda function

To see your Iterate function working, run it with numeric values. You can provide input values
for your Lambda function that mimic an iteration to see what output you get with specific input
values.

To test your Lambda function

1. In the Configure test event dialog box, choose Create new test event, and then type
TestIterator for Event name.

2. Replace the example data with the following.

{
"Comment": "Test my Iterator function",
"iterator": {
"count": 10,
"index": 5,
"step": 1
}
}

These values mimic what would come from your state machine during an iteration. The
Lambda function increments the index and returns continue as true. When the index is
not less than the count, it returns continue as false. For this test, the index has already
incremented to 5. The results should increment the index to 6 and set continue to true.

3. Choose Create.
4. Onthe Iterator page in your Lambda console, be sure Testlterator is listed, and then choose

Test.

The results of the test are displayed at the top of the page. Choose Details and review the
result.

Step 1: Create a Lambda function to iterate a count 329

AWS Step Functions Developer Guide

{
"index": 6,
"step": 1,
"count": 10,
"continue": true

}

(® Note

If you set index to 9 for this test, the index increments to 10, and continue is
false.

Step 2: Create a Restart Lambda function to start a new Step Functions
execution

1. Open the Lambda console, and then choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function, as follows:

a. For Function name, enter Restart.
b. For Runtime, choose Node.js 16.x.

4. Keep all the default selections on the page, and then choose Create function.

When your Lambda function is created, make a note of its Amazon Resource Name (ARN) in
the upper-right corner of the page, for example:

arn:aws:lambda:us-east-1:123456789012:function:Iterator

5. Copy the following code for the Lambda function into the Code source section of the
Restart page in the Lambda console.

The following code decrements a count of the number of executions, and starts a new
execution of your state machine, including the decremented value.

var aws = require('aws-sdk');
var sfn = new aws.StepFunctions();

Step 2: Create a Restart Lambda function to start a new Step Functions execution 330

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

exports.restart = function(event, context, callback) {

let StateMachineArn = event.restart.StateMachineAzn;
event.restart.executionCount -= 1;
event = JSON.stringify(event);

let params = {
input: event,
stateMachineArn: StateMachineArn

sfn.startExecution(params, function(err, data) {
if (err) callback(err);
else callback(null,event);

1);

6. Choose Deploy to deploy the code.

Step 3: Create a state machine

Now that you've created your two Lambda functions, create a state machine. In this state machine,
the ShouldRestart and Restart states are how you break your work across multiple executions.

Example ShouldRestart Choice state

The following excerpt shows the ShouldRestartChoice state. This state determines whether or
not you should restart the execution.

"ShouldRestart": {
"Type": "Choice",
"Choices": [
{
"Variable": "$.restart.executionCount",
"NumericGreaterThan": 1,
"Next": "Restart"

1,

Step 3: Create a state machine 331

AWS Step Functions Developer Guide

The $.restart.executionCount value is included in the input of the initial execution. It's
decremented by one each time the Restart function is called, and then placed into the input for
each subsequent execution.

Example Restart Task state

The following excerpt shows the RestartTask state. This state uses the Lambda function you
created earlier to restart the execution, and to decrement the count to track the remaining number
of executions to start.

"Restart": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Restart",
"Next": "Done"

.

To create the state machine

1. Open the Step Functions console and choose Create state machine.

/A Important

Make sure that your state machine is under the same AWS account and Region as the
Lambda functions you created earlier in Step 1 and Step 2.

2. Inthe Choose a template dialog box, select Blank.
Choose Select to open Workflow Studio in Design mode.

4. For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the Code editor. To do this, choose Code.

5. Remove the existing boilerplate code and paste the following code. Remember to replace the
ARNs in this code with the ARNs of the Lambda functions you created.

{
"Comment": "Continue-as-new State Machine Example",
"StartAt": "ConfigureCount",
"States": {

"ConfigureCount": {
IlTypell: IlPassll'
"Result": {

"count": 100,

Step 3: Create a state machine 332

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

"index": -1,
"step": 1
},
"ResultPath": "$.iterator",
"Next": "Iterator"
I
"Iterator": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Iterator",
"ResultPath": "$.iterator",
"Next": "IsCountReached"
I
"IsCountReached": {
"Type": "Choice",
"Choices": [

{
"Variable": "$.iterator.continue",
"BooleanEquals": true,
"Next": "ExampleWork"
}
1,
"Default": "ShouldRestart"
},
"ExampleWork": {
"Comment": "Your application logic, to run a specific number of times",
"Type": "Pass",
"Result": {
"success": true
},
"ResultPath": "$.result",
"Next": "Iterator"

1,

"ShouldRestart": {
"Type": "Choice",
"Choices": [

{
"Variable": "$.restart.executionCount",
"NumericGreaterThan": 0,
"Next": "Restart"
}
1,
"Default": "Done"
},
"Restart": {

Step 3: Create a state machine 333

AWS Step Functions Developer Guide

"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:Restart",
"Next": "Done"
.
"Done": {
"Type": "Pass",
"End": true
}

6. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name ContinueAsNew.

7. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine

and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

8. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

9. Save the Amazon Resource Name (ARN) of this state machine in a text file. You'll need to
provide the ARN while providing permission to the Lambda function to start a new Step
Functions execution.

Step 3: Create a state machine 334

AWS Step Functions Developer Guide

Step 4: Update the IAM Policy

To make sure your Lambda function has permissions to start a new Step Functions execution,
attach an inline policy to the IAM role you use for your Restart Lambda function. For more
information, see Embedding Inline Policies in the IAM User Guide.

(@ Note

You can update the Resource line in the previous example to reference the ARN of
your ContinueAsNew state machine. This restricts the policy so that it can only start an
execution of that specific state machine.

{
"Version": "2012-10-17",
"Statement": [

{

"Sid": "VisualEditor@o",

"Effect": "Allow",

"Action": [

"states:StartExecution"

1,

"Resource": "arn:aws:states:us-east-2:123456789012stateMachine:ContinueAsNew"
}

Step 5: Run the state machine

To start an execution, provide input that includes the ARN of the state machine and an
executionCount for how many times it should start a new execution.

1. On the ContinueAsNew page, choose Start execution.

The Start execution dialog box is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

Step 4: Update the IAM Policy 335

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#embed-inline-policy-console

AWS Step Functions Developer Guide

b.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

In the Input box, enter the following JSON input to run your workflow.

"restart": {
"StateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:ContinueAsNew",
"executionCount": 4

Update the StateMachineAzrn field with the ARN for your ContinueAsNew state
machine.

Choose Start execution.

The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

The Graph view displays the first of the four executions. Before it completes, it will pass
through the Restart state and start a new execution.

Step 5: Run the state machine 336

AWS Step Functions Developer Guide

A
Ik End |
S

As this execution completes, you can look at the next execution that's running. Select
the ContinueAsNew link at the top to see the list of executions. You should see both the
recently closed execution, and an ongoing execution that the Restart Lambda function
started.

When all the executions are complete, you should see four successful executions in the
list. The first execution that was started displays the name you chose, and subsequent
executions have a generated name.

Step 5: Run the state machine 337

AWS Step Functions Developer Guide

B8c4254e3-efa2-4b58-aa1a-TbB5cAB07V516

arn:aws:states;us-east- 2 —rexecution:ContinueAsMew:Bocd254e3-efaZ-4b5b8-a... _
Oc8cfbds-bf15-470b-b675-4d6eal834afc

arn:aws:states:us-east-1:2=2000 Z:execution:ContinueAsiew:0c8cfbds-bf15-470b-b6...
67e10aef-693a-4abb-b7e6-2805a845ddd8

arn:aws:states:us-east-1:2=2000 T 2execution:ContinueAsMew:67 el 0asf-693a-4abb-b...

Test1

arn:aws:states:us-east-1: 0500024 T8 Dexecution:ContinueAsMew: Test 1 _

Accessing cross-account AWS resources in Step Functions

With the cross-account access support in Step Functions, you can share resources configured in
different AWS accounts. In this tutorial, we walk you through the process of accessing a cross-
account Lambda function defined in an account called Production. This function is invoked from
a state machine in an account called Development. In this tutorial, the Development account is
referred to as the source account and the Production account is the target account containing the
target IAM role.

To start, in your Task state’s definition, you specify the target IAM role the state machine must
assume before invoking the cross-account Lambda function. Then, modify the trust policy in the
target IAM role to allow the source account to assume the target role temporarily. Also, to call the
AWS resource, define the appropriate permissions in the target IAM role. Finally, update the source
account’s execution role to specify the required permission to assume the target role.

You can configure your state machine to assume an IAM role for accessing resources from multiple
AWS accounts. However, a state machine can assume only one IAM role at a given time based on
the Task state’s definition.

(® Note

Currently, cross-Region AWS SDK integration and cross-Region AWS resource access aren't
available in Step Functions.

Access cross-account resources 338

AWS Step Functions Developer Guide

Prerequisites

This tutorial uses the example of a Lambda function for demonstrating how to set up cross-
account access. You can use any other AWS resource, but make sure you've configured the
resource in a different account.

/A Important

IAM roles and resource-based policies delegate access across accounts only within a
single partition. For example, assume that you have an account in US West (N. California)
in the standard aws partition. You also have an account in China (Beijing) in the aws -

cn partition. You can't use an Amazon S3 resource-based policy in your account in China
(Beijing) to allow access for users in your standard aws account.

Make a note of the cross-account resource's Amazon Resource Name (ARN) in a text file. Later in
this tutorial, you'll provide this ARN in your state machine's Task state definition. The following
is an example of a Lambda function ARN:

arn:aws:lambda:us-east-2:123456789012: function: functionName

Make sure you've created the target IAM role that the state machine needs to assume.

Step 1: Update the Task state definition to specify the target role

In the Task state of your workflow, add a Credentials field containing the identity the state
machine must assume before invoking the cross-account Lambda function.

The following procedure demonstrates how to access a cross-account Lambda function called

Echo. You can call any AWS resource by following these steps.

1.
2.

Open the Step Functions console and choose Create state machine.

On the Choose authoring method page, choose Design your workflow visually and keep all
the default selections.

To open Workflow Studio, choose Next.

On the Actions tab, drag and drop a Task state on the canvas. This invokes the cross-account
Lambda function that's using this Task state.

On the Configuration tab, do the following:

Prerequisites 339

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

a. Rename the state to Cross-account call.

b. For Function name, choose Enter function name, and then enter the
Lambda function ARN in the box. For example, arn:aws:lambda:us-
east-2:111122223333:function:Echo.

c. For Provide IAM role ARN, specify the target IAM role ARN. For example,
arn:aws:iam::111122223333:role/LambdaRole.

® Tip
Alternatively, you can also specify a reference path to an existing key-value pair
in the state’s JSON input that contains the IAM role ARN. To do this, choose Get
IAM role ARN at runtime from state input. For an example of specifying a value
by using a reference path, see Specifying JSONPath as IAM role ARN.

6. Choose Next.
7. On the Review generated code page, choose Next.

8. On the Specify state machine settings page, specify details for the new state machine, such
as a name, permissions, and logging level.

9. Choose Create state machine.

10. Make a note of the state machine's IAM role ARN and the state machine ARN in a text file.
You'll need to provide these ARNs in the target account's trust policy.

Your Task state definition should now look similar to the following definition.

"StartAt": "Cross-account call",
"States": {
"Cross-account call": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Credentials": {
"RoleArn": "arn:aws:iam::111122223333:role/LambdaRole"
i
"Parameters": {
"FunctionName": "arn:aws:lambda:us-east-2:111122223333:function:Echo",
1,

"End": true

Step 1: Update the Task state definition to specify the target role 340

AWS Step Functions Developer Guide

}
}

Step 2: Update the target role's trust policy

The IAM role must exist in the target account and you must modify its trust policy to allow the
source account to assume this role temporarily. Additionally, you can control who can assume the
target IAM role.

After you create the trust relationship, a user from the source account can use the AWS Security
Token Service (AWS STS) AssumeRole APl operation. This operation provides temporary security
credentials that enable access to AWS resources in a target account.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the navigation pane of the console, choose Roles and then use the Search box to search for
the target IAM role. For example, LambdaRole.

Choose the Trust relationships tab.

4. Choose Edit trust policy and paste the following trust policy. Make sure to replace the AWS
account number and IAM role ARN. The sts:Externalld field further controls who can
assume the role. The state machine's name must include only characters that the AWS Security
Token Service AssumeRole API supports. For more information, see AssumeRole in the AWS
Security Token Service API Reference.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "sts:AssumeRole",
"Principal": {
"AWS": "arn:aws:iam::123456789012:role/ExecutionRole" // The source
account's state machine execution role ARN
1,
"Condition": { // Control which account and state machine can assume the
target IAM role
"StringEquals": {
"sts:Externalld": "arn:aws:states:us-
east-1:123456789012:stateMachine:testCrossAccount” //// ARN of the state machine
that will assume the role.

Step 2: Update the target role's trust policy 341

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Step Functions Developer Guide

5. Keep this window open and proceed to the next step for further actions.

Step 3: Add the required permission in the target role

Permissions in the IAM policies determine whether a specific request is allowed or denied. The
target IAM role must have the correct permission to invoke the Lambda function.

1. Choose the Permissions tab.
2. Choose Add permissions and then choose Create inline policy.

3. Choose the JSON tab and replace the existing content with the following permission. Make
sure to replace your Lambda function ARN.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

"Action": "lambda:InvokeFunction",
"Resource": "arn:aws:lambda:us-east-2:111122223333:function:Echo" // The
cross-account AWS resource being accessed
}
]
}

4. Choose Review policy.

5. On the Review policy page, enter a name for the permission, and then choose Create policy.

Step 4: Add permission in execution role to assume the target role

Step Functions doesn’t automatically generate the AssumeRole policy for all cross-account service
integrations. You must add the required permission in the state machine's execution role to allow it
to assume a target IAM role in one or more AWS accounts.

Step 3: Add the required permission in the target role 342

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Step Functions Developer Guide

1. Open your state machine's execution role in the IAM console at https://
console.aws.amazon.com/iam/. To do this:

a. Open the state machine that you created in Step 1 in the source account.

b. On the State machine detail page, choose IAM role ARN.
2. On the Permissions tab, choose Add permissions and then choose Create inline policy.

3. Choose the JSON tab and replace the existing content with the following permission. Make
sure to replace your Lambda function ARN.

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

"Action": "sts:AssumeRole",
"Resource": "arn:aws:iam::111122223333:ro0le/LambdaRole" // The target role
to be assumed

}

}

4. Choose Review policy.

5. On the Review policy page, enter a name for the permission, and then choose Create policy.

Step 4: Add permission in execution role to assume the target role

343

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

Learn how to get started with Step Functions

To get started building workflows with AWS Step Functions, you can work through the following
tutorials or follow the interactive modules in the AWS Step Functions Workshop.

Each step in the workflow is called a state. You most commonly use states, such as Task workflow

state, Choice workflow state, Parallel workflow state, and Map workflow state, to define your

workflows. Within Task states, you can use the AWS SDK integrations that Step Functions supports
and orchestrate multiple AWS services in your workflows.

Topics

 Building a credit card application workflow

» Create a state machine in Step Functions

 Integrate a service into your Step Functions workflow

« Add conditional logic to your Step Functions workflow

o Define parallel tasks in a Step Functions workflow

« Concurrently iterate over items in a Step Functions workflow

» Save and run your Step Functions workflow

» Configure workflow input and output in Step Functions

» Debug errors in Step Functions console

Building a credit card application workflow

After completing the steps in this getting started tutorial, you'll have a workflow that simulates
processing a credit card application. You'll learn how to use common states and integrate your
workflow with other AWS services

Step Functions can be used to create many types of workflows, such as data processing, IT
automation, machine learning, and media encoding.

The following diagram shows an example credit limit approval process, with each step represented
by states in a Step Functions workflow. If the requested credit limit is greater than or equal to
$5000, the workflow will add a human in the loop for an approval before proceeding. For requests
less than $5000, the limit will be automatically approved for further processing. In parallel,

Building a credit card application workflow 344

https://s12d.com/sfn-ws-docs

AWS Step Functions Developer Guide

functions will be called to verify the requesters identity and verify their address. If those processes
both succeed, credit scores will be retrieved from with a dynamic map for all listed credit bureaus.

Building a credit card application workflow 345

AWS Step Functions

Developer Guide

Lambda: Invoke
& Get credit limit
Y

Choice state
S!z Determine if credit limit == 5000

L

— || ——
$ == 5000 Default £ = 5000
._‘I ____.f" Y
F
SNS: Publish \|

Wait for human approval

Y _ L i
| Pass state | Pass state
%,3 Credit limit approved %,3 Auto-approve limit
\ /
‘\g :E/

Parallel state
I | | Verify applicant’s identity and address
I

s

— —

.--"_'_'_'_ ___\-\-\'-\.
¥ _ ¥
Lambda: Invoke Lambda: Invoke
Verify identity Verify address
Y Y
¥

DynamoDB: S5can
Get list of credit bureaus

Y

Map state
\ & T Get scores from all credit bureaus

¥
Lambda: Invoke
Get all scores

Building a credit card application

346

AWS Step Functions Developer Guide

In the following pages, you will build this credit card processing workflow. We recommend
completing the steps in order, starting with: Create a state machine

Create a state machine in Step Functions

You will create a state machine prototype for your credit card processing workflow using Step
Functions’' Workflow Studio.

You'll add all of the API actions and states from the Actions and Flow tabs using drag and drop in
Workflow Studio. In the following topics, you'll define the conditions for the choice state, create
your Lambda functions to process data, and configure all of the states in the workflow.

Create a state machine 347

AWS Step Functions

Developer Guide

Lambda: Invoke
& Get credit limit
Y

Choice state
S!z Determine if credit limit == 5000

L

— || ——
$ == 5000 Default £ = 5000
._‘I ____.f" Y
F
SNS: Publish \|

Wait for human approval

Y _ L i
| Pass state | Pass state
%,3 Credit limit approved %,3 Auto-approve limit
\ /
‘\g :E/

Parallel state
I | | Verify applicant’s identity and address
I

s

— —

.--"_'_'_'_ ___\-\-\'-\.
¥ _ ¥
Lambda: Invoke Lambda: Invoke
Verify identity Verify address
Y Y
¥

DynamoDB: S5can
Get list of credit bureaus

Y

Map state
\ & T Get scores from all credit bureaus

¥
Lambda: Invoke
Get all scores

Create a state machine

348

AWS Step Functions Developer Guide

To create the state machine prototype

1.
2.
3,

Open the Step Functions console and choose Create state machine.

In the Choose a template dialog box, select Blank.

Choose Select to open Workflow Studio in Design mode.

To add actions to your workflow

1.

In Workflow Studio, from the Actions tab, drag an AWS Lambda Invoke API action and drop
it to the empty state labelled Drag first state here. In the Configuration tab, for State name,
enter Get credit limit.

From the Flow tab, drag and drop a Choice state below the Get credit limit state. Rename the
Choice state to Determine if credit limit >= 50007?.

Drag and drop the following states as branches of the Choice state:

a. Amazon SNS Publish - From the Actions tab, drag and drop the Amazon SNS Publish API
action. Rename this state to Wait for human approval.

b. Pass state — From the Flow tab, drag and drop the Pass state. Rename this branch to
Auto-approve limit.

c. Drag and drop a Pass state below the Wait for human approval state. Rename this Pass
state to Credit limit approved.

Add a Parallel state after the Choice state, configured as follows:

o

Drop the Parallel state after the Credit limit approved state.

b. Rename the Parallel state to Vexrify applicant's identity and address.

¢. Under both the branches of the Parallel state, drag and drop a Lambda Invoke API action.
d. Rename the Lambda states to: Verify identity and Verify address

e. Choose the Auto-approve limit state and for Next state, select Verify applicant's identity
and address.

Drag a DynamoDB Scan state and drop it below the Verify applicant's identity and address
state. Rename the DynamoDB Scan state to Get list of credit bureaus.

Drag and drop a Map state after the Get list of credit bureaus state. Configure the Map state
as follows:

a. Renameitto Get scores from all credit bureaus.

Create a state machine 349

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

b. For Processing mode, keep the default selection of Inline.

c. Dragand drop an AWS Lambda Invoke API action to the empty state labelled Drop state
here.

d. Rename the AWS Lambda Invoke state to Get all scores.

Next steps

Now that you have a workflow prototype, you will learn how to set up and configure the resources.
In the next section, Integrate a service, you will integrate a Lambda function into your workflow.

Integrate a service into your Step Functions workflow

In the previous topic, Create a state machine, you added all the steps to the workflow prototype.
Now, you will create and fully integrate a Lambda function into your workflow. You will configure
a Task state named Get credit limit which will invoke your Lambda function. Within Task states,
you can use any AWS SDK integrations that Step Functions supports.

To define the first service integration for your workflow, first create your Lambda function. Then,
update your workflow to specify the service integration with the Lambda function. The Lambda
function used in this tutorial returns a randomly generated integer representing the requested
credit limit.

Step 1: Create and test the Lambda function

You can write code for the function in the AWS Management Console or your favorite editor. In the
following steps, you create a Node.js Lambda function titled RandomNumberforCredit.

/A Important

Make sure you create the Lambda function in the same region as your state machine in the
same AWS Region as your state machine.

1. In a new tab or window, open the Lambda console and create a Node.js Lambda function titled
RandomNumbexrfoxrCredit. For information about creating a Lambda function using the
console, see Create a Lambda function in the console in the AWS Lambda Developer Guide.

Next steps 350

https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html#getting-started-create-function

AWS Step Functions Developer Guide

2. Onthe RandomNumberforCredit page, choose index.mjs and replace the existing code in the
Code source area with the following code.

export const handler = async function(event, context) {

const credLimit = Math.floor(Math.random() * 10000);
return (credLimit);

I

3. From the Function overview section, copy the Amazon Resource Name of the Lambda
function and save it in a text file. You'll need the function ARN while specifying the service
integration for the Get credit limit state. The following is an example ARN:

arn:aws:lambda:us-east-2:123456789012:function:HellolWorld

4. Choose Deploy and then choose Test to deploy the changes and see the output of the Lambda
function.

Step 2: Update the workflow - configure the Get credit limit state

In the Step Functions console, you'll update your workflow to specify service integration with the
RandomNumberforCredit Lambda function that you created in Step 1.

1. Open the Step Functions console window containing the workflow prototype you created in
Tutorial 1.

2. Choose the Get credit limit state, and in the Configuration tab, do the following:

a. For Integration type, keep the default selection of Optimized.

Using Step Functions, you can integrate with other AWS services and orchestrate them
in your workflows. For more information about service integrations and their types, see
Integrating services with Step Functions.

b. For Function name, choose the RandomNumberforCredit Lambda function from the
dropdown list.

c. Keep the default selections for rest of the items.

3. Keep this window open and proceed to the next topic.

Step 2: Update the workflow — configure the Get credit limit state 351

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

® Note

You can also use other supported AWS SDK integrations in the Task state by specifying
the service name and API call, as shown in the following example. For information, see
Integrating services with Step Functions.

arn:aws:states:::aws-sdk:serviceName:apiAction

Next steps

In the next topic, Add conditional logic you will configure the choice state with conditional logic to

determine the next step in the workflow.

Add conditional logic to your Step Functions workflow

In the previous topic, Integrate a service , you integrated a Lambda function. In this topic you

will set up the if-else conditions in the Choice state. A choice state determines the workflow
execution path based on specific conditions.

You will add logic that chooses a path based on the applied credit amount returned by the
RandomNumberforCredit Lambda function. If the value is within a threshold limit, the credit
application will be automatically approved and move to the next step. If the value exceeds the
threshold limit, the workflow will require a human approval to continue the workflow.

You'll mimic a human interaction step by pausing the workflow execution until a task token is
returned. To do this, you'll pass a task token to the AWS SDK integration with Amazon Simple
Notification Service. The workflow execution will be paused until it receives the task token back
with a SendTaskSuccess API call. For information about integrating with others services using

task tokens, see the Wait for a Callback with Task Token in service integration patterns.

When you created the prototype state machine, you defined human approval and auto-approval

steps. Now, you must create an Amazon SNS topic that receives the callback token. Then, you
create a Lambda function to implement the callback functionality. Finally, you update your
workflow prototype by adding the details of these AWS service integrations.

Next steps 352

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html

AWS Step Functions Developer Guide

Step 1: Create an Amazon SNS topic that receives the callback token

To implement the human interaction step, you'll publish to an Amazon Simple Notification Service
topic and pass the callback task token to this topic. The callback task will pause the workflow
execution until the task token is returned with a payload.

1. Open the Amazon SNS console and create a Standard topic type. For information about

creating a topic, see Create an Amazon SNS topic in the Amazon Simple Notification Service
Developer Guide.

2. Specify the topic name as TaskTokenTopic.

3. Make sure to copy the topic ARN and save it in a text file. You'll need the topic ARN while
specifying the service integration for the Wait for human approval state. The following is an
example topic ARN:

arn:aws:sns:us-east-2:123456789012:TaskTokenTopic

4. Create an email-based subscription for the topic and then confirm your subscription. For
information about subscribing to a topic, see Create a subscription to the topic in the Amazon

Simple Notification Service Developer Guide.

Step 2: Create a Lambda function to handle the callback

To handle callback functionality, you'll define a Lambda function and add the Amazon SNS topic
you created in Step 1 as a trigger for this function. When you publish to the Amazon SNS topic
with a task token, the Lambda function is invoked with the payload of the published message.

» Step 2.1: Create the Lambda function to handle callback

« Step 2.2: Add the Amazon SNS topic as a trigger for the Lambda function

» Step 2.3: Provide necessary permissions to the Lambda function IAM role

Step 2.1: Create the Lambda function to handle callback

In this function, you'll process the credit limit approval request and return the request'’s result as
successful with the SendTaskSuccess API call. This Lambda function will also return the task

token it received from the Amazon SNS topic.

Step 1: Create an Amazon SNS topic that receives the callback token 353

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html#step-create-queue
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html#step-send-message
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html

AWS Step Functions Developer Guide

For simplicity, the Lambda function used for the human interaction step automatically approves
any task and returns the task token with a SendTaskSuccess API call. You can name the Lambda
function as callback-human-approval.

1. In a new tab or window, open the Lambda console and create a Node.js Lambda function titled
callback-human-approval. For information about creating a Lambda function using the
console, see Create a Lambda function in the console in the AWS Lambda Developer Guide.

2. On the callback-human-approval page, replace the existing code in the Code source area with
the following code.

// Lambda function that will automatically approve any task
// in a message published to an Amazon SNS topic

console.log('Loading function');
const AWS = require('aws-sdk');
const resultMessage = "Successful";

export const handler = async (event) => {
const stepfunctions = new AWS.StepFunctions();

let message = JSON.parse(event.Records[@].Sns.Message);
let taskToken = message.TaskToken;

console.log('Message received from SNS:', message);
console.log('Task token: ', taskToken);

// Return task token to Step Functions
let params = {
output: JSON.stringify(resultMessage),

taskToken: taskToken
};

console.log('JSON Returned to Step Functions: ', params);

let myResult = await stepfunctions.sendTaskSuccess(params).promise();
console.log('State machine - callback completed..');

return myResult;

};

3. Keep this window open and perform the steps in the next section for further actions.

Step 2: Create a Lambda function to handle the callback 354

https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html#getting-started-create-function

AWS Step Functions Developer Guide

Step 2.2: Add the Amazon SNS topic as a trigger for the Lambda function

When you publish to the Amazon SNS topic with a task token, the Lambda function is invoked
with the payload of the published message. For more information about configuring triggers for
Lambda functions, see Configuring triggers in the AWS Lambda Developer Guide.

1. In the Function overview section of the callback-human-approval Lambda function,
choose Add trigger.

2. From the drop-down list of triggers, choose SNS as the trigger.

3. For SNS topic, start typing the name of the Amazon SNS topic you created in Step 1 of this
tutorial, and choose it from the dropdown list that appears.

4. Choose Add.

5. Keep this window open and perform the steps in the next section for further actions.

Step 2.3: Provide necessary permissions to the Lambda function IAM role

You must provide the callback-human-approval Lambda function the permissions to access
Step Functions for returning the task token along with the SendTaskSucess API call.

1. On the callback-human-approval page, choose the Configuration tab, and then choose
Permissions.

2. Under Execution role, choose the Role name to navigate to the AWS Identity and Access
Management console’s Roles page.

3. To add the required permission, choose Add permissions, and then choose Attach policies.
4. Inthe search box, type AWSStepFunctions and then press Enter.

5. Choose AWSStepFunctionsFullAccess and then scroll down to choose Attach policies. This
adds the policy containing the necessary permission for the callback-human-approval
Lambda function role.

Step 3: Update the workflow — add if-else condition logic in the Choice
state

In the Step Functions console, define conditional logic for your workflow using the Choice state.
If the output returned by the RandomNumberforCredit Lambda function is less than 5000, the

Step 3: Update the workflow — add if-else condition logic in the Choice state 355

https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-common-triggers

AWS Step Functions Developer Guide

requested credit is auto-approved. If the output returned is greater than or equal to 5000, the
workflow execution proceeds to the human interaction step for the credit limit approval.

In the Choice state, you use a comparison operator to compare an input variable with a specific
value. You can specify the input variable as the execution input while starting a state machine
execution or use the output of a preceding step as input for the current step. By default, the
output of a step is stored in a variable called Payload. To use the Payload variable's value for
comparison in the Choice state, use the $ syntax as shown in the following procedure.

For information about how information flows from one state to another and specifying input and
output in your workflows, see Configure input and output and Processing input and output.

(@ Note

If the Choice state uses an input variable specified in the state machine execution input
for comparison, use the $.variable_name syntax to perform the comparison. For
example, to compare a variable, such as myAge, use the syntax $.myAge.

Because in this step, the Choice state will receive input from the Get credit limit state, you'll use
the $ syntax for the Choice state configuration. To explore how the result of the state machine
execution differs when you use the $.variable_name syntax in the Choice state configuration
to refer to the output from a preceding step, see the Debugging the invalid path Choice state error

section in Tutorial 8.
To add if-else condition logic using the Choice state

1. Open the Step Functions console window containing the workflow prototype you created in

Create a state machine.

2. Choose the Credit applied >= 5000? state and in the Configuration tab, specify the
conditional logic as follows:

a. Under Choice Rules, choose the Edit icon in the Rule #1 tile to define the first choice rule.
b. Choose Add conditions.

In the Conditions for rule #1 dialog box, for Variable, enter $.

N

d. For Operator, choose is less than.

e. For Value, choose Number constant, and then enter 5000 in the field next to the Value
dropdown list.

Step 3: Update the workflow — add if-else condition logic in the Choice state 356

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

f.

g.
h.

Choose Save conditions.
For the Then next state is: dropdown list, choose Auto-approve limit.

Choose Add new choice rule, and then define the second choice rule when the credit
amount is greater than or equal to 5000 by repeating substeps 2.b through 2.f. For
Operator, choose is greater than or equal to.

For the Then next state is: dropdown list, choose Wait for human approval.

In the Default rule box, choose the Edit icon to define the default choice rule, and then
choose Wait for human approval from the Default state dropdown list. You define the
Default rule to specify the next state to transition to if none of the Choice state conditions
evaluate to true or false.

3. Configure the Wait for human approval state as follows:

d.

e.

In the Configuration tab, for Topic, start typing the name of the Amazon SNS topic,
TaskTokenTopic, and choose the name as it appears in the dropdown list.

For Message, choose Enter message from the dropdown list. In the Message field, you
specify the message you want to publish to the Amazon SNS topic. For this tutorial, you
publish a task token as the message.

A task token lets you pause a Standard type Step Functions workflow until an external
process is complete and the task token is returned. When you specify a Task state as a
callback task by specifying the .waitForTaskToken service integration pattern, a task
token is generated and placed in the context object when the task is started. The context
object is an internal JSON structure that is available during an execution, and contains
information about your state machine and its execution. For more information about
context objects, see Context object.

In the box that appears, enter the following as message:

{
"TaskToken.$": "$$.Task.Token"

}

Choose the Wait for callback checkbox.

Choose Done in the dialog box that appears.

4. Keep this window open and proceed to the next topic.

Step 3: Update the workflow — add if-else condition logic in the Choice state 357

AWS Step Functions Developer Guide

Next steps

In the next topic, Define parallel tasks you'll learn how to perform multiple tasks in parallel.

Define parallel tasks in a Step Functions workflow

In the previous topic, Add conditional logic, you set up conditions to chose different paths in your
workflow. So far, the steps have run sequentially. In this topic, you'll learn how you can run two or
more steps concurrently using the Parallel state.

Both branches in a Parallel state receive the same input, but each branch processes the parts
of input specific for it. Step Functions waits until each branch completes before proceeding to the
next step.

You will use the Parallel state to concurrently check the identity and address of the applicant.

Step 1: Create the Lambda functions to perform the required checks

This credit card application workflow invokes two Lambda functions inside the Parallel state to
check the applicant’s identity and address. These checks are performed simultaneously using the
Parallel state. The state machine completes execution only after both the parallel branches have
completed executing.

To create the check-identity and check-address Lambda functions

1. In a new tab or window, open the Lambda console and create two Node.js Lambda functions
titled check-identity and check-address. For information about creating a Lambda
function using the console, see Create a Lambda function in the console in the AWS Lambda

Developer Guide.

2. Open the check-identity function page and replace the existing code in the Code source area
with the following code:

const ssnRegex = /M\d{3}-?\d{2}-?\d{4}$/;
const emailRegex = /~[a-zA-Z0-9._-]+@[a-zA-Z0-9.-1+\.[a-zA-Z]1{2,43}$/;

class ValidationError extends Error {
constructor(message) {
super(message);
this.name = "CustomValidationError";

Next steps 358

https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html#getting-started-create-function

AWS Step Functions Developer Guide

}
}
exports.handler = async (event) => {
const {
ssn,
email
} = event;

console.log("SSN: ${ssn} and email: ${emaill}’);
const approved = ssnRegex.test(ssn) && emailRegex.test(email);

if (lapproved) {
throw new ValidationError("Check Identity Validation Failed");

}
return {
statusCode: 200,
body: JSON.stringify({
approved,
message: " Identity validation ${approved ? 'passed' : 'failed'}"’
D)
}

};

3. Open the check-address function page and replace the existing code in the Code source area
with the following code:

class ValidationError extends Error {
constructor(message) {
super(message);

this.name = "CustomAddressValidationError";
}
}
exports.handler = async event => {
const {
street,
city,
state,
zip
} = event;

console.log(‘Address information: ${street}, ${city}, ${state} - ${zip});

Step 1: Create the Lambda functions to perform the required checks 359

AWS Step Functions Developer Guide

const approved = [street, city, state, zip].every(i => i?.trim().length > 0);

if (lapproved) {
throw new ValidationError("Check Address Validation Failed");

}
return {
statusCode: 200,
body: JSON.stringify({
approved,
message: "Address validation ${ approved ? 'passed' : 'failed'}"’
b
}

i

4. For both the Lambda functions, from the Function overview section, copy their respective
Amazon Resource Names (ARN) and save them in a text file. You'll need the function ARNs
while specifying the service integration for the Verify applicant's identity and address state.
The following is an example ARN:

arn:aws:lambda:us-east-2:123456789012:function:HelloWorld

Step 2: Update the workflow — Add parallel tasks to be performed

In the Step Functions console, you'll update your workflow to specify service integration with the
check-identity and check-address Lambda functions you created in Step 1.

To add parallel tasks in the workflow

1. Open the Step Functions console window containing the workflow prototype you created in
Create a state machine in Step Functions.

2. Choose the Verify identity state, and in the Configuration tab, do the following:

a. For Integration type, keep the default selection of Optimized.

Step 2: Update the workflow — Add parallel tasks to be performed 360

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

® Note

Using Step Functions, you can integrate with other AWS services and orchestrate
them in your workflows. For more information about service integrations and their
types, see Integrating services with Step Functions

b. For Function name, choose the check-identity Lambda function from the dropdown list.

c. For Payload, choose Enter payload and then replace the example payload with the
following as payload:

"email": "janedoeeexample.com",
"ssn": "012-00-0000"

3. Choose the Verify address state, and in the Configuration tab, do the following:

a. For Integration type, keep the default selection of Optimized.
b. For Function name, choose the check-address Lambda function from the dropdown list.

c. For Payload, choose Enter payload and then replace the example payload with the
following as payload:

{
"street": "123 Any St",
"city": "Any Town",
"state": "AT",
"zip": "01000"

}

4. Choose Next.

Next steps

In the next step, Iterate over items, you'll learn how to iterate over items.

Next steps 361

AWS Step Functions Developer Guide

Concurrently iterate over items in a Step Functions workflow

In the previous topic, Define parallel tasks, you learned how to run separate branches of steps in

parallel using the Parallel state. Using the Map state, you can run a set of workflow steps for
each item in a dataset. The Map state's iterations run in parallel, which makes it possible to process
a dataset quickly.

By including the Map state in your workflows you can perform tasks, such as data processing, using
one of the two Map state processing modes: Inline mode and Distributed mode. To configure

a Map state, you define an ItemProcessor, which contains JSON objects that specify the Map

state processing mode and its definition. You will run the Map state in the default Inline mode,
which supports up to 40 concurrent iterations. When you run the Map state in Distributed mode, it

supports up to 10,000 parallel child workflow executions.

When your workflow execution enters the Map state, it will iterate over a JSON array specified in
the state input. For each array item, its corresponding iteration runs in the context of the workflow
that contains the Map state. When all iterations are complete, the Map state will return an array
containing the output for each item processed by the ItemProcessor.

You will use the Map state in Inline mode to fetch the credit score of an applicant by iterating over
a set of credit bureaus. To do this, you first fetch the names of all the credit bureaus stored in a
Amazon DynamoDB table, and then use the Map state to loop through the credit bureau list to
fetch the applicant’s credit score reported by each of these bureaus.

Step 1: Create a DynamoDB table to store the name of all credit
bureaus

In this step, you create a table named GetCreditBureau using the DynamoDB console. The table
uses the string attribute Name as the Partition key. In this table, you store the name of all the
credit bureaus from which you want to fetch the applicant’s credit score.

1. Signin to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the console, choose Tables, and then choose Create table.

3. Enter the table details as follows:

a. For the Table name, enter GetCreditBureau.

b. For the Partition key, enter Name.

Iterate over items 362

AWS Step Functions Developer Guide

c. Keep the default selections, and choose Create table.

After your table is created, in the Tables list, choose the GetCreditBureau table.
Choose Actions, and then choose Create item.

For Value, enter the name of a credit bureau. For example, CredTrack.

Choose Create item.

© N o u &

Repeat this process and create items for names of other credit bureaus. For example, KapFinn
and CapTrust.

Step 2: Update the state machine - Fetch results from the DynamoDB
table

In the Step Functions console, you'll add a Task state and use the AWS SDK integration to fetch
the names of credit bureaus from the DynamoDB table you created in Step 1. You'll use the output
of this step as the input for the Map state you'll add later in your workflow.

1. Open the CreditCardWorkflow state machine to update it.
2. Choose the Get list of credit bureaus state.

3. For API Parameters, specify the Table name value as GetCreditBureau.

Step 3: Create a Lambda function that returns the credit scores for all
credit bureaus

In this step, you create a Lambda function that receives the names of all credit bureaus as input,
and returns the credit score of the applicant for each of these credit bureaus. This Lambda function
will be invoked from the Map state you'll add in your workflow.

1. Create a Node.js 16.x Lambda function and name it get-credit-score.

2. On the page titled get-credit-score, paste the following code into the Code source area.

function getScore(arr) {
let temp;
let i = Math.floor((Math.random() * arr.length));
temp = arr[i];
console.log(i);
console.log(temp);

Step 2: Update the state machine — Fetch results from the DynamoDB table 363

AWS Step Functions Developer Guide

return temp;

}

const arrScores [700, 820, 640, 460, 726, 850, 694, 721, 556];

exports.handler (event, context, callback) => {

let creditScore = getScore(arrScores);
callback(null, "Credit score pulled is: " + creditScore + ".");

i

3. Deploy the Lambda function.

Step 4: Update the state machine - add a Map state to iteratively fetch
credit scores

In the Step Functions console, you add a Map state that invokes the get-credit-score Lambda
function to check the applicant’s credit score for all the credit bureaus returned by the Get list of
credit bureaus state.

1. Open the CreditCardWorkflow state machine to update it.

Choose the Get scores from all credit bureaus state.

In the Configuration tab, choose Provide a path to items array and then enter $.Items.
Choose Get all scores step inside the Map state.

In the Configuration tab, make sure for Integration type, Optimized is selected.

o v M W N

For Function name, start typing the name of the get-credit-score Lambda function and
choose it from the dropdown list that appears.

7. For Payload, choose No payload.

Next steps

In the next step, Run your workflow , you'll learn how to run your workflow.

Save and run your Step Functions workflow

Now that you've configured all of the resources in the prototype, you can save your state machine
and run the workflow, also known as a workflow execution.

Step 4: Update the state machine — add a Map state to iteratively fetch credit scores 364

AWS Step Functions Developer Guide

Step 1: Review the auto-generated state machine definition and save
the state machine

As you drag and drop states from the Flow tab onto the canvas in Workflow Studio to build the
workflow prototype, Step Functions automatically composes the Using Amazon States Language

to define Step Functions workflows (ASL) definition of your workflow in real-time. You can edit this

definition as required in the Code editor.

To review the ASL definition and save the state machine

1.

(Optional) Choose Definition on the Inspector panel to view the state machine's Amazon

States Language (ASL) definition, which is automatically generated based on your selections in
the Actions and Flow tabs and Inspector panel.

® Tip
To edit the definition, you can open the code editor by choosing Code on top of the
page. For now, continue with the auto-generated definition.

Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

Enter the name CreditCardWorkflow.
(Optional) In State machine configuration, specify other workflow settings, such as state

machine type and its execution role.

For now, keep all the default selections in State machine settings.

(@ Note

(Optional) Step Functions automatically creates an execution role for the state
machine with the least privileges required to invoke the RandomNumberforCredit
Lambda function and publish to the Amazon SNS topic.

Step 1: Save the state machine 365

AWS Step Functions Developer Guide

If you've previously created an IAM role with the correct permissions for your state machine

and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 2: Add the remaining IAM policies

Because Step Functions doesn't auto-generate the permissions to invoke the Lambda functions
used in the Parallel state, you need to add the necessary policy.

To add the remaining policy

1.

On the CreditCardWorkflow page, choose the IAM role for your state machine to navigate to
the IAM console. You'll add the necessary permissions for the remaining Lambda functions on
this page.

Choose Add permissions, and then choose Attach policies.
In the search box, type AWSLambdaRole and then press Enter.

Choose AWSLambdaRole and then choose Attach policies. This policy is now added to the
execution role of your state machine. This policy lets you invoke any Lambda function in your
state machine.

Step 3: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

Step 2: Add the remaining IAM policies 366

AWS Step Functions Developer Guide

To execute the state machine

1. On the CreditCardWorkflow page, choose Start execution.

The Start execution dialog box is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

® Note

You don't need to provide any input to execute this state machine. But you can
specify an execution input, if required, in the Input area of the Start execution
dialog box for other state machines. For an example of how to provide execution
input to a state machine, see Step 4: Start a new execution of the Learn to use the
AWS Step Functions Workflow Studio tutorial.

b. Choose Start execution.

3. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,
and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution details overview.

Step 3: Run the state machine 367

AWS Step Functions Developer Guide

Next steps

In the next topic, Configure input and output, you'll learn how to filter and manipulate data that
passes from state to state.

Configure workflow input and output in Step Functions

In the previous topic, Run your workflow , you learned how to run your workflow. In this topic,

you'll learn how to select, filter, and manipulate data as it passes between states.

A Step Functions execution receives JSON text as input and passes that input to the first state

in the workflow. Individual states in a workflow receive JSON data as input and usually pass

JSON data as output to the next state. By default, data passes from one state to the next state

in the workflow unless you've configured the input and/or output. Understanding how the
information flows from state to another, and learning how to filter and manipulate this data, is key
to effectively designing and implementing workflows in Step Functions.

Step Functions provides the following filters to control the input and output data flow between
states:

(® Note

Based on your use case, you may not need to apply all of these filters in your workflows.

InputPath

Selects WHAT portion of the entire input payload to be used as a task’s input. If you specify this
field, Step Functions first applies this field.

Parameters

Specifies HOW the input should look like before invoking the task. With the Parameters
field, you can create a collection of key-value pairs that are passed as input to an AWS service
integration, such as an AWS Lambda function. These values can be static, or dynamically
selected from either the state input or the workflow context object.

Next steps 368

AWS Step Functions Developer Guide

ResultSelector

Determines WHAT to choose from a task's output. With the ResultSelector field, you can
create a collection of key-value pairs that replace a state’s result and pass that collection to
ResultPath.

Specifying state output using ResultPath in Step Functions workflows

Determines WHERE to put a task's output. Use the ResultPath to determine whether the
output of a state is a copy of its input, the result it produces, or a combination of both.

Filtering state output using OutputPath in Step Functions workflows

Determines WHAT to send to the next state. With OutputPath, you can filter out unwanted
information, and pass only the portion of JSON data that you care about.

® Tip

The Parameters and ResultSelector filters work by constructing JSON, whereas the
InputPath and OutputPath filters work by filtering specific nodes within a JSON data
object, and the ResultPath filter works by creating a field under which the output can be
added.

For more information about configuring input and output in your workflows, see Processing
input and output in Step Functions.

Filtering and manipulating inputs and results

Select specific portions of the raw input using the InputPath filter

Manipulate the selected input using the Parameters filter

Configure output using the ResultSelector, ResultPath, and OutputPath filters

Manipulate the selected input using the Parameters field

Next steps

Select specific portions of the raw input using the InputPath filter

Use the InputPath filter to select a specific portion of the input payload.

Select portions of the input 369

AWS Step Functions Developer Guide

If you don't specify InputPath, its value defaults to $, which causes the state's task to refer to the
entire raw input instead of a specific portion.

To learn how to use the InputPath filter, perform the following steps:

o Step 1: Create a state machine

o Step 2: Run the state machine

» Step 3: Use the InputPath filter to select specific parts of an execution input

Step 1: Create a state machine

/A Important

Ensure that your state machine is under the same AWS account and Region as the Lambda
function you created earlier.

1. Usethe Parallel state example you learned about in Tutorial 4 to create a new state
machine. Make sure your workflow prototype looks similar to the following prototype.

2. Configure the integrations for the check-identity and check-address Lambda functions.
For information about creating the Lambda functions and using them in your state machine,
see Step 1: Create the Lambda functions to perform the required checks and Step 2: Update
the workflow — Add parallel tasks to be performed.

For Payload, make sure you keep the default selection of Use state input as payload.

4. Choose Next and then do the steps 1 through 3 in Step 1: Save the state machine of
Tutorial 5 to create a new state machine. For this tutorial, name your state machine
WorkflowInputOutput.

Step 2: Run the state machine

1. On the WorkflowIlnputOutput page, choose Start execution.

2. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon

Select portions of the input 370

AWS Step Functions Developer Guide

CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

3. Inthe Input area, add the following JSON data as the execution input.

{
"data": {
"firstname": "Jane",
"lastname": "Doe",
"identity": {
"email": "jdoe@example.com",
"ssn'": "123-45-6789"
1,
"address": {
"street": "123 Main St",
"city": "Columbus",
"state": "OH",
"zip": "43219"
}
}
}

4. Choose Start execution.

5. The state machine execution results in an error because you've not specified what parts of the
execution input the check-identity and check-address Lambda functions must use to
perform the required identity and address verification.

6. Continue to Step 3 of this tutorial to fix the error.

Step 3: Use the InputPath filter to select specific parts of an execution input

1. Onthe Execution Details page, choose Edit state machine.

2. To verify the applicant’s identity as mentioned in the execution input provided in Step 2: Run
the state machine, edit the Verify identity task definition as follows:

"StartAt": "Verify identity",
"States": {
"Verify identity": {
"Type": "Task",

Select portions of the input 371

AWS Step Functions Developer Guide

"Resource": "arn:aws:states:::lambda:invoke",
"InputPath": "$.data.identity",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:us-east-2:123456789012:function:check-
identity:$LATEST"
},

"End": true

Consequently, the following JSON data becomes available as input for the check-identity

function.

"email": "jdoe@example.com",
ssn": "123-45-6789"

3. To verify the applicant’'s address as mentioned in the execution input, edit the Verify
address task definition as follows:

"StartAt": "Verify address",
"States": {
"Verify address": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"InputPath": "$.data.address",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:us-east-1:123456789012:function:check-
address:$LATEST"
1,

"End": true

Select portions of the input 372

AWS Step Functions Developer Guide

Consequently, the following JSON data becomes available as input for the check-address

function.
{
"street": "123 Main St",
"city": "Columbus",
"state": "OH",
"zip": "43219"

}

4. Choose Start execution. The state machine execution now completes successfully.

Manipulate the selected input using the Parameters filter

While the InputPath filter helps you limit the raw JSON input you provide, using the
Parameters filter, you can pass a collection of key-value pairs as input. These key-value pairs can
either be static values that you define in your state machine definition, or values that are selected
from the raw input using InputPath.

In your workflows, Parametexrs are applied after InputPath. Parametexrs help you specify
how the underlying task accepts its input payload. For example, if the check-address
Lambda function accepts a string parameter as input instead of the JSON data, you can use the
Parameters filter to transform the input.

In the following example, the Parameters filter receives the input you selected using InputPath
in Step 3: Use the InputPath filter to select specific parts of an execution input and applies the
intrinsic function States.Format on the input items to create a string called addressString.

Intrinsic functions help you perform basic data processing operations on a given input. For more
information, see Intrinsic functions in Amazon States Language for Step Functions workflows.

"Parameters": {
"addressString.$": "States.Format('{}. {3}, {3 - {}', $.street, $.city, $.state,
$.zip)"
}

Consequently, the following string gets created and is provided to the check-address Lambda
function as input.

Manipulate input 373

AWS Step Functions Developer Guide

"addressString": "123 Main St. Columbus, OH - 43219"

Configure output using the ResultSelector, ResultPath, and OutputPath
filters

When the check-address Lambda function is invoked in the WorkflowlnputOutput state
machine, the function returns an output payload after performing the address verification. On the
Execution Details page, choose the Verify address step and view the output payload inside Task
result on the Step details pane.

{
"ExecutedVersion": "$LATEST",
"Payload": {
"statusCode": 200,
"body": "{\"approved\":true,\"message\":\"identity validation passed\"}"
},
"SdkHttpMetadata": {
"AllHttpHeaders": {
"X-Amz-Executed-Version": [
"$LATEST"
1,
"StatusCode": 200
}

Using ResultSelector

If you need to provide the result of the identity and address verification checks to the following
states in your workflow, you can select the Payload.body node in the output JSON and use the
StringToJson intrinsic function in the ResultSelector filter to format the data as required.

ResultSelector selects what is needed from the task output. In the following example,
ResultSelector takes the string in $.Payload.body and applies the States.StringToJson
intrinsic function to convert the string to JSON and puts the resulting JSON inside the identity
node.

"ResultSelector": {
"identity.$": "States.StringToJson($.Payload.body)"

Configure output 374

AWS Step Functions Developer Guide

}

Consequently, the following JSON data is created.

{
"identity": {
"approved": true,
"message": "Identity validation passed"
}
}

As you work with these input and output filters, you might see runtime errors from invalid
JSONpath expressions.

Using ResultPath

You can specify a location in the initial input payload to save a state’s task processing result using
the ResultPath field. If you don't specify ResultPath, its value defaults to $, which causes the
initial input payload to be replaced with the raw task result. If you specify ResultPath as null,
the raw result is discarded and the initial input payload becomes the effective output.

If you apply the ResultPath field on the JSON data created using the ResultSelector field, the
task result is added inside the results node in the input payload as shown in the following example:

{
"data": {
"firstname": "Jane",
"lastname": "Doe",
"identity": {
"email": "jdoe@example.com",

ssn": "123-45-6789"
1,

"address": {
"street": "123 Main St",

"city": "Columbus",
"state": "OH",
"zip": "43219"
iy
"results": {
"identity": {

"approved": true

Configure output 375

AWS Step Functions Developer Guide

}
}
}

Using OutputPath

You can select a portion of the state output after the application of ResultPath to pass to the
next state. With this approach, you can filter out unwanted information and pass along only the
portion of JSON that you need.

In the following example, the OutputPath field saves the state output inside the results node:
"OutputPath": "$.results". Consequently, the final output of the state, which you can pass
to the next state is as follows:

{
"addressResult": {
"approved": true,
"message": "address validation passed"
},
"identityResult": {
"approved": true,
"message": "identity validation passed"
}
}

Using console features to visualize the input and output data flows

You can visualize the input and output data flow between the states in your workflows using the
Step Functions console’s Data flow simulator or Advanced view option in the Execution Details

page.

Manipulate the selected input using the Parameters field

While the InputPath field helps you limit the raw JSON input you provide, using the Parameters
field, you can pass a collection of key-value pairs as input. These key-value pairs can either be static
values that you define in your state machine definition, or values that are selected from the raw
input using InputPath.

In your workflows, Parameters are applied after InputPath. Parameters help you specify
how the underlying task accepts its input payload. For example, imagine if the check-address

Manipulate the selected input using the Parameters field 376

https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

Lambda function accepts a string parameter as input instead of the JSON data, you can use the
Parameters field to transform the input.

In the following example, the Parameters field receives the input you selected using InputPath
in the Select specific portions of the raw input using the InputPath filter section and applies the
intrinsic function States.Format on the input items to create a string called addressString.
Intrinsic functions help you perform basic data processing operations on a given input. For more

information, see Intrinsic functions.

"Parameters": {
"addressString.$": "States.Format('{}. {3}, {3} - {}', $.street, $.city, $.state,

$.zip)"
}

Consequently, the following string gets created and is provided to the check-address Lambda
function as input.

(@ Note

If you update your input using this example and run the state machine, it returns an error
because the Lambda function doesn't accept the input in the updated format.

{
"addressString.$": "123 Main St. Columbus, OH - 43219"
}
Next steps

In the final topic, Debug errors, you'll learn how to debug errors in your Step Functions workflows.

Debug errors in Step Functions console

In the previous topic, Configure input and output, you learned about filtering and manipulating
data. In your state machine configuration and data selection you might encounter errors. In this
final topic, you'll be introduced to debugging runtime errors using the Step Functions console.

You might encounter runtime errors, such as:

Next steps 377

AWS Step Functions Developer Guide

An invalid JSON path for the Variable field in the Choice state.

State machine definition issue, such as no matching rule defined for a Choice state.

Invalid JSON path expressions while applying filters to manipulate input and output.

Task failures because of a Lambda function exception.

IAM permission errors.

® Tip

For additional error handling options, see Handling errors in Step Functions workflows.

Debugging the invalid path Choice state error

When you specify an incorrect or unresolvable JSON path in the Variable field of the Choice

state or do not define a matching rule in the Choice state, you receive an error while running your
workflow.

To illustrate the invalid path error, this tutorial introduces a Choice state error in your workflow.
You'll use the CreditCardWorkflow state machine and edit its definition to introduce the error.

1. Open the Step Functions console and then choose the CreditCardWorkflow state machine.

2. Choose Edit to edit the state machine definition. Make the change highlighted in the following
code to your state machine definition.

{
"Comment": "A description of my state machine",
"StartAt": "Get credit limit",
"States": {

"Get credit limit": {

},
"Credit applied >= 5000?": {
"Type": "Choice",
"Choices": [
{
"Variable": "$.Payload",
"NumericlLessThan": 5000,

"Next": "Auto-approve limit"

Debugging the invalid path Choice state error 378

AWS Step Functions Developer Guide

},

{
"Variable": "$.Payload",
"NumericGreaterThanEquals": 5000,
"Next": "Wait for human approval"

}

1,

"Default": "Wait for human approval"

}I

}
}

3. Choose Save and then choose Save anyway.
4. Run the state machine.

5. On the Execution Details page of your state machine execution, do one of the following:

a. Choose Cause on the error message to view the reason for execution failure.
b. Choose Show step detail on the error message to view the step that caused the error.

6. Inthe Input & Output tab of the Step details section, choose the Advanced view toggle
button to see the input and output data transfer path for a selected state.

7. In Graph view, make sure Credit applied >= 50007 is selected and do the following:

a. View the state's input value in Input box.

b. Choose the Definition tab, and notice the JSON path specified for the Variable field.

The input value for the Credit applied >= 5000? state is a numeric value, while you've
specified the JSON path for the input value as $. Payload. During the state machine
execution, the Choice state cannot resolve this JSON path because it doesn't exist.

8. Edit the state machine to specify the Variable field value as $.

{
"Comment": "A description of my state machine",
"StartAt": "Get credit limit",
"States": {

"Get credit limit": {

}I

Debugging the invalid path Choice state error 379

AWS Step Functions Developer Guide

"Credit applied >= 5000?": {
"Type": "Choice",
"Choices": [

{
"Variable": "$",
"NumericlLessThan": 5000,
"Next": "Auto-approve limit"

.

{
"Variable": "$",
"NumericGreaterThanEquals": 5000,
"Next": "Wait for human approval"

}

1,

"Default": "Wait for human approval"

iy

Debugging JSON path expression errors while applying input and
output filters

As you work with the input and output filters, you might encounter runtime errors arising because
of specifying invalid JSON path expressions.

The following example uses the WorkflowlnputOutput state machine you created in Tutorial 5 and
demonstrates a scenario where you use the ResultSelector filter to select portions of the task
output.

1. Apply the ResultSelector filter to choose a portion of the task output for the Verify
identity step. To do this, edit your state machine definition as follows:

"StartAt": "Verify identity",
"States": {
"Verify identity": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Parameters": {

Debugging JSON path expression errors while applying input and output filters 380

AWS Step Functions Developer Guide

"FunctionName": "arn:aws:lambda:us-east-2:123456789012:function:check-

identity",
"Payload": {
"email": "jdoe@example.com",
"ssn": "123-45-6789"
}
},

"ResultSelector": {
"identity.$": "$.Payload.body.message"
3",
"End": true
}
}
}

2. Run the state machine.

3. On the Execution Details page of your state machine execution, do the following:

a. Choose Cause on the error message to view the reason for execution failure.
b. Choose Show step detail on the error message to view the step that caused the error.

4. In the error message, note that the contents of the $.Payload.body node is an escaped JSON
string. The error has occurred because you cannot refer to a string using the JSON path
notation.

5. To refer to the $.Payload.body.message node, do the following:

a. UsetheStates.StringToJSON intrinsic function to first convert the string to a JSON
format.

b. Specify the JSON path for the $.Payload.body.message node inside the intrinsic function.

"ResultSelector": {
"identity.$":"States.StringToJson($.Payload.body.message)"

}

6. Run the state machine again.

Conclusion and next steps

Congratulations! You have reached the end of Getting started tutorial with Step Functions.

Conclusion and next steps 381

AWS Step Functions Developer Guide

® Cleanup

Now that you have completed Getting Started, it is a good practice to clean up (delete) any
resources you no longer want to use. Cleaning up AWS resources prevents your account
from incurring any further charges.

Conclusion and next steps 382

AWS Step Functions Developer Guide

Deploy a state machine using a starter template for Step
Functions

To deploy state machines for a variety of example use cases and patterns, you can choose one of
the following starter templates in the AWS Step Functions console. These starter templates are

ready-to-run sample projects that automatically create the workflow prototype and definition, and
all related AWS resources for the project.

You can use these sample projects to deploy and run them as is, or use the workflow prototypes
to build on them. If you build upon these projects, Step Functions creates the workflow prototype,
but doesn't deploy the resources listed in the workflow definition.

When you deploy the sample projects, they provision a fully functional state machine, and create
the related resources for the state machine to run. When you create a sample project, Step
Functions uses AWS CloudFormation to create the related resources referenced by the state
machine.

List of starter templates

« Manage a container task with Amazon ECS and Amazon SNS

» Transfer data records with Lambda, DynamoDB, and Amazon SQS

 Poll for job status with Lambda and AWS Batch

« Create a task timer with Lambda and Amazon SNS

« Create a callback pattern example with Amazon SQS, Amazon SNS, and Lambda

« Manage an Amazon EMR job

e Run an EMR Serverless job

« Start a workflow within a workflow with Step Functions and Lambda

o Process data from a queue with a Map state in Step Functions

» Process a CSV file from Amazon S3 using a Distributed Map

» Process data in an Amazon S3 bucket with Distributed Map

o Train a machine learning model using Amazon SageMaker

« Tune the hyperparameters of a machine learning model in SageMaker

o Perform Al prompt-chaining with Amazon Bedrock

383

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

» Process high-volume messages from Amazon SQS with Step Functions Express workflows

» Perform selective checkpointing using Standard and Express workflows

» Build an AWS CodeBuild project using Step Functions

» Preprocess data and train a machine learning model with Amazon SageMaker

 Integrate AWS Lambda in a Step Functions state machine with Amazon SQS and Amazon SNS

« Start an Athena query and send a results notification

» Execute queries in sequence and parallel using Athena

» Query large datasets using an AWS Glue crawler

» Keep data in a target table updated with AWS Glue and Athena

» Create and manage an Amazon EKS cluster with a node group

« Interact with an APl managed by API Gateway

« Call a microservice running on Fargate using APl Gateway integration

» Send a custom event to an EventBridge event bus

 Invoke Synchronous Express Workflows through API Gateway

o Run an ETL/ELT workflow using Step Functions and the Amazon Redshift API
« Manage a batch job with AWS Batch and Amazon SNS

» Fan out batch jobs with Map state
e Run an AWS Batch job with Lambda

Manage a container task with Amazon ECS and Amazon SNS

This sample project demonstrates how to run an AWS Fargate task, and then send an Amazon SNS
notification based on whether that job succeeds or fails. Deploying this sample project will create
an AWS Step Functions state machine, a Fargate cluster, and an Amazon SNS topic.

In this project, Step Functions uses a state machine to call the Fargate task synchronously. It then
waits for the task to succeed or fail, and it sends an Amazon SNS topic with a message about
whether the job succeeded or failed.

This sample project deploys the following resources:

« An AWS Fargate cluster
« An Amazon SNS topic

Manage a container task 384

AWS Step Functions Developer Guide

« An AWS Step Functions state machine
» Related AWS Identity and Access Management (IAM) roles

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Find and choose Manage a container task. Choose Next to continue.

3. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

The following diagram shows the workflow graph for the sample project:
Start

¥
ECS: RunTask
%- Run Fargate Task
:-JLLI' Ly
) Y
SM5: Publish SM5: Publish
{.;?: Motify Success ﬁ,_: Motify Failure

End

4. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

Step 1: Create the state machine 385

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Congratulations!

You should now have either a running demo or a state machine definition that you can customize.

Step 2: Run the state machine 386

AWS Step Functions Developer Guide

Transfer data records with Lambda, DynamoDB, and Amazon
SQS

This sample project demonstrates how to iteratively read items from an Amazon DynamoDB table
and send these items to an Amazon SQS queue using a Step Functions state machine. Deploying
this sample project will create a Step Functions state machine, a DynamoDB table, an AWS Lambda
function, and an Amazon SQS queue.

In this project, Step Functions uses the Lambda function to populate the DynamoDB table. The
state machine also uses a for loop to read each of the entries, and then sends each entry to an
Amazon SQS queue.

This sample project deploys the following resources:

A Lambda function for seeding the DynamoDB table

An Amazon SQS queue

A DynamoDB table

An AWS Step Functions state machine

Related AWS Identity and Access Management (IAM) roles

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Find and choose >Transfer data records. Choose Next to continue.

3. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

The following diagram shows the workflow graph for the sample project:

Transfer data records 387

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Start

Lambda: |r1\'\J"\L ‘
Seed the L‘IynamDDB Table

L
Choice state
.ﬁ‘ For Loop Condition

nob{s.Listfd] . ZD-\ E") | BL":JI.IH]
L L i |

DynamoDB: Getltemn ~ Succead state
Read Next Message from DynamoDB) Succeed |
Y L4 |
505: 5endMessage |
Send Message to SQS 2 -

— e =
r_l Pass state
% Pop Element from List

4. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

Step 1: Create the state machine 388

AWS Step Functions Developer Guide

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Congratulations!

You should now have either a running demo or a state machine definition that you can customize.

Poll for job status with Lambda and AWS Batch

This sample project creates an AWS Batch job poller. It implements an AWS Step Functions state
machine that uses AWS Lambda to create a Wait state loop that checks on an AWS Batch job.

Step 2: Run the state machine 389

AWS Step Functions Developer Guide

This sample project creates and configures all resources so that your Step Functions workflow will
submit an AWS Batch job, and will wait for that job to complete before ending successfully.

® Note

You can also implement this pattern without using a Lambda function. For information
about controlling AWS Batch directly, see Integrating services with Step Functions.

This sample project creates the state machine, two Lambda functions, and an AWS Batch queue,
and configures the related IAM permissions.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Job Poller in the search box, and then choose Job Poller from the search results that
are returned.

3. Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

« Three Lambda functions to submit an AWS Batch job, get the current status of the
submitted AWS Batch job, and the final job completion status.

« An AWS Batch job

« An AWS Step Functions state machine

» Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Job Poller sample project:

Step 1: Create the state machine 390

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions

Developer Guide

Start
Lambda: Invake
| Submit Job

Wait state
| Wait X Seconds

A

Lambda: Invoke
| Get Job Status
: i
l\ Default

"
Choice state
| Q Job Complete?

| §.status == "FAILED" | $.status == "SUCCEEDED" |
Y
Fail state Lambda: Invoke
@ Job Failed & Get Final Job Status

l\.H /
| End |

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with

resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to

deploy the project and create the resources.

Step 1: Create the state machine

391

AWS Step Functions Developer Guide

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

After all the resources are provisioned and deployed, the Start execution dialog box is displayed
with example input similar to the following.

"jobName": "my-job",

"jobDefinition": "arn:aws:batch:us-east-2:123456789012:job-definition/
SampleJobDefinition-343f54b445d5312:1",

"jobQueue": "arn:aws:batch:us-east-2:123456789012:job-queue/
SampleJobQueue-4d9d696031el449",

"wait_time": 60

(® Note

wait_time instructs the Wait state to loop every 60 seconds.

o Inthe Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

Step 2: Run the state machine 392

AWS Step Functions Developer Guide

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

For example, to view the changing status of your AWS Batch job and the looping results of
your execution, choose the Output tab.

The following image shows the execution status graph in the Graph view. It also shows the
execution output for the selected step in the Output tab.

Graph view Get Final Job Status

Lambda [4 | Log group [£

Input Output Details Definition Events

- P Advanced view
_ SRR

z][e][][=]

@ In progress @ Failed & Caught error I'Sl Canceled @ Succeedad

Step 2: Run the state machine 393

AWS Step Functions Developer Guide

Example State Machine Code

The state machine in this sample project integrates with AWS Lambda to submit an AWS Batch job.

Browse through this example state machine to see how Step Functions controls Lambda and AWS
Batch.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

"Comment": "An example of the Amazon States Language that runs an AWS Batch job and
monitors the job until it completes.",
"StartAt": "Submit Job",
"States": {
"Submit Job": {

"Type": "Task",

"Resource": "arn:aws:lambda:us-
east-1:111122223333:function:StepFunctionsSample-JobStatusPol-SubmitJobFunction-
jDaYcl4cx55x",

"ResultPath": "$.quid",

"Next": "Wait X Seconds"

.
"Wait X Seconds": {

"Type": "Wait",

"SecondsPath": "$.wait_time",

"Next": "Get Job Status"

},
"Get Job Status": {

"Type": "Task",

"Resource": "arn:aws:lambda:us-
east-1:111122223333:function:StepFunctionsSample-JobStatusPoll-
CheckJobFunction-1JkJwY1@vonI",

"Next": "Job Complete?",

"InputPath": "$.guid",

"ResultPath": "$.status"

.
"Job Complete?": {
"Type": "Choice",
"Choices": [
{
"Variable": "$.status",
"StringEquals": "FAILED",
"Next": "Job Failed"

Example State Machine Code 394

AWS Step Functions Developer Guide

},
{
"Variable": "$.status",
"StringEquals": "SUCCEEDED",
"Next": "Get Final Job Status"
}
1,
"Default": "Wait X Seconds"
},
"Job Failed": {

"Type": "Fail",

"Cause": "AWS Batch Job Failed",

"Error": "Describelob returned FAILED"

.
"Get Final Job Status": {

"Type": "Task",

"Resource": "arn:aws::lambda:us-
east-1:111122223333:function:StepFunctionsSample-JobStatusPoll-
CheckJobFunction-1JkJwY1@vonI",

"InputPath": "$.guid",

"End": true

Create a task timer with Lambda and Amazon SNS

This sample project creates a task timer. It implements an AWS Step Functions state machine
that implements a Wait state, and uses an AWS Lambda function that sends an Amazon Simple
Notification Service (Amazon SNS) notification. A Wait workflow state state is a state type that

waits for a trigger to perform a single unit of work.

(@ Note

This sample project implements an AWS Lambda function to send an Amazon Simple
Notification Service (Amazon SNS) notification. You can also send an Amazon SNS
notification directly from the Amazon States Language. See Integrating services with Step

Functions.

Task timer 395

AWS Step Functions Developer Guide

This sample project creates the state machine, a Lambda function, and an Amazon SNS topic,
and configures the related AWS Identity and Access Management (IAM) permissions. For more
information about the resources that are created with the Task Timer sample project, see the
following:

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

AWS CloudFormation User Guide

Amazon Simple Notification Service Developer Guide

AWS Lambda Developer Guide

IAM Getting Started Guide

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Task Timer in the search box, and then choose Task Timer from the search results that
are returned.

3. Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

« a Lambda function that sends an Amazon SNS notification.
« An AWS Step Functions state machine
» Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Task Timer sample project:

Step 1: Create the state machine 396

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions

Developer Guide

| Start |
oy

 J

Wait state
| @ Wait for Timestamp

 J

Lambda: Invoke

Send SNS Message

B=

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with

resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to

deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack

ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for

placeholders in the sample project before attemping to run your custom workflow.

Step 1: Create the state machine

397

AWS Step Functions Developer Guide

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

After all the resources are provisioned and deployed, the Start execution dialog box is displayed
with example input similar to the following.

"jobName": "my-job", {
"topic": "arn:aws:sns:us-east-2:123456789012:StepFunctionsSample-TaskTimercc68840e-
c3d3-42a8-911e-821b7ce248e5-SNSTopic-44UjcFxzhACT",
"message": "HelloWorld",
"timer_seconds": 10

}

« Inthe Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

For example, the following image shows the output of the selected step Wait for Timestamp.
The output of this step is passed as input to the Send SNS Message step.

Step 2: Run the state machine 398

AWS Step Functions Developer Guide

Graph view Wait for Timestamp

Input Output Details Definition Events

| Start |

O Advanced view

[=][e][2][=]

H .
2 "topic”: "arn:aws:isns:us-east-1:242420583777:5tepFunctionsSample—
TaskTimeref76bT0f-f4f4-403a-b3cT-8b1T7e5792£11-8N5Topic-jpB0I08gtach”,

‘message”: "HelloWorld",

4 ‘timer_ seconds": 10
AT, 5 |}
| End |

@ In prograss @ Failed A Caught error e Canceled @ Succeeded

Create a callback pattern example with Amazon SQS, Amazon
SNS, and Lambda

This sample project demonstrates how to have AWS Step Functions pause during a task, and wait
for an external process to return a task token that was generated when the task started.

When this sample project is deployed and an execution is started, the following steps occur:

1. Step Functions passes a message that includes a task token to an Amazon Simple Queue Service
(Amazon SQS) queue.

2. Step Functions then pauses, waiting for that token to be returned.

3. The Amazon SQS queue triggers an AWS Lambda function that calls SendTaskSuccess with
that same task token.

4. When the task token is received, the workflow continues.

5. The "Notify Success" task publishes an Amazon Simple Notification Service (Amazon SNS)
message that the callback was received.

To learn how to implement the callback pattern in Step Functions, see Wait for a Callback with
Task Token.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

Callback pattern example 399

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html

AWS Step Functions Developer Guide

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Callback pattern example in the search box, and then choose Callback pattern
example from the search results that are returned.

3. Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

« An Amazon SQS message queue.

« A Lambda function that calls the Step Functions API action SendTaskSuccess.

« An Amazon SNS topic to notify about the success or failure of a task indicating whether or
not the workflow can continue.

« An AWS Step Functions state machine
» Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Callback pattern example sample
project:

Step 1: Create the state machine 400

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html

AWS Step Functions Developer Guide

Ya W SQS: SendMessage
OQEI)O Start Task and Wait for Callback

Catch #1

SNS: Publish SNS: Publish
@ Notify Success @ Notify Failure

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

Step 1: Create the state machine 401

AWS Step Functions Developer Guide

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

For example, to review how Step Functions progressed through the workflow and received a
callback from Amazon SQS, review the entries in the Events table. The following image shows
the execution output for the Notify Success step. It also shows the first five events from the
execution event history. Expand each event to view more details about that event.

Step 2: Run the state machine 402

AWS Step Functions Developer Guide

Graph view Notify Success

sns:publish

VoS
[Start | Input Output Details Definition Events
J

A —_—
_ 0 o

=][«][2][=]

o ““\ v {
“"Messageld”: "fB6395aB-3531-53%1-ab76-cBf43e6cibil”, ramatted <%
Notify Failure v "sdkHttpMetadata": {
"] v "AllHttpHeaders": {
. S
S _ .
~— T

"x-amzn-RequestId”: [

e mea o e oW e

Tk i “"e3307ad6-£75d-526d-908a-278a5c007a0d”
| End |
- 1r
v "Content-Length": [
(@) In progress (®) Failed M Caughterror (D) Canceled |(@)) Succeeded ek
Events (13)
Q. Filter by properties or search by keyword | | Filter by o date and time range 1

[1+] . Type Step Resource Started After Timestamp
»1 ©@ExcutionStarted 0 Aug 20, 2023, 17:00:27.681 (UTC-07:00)
> 2 @ TaskStateEntered Start Task And Wait For Callback 00:00:00.031 ﬁl:lg_gp_,_2_(_)_2_3_,_!_?_:‘EJR:_Z_?:._;'_‘I_%_[_L_JT_C_—_O_?EEJ!
[@ TaskScheduled Start Task And Wait For Callback sgs:isendMessage 00:00:00.031 ﬁl:lg_gp_,_2_(_)_2_3_,_!_?_:‘EJR:_ZE._;'_‘I_%_[_L_.'T_C_—_O_?EEJ}
L3} @ TaskStarted Start Task And Wait For Callback sgs:sendMessage 00:00:00.116 ﬁl:lg_gp_,_2_(_)_2_3_,_!_?_:‘?9:_23.39_?_[_!]’_(_—_0_?991
*5 e TaskSubmitted Start Task And Wait For Callback sgs:sendMessage 00:00:00.208 Aug 20, 2023, 17:00:27.889 (UTC-07:00)

Lambda Callback Example

To see how the components of this sample project work together, see the resources that were
deployed in your AWS account. For example, here is the Lambda function that calls Step Functions
with the task token.

console.log('Loading function');
const aws = require('aws-sdk');

exports.lambda_handler = (event, context, callback) => {
const stepfunctions = new aws.StepFunctions();

for (const record of event.Records) {
const messageBody = JSON.parse(record.body);
const taskToken = messageBody.TaskToken;

const params = {
output: "\"Callback task completed successfully.\"",
taskToken: taskToken

};

Lambda Callback Example 403

AWS Step Functions Developer Guide

console.log(Calling Step Functions to complete callback task with params
${ISON.stringify(params)}’);

stepfunctions.sendTaskSuccess(params, (err, data) => {
if (err) {
console.error(err.message);
callback(err.message);
retuzrn;

}

console.log(data);
callback(null);

1)

i

Manage an Amazon EMR job

This sample project demonstrates Amazon EMR and AWS Step Functions integration. The project
creates an Amazon EMR cluster, adds multiple steps and runs them, and then terminate the cluster.

/A Important

Amazon EMR does not have a free pricing tier. Running the sample project will incur costs.
You can find pricing information on the Amazon EMR pricing page. The availability of
Amazon EMR service integration is subject to the availability of Amazon EMR APlIs. Because
of this, this sample project might not work correctly in some AWS Regions. See the Amazon
EMR documentation for limitations in special Regions.

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Manage an EMR job in the search box, and then choose Manage an EMR job from the
search results that are returned.

Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

Manage an Amazon EMR job 404

https://aws.amazon.com/emr/pricing/
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-emr.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-emr.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

This sample project deploys the following resources:

« An Amazon S3 bucket

« An Amazon EMR cluster

« An AWS Step Functions state machine

» Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Manage an EMR job sample project:
/ B L
| Start |

-

EMR: CreateCluster
Create an EMR cluster

l

EMR: AddStep
Run first step

l

EMR: AddStep
Run second step

l

EMR: TerminateCluster
Terminate Cluster

| End |

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

Step 1: Create the state machine 405

AWS Step Functions Developer Guide

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

Step 2: Run the state machine 406

AWS Step Functions Developer Guide

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Example State Machine Code

The state machine in this sample project integrates with Amazon EMR by passing parameters
directly to those resources. Browse through this example state machine to see how Step Functions
uses a state machine to call the Amazon EMR task synchronously, waits for the task to succeed or
fail, and terminates the cluster.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

{
"Comment": "An example of the Amazon States Language for running jobs on Amazon EMR",
"StartAt": "Create an EMR cluster",
"States": {

"Create an EMR cluster": {
IlTypell: IITaSkIl’

"Resource": "arn:<PARTITION>:states:::elasticmapreduce:createCluster.sync",
"Parameters": {
"Name": "ExampleCluster",

"VisibleToAllUsers": true,
"ReleaselLabel": "emr-5.26.0",
"Applications": [
{ "Name": "Hive" }
1,
"ServiceRole": "<EMR_SERVICE_ROLE>",
"JobFlowRole": "<EMR_EC2_INSTANCE_PROFILE>",
"LogUri": "s3://<amzn-s3-demo-EMR_LOG>/logs/",
"Instances": {
"KeepJobFlowAliveWhenNoSteps": true,
"InstanceFleets": [
{
"Name": "MyMasterFleet",
"InstanceFleetType": "MASTER",
"TargetOnDemandCapacity": 1,
"InstanceTypeConfigs": [
{

"InstanceType": "m5.xlarge"

Example State Machine Code 407

AWS Step Functions Developer Guide

"Name": "MyCoreFleet",
"InstanceFleetType": "CORE",
"TargetOnDemandCapacity": 1,
"InstanceTypeConfigs": [

{

"InstanceType": "m5.xlarge"

I
"ResultPath": "$.cluster",
"Next": "Run first step"
},
"Run first step": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::elasticmapreduce:addStep.sync",
"Parameters": {
"ClusterId.$": "$.cluster.ClusterId",
"Step": {
"Name": "My first EMR step",
"ActionOnFailure": "CONTINUE",
"HadoopJarStep": {
"Jar": "command-runner.jar",
"Args": ["<COMMAND_ARGUMENTS>"]

}
}
},
"Retry" : [
{
"ErrorEquals": ["States.ALL" 1],
"IntervalSeconds": 1,
"MaxAttempts": 3,
"BackoffRate": 2.0
}
1,
"ResultPath": "$.firstStep",
"Next": "Run second step"

iy

Example State Machine Code 408

AWS Step Functions

Developer Guide

"Run second step": {
IlTypell: IITaSkIl’

"Resource": "arn:<PARTITION>:states:::elasticmapreduce:addStep.sync",

"Parameters": {
"ClusterId.$": "$.cluster.ClusterId",
"Step": {
"Name": "My second EMR step",
"ActionOnFailure": "CONTINUE",
"HadoopJarStep": {
"Jar": "command-runner.jar",
"Args": ["<COMMAND_ARGUMENTS>"]

}
.
"Retry" : [
{
"ErrorEquals": ["States.ALL" 1],
"IntervalSeconds": 1,
"MaxAttempts": 3,
"BackoffRate": 2.0
}
1,
"ResultPath": "$.secondStep",
"Next": "Terminate Cluster"
},
"Terminate Cluster": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::elasticmapreduce
"Parameters": {
"ClusterId.$": "$.cluster.ClusterId"
},

"End": true

IAM Example

:terminateCluster",

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. It's a best

practice to include only those permissions that are necessary in your 1AM policies.

IAM Example

409

AWS Step Functions Developer Guide

"Version": "2012-10-17",
"Statement": [

{

"Effect": "Allow",

"Action": [
"elasticmapreduce:RunJobFlow",
"elasticmapreduce:DescribeCluster",
"elasticmapreduce:TerminateJobFlows"

1,

"Resource": "*"

},
{

"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": [
"arn:aws:iam::123456789012:role/StepFunctionsSample-EMRJobManagement-
EMRServiceRole-ANPAJ2UCCR6DPCEXAMPLE",
"arn:aws:iam::123456789012:role/StepFunctionsSample-
EMRJobManagementWJALRXUTNFEMI-ANPAJ2UCCR6DPCEXAMPLE -
EMREc2InstanceProfile-1ANPAJ2UCCR6DPCEXAMPLE"
]
.
{
"Effect": "Allow",
"Action": [
"events:PutTargets",
"events:PutRule",
"events:DescribeRule"
1,
"Resource": [
"arn:aws:events:sa-east-1:123456789012:rule/
StepFunctionsGetEventForEMRRunJobFlowRule"
]

The following policy ensures that addStep has sufficient permissions.

"Version": "2012-10-17",
"Statement": [
{

IAM Example 410

AWS Step Functions Developer Guide

"Effect": "Allow",

"Action": [
"elasticmapreduce:AddJobFlowSteps",
"elasticmapreduce:DescribeStep",
"elasticmapreduce:CancelSteps"

1,

"Resource": "arn:aws:elasticmapreduce:*:*:cluster/*"

"Effect": "Allow",
"Action": [
"events:PutTargets",
"events:PutRule",
"events:DescribeRule"
1,
"Resource": [
"arn:aws:events:sa-east-1:123456789012:rule/
StepFunctionsGetEventForEMRAddJobFlowStepsRule"
]

For information about how to configure IAM when using Step Functions with other AWS services,
see How Step Functions generates IAM policies for integrated services.

Run an EMR Serverless job

This sample project demonstrates how to create and start an EMR Serverless application and run
multiple jobs within it.

This sample project creates the state machine, the supporting AWS resources, and configures the
related IAM permissions. Explore this sample project to learn about running EMR Serverless jobs
using Step Functions state machines, or use it as a starting point for your own projects.

/A Important

EMR Serverless does not have a free pricing tier. Running the sample project will incur
costs. You can find pricing information on the Amazon EMR Serverless pricing page.

Run an EMR Serverless job 411

https://aws.amazon.com/emr/pricing/

AWS Step Functions Developer Guide

In addition, the availability of EMR Serverless service integration is subject to the
availability of EMR Serverless APls. Because of this, this sample project might not work
correctly or be available in some AWS Regions. See the Other considerations topic for
information about availability of EMR Serverless in AWS Regions.

AWS CloudFormation template and additional resources

You use a CloudFormation template to deploy this sample project. This template creates the
following resources in your AWS account:

« A Step Functions state machine.

« Execution role for the state machine. This role grants the permissions that your state machine
needs to access other AWS services and resources such as the EMR Serverless CreateApplication
action.

« Job execution role for EMR Serverless. This role grants the permissions that an EMR Serverless
job run can assume when it calls other services on your behalf.

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type EMR Serverless in the search box, and then choose Run an EMR Serverless job from
the search results that are returned.

3. Choose Next to continue.
4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it

to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

« A Step Functions state machine

» Related AWS ldentity and Access Management (IAM) roles

The following image shows the workflow graph for the Run an EMR Serverless job sample
project:

AWS CloudFormation template and additional resources 412

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/considerations.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CreateApplication.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Start

EMR Serve Iess CreateApplication
C@ Create an EMR Serverless Application

+

F EMR Serverless: StartApplication
+E N 2
=, Start Application

L

p . EMR Serverless: StartlobRun
- Run first job

EMR Ser, eless StartlobRun

R
{f‘ﬁ Run second job

EMR Serverless: CancallobRun
Cancel second job

EMR Server les-s- StopApplication
Stop Appll cation

End

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

Step 1: Create the state machine 413

AWS Step Functions Developer Guide

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Start a workflow within a workflow with Step Functions and
Lambda

This sample project demonstrates how to use an AWS Step Functions state machine to start other
state machine executions. For information about starting state machine executions from another
state machine, see Start workflow executions from a task state in Step Functions.

Step 2: Run the state machine 414

AWS Step Functions Developer Guide

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Start a workflow within a workflow in the search box, and then choose Start a
workflow within a workflow from the search results that are returned.

3. Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:
« An additional state machine. The execution of this state machine is started by the state
machine that you run.

o A callback Lambda function. This function is used in the additional state machine to
implement the callback mechanism.

« An AWS Step Functions state machine
» Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Start a workflow within a workflow
sample project:

Step 1: Create the state machine 415

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Start

h J
Step Functions: StartExecution
Start new workflow and continue

k J
Parallel state
Startin parallel

f__. .__lr

Step Functions: StartExecution Step Functions: StartExecution
Start new workflow and wait for completion Start new workflow and wait for callback
Y Y
Y

End

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

(® Note

Standard charges might apply for services deployed to your account.

Step 1: Create the state machine 416

AWS Step Functions Developer Guide

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Example State Machine Code

The state machine in this sample project integrates another state machine and AWS Lambda by
passing parameters directly to those resources.

Browse through this example state machine to see how Step Functions calls the StartExecution
API action for the other state machine. It launches two instances of the other state machine in
parallel: one using the Run a Job (.sync) pattern and one using the Wait for a Callback with Task
Token pattern.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

{

"Comment": "An example of combining workflows using a Step Functions StartExecution
task state with various integration patterns.",

Step 2: Run the state machine 417

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

"StartAt": "Start new workflow and continue",
"States": {
"Start new workflow and continue": {
"Comment": "Start an execution of another Step Functions state machine and
continue",
"Type": "Task",
"Resource": "arn:aws:states:::states:startExecution",
"Parameters": {
"StateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:NestingPatternAnotherStateMachine-HZ9gtgspmdun",
"Input": {
"NeedCallback": false,
"AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"

}
},
"Next": "Start in parallel"
},
"Start in parallel": {

"Comment": "Start two executions of the same state machine in parallel",
"Type": "Parallel",

"End": true,

"Branches": [

{
"StartAt": "Start new workflow and wait for completion",
"States": {
"Start new workflow and wait for completion": {
"Comment": "Start an execution of the same

'NestingPatternAnotherStateMachine' and wait for its completion",
IlTypell: IITaSkII’

"Resource": "arn:aws:states:::states:startExecution.sync",
"Parameters": {
"StateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:NestingPatternAnotherStateMachine-HZ9gtgspmdun",
"Input": {

"NeedCallback": false,
"AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"

}
I
"QutputPath": "$.0utput",
"End": true
}
}
},

Example State Machine Code 418

AWS Step Functions Developer Guide

"StartAt": "Start new workflow and wait for callback",

"States": {
"Start new workflow and wait for callback": {
"Comment": "Start an execution and wait for it to call back with a task
token",
"Type": "Task",
"Resource": "arn:aws:states:::states:startExecution.waitForTaskToken",
"Parameters": {
"StateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:NestingPatternAnotherStateMachine-HZ9gtgspmdun",
"Input": {
"NeedCallback": true,
"AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id",
"TaskToken.$": "$$.Task.Token"
}
.
"End": true
}
}
}
]
}
}
}

For information about how to configure IAM when using Step Functions with other AWS services,
see How Step Functions generates IAM policies for integrated services.

Process data from a queue with a Map state in Step Functions

In this sample workflow, a Map workflow state state processes data from a queue, sending
messages to subscribers and storing them in a database.

Step Functions uses an optimized integration to pull messages from an Amazon SQS queue.
When messages are available, a Choice state passes an array of JSON messages to a Map state for
processing. For each message, the state machine writes the message to DynamoDB, removes the
message from the queue, and publishes the message to an Amazon SNS topic.

This sample project includes the following resources:

« An AWS Step Functions state machine

Process data with a Map 419

AWS Step Functions Developer Guide

« An Amazon SQS queue from which the Map state reads and removes messages iteratively.
« A DynamoDB table to which the Map state writes messages iteratively.

« An Amazon SNS topic to which Step Functions publishes the messages it reads from the Amazon
SQS queue.

» Related AWS Identity and Access Management (IAM) roles

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Find and choose Dynamically process data with a Map state. Choose Next to continue.

3. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

4. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Step 1: Create the state machine 420

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Step 2: Subscribe to the Amazon SNS topic

® Tip
Subscribe to the Amazon SNS topic and add items to the Amazon SQS queue before you
run your state machine.

1. Open the Amazon SNS console.

Choose Topics and find the topic that was created by the sample project.
Choose Create subscription, and for Protocol, choose Email.
Under Endpoint, enter your email address to subscribe to the topic.

Choose Create subscription.

o v A W N

Confirm the subscription in your email to activate the subscription.

Step 3: Add messages to the Amazon SQS queue

1. Open the Amazon SQS console.

2. Choose the queue that was created by the sample project.

3. Choose Send and receive messages, enter a message and choose Send message. Repeat this
step to add several messages to the queue.

Step 4: Run the state machine

® Tip
Queues in Amazon SNS are eventually consistent. You may need to wait a few minutes
after sending messages to the queue before running your state machine.

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

Step 2: Subscribe to the Amazon SNS topic 421

https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sqs/home

AWS Step Functions Developer Guide

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Congratulations!

You should now have either a running demo or a state machine definition that you can customize.

Process a CSV file from Amazon S3 using a Distributed Map

This sample project demonstrates how you can use the Distributed Map state to iterate over 10,000
rows of a CSV file that is generated using a Lambda function. The CSV file contains shipping
information of customer orders and is stored in an Amazon S3 bucket. The Distributed Map iterates
over a batch of 10 rows in the CSV file for data analysis.

The Distributed Map contains a Lambda function to detect any delayed orders. The Distributed
Map also contains an Inline Map to process the delayed orders in a batch and returns these delayed
orders in an array. For each delayed order, the Inline Map sends a message to an Amazon SQS
queue. Finally, this sample project stores the Map Run results to another Amazon S3 bucket in your
AWS account.

With Distributed Map, you can run up to 10,000 parallel child workflow executions at a time. In this
sample project, the maximum concurrency of Distributed Map is set at 1000 that limits it to 1000
parallel child workflow executions.

Distributed Map to process a CSV file in S3 422

AWS Step Functions Developer Guide

This sample project creates the state machine, the supporting AWS resources, and configures the
related IAM permissions. Explore this sample project to learn about using the Distributed Map for
orchestrating large-scale, parallel workloads, or use it as a starting point for your own projects.

AWS CloudFormation template and additional resources

You use a CloudFormation template to deploy this sample project. This template creates the
following resources in your AWS account:
» A Step Functions state machine.

» Execution role for the state machine. This role grants the permissions that your state machine
needs to access other AWS services and resources such as the Lambda function's Invoke action.

« A Lambda function named CSVGeneratorFunction that generates a CSV file which contains
the customer order details.

« Execution role for the CSV generator Lambda function. This role grants the function permission
to access other AWS services.

« An Amazon S3 input bucket to store the generated CSV file.

« A delayed order detection Lambda function that analyzes the CSV file data and detects any
delayed orders.

« Execution role for the delayed order Lambda function. This role grants the function permission
to access other AWS services.

« An Amazon S3 output bucket to store the analysis results of the customer orders.

« An Amazon SQS queue to which Step Functions sends messages for every delayed order. These
messages contain the IDs of the customers and their orders.

A CloudWatch log group that stores information related to the state machine's execution history.

/A Important

Standard charges apply for each service.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

AWS CloudFormation template and additional resources 423

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

2. TypeDistributed Map to process a CSV file in S3in the search box, and then
choose Distributed Map to process a CSV file in S3 from the search results that are returned.

3. Choose Next to continue.
4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it

to create an editable state machine definition that you can build on and later deploy.

For information about the resources that will be created for this sample project, see AWS
CloudFormation template and additional resources.

The following image shows the workflow graph for the Distributed Map to process a CSV file
in S3 sample project:

Step 1: Create the state machine and provision resources 424

AWS Step Functions Developer Guide

Start
i
L |
Lambc: ||1-.-u:k-=
& GenerateC5Y
!
Y

fr=n Map: C5V file
,E]I Shipping File Analysis
[[® item source : <53_ORDER_FILE_OBJECT_KEY=

L
Lambda: invoks
& DetectDelayed Orders
i
¥

- Map state
lb ProcessDelayedOrders

{} item source : JSOMN Payload

. 505 SendMessage
SendDelayedOrder
i
Y
|

Export location : <53 _RESULT_BUCKET=

i
L |
End

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Step 1: Create the state machine and provision resources 425

AWS Step Functions Developer Guide

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

After all the resources are provisioned and deployed, you can run the state machine.

1.
2.

On the State machines page, choose your sample project.

On the sample project page, choose Start execution.

In the Start execution dialog box, do the following:

a.

(Optional) Enter input values in JSON format to run your sample project.

If you chose to Run a demo, you need not provide any execution input.

® Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

Choose Start execution.

(Optional) The Step Functions console directs you to a page that's titled with your
execution ID. This page is known as the Execution Details page. On this page, you can
review the execution results as the execution progresses or after it's complete.

After the execution is complete, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively.

Step 2: Run the state machine 426

AWS Step Functions Developer Guide

» For details about the execution information you can view on the Execution Details page,
see Execution details overview.

« For more information about viewing a Distributed Map state's execution in the console,
see Viewing Map Runs.

d. (Optional) Review the execution results exported to the Amazon S3 bucket. These results
include data, such as execution input and output, ARN, and execution status. For more
information, see ResultWriter (Map).

Process data in an Amazon S3 bucket with Distributed Map

This sample project demonstrates how you can use the Distributed Map state to process large-

scale data, for example, analyze historical weather data and identify the weather station that has
the highest average temperature on the planet each month. The weather data is recorded in over
12,000 CSV files, which in turn are stored in an Amazon S3 bucket.

This sample project includes two Distributed Map states named Distributed S3 copy NOA Data and
ProcessNOAADAata. Distributed S3 copy NOA Data iterates over the CSV files in a public Amazon
S3 bucket named noaa-gsod-pds and copies them to an Amazon S3 bucket in your AWS account.
ProcessNOAADAata iterates over the copied files and includes a Lambda function that performs the
temperature analysis.

The sample project first checks the contents of the Amazon S3 bucket with a call to the
ListObjectsV2 API action. Based on the number of keys returned in response to this call, the sample
project takes one of the following decisions:

« If the key count is more than or equal to 1, the project transitions to the ProcessNOAAData
state. This Distributed Map state includes a Lambda function named TemperatureFunction that
finds the weather station that had the highest average temperature each month. This function
returns a dictionary with year-month as the key and a dictionary that contains information
about the weather station as the value.

o If the returned key count doesn't exceed 1, the Distributed S3 copy NOA Data state lists all
objects from the public bucket noaa-gsod-pds and iteratively copies the individual objects to
another bucket in your account in batches of 100. An Inline Map performs the iterative copying
of the objects.

Distributed Map to process files in S3 427

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html#AmazonS3-ListObjectsV2-response-MaxKeys

AWS Step Functions Developer Guide

After all objects are copied, the project transitions to the ProcessNOAAData state for processing
the weather data.

The sample project finally transitions to a reducer Lambda function that performs a final
aggregation of the results returned by the TemperatureFunction function and writes the results to
an Amazon DynamoDB table.

With Distributed Map, you can run up to 10,000 parallel child workflow executions at a time. In this
sample project, the maximum concurrency of ProcessNOAAData Distributed Map is set at 3000
that limits it to 3000 parallel child workflow executions.

This sample project creates the state machine, the supporting AWS resources, and configures the
related 1AM permissions. Explore this sample project to learn about using the Distributed Map for
orchestrating large-scale, parallel workloads, or use it as a starting point for your own projects.

/A Important
This sample project is only available in the US East (N. Virginia) Region.

AWS CloudFormation template and additional resources

You use a CloudFormation template to deploy this sample project. This template creates the
following resources in your AWS account:
» A Step Functions state machine.

« Execution role for the state machine. This role grants the permissions that your state machine
needs to access other AWS services and resources such as the Lambda function's Invoke action.

« An Amazon S3 bucket named NOAADataBucket. This bucket contains the CSV files with weather
data.

« A Lambda function named ReducerFunction that performs a final aggregation of the weather
data and writes the results to an Amazon DynamoDB table.

» Execution role for the reducer Lambda function. This role grants the function permission to
access other AWS services.

« An Amazon S3 output bucket to store the weather analysis results.

AWS CloudFormation template and additional resources 428

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

AWS Step Functions Developer Guide

« A DynamoDB table named ResultsDynamoDBTable that contains the results returned by the
ReducerFunction.

« A Lambda function named TemperatureFunction that finds the highest monthly average
temperature.

» Execution role for the Lambda function. This role grants the function permission to access other
AWS services.

« A CloudWatch log group that stores information related to the state machine’s execution history.

/A Important

Standard charges apply for each service.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. TypeDistributed Map to process files in S3 in the search box, and then choose
Distributed Map to process files in S3 from the search results that are returned.

3. Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

For information about the resources that will be created for this sample project, see AWS
CloudFormation template and additional resources.

The following image shows the workflow graph for the Distributed Map to process files in S3
sample project:

Step 1: Create the state machine and provision resources 429

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Start
L
ol 53 LHAOkjicti's
g ChecdiucketCantents
X
h Ohsici §Lala
G4, Choice
3. Defmdi
L,
T 51 ListObjes?
W ListObjectsinioaBucies
T
Pl JSOM Papload
Distriowted 52 copy HOA Data
{¥ hem source : JSON Paylead
L]
[Mapsac
(B Map
| g} mem seasrca : 150M Paylasa |
L |
r‘:" B3 CopprDbpct
,:T CopyObject
¥
L
L3
L
S Chesic Slala
&% Hasnext page?
:l.:IJ...'
T ¥ [SstCatinusicnToken s graert
(=] | M £3 Objpact kays
fdle ProcessMCOOData
ool sounce : <53_DATA_BIMEET=
¥ LY ¥,
— T i e
Lambida: vk 'ft:i UM .
r Lambda lmsake W ListObjectsinboaBucket with pagination

¥
Expert location : <55_RESULTS_ESLMKET=
T

Laimibida: rivaks
,_%j, Reducer

.
Erid

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

Step 1: Create the state machine and provision resources 430

AWS Step Functions Developer Guide

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

After all the resources are provisioned and deployed, you can run the state machine.

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

a. (Optional) Enter input values in JSON format to run your sample project.

If you chose to Run a demo, you need not provide any execution input.

® Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

b. Choose Start execution.

Step 2: Run the state machine 431

AWS Step Functions Developer Guide

c. (Optional) The Step Functions console directs you to a page that's titled with your
execution ID. This page is known as the Execution Details page. On this page, you can
review the execution results as the execution progresses or after it's complete.

After the execution is complete, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively.

« For details about the execution information you can view on the Execution Details page,
see Execution details overview.

« For more information about viewing a Distributed Map state's execution in the console,
see Viewing Map Runs.

d. (Optional) Review the execution results exported to the Amazon S3 bucket. These results
include data, such as execution input and output, ARN, and execution status. For more
information, see ResultWriter (Map).

Train a machine learning model using Amazon SageMaker

This sample project demonstrates how to use SageMaker and AWS Step Functions to train a
machine learning model and how to batch transform a test dataset.

In this project, Step Functions uses a Lambda function to seed an Amazon S3 bucket with a test
dataset. It then trains a machine learning model and performs a batch transform, using the
SageMaker service integration.

For more information about SageMaker and Step Functions service integrations, see the following:

« Integrating services with Step Functions

» Create and manage Amazon SageMaker jobs with Step Functions

(® Note

This sample project may incur charges.

For new AWS users, a free usage tier is available. On this tier, services are free below
a certain level of usage. For more information about AWS costs and the Free Tier, see
SageMaker Pricing.

Train a machine learning model 432

https://aws.amazon.com/sagemaker/pricing/

AWS Step Functions Developer Guide

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Train a machine learning model in the search box, and then choose Train a
machine learning model from the search results that are returned.

3. Choose Next to continue.
4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it

to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

« An AWS Lambda function

« An Amazon Simple Storage Service (Amazon S3) bucket

An AWS Step Functions state machine

Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Train a machine learning model
sample project:

Start

Y
Larmbda: Inwoke
-\ Generate dataset
SageMaker ateTraining
Train model [:-:G E::-c-st]

getaker: CreateModel

SEWE Maodel

JLILVJ{ ar: CreateTransfarmlob
Batch trans'furrn

End

5. Choose Use template to continue with your selection.

Step 1: Create the state machine 433

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

(® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASClII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

Step 2: Run the state machine 434

AWS Step Functions Developer Guide

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Example State Machine Code

The state machine in this sample project integrates with SageMaker and AWS Lambda by passing
parameters directly to those resources, and uses an Amazon S3 bucket for the training data source
and output.

Browse through this example state machine to see how Step Functions controls Lambda and
SageMaker.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

"StartAt": "Generate dataset",
"States": {
"Generate dataset": {
"Resource": "arn:aws:lambda:us-
west-2:123456789012: function:TrainAndBatchTransform-SeedingFunction-17RNSOTGO7HPV",
"Type": "Task",
"Next": "Train model (XGBoost)"
},
"Train model (XGBoost)": {
"Resource": "arn:aws:states:::sagemaker:createTrainingJob.sync",
"Parameters": {
"AlgorithmSpecification": {
"TrainingImage": "433757028032.dkr.ecr.us-west-2.amazonaws.com/
xgboost:latest",
"TrainingInputMode": "File"
},
"OutputDataConfig": {
"S30utputPath": "s3://amzn-s3-demo-source-bucket/models"
.
"StoppingCondition": {
"MaxRuntimeInSeconds": 86400
},
"ResourceConfig": {
"InstanceCount": 1,

Example State Machine Code 435

AWS Step Functions

Developer Guide

"InstanceType": "ml.m4.xlarge",
"VolumeSizeInGB": 30
},
"RoleArn": "arn:aws:iam::123456789012:role/TrainAndBatchTransform-
SageMakerAPIExecutionRole-Y9IX3DLF6EUQ",
"InputDataConfig": [

{
"DataSource": {
"S3DataSource": {
"S3DataDistributionType": "ShardedByS3Key",
"S3DataType": "S3Prefix",
"S3Uri": "s3://amzn-s3-demo-source-bucket/csv/train.csv"
}
I
"ChannelName": "train",
"ContentType": "text/csv"
}
1,
"HyperParameters": {
"objective": "reg:logistic",
"eval_metric": "rmse",
"num_round": "5"
},
"TrainingJobName.$": "$$.Execution.Name"
},

"Type": "Task",
"Next": "Save Model"
.
"Save Model": {
"Parameters": {
"PrimaryContainer": {

"Image": "433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest",

"Environment": {3},
"ModelDataUrl.$": "$.ModelArtifacts.S3ModelArtifacts"
},

"ExecutionRoleArn": "arn:aws:iam::123456789012:role/TrainAndBatchTransform-

SageMakerAPIExecutionRole-Y9IX3DLF6EUOQ",
"ModelName.$": "$.TrainingJobName"

},

"Resource": "arn:aws:states:::sagemaker:createModel",
IlTypell: IITaSkII’

"Next": "Batch transform"

}I

"Batch transform": {

Example State Machine Code

436

AWS Step Functions Developer Guide

"Type": "Task",
"Resource": "arn:aws:states:::sagemaker:createTransformJob.sync",
"Parameters": {
"ModelName.$": "$$.Execution.Name",
"TransformInput": {
"CompressionType": "None",
"ContentType": "text/csv",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://amzn-s3-demo-source-bucket/csv/test.csv"

}
.
"TransformOutput": {
"S30utputPath": "s3://amzn-s3-demo-source-bucket/output"”
},
"TransformResources": {
"InstanceCount": 1,

"InstanceType": "ml.m4.xlarge"
},
"TransformJobName.$": "$$.Execution.Name"
},
"End": true
}
}

For information about how to configure IAM when using Step Functions with other AWS services,
see How Step Functions generates IAM policies for integrated services.

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"cloudwatch:PutMetricData",

IAM Example 437

AWS Step Functions Developer Guide

"logs:CreatelLogStream",
"logs:PutLogEvents",
"logs:CreatelLogGroup",
"logs:DescribelogStreams",
"s3:GetObject",
"s3:PutObject",
"s3:ListBucket",
"ecr:GetAuthorizationToken",
"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage"

1,

"Resource": "*",

"Effect": "Allow"

The following policy allows the Lambda function to seed the Amazon S3 bucket with sample data.

{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"s3:PutObject"
1,
"Resource": "arn:aws:s3:::amzn-s3-demo-source-bucket/*",
"Effect": "Allow"
}
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see How Step Functions generates IAM policies for integrated services.

Tune the hyperparameters of a machine learning model in
SageMaker

This sample project demonstrates using SageMaker to tune the hyperparameters of a machine
learning model, and to batch transform a test dataset.

Tune a machine learning model 438

AWS Step Functions Developer Guide

In this project, Step Functions uses a Lambda function to seed an Amazon S3 bucket with a test
dataset. It then creates a hyperparameter tuning job using the SageMaker service integration. It
then uses a Lambda function to extract the data path, saves the tuning model, extracts the model
name, and then runs a batch transform job to perform inference in SageMaker.

For more information about SageMaker and Step Functions service integrations, see the following:

« Integrating services with Step Functions

» Create and manage Amazon SageMaker jobs with Step Functions

(® Note

This sample project may incur charges.

For new AWS users, a free usage tier is available. On this tier, services are free below
a certain level of usage. For more information about AWS costs and the Free Tier, see
SageMaker Pricing.

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Tune a machine learning model in the search box, and then choose Tune a
machine learning model from the search results that are returned.

Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

Three AWS Lambda functions

« An Amazon Simple Storage Service (Amazon S3) bucket

An AWS Step Functions state machine

Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Tune a machine learning model
sample project:

Step 1: Create the state machine 439

https://aws.amazon.com/sagemaker/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Start

} L 4 .
Lambda: Invoke
Generate Training Dataset
— h
SageMaker: CreateHyperParameterTuningJob
@ HyperparameterTuning (XGBoost)
Lambda: Inveke
Extract Model Path
. L i ,
SageMaker: CreateModel
HyperparameterTuning - Save Model
E Extract Model Mame
Eage"f'aker CreateTransformJob
Batch transform

End

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

Step 1: Create the state machine 440

AWS Step Functions Developer Guide

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Example State Machine Code

The state machine in this sample project integrates with SageMaker and AWS Lambda by passing
parameters directly to those resources, and uses an Amazon S3 bucket for the training data source
and output.

Step 2: Run the state machine 441

AWS Step Functions Developer Guide

Browse through this example state machine to see how Step Functions controls Lambda and
SageMaker.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

"StartAt": "Generate Training Dataset",
"States": {
"Generate Training Dataset": {

"Resource": "arn:aws:lambda:us-
west-2:012345678912:function:StepFunctionsSample-SageMa-
LambdaForDataGeneration-1TF67BUE5A12U",

"Type": "Task",

"Next": "HyperparameterTuning (XGBoost)"

1,
"HyperparameterTuning (XGBoost)": {
"Resource":
"arn:aws:states:::sagemaker:createHyperParameterTuningJob.sync",
"Parameters": {
"HyperParameterTuningJobName.$": "$.body.jobName",
"HyperParameterTuningJobConfig": {
"Strategy": "Bayesian",
"HyperParameterTuningJobObjective": {
"Type": "Minimize",
"MetricName": "validation:rmse"
I
"ResourceLimits": {
"MaxNumberOfTrainingJobs": 2,
"MaxParallelTrainingJobs": 2
I
"ParameterRanges": {
"ContinuousParameterRanges": [{
"Name": "alpha",
"MinValue": "Q",
"MaxValue": "1000",
"ScalingType": "Auto"

"Name": '"gamma",
"MinValue": "Q",
"MaxValue": "5",
"ScalingType": "Auto"

Example State Machine Code 442

AWS Step Functions Developer Guide

}

1,

"IntegerParameterRanges": [{
"Name": "max_delta_step",
"MinValue": "0@",
"MaxValue": "10",
"ScalingType": "Auto"

I

{
"Name": "max_depth",
"MinValue": "0@",
"MaxValue": "10",
"ScalingType": "Auto"

}

]

},
"TrainingJobDefinition": {
"AlgorithmSpecification": {
"TrainingImage": "433757028032.dkr.ecr.us-west-2.amazonaws.com/
xgboost:latest",
"TrainingInputMode": "File"
},
"OutputDataConfig": {
"S30utputPath": "s3://amzn-s3-demo-bucket/models"
I
"StoppingCondition": {
"MaxRuntimeInSeconds": 86400
},
"ResourceConfig": {
"InstanceCount": 1,
"InstanceType": "ml.m4.xlarge",
"VolumeSizeInGB": 30
I
"RoleArn": "arn:aws:iam::012345678912:ro0le/StepFunctionsSample-
SageM-SageMakerAPIExecutionRol-1MNH1VS5CGGOG",
"InputDataConfig": [{
"DataSource": {
"S3DataSource": {
"S3DataDistributionType": "FullyReplicated",
"S3DataType": "S3Prefix",
"S3Uri": "s3://amzn-s3-demo-bucket/csv/train.csv"

iy

Example State Machine Code 443

AWS Step Functions Developer Guide

"ChannelName": "train",
"ContentType": "text/csv"
},
{
"DataSource": {
"S3DataSource": {
"S3DataDistributionType": "FullyReplicated",
"S3DataType": "S3Prefix",
"S3Uri": "s3://amzn-s3-demo-bucket/csv/validation.csv"
}
},
"ChannelName": "validation",
"ContentType": "text/csv"
1,

"StaticHyperParameters": {
"precision_dtype": "float32",
"num_round": "2"

I

"Type": "Task",

"Next": "Extract Model Path"

},
"Extract Model Path": {

"Resource": "arn:aws:lambda:us-
west-2:012345678912:function:StepFunctionsSample-SageM-LambdaToExtractModelPath-
VOR37CVARUS9",

"Type": "Task",

"Next": "HyperparameterTuning - Save Model"

I
"HyperparameterTuning - Save Model": {
"Parameters": {
"PrimaryContainer": {
"Image": "433757028032.dkr.ecr.us-west-2.amazonaws.com/
xgboost:latest",
"Environment": {3},
"ModelDataUrl.$": "$.body.modelDataUrl"
I
"ExecutionRoleArn": "arn:aws:iam::012345678912:role/
StepFunctionsSample-SageM-SageMakerAPIExecutionRol-1MNH1VS5CGGOG",
"ModelName.$": "$.body.bestTrainingJobName"

I

"Resource": "arn:aws:states:::sagemaker:createModel”,

"Type": "Task",

Example State Machine Code 444

AWS Step Functions Developer Guide

"Next": "Extract Model Name"
I
"Extract Model Name": {

"Resource": "arn:aws:lambda:us-
west-2:012345678912:function:StepFunctionsSample-SageM-
LambdaToExtractModelName-8FUOB3@SM5EM",

"Type": "Task",

"Next": "Batch transform"

},
"Batch transform": {

"Type": "Task",

"Resource": "arn:aws:states:::sagemaker:createTransformJob.sync",

"Parameters": {

"ModelName.$": "$.body.jobName",
"TransformInput": {
"CompressionType": "None",
"ContentType": "text/csv",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://amzn-s3-demo-bucket/csv/test.csv"

iy
"TransformOutput": {

"S30utputPath": "s3://amzn-s3-demo-bucket/output"
},
"TransformResources": {

"InstanceCount": 1,

"InstanceType": "ml.m4.xlarge"
},
"TransformJobName.$": "$.body.jobName"
},
"End": true

For information about how to configure IAM when using Step Functions with other AWS services,
see How Step Functions generates IAM policies for integrated services.

Example State Machine Code 445

AWS Step Functions Developer Guide

IAM Examples

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

The following IAM policy is attached to the state machine, and allows the state machine execution
to access necessary SageMaker, Lambda, and Amazon S3 resources.

"Version": "2012-10-17",
"Statement": [
{

"Action": [
"sagemaker:CreateHyperParameterTuningJob",
"sagemaker:DescribeHyperParameterTuningJob",
"sagemaker:StopHyperParameterTuningJob",
"sagemaker:ListTags",
"sagemaker:CreateModel",
"sagemaker:CreateTransformlJob",
"iam:PassRole"

1,

"Resource": "*",

"Effect": "Allow"

"Action": [
"lambda:InvokeFunction"
1,
"Resource": [
"arn:aws:lambda:us-west-2:012345678912:function:StepFunctionsSample-
SageMa-LambdaForDataGeneration-1TF67BUE5A12U",
"arn:aws:lambda:us-west-2:012345678912:function:StepFunctionsSample-
SageM-LambdaToExtractModelPath-V@R37CVARUS9",
"arn:aws:lambda:us-west-2:012345678912:function:StepFunctionsSample-
SageM-LambdaToExtractModelName-8FUOB3@SM5EM"
1,
"Effect": "Allow"
},
{
"Action": [
"events:PutTargets",
"events:PutRule",

IAM Examples 446

AWS Step Functions Developer Guide

"events:DescribeRule"
1,
"Resource": [
"arn:aws:events:*:*:rule/
StepFunctionsGetEventsForSageMakerTrainingJobsRule",
"arn:aws:events:*:*:rule/
StepFunctionsGetEventsForSageMakerTransformJobsRule",
"arn:aws:events:*:*:rule/
StepFunctionsGetEventsForSageMakerTuningJobsRule"

1,
"Effect": "Allow"

The following IAM policy is referenced in the TrainingJobDefinition and
HyperparameterTuning fields of the HyperparameterTuning state.

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"cloudwatch:PutMetricData",
"logs:CreatelLogStream",
"logs:PutLogEvents",
"logs:CreatelLogGroup",
"logs:DescribelLogStreams",
"ecr:GetAuthorizationToken",
"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForlLayer",
"ecr:BatchGetImage",
"sagemaker:DescribeHyperParameterTuningJob",
"sagemaker:StopHyperParameterTuningJob",
"sagemaker:ListTags"
1,
"Resource": "*",
"Effect": "Allow"

"Action": [
"s3:GetObject",
"s3:PutObject"

IAM Examples 447

AWS Step Functions Developer Guide

1,
"Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*",
"Effect": "Allow"
.
{
"Action": [
"s3:ListBucket"
1,
"Resource": "arn:aws:s3:::amzn-s3-demo-bucket",
"Effect": "Allow"
}

The following IAM policy allows the Lambda function to seed the Amazon S3 bucket with sample
data.

{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"s3:PutObject"
1,
"Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*",
"Effect": "Allow"
}
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see How Step Functions generates IAM policies for integrated services.

Perform Al prompt-chaining with Amazon Bedrock

This sample project demonstrates how you can integrate with Amazon Bedrock to perform Al
prompt-chaining and build high-quality chatbots using Amazon Bedrock. The project chains
together some prompts and resolves them in the sequence in which they're provided. Chaining of
these prompts augments the ability of the language model being used to deliver a highly-curated
response.

Perform Al prompt-chaining with Amazon Bedrock 448

AWS Step Functions Developer Guide

This sample project creates the state machine, the supporting AWS resources, and configures
the related IAM permissions. Explore this sample project to learn about using Amazon Bedrock
optimized service integration with Step Functions state machines, or use it as a starting point for
your own projects.

Topics

AWS CloudFormation template and additional resources

Prerequisites

Step 1: Create the state machine

Step 2: Run the state machine

AWS CloudFormation template and additional resources

You use a CloudFormation template to deploy this sample project. This template creates the
following resources in your AWS account:
» A Step Functions state machine.

« Execution role for the state machine. This role grants the permissions that your state machine
needs to access other AWS services and resources such as the Amazon Bedrock InvokeModel
action.

Prerequisites

This sample project uses the Cohere Command large language model (LLM). To successfully run
this sample project, you must add access to this LLM from the Amazon Bedrock console. To add the
model access, do the following:

1. Open the Amazon Bedrock console.

On the navigation pane, choose Model access.
Choose Manage model access.

Select the check box next to Cohere.

Lok W

Choose Request access. The Access status for Cohere model shows as Access granted.

AWS CloudFormation template and additional resources 449

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://console.aws.amazon.com/bedrock

AWS Step Functions Developer Guide

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type bedrock in the search box, and then choose Perform Al prompt-chaining with Bedrock
from the search results that are returned.

3. Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

« An AWS Step Functions state machine
» Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Perform Al prompt-chaining with
Bedrock sample project:

Step 1: Create the state machine 450

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions

Developer Guide

Start
i T 9
Bedrock: InvokeModel
Invoke model with first prompt
Y

Pass state
Add first result to conversation history

L i

Bedrock: InvokeModel
Invoke model with second prompt

— L i

Pass state
Add second result to conversation history

&

Y
Bedrock: InvokeModel
Invoke model with third prompt

Y

End

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with

resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to

deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack

ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

Step 1: Create the state machine

451

AWS Step Functions Developer Guide

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. Inthe Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASClII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Process high-volume messages from Amazon SQS with Step
Functions Express workflows

This sample project demonstrates how to use an AWS Step Functions Express Workflow to process
messages or data from a high-volume event source, such as Amazon Simple Queue Service

Step 2: Run the state machine 452

AWS Step Functions Developer Guide

(Amazon SQS). Because Express Workflows can be started at a very high rate, they are ideal for
high-volume event processing or streaming data workloads.

Here are two commonly used methods to execute your state machine from an event source:

» Configure an Amazon CloudWatch Events rule to start a state machine execution whenever
the event source emits an event. For more information, see Creating a CloudWatch Events Rule

That Triggers on an Event.

« Map the event source to a Lambda function, and write function code to execute your state
machine. The AWS Lambda function is invoked each time your event source emits an event,
in turn starting a state machine execution. For more information see Using AWS Lambda with
Amazon SQS.

This sample project uses the second method to start an execution each time the Amazon SQS
queue sends a message. You can use a similar configuration to trigger Express Workflows
execution from other event sources, such as Amazon Simple Storage Service (Amazon S3), Amazon
DynamoDB, and Amazon Kinesis.

For more information about Express Workflows and Step Functions service integrations, see the
following:

» Choosing workflow type in Step Functions

« Integrating services with Step Functions

« Step Functions service quotas

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Process high-volume messages from SQS in the search box, and then choose
Process high-volume messages from SQS from the search results that are returned.

Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

o Four Lambda function

Step 1: Create the state machine 453

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

« An Amazon SQS queue
« An AWS Step Functions state machine

» Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Process high-volume messages from
SQS sample project:

Start

Y
Lambda: Invoke
Decode baseg4d string

 J
Lambda: Invake
Generate statistics

Y
Lambda: Invoke

Remove special characters

L J
Lambda: Invake
Tokenize and count

EEEB

End

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

Step 1: Create the state machine 454

AWS Step Functions Developer Guide

After deploy completes, you should see your new state machine in the console.

b. Build on it - You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

(@ Note

Standard charges might apply for services deployed to your account.

Step 2: Trigger the state machine execution

1. Open the Amazon SQS console.

2. Select the queue that was created by the sample project.

The name will be similar to Example-SQSQueue-wJalrXUtnFEMI.
In the Queue Actions list, select Send a Message.

4. Use the copy button to copy the following message, and on the Send a Message window,
enter it, and choose Send Message.

(® Note

In this sample message, the input: line has been formatted with line breaks to fit the
page. Use the copy button or otherwise ensure that it is entered as a single line with no
breaks.

"input":
"QW5kIGxpa2UgdGhlIGIhc2VsZXNzIGZhYnIpYyBvZiB0aGlzIHZpc21lvbiwgVGh1IGNsb3VkLWNhcHB1ZCB@Ob3dlc

91cyBwYWxhY2VzLCBUaGUgc29sZW1uIHR1bXBsZXMsIHRoZSBncmVhdCBnbG9iZSBpdHN1bGbigJQgWWVhLCBhbGw
ZXJpdOKAIHNoYWxsIGRpc3NvbHZ1LCBBbmQgbGlrZSB0aGlzIGluc3Vic3RhbnRpYWwgcGFNnZWFudCBmYWR1ZCwgT
FjayBiZWhpbmQuIFd1IGFyZSBzdWNoIHN@dAWZmIEFzIGRyZWFtcyBhcmUgbWFkZSBvbiwgYW5kIG91ciBsaXR@ObGL

ZGVkIHdpdGggYSBzbGV1cC4gU21yLCBIIGFtIHZ1eGVkLiBCZWFyIHdpdGggbXkgd2Vha251c3MuIE15IG9sZCBic

Step 2: Trigger the state machine execution 455

https://console.aws.amazon.com/sqs

AWS Step Functions Developer Guide

x1ZC4gQmUgbm90IGRpc3R1cmI1ZCB3aXRoIG15IGluZmlybWl0eS4gSWYgeW91IGI1IHBSZWFzZWQsIHI1dGlyZSE

QW5kIHR0ZXJ1IHJ1cG9zZS4gQSBOAXJuIG9yIHR3byBJ40CZbGwgd2FsayBUbyBzdGlsbCBteSBiZWF@aW5nIG1pk
}

5. Choose Close.

6. Open the Step Functions console.

7. Go to your Amazon CloudWatch Logs log group and inspect the logs. The name of the log
group will look like example-ExpressLogGroup-wJalrXUtnFEMI.

Example Lambda Function Code

The following is Lambda function code that shows how the initiating Lambda function starts a
state machine execution using the AWS SDK.

import boto3

def lambda_handler(event, context):
message_body = event['Records'][0]['body']
client = boto3.client('stepfunctions')
response = client.start_execution(
stateMachineArn="'${ExpressStateMachineArn}"',
input=message_body

Example State Machine Code

The Express Workflow in this sample project consists of a set of Lambda functions for text
processing.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

"Comment": "An example of using Express workflows to run text processing for each
message sent from an SQS queue.",
"StartAt": "Decode base64 string",
"States": {
"Decode base64 string": {
"Type": "Task",

Example Lambda Function Code 456

https://console.aws.amazon.com/cloudwatch/home?#logs:

AWS Step Functions

Developer Guide

"Resource": "arn:<PARTITION>:states:::lambda:invoke",
"OQutputPath": "$.Payload",
"Parameters": {
"FunctionName": "<BASE64_DECODER_LAMBDA_FUNCTION_NAME>",
"Payload.$": "$"
I
"Next": "Generate statistics"
I
"Generate statistics": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"FunctionName": "<TEXT_STATS_GENERATING_LAMBDA_FUNCTION_NAME>",
"Payload.$": "$"
I
"Next": "Remove special characters"
I
"Remove special characters": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::lambda:invoke",
"OQutputPath": "$.Payload",
"Parameters": {
"FunctionName": "<STRING_CLEANING_LAMBDA_FUNCTION_NAME>",
"Payload.$": "$"
I
"Next": "Tokenize and count"
I
"Tokenize and count": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::lambda:invoke",
"OQutputPath": "$.Payload",
"Parameters": {
"FunctionName": "<TOKENIZING_AND_WORD_COUNTING_LAMBDA_FUNCTION_NAME>",
"Payload.$": "$"
I

"End": true

Example State Machine Code

457

AWS Step Functions Developer Guide

IAM Example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your 1AM policies.

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"lambda:InvokeFunction"
1,
"Resource": [
"arn:aws:lambda:us-east-1:123456789012:function:example-
Base64DecodelLambda-wJalrXUtnFEMI",
"arn:aws:lambda:us-east-1:123456789012:function:example-
StringCleanerLambda-je7MtGbClwBF",
"arn:aws:lambda:us-east-1:123456789012:function:example-
TokenizerCounterLambda-wJalrXUtnFEMI",
"arn:aws:lambda:us-east-1:123456789012:function:example-
GenerateStatsLambda-je7MtGbClwBF"
1,
"Effect": "Allow"

The following policy ensures that there are sufficient permissions for CloudWatch Logs.

"Version": "2012-10-17",
"Statement": [
{

"Action": [
"logs:CreatelLogDelivery",
"logs:GetLogDelivery",
"logs:UpdatelLogDelivery",
"logs:DeletelLogDelivery",
"logs:ListLogDeliveries",
"logs:PutResourcePolicy",
"logs:DescribeResourcePolicies",

IAM Example 458

AWS Step Functions Developer Guide

"logs:DescribelogGroups

1,

"Resource": [

i n

1,
"Effect": "Allow"

For information about how to configure IAM when using Step Functions with other AWS services,
see How Step Functions generates IAM policies for integrated services.

Perform selective checkpointing using Standard and Express
workflows

This sample project demonstrates how to combine Standard and Express Workflows by running

a mock e-commerce workflow that does selective checkpointing. Deploying this sample project
creates a Standard workflows state machine, a nested Express Workflows state machine, an AWS
Lambda function, an Amazon Simple Queue Service (Amazon SQS) queue, and an Amazon Simple
Notification Service (Amazon SNS) topic.

For more information about Express Workflows, nested workflows, and Step Functions service
integrations, see the following:

» Choosing workflow type in Step Functions

« Start workflow executions from a task state in Step Functions

 Integrating services with Step Functions

Step 1: Create the State Machine and Provision Resources

1. Open the Step Functions console and choose Create state machine.

2. Type Selective checkpointing example in the search box, and then choose Selective
checkpointing example from the search results that are returned.

Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

Selective checkpointing example 459

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

This sample project deploys the following resources:

« An AWS Lambda function

An Amazon SQS queue
« An Amazon SNS topic
« An AWS Step Functions state machine of type Standard

« A Step Functions state machine of type Express

Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Selective checkpointing example
sample project:

Start

¥

P 505 SendMessage
'?CEP Approve Order Reguest
¥

. SME: Publish
Motify Order Success

L
Pl 505 SendMessage
U:EI:,P Process Payment

L -

Catch 51

Catch 81 Y
| Y

&"'—“' EMS: Publish
..,__ __ Motify Payment Success

T
Step Functions: StartExecution
%} Workflow to Update Backend Systermns
. ¥) . | . i J
5N5: Publish SM5: Publish 5N5: Publish
Motify Order Failure Motify Payment Failure Ship the Package

h |
™ End [

5. Choose Use template to continue with your selection.

Step 1: Create the State Machine and Provision Resources 460

AWS Step Functions Developer Guide

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

® Note

Standard charges might apply for services deployed to your account.

After the resources of the sample project are deployed do the following.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

Step 2: Run the state machine 461

AWS Step Functions Developer Guide

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

4. Go to your CloudWatch Logs log group and inspect the logs. The name of the log group will
look like example-ExpressLogGroup-wJalrXUtnFEMI.

Example State Machine Code for the Parent (Standard Workflows)

The state machine in this sample project integrates with Amazon SQS , Amazon SNS, and Step
Functions Express Workflows.

Browse through this example state machine to see how Step Functions processes input from
Amazon SQS and Amazon SNS, and then uses a nested Express Workflows state machine to update
backend systems.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

"Comment": "An example of combining standard and express workflows to run a mock e-
commerce workflow that does selective checkpointing.",
"StartAt": "Approve Order Request",
"States": {
"Approve Order Request": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::sqgs:sendMessage.waitForTaskToken",
"Parameters": {
"QueueUrl": "<SQS_QUEUE_URL>",
"MessageBody": {
"MessageTitle": "Order Request received. Pausing workflow to wait

for manual approval. ",
"TaskToken.$": "$$.Task.Token"

}
I
"Next": "Notify Order Success",
"Catch": [

{

Example State Machine Code for the Parent (Standard Workflows) 462

https://console.aws.amazon.com/cloudwatch/home?#logs:

AWS Step Functions Developer Guide

"ErrorEquals": [
"States.ALL"

1,
"Next": "Notify Order Failure"

}I

"Notify Order Success": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::sns:publish",
"Parameters": {
"Message": "Order has been approved. Resuming workflow.",
"TopicArn": "<SNS_ARN>"
I
"Next": "Process Payment"
I
"Notify Order Failure": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::sns:publish",
"Parameters": {
"Message": "Order not approved. Order failed.",
"TopicArn": "<SNS_ARN>"
},
"End": true
},
"Process Payment": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::sqgs:sendMessage.waitForTaskToken",
"Parameters": {
"QueueUrl": "<SQS_QUEUE_URL>",
"MessageBody": {
"MessageTitle": "Payment sent to third-party for processing.
Pausing workflow to wait for response.",
"TaskToken.$": "$$.Task.Token"

}
},
"Next": "Notify Payment Success",
"Catch": [
{
"ErrorEquals": [
"States.ALL"
1,
"Next": "Notify Payment Failure"
}

Example State Machine Code for the Parent (Standard Workflows) 463

AWS Step Functions Developer Guide

},
"Notify Payment Success": {

"Type": "Task",
"Resource": "arn:<PARTITION>:states:::sns:publish",
"Parameters": {
"Message": "Payment processing succeeded. Resuming workflow.",
"TopicArn": "<SNS_ARN>"
1,
"Next": "Workflow to Update Backend Systems"
1,
"Notify Payment Failure": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::sns:publish",
"Parameters": {
"Message'": "Payment processing failed.",
"TopicArn": "<SNS_ARN>"

iy
"End": true
iy
"Workflow to Update Backend Systems": {

"Comment": "Starting an execution of an Express workflow to handle backend
updates. Express workflows are fast and cost-effective for steps where checkpointing
isn't required.",

"Type": "Task",

"Resource": "arn:<PARTITION>:states:::states:startExecution.sync",

"Parameters": {

"StateMachineArn": "<UPDATE_DATABASE_EXPRESS_STATE_MACHINE_ARN>",
"Input": {
"AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"

},
"Next": "Ship the Package"

1,
"Ship the Package": {
"Type": "Task",
"Resource": "arn:<PARTITION>:states:::sns:publish",
"Parameters": {
"Message": "Order and payment received, database is updated and the
package is ready to ship.",
"TopicArn": "<SNS_ARN>"
1,

"End": true

Example State Machine Code for the Parent (Standard Workflows) 464

AWS Step Functions Developer Guide

}

Example IAM Role for the Parent State Machine

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

Amazon SNS policy:

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"sns:Publish"
1,
"Resource": "arn:aws:sns:us-east-1:123456789012:Checkpoint-SNSTopic-
wJalrXUtnFEMI",
"Effect": "Allow"

Amazon SQS policy:

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"sgs:SendMessage"
1,
"Resource": "arn:aws:sqs:us-east-1:123456789012:Checkpoint-SQSQueue-
je7MtGbC1lwBF",
"Effect": "Allow"

States execution policy:

Example IAM Role for the Parent State Machine 465

AWS Step Functions Developer Guide

"Version": "2012-10-17",
"Statement": [

{

"Action": [
"states:StartExecution",
"states:DescribeExecution",
"states:StopExecution"

1,

"Resource": "*",

"Effect": "Allow"

1,
{

"Action": [
"events:PutTargets",
"events:PutRule",
"events:DescribeRule"

1,

"Resource": "arn:aws:events:us-east-1:123456789012:rule/
StepFunctionsGetEventsForStepFunctionsExecutionRule",

"Effect": "Allow"

Example State Machine Code for the Nested State Machine (Express
Workflows)

The state machine in this sample project updates backend information when called by the parent
state machine.

Browse through this example state machine to see how Step Functions updates the different
components of the mock e-commerce backend systems.

For more information about how AWS Step Functions can control other AWS services, see
Integrating services with Step Functions.

Example State Machine Code for the Nested State Machine (Express Workflows) 466

AWS Step Functions

Developer Guide

Start

L

Eﬁ
&

EIIE

Lambda: Invoke
Update Order History

L
Lambda: Invoke
Update Data Warehouse

+
Lambda: Imeoke
L.Ipdate Customer Profile

i
Lambda: Invoke
Update Inventory

-

"StartAt":

End

"States": {

"Update Order History":

IlTypell: IITaSkII,

"Resource"

"Parameters": {

iy

"Next":

iy

"Update Data Warehouse": {

"FunctionName":
"Payload": {

"Message": "Update order history."

}

IlTypell : IlTaskll’

"Resource":

"Parameters": {

+

"FunctionName":
"Payload": {

"Message": "Update data warehouse."

}

"Update Order History",

"arn:aws:states:::lambda:invoke",

"Update Data Warehouse"

"arn:aws:states:::lambda:invoke",

"Checkpoint-UpdateDatabaselLambdaFunction-wJalrXUtnFEMI",

"Checkpoint-UpdateDatabaseLambdaFunction-wJalrXUtnFEMI",

Example State Machine Code for the Nested State Machine (Express Workflows)

467

AWS Step Functions Developer Guide

"Next": "Update Customer Profile"
.
"Update Customer Profile": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Parameters": {
"FunctionName": "Checkpoint-UpdateDatabaselLambdaFunction-wJalrXUtnFEMI",
"Payload": {
"Message": "Update customer profile."
}
},
"Next": "Update Inventory"
},
"Update Inventory": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Parameters": {
"FunctionName": "Checkpoint-UpdateDatabaselLambdaFunction-wJalrXUtnFEMI",
"Payload": {
"Message'": "Update inventory."
}
.

"End": true

Example IAM Role for Child State Machine

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your 1AM policies.

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"lambda:InvokeFunction"
1,
"Resource": [
"arn:aws:lambda:us-east-1:123456789012:function:Example-
UpdateDatabaselLambdaFunction-wJalxXUtnFEMI"

Example IAM Role for Child State Machine 468

AWS Step Functions

Developer Guide

1,
"Effect":

The following policy ensures that there are sufficient permissions for CloudWatch Logs.

"Allow"

[
:CreatelLogDelivery",
:GetLogDelivery",
:UpdatelLogDelivery",
:DeletelLogbDelivery",
:ListlLogDeliveries",
:PutResourcePolicy",
:DescribeResourcePolicies",
:DescribelogGroups"”

Il: [

"Allow"

{
"Version": "2012-10-17",
"Statement": [
{
"Action":
"logs
"logs
"logs
"logs
"logs
"logs
"logs
"logs
1,
"Resource
nxn
1)
"Effect":
}
]
}

For information about how to configure IAM when using Step Functions with other AWS services,

see How Step Functions generates IAM policies for integrated services.

Build an AWS CodeBuild project using Step Functions

This sample project demonstrates how to use AWS Step Functions to build an AWS CodeBuild

project, run tests, and then send an Amazon SNS notification based on the results.

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

Start a CodeBuild build

469

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

2. Type Start a CodeBuild build in the search box, and then choose Start a CodeBuild
build from the search results that are returned.

3. Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

An AWS CodeBuild build

« An Amazon SNS topic

« An AWS Step Functions state machine

Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Start a CodeBuild build sample

project:
Start
) J
CodeBuild: StartBuild
Trigger CodeBuild Build
) Y .
CodeBuild: BatchGetReports
Get Test Results
4
Choice state
All Tests Passed?
| ‘i.IEt:-l.-l‘.:-[:'].En':d::u-. r SUCCEEDED" | _.I:'dl'é ult |
Y . Y
" SMS: Publish ol SN5: Publish
Notify Success ‘ Motify Failure
~ End N

5. Choose Use template to continue with your selection.

Step 1: Create the state machine 470

AWS Step Functions Developer Guide

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.

b. Build on it — You can review and edit the workflow definition. You might need to set values for
placeholders in the sample project before attemping to run your custom workflow.

(® Note

Standard charges might apply for services deployed to your account.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.
2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASClII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values as JSON. You can skip this step if you are
running a demo.

3. Choose Start execution.

Step 2: Run the state machine 471

AWS Step Functions Developer Guide

The Step Functions console will direct you to an Execution Details page where you can choose
states in the Graph view to explore related information in the Step details pane.

Example State Machine Code

The state machine in this sample project integrates with CodeBuild and Amazon SNS.

Browse through this example state machine to see how Step Functions uses a state machine to
build a CodeBuild project, and then sends an Amazon SNS topic with a message about whether the
job succeeded or failed.

For more information about how Step Functions can control other AWS services, see Integrating
services with Step Functions.

"Comment": "An example of using CodeBuild to run tests, get test results and send a
notification.",
"StartAt": "Trigger CodeBuild Build",
"States": {
"Trigger CodeBuild Build": {
"Type": "Task",
"Resource": "arn:aws:states:::codebuild:startBuild.sync",
"Parameters": {
"ProjectName": "CodeBuildProject-DtwljBhEYGDf"
.
"Next": "Get Test Results"
.
"Get Test Results": {
"Type": "Task",
"Resource": "arn:aws:states:::codebuild:batchGetReports",
"Parameters": {
"ReportArns.$": "$.Build.ReportArns"
.
"Next": "All Tests Passed?"
.
"All Tests Passed?": {
"Type": "Choice",
"Choices": [
{
"Variable": "$.Reports[@].Status",

Example State Machine Code 472

AWS Step Functions Developer Guide

"StringEquals": "SUCCEEDED",
"Next": "Notify Success"
}
1,
"Default": "Notify Failure"
.
"Notify Success": {
"Type": "Task",

"Resource": "arn:aws:states:::sns:publish",
"Parameters": {
"Message": "CodeBuild build tests succeeded",

"TopicArn": "arn:aws:sns:sa-east-1:123456789012:StepFunctionsSample-
CodeBuildExecution3da9ead6-bclf-4441-99ac-591c140019c4-SNSTopic-EVYLVNGW85IP"
I
"End": true
I
"Notify Failure": {
"Type": "Task",
"Resource": "arn:aws:states:::sns:publish",
"Parameters": {
"Message": "CodeBuild build tests failed",
"TopicArn": "arn:aws:sns:sa-east-1:123456789012:StepFunctionsSample-
CodeBuildExecution3da9ead6-bclf-4441-99ac-591c140019c4-SNSTopic-EVYLVNGW85IP"
I

"End": true

For information about how to configure IAM when using Step Functions with other AWS services,
see How Step Functions generates IAM policies for integrated services.

Preprocess data and train a machine learning model with
Amazon SageMaker

This sample project demonstrates how to use SageMaker and AWS Step Functions to preprocess
data and train a machine learning model.

In this project, Step Functions uses a Lambda function to seed an Amazon S3 bucket with a test
dataset and a Python script for data processing. It then trains a machine learning model and
performs a batch transform, using the SageMaker service integration.

Preprocess data and train a machine learning model 473

AWS Step Functions Developer Guide

For more information about SageMaker and Step Functions service integrations, see the following:

« Integrating services with Step Functions

« Create and manage Amazon SageMaker jobs with Step Functions

® Note

This sample project may incur charges.

For new AWS users, a free usage tier is available. On this tier, services are free below
a certain level of usage. For more information about AWS costs and the Free Tier, see
SageMaker Pricing.

Step 1: Create the state machine

1. Open the Step Functions console and choose Create state machine.

2. Type Preprocess data and train a machine learning model in the search box, and
then choose Preprocess data and train a machine learning model from the search results
that are returned.

3. Choose Next to continue.

4. Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it
to create an editable state machine definition that you can build on and later deploy.

This sample project deploys the following resources:

An AWS Lambda function

« An Amazon S3 bucket

« An AWS Step Functions state machine

Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Preprocess data and train a machine
learning model sample project:

Step 1: Create the state machine 474

https://aws.amazon.com/sagemaker/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Start

Lambda: Invoke
Generate dataset
SageMaker: CreateProcessinglob
Standardization: x'=(x-% /o
I_E Train model (XGBoost) ‘

—
e

5. Choose Use template to continue with your selection.

Next steps depend on your previous choice:

a. Run a demo - You can review the state machine before you create a read-only project with
resources deployed by AWS CloudFormation to your AWS account.

You can view the state machine definition, and when you are ready, choose Deploy and run to
deploy the project and create the resources.

Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack
ID link to monitor progress in AWS CloudFormation.

After deploy completes, you should see your new state machine in the console.
