
User Guide

FreeRTOS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



FreeRTOS User Guide

FreeRTOS: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



FreeRTOS User Guide

Table of Contents

What is FreeRTOS? .......................................................................................................................... 1
Downloading FreeRTOS source code ........................................................................................................ 1
FreeRTOS versioning .................................................................................................................................... 1
FreeRTOS Long Term Support ................................................................................................................. 2
FreeRTOS Extended Maintenance Plan .................................................................................................... 2
FreeRTOS architecture ................................................................................................................................. 2
FreeRTOS-qualified hardware platforms ................................................................................................. 3
Development workflow ............................................................................................................................... 4
Additional resources ..................................................................................................................................... 5

FreeRTOS kernel fundamentals ...................................................................................................... 6
FreeRTOS kernel scheduler ......................................................................................................................... 6
Memory management ................................................................................................................................. 7

Kernel memory allocation ..................................................................................................................... 7
Application memory management ...................................................................................................... 7

Intertask coordination ................................................................................................................................. 8
Queues ....................................................................................................................................................... 8
Semaphores and mutexes ..................................................................................................................... 9
Direct-to-task notifications ................................................................................................................... 9
Stream buffers ......................................................................................................................................... 9
Message buffers .................................................................................................................................... 11

Symmetric multiprocessing (SMP) support ........................................................................................... 13
Modifying applications to use the FreeRTOS-SMP kernel ............................................................ 13

Software timers .......................................................................................................................................... 13
Low power support .................................................................................................................................... 14
FreeRTOSConfig.h ................................................................................................................................. 14

AWS IoT Device SDK for Embedded C .......................................................................................... 15
Common IO .................................................................................................................................... 16

Libraries ........................................................................................................................................................ 16
Common IO - basic .............................................................................................................................. 16
Common IO - BLE ................................................................................................................................. 18

Common IO for Amazon Common Software ....................................................................................... 18
What is ACS? .......................................................................................................................................... 18
Qualification Program .......................................................................................................................... 19

Getting Started with FreeRTOS .................................................................................................... 20

iii



FreeRTOS User Guide

Getting Started with AWS IoT and FreeRTOS using Quick Connect ................................................ 20
Explore FreeRTOS libraries ....................................................................................................................... 20
Understand how to build a secure and robust AWS IoT product ..................................................... 21
Develop your AWS IoT application product ......................................................................................... 21

AWS IoT Device Tester for FreeRTOS ........................................................................................... 22
FreeRTOS qualification suite .................................................................................................................... 22
Custom test suites ..................................................................................................................................... 23
Supported versions of IDT for FreeRTOS .............................................................................................. 24

Latest version of IDT for FreeRTOS .................................................................................................. 24
Earlier IDT versions ............................................................................................................................... 26

Unsupported IDT versions ........................................................................................................................ 32
Download IDT for FreeRTOS .................................................................................................................... 60

Download IDT manually ...................................................................................................................... 61
Download IDT programmatically ....................................................................................................... 61

Use IDT with FreeRTOS qualification suite 2.0 (FRQ 2.0) .................................................................. 67
Prerequisites ........................................................................................................................................... 68
Preparing to test your microcontroller board for the first time .................................................. 77
Use the IDT UI to run the FreeRTOS qualification suite ............................................................... 93
Running the FreeRTOS qualification 2.0 suite .............................................................................. 107
Understanding results and logs ...................................................................................................... 110

Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0) ................................................................ 114
Prerequisites ........................................................................................................................................ 116
Preparing to test your microcontroller board for the first time ............................................... 120
Use the IDT UI to run the FreeRTOS qualification suite ............................................................. 139
Running Bluetooth Low Energy tests ............................................................................................. 149
Running the FreeRTOS qualification suite .................................................................................... 154
Understanding results and logs ...................................................................................................... 160

Use IDT to develop and run your own test suites ............................................................................ 164
Download the latest version of IDT for FreeRTOS ...................................................................... 165
Test suite creation workflow ............................................................................................................ 165
Tutorial: Build and run the sample IDT test suite ........................................................................ 166
Tutorial: Develop a simple IDT test suite ...................................................................................... 171

Test suite versions ................................................................................................................................... 255
Troubleshooting ....................................................................................................................................... 256

Troubleshooting device configuration ............................................................................................ 257
Troubleshooting timeout errors ...................................................................................................... 270

iv



FreeRTOS User Guide

Cellular feature and AWS charges .................................................................................................. 271
Qualification report generation policy ........................................................................................... 271

AWS Managed policy for AWS IoT Device Tester .............................................................................. 271
Managed policy ................................................................................................................................... 272
Policy updates ..................................................................................................................................... 278

Support policy .......................................................................................................................................... 281
Security in AWS ........................................................................................................................... 282

Identity and Access Management ........................................................................................................ 282
Audience ............................................................................................................................................... 283
Authenticating with identities ......................................................................................................... 284
Managing access using policies ....................................................................................................... 287
How FreeRTOS works with IAM ....................................................................................................... 289
Identity-based policy examples ....................................................................................................... 296
Troubleshooting .................................................................................................................................. 299

Compliance validation ............................................................................................................................ 300
Resilience ................................................................................................................................................... 302
Infrastructure security ............................................................................................................................. 302

Amazon-FreeRTOS Github Repository Migration Guide ........................................................... 303
Appendix .................................................................................................................................................... 303

Archive .......................................................................................................................................... 309
FreeRTOS User Guide Archive ............................................................................................................... 309
Previous FreeRTOS User Guide contents ............................................................................................ 309

Getting Started with FreeRTOS ....................................................................................................... 309
Over-the-Air Updates ........................................................................................................................ 504
FreeRTOS Libraries ............................................................................................................................. 587
FreeRTOS demos ................................................................................................................................. 652

v



FreeRTOS User Guide

What is FreeRTOS?

Developed in partnership with the world's leading chip companies over a 15-year period, and now 
downloaded every 170 seconds, FreeRTOS is a market-leading real-time operating system (RTOS) 
for microcontrollers and small microprocessors. Distributed freely under the MIT open source 
license, FreeRTOS includes a kernel and a growing set of libraries suitable for use across all industry 
sectors. FreeRTOS is built with an emphasis on reliability and ease of use.

FreeRTOS includes libraries for connectivity, security, and over-the-air (OTA) updates. FreeRTOS 
also includes demo applications that show FreeRTOS features on qualified boards.

FreeRTOS is an open-source project. You can download the source code, contribute changes or 
enhancements, or report issues on the GitHub site at  https://github.com/FreeRTOS/FreeRTOS.

We release FreeRTOS code under the MIT open source license, so you can use it in commercial and 
personal projects.

We also welcome contributions to the FreeRTOS documentation (FreeRTOS User Guide, FreeRTOS 
Porting Guide, and FreeRTOS Qualification Guide). To view the markdown source for the 
documentation, see https://github.com/awsdocs/aws-freertos-docs. It's released under the 
Creative Commons (CC BY-ND) license.

Downloading FreeRTOS source code

Download the latest FreeRTOS and Long Term Support (LTS) packages from the Downloads page 
on freertos.org.

FreeRTOS versioning

Individual libraries use x.y.z style version numbers, similar to semantic versioning. x is the major 
version number, y the minor version number, and starting from 2022, z is a patch number. Before 
2022, z was a point release number, which required the first LTS libraries to have a patch number 
of the form "x.y.z LTS Patch 2".

Library packages use yyyymm.x style date stamp version numbers. yyyy is the year, mm the month, 
and x an optional sequence number showing the release order within the month. In the case of the 
LTS package, x is a sequential patch number for that LTS release. The individual libraries contained 

Downloading FreeRTOS source code 1

https://devices.amazonaws.com/search?page=1&sv=freertos
https://github.com/FreeRTOS/FreeRTOS
https://github.com/awsdocs/aws-freertos-docs
https://www.freertos.org/


FreeRTOS User Guide

in a package are whatever the latest version of that library was on that date. For the LTS package, 
it's the latest patch version of the LTS libraries originally released as an LTS version on that date.

FreeRTOS Long Term Support

FreeRTOS Long Term Support (LTS) releases receive security and critical bug fixes (should any be 
necessary) for at least two years following their release. With this ongoing maintenance, you can 
incorporate bug fixes throughout a development and deployment cycle without the expensive 
disruption of updating to new major versions of FreeRTOS libraries.

With FreeRTOS LTS, you get the complete set of libraries needed to build secure connected IoT and 
embedded products. LTS helps reduce maintenance and testing costs associated with updating 
libraries on your devices already in production.

FreeRTOS LTS includes the FreeRTOS kernel and IoT libraries: FreeRTOS+TCP, coreMQTT, coreHTTP, 
corePKCS11, coreJSON, AWS IoT OTA, AWS IoT Jobs, AWS IoT Device Defender, and AWS IoT Device 
Shadow. For more information, see the FreeRTOS LTS libraries.

FreeRTOS Extended Maintenance Plan

AWS also offers FreeRTOS Extended Maintenance Plan (EMP), which provides security patches 
and critical bug fixes on your chosen FreeRTOS Long Term Support (LTS) version for up to ten 
additional years. With FreeRTOS EMP, your FreeRTOS based long-lived devices can rely on a version 
that has feature stability and receives security updates for years. You receive timely notifications of 
upcoming patches on FreeRTOS libraries, so you can plan the deployment of security patches on 
your Internet of Things (IoT) devices.

To learn more about FreeRTOS EMP, see the Features page.

FreeRTOS architecture

FreeRTOS contains two types of repositories, single library repositories and package repositories. 
Each single library repository contains the source code for one library without any build projects or 
examples. Package repositories contain multiple libraries, and can contain preconfigured projects 
that demonstrate the library’s use.

While package repositories contain multiple libraries, they don't contain copies of those libraries. 
Instead, package repositories reference the libraries they contain as git submodules. Using 
submodules ensures that there is a single source of truth for each individual library.

FreeRTOS Long Term Support 2

https://freertos.org/lts-libraries.html
https://aws.amazon.com/freertos/features/#FreeRTOS_Extended_Maintenance_Plan


FreeRTOS User Guide

The individual library git repositories are split between two GitHub organizations. Repositories 
containing FreeRTOS specific libraries (such as FreeRTOS+TCP) or generic libraries (such as 
coreMQTT, which is cloud agnostic because it works with any MQTT broker) are in the FreeRTOS 
GitHub organization. Repositories containing AWS IoT specific libraries (such as the AWS IoT over-
the-air update client) are in the AWS GitHub organization. The following diagram explains the 
structure.

FreeRTOS-qualified hardware platforms

The following hardware platforms are qualified for FreeRTOS:

• ATECC608A Zero Touch Provisioning Kit for AWS IoT

• Cypress CYW943907AEVAL1F Development Kit

• Cypress CYW954907AEVAL1F Development Kit

• Cypress CY8CKIT-064S0S2-4343W Kit

• Espressif ESP32-DevKitC

• Espressif ESP-WROVER-KIT

• Espressif ESP-WROOM-32SE

• Espressif ESP32-S2-Saola-1

• Infineon XMC4800 IoT Connectivity Kit

• Marvell MW320 AWS IoT Starter Kit

• Marvell MW322 AWS IoT Starter Kit

FreeRTOS-qualified hardware platforms 3

https://devices.amazonaws.com/detail/a3G0L00000AANvOUAX/ATECC608a-Zero-Touch-Provisioning-Kit-for-AWS-IoT
https://devices.amazonaws.com/detail/a3G0L00000AAPg0UAH/CYW943907AEVAL1F
https://devices.amazonaws.com/detail/a3G0L00000AAPg5UAH/CYW954907AEVAL1F
https://www.cypress.com/documentation/development-kitsboards/psoc-64-standard-secure-aws-wi-fi-bt-pioneer-kit-cy8ckit
https://devices.amazonaws.com/detail/a3G0L00000AANtjUAH/ESP32-DevKitC
https://devices.amazonaws.com/detail/a3G0L00000AANtlUAH/ESP-WROVER-KIT
https://devices.amazonaws.com/detail/a3G0h0000077nRtEAI/ESP32-WROOM-32SE
https://devices.amazonaws.com/detail/a3G0h00000AkFngEAF/ESP32-S2-Saola-1
https://devices.amazonaws.com/detail/a3G0L00000AANsbUAH/XMC4800-IoT-Amazon-FreeRTOS-Connectivity-Kit-WiFi
https://devices.amazonaws.com/detail/a3G0h000000OaRnEAK/Marvell-MW320
https://devices.amazonaws.com/detail/a3G0h000000OblKEAS/Marvell-MW322


FreeRTOS User Guide

• MediaTek MT7697Hx Development Kit

• Microchip Curiosity PIC32MZEF Bundle

• Nordic nRF52840-DK

• NuMaker-IoT-M487

• NXP LPC54018 IoT Module

• OPTIGA Trust X Security Solution

• Renesas RX65N RSK IoT Module

• STMicroelectronicsSTM32L4 Discovery Kit IoT Node

• Texas Instruments CC3220SF-LAUNCHXL

• Microsoft Windows 7 or later, with at least a dual core and a hard-wired Ethernet connection

• Xilinx Avnet MicroZed Industrial IoT Kit

Qualified devices are also listed on the AWS Partner Device Catalog.

For information about qualifying a new device, see the FreeRTOS Qualification Guide.

Development workflow

You start development by downloading FreeRTOS. You unzip the package and import it into your 
IDE. You can then develop an application on your selected hardware platform and manufacture 
and deploy these devices using the development process appropriate for your device. Deployed 
devices can connect to the AWS IoT service or AWS IoT Greengrass as part of a complete IoT 
solution.

Development workflow 4

https://devices.amazonaws.com/detail/a3G0L00000AAOmPUAX/MT7697Hx-Development-Kit
https://devices.amazonaws.com/detail/a3G0L00000AANscUAH/Curiosity-PIC32MZ-EF-Amazon-FreeRTOS-Bundle
https://devices.amazonaws.com/detail/a3G0L00000AANtrUAH/nRF52840-Development-Kit
https://devices.amazonaws.com/detail/a3G0h000000Tg9cEAC/NuMaker-IoT-M487
https://devices.amazonaws.com/detail/a3G0L00000AANtAUAX/LPC54018-IoT-Solution
https://devices.amazonaws.com/detail/a3G0h000007712QEAQ/OPTIGA%E2%84%A2-Trust-X-Security-Solution
https://devices.amazonaws.com/detail/a3G0L00000AAOkeUAH/Renesas-Starter-Kit+-for-RX65N-2MB
https://devices.amazonaws.com/detail/a3G0L00000AANsWUAX/STM32L4-Discovery-Kit-IoT-Node
https://devices.amazonaws.com/detail/a3G0L00000AANtaUAH/SimpleLink-Wi-Fi%C2%AE-CC3220SF-Wireless-Microcontroller-LaunchPad-Development-Kit
https://devices.amazonaws.com/detail/a3G0L00000AANtqUAH/MicroZed-IIoT-Bundle-with-Amazon-FreeRTOS
https://devices.amazonaws.com/search?page=1&sv=freertos
https://docs.aws.amazon.com/freertos/latest/qualificationguide/


FreeRTOS User Guide

Additional resources

These resources might be helpful to you.

• For additional FreeRTOS Documentation, see freertos.org.

• For questions about FreeRTOS for the FreeRTOS engineering team, you can open an issue on the 
FreeRTOS GitHub page.

• For technical questions about FreeRTOS, see the FreeRTOS Community Forums.

• For more information about connecting devices to AWS IoT, see Device Provisioning in the AWS 
IoT Core Developer Guide.

• For technical support for AWS, see AWS Support Center.

• For questions about AWS billing, account services, events, abuse, or other issues with AWS, see 
the Contact Us page.

Additional resources 5

https://www.freertos.org/Documentation/RTOS_book.html
https://www.freertos.org
https://github.com/freertos/freertos/issues
https://github.com/freertos/freertos/issues
https://forums.freertos.org/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-provision.html
https://docs.aws.amazon.com/iot/latest/developerguide
https://docs.aws.amazon.com/iot/latest/developerguide
https://aws.amazon.com/support
https://aws.amazon.com/contact-us/


FreeRTOS User Guide

FreeRTOS kernel fundamentals

The FreeRTOS kernel is a real-time operating system that supports numerous architectures. It is 
ideal for building embedded microcontroller applications. It provides:

• A multitasking scheduler.

• Multiple memory allocation options (including the ability to create completely statically-
allocated systems).

• Intertask coordination primitives, including task notifications, message queues, multiple types of 
semaphore, and stream and message buffers.

• Support for symmetric multiprocessing (SMP) on multi-core microcontrollers.

The FreeRTOS kernel never performs non-deterministic operations, such as walking a linked list, 
inside a critical section or interrupt. The FreeRTOS kernel includes an efficient software timer 
implementation that does not use any CPU time unless a timer needs servicing. Blocked tasks 
do not require time-consuming periodic servicing. Direct-to-task notifications allow fast task 
signaling, with practically no RAM overhead. They can be used in most intertask and interrupt-to-
task signaling scenarios.

The FreeRTOS kernel is designed to be small, simple, and easy to use. A typical RTOS kernel binary 
image is in the range of 4000 to 9000 bytes.

For the most up-to-date documentation about the FreeRTOS kernel, see  FreeRTOS.org. 
FreeRTOS.org offers a number of detailed tutorials and guides about using the FreeRTOS kernel, 
including a Quick Start Guide and the more in-depth  Mastering the FreeRTOS Real Time Kernel.

FreeRTOS kernel scheduler

An embedded application that uses an RTOS can be structured as a set of independent tasks. Each 
task executes within its own context, with no dependency on other tasks. Only one task in the 
application is running at any point in time. The real-time RTOS scheduler determines when each 
task should run. Each task is provided with its own stack. When a task is swapped out so another 
task can run, the task’s execution context is saved to the task stack so it can be restored when the 
same task is later swapped back in to resume its execution.

To provide deterministic real-time behavior, the FreeRTOS tasks scheduler allows tasks to be 
assigned strict priorities. RTOS ensures the highest priority task that is able to execute is given 

FreeRTOS kernel scheduler 6

https://freertos.org/RTOS.html
https://freertos.org/FreeRTOS-quick-start-guide.html#page_top
https://freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf


FreeRTOS User Guide

processing time. This requires sharing processing time between tasks of equal priority if they are 
ready to run simultaneously. FreeRTOS also creates an idle task that executes only when no other 
tasks are ready to run.

Memory management

This section provides information about kernel memory allocation and application memory 
management.

Kernel memory allocation

The RTOS kernel needs RAM each time a task, queue, or other RTOS object is created. The RAM can 
be allocated:

• Statically at compile time.

• Dynamically from the RTOS heap by the RTOS API object creation functions.

When RTOS objects are created dynamically, using the standard C library malloc() and free()
functions is not always appropriate for a number of reasons:

• They might not be available on embedded systems.

• They take up valuable code space.

• They are not typically thread-safe.

• They are not deterministic.

For these reasons, FreeRTOS keeps the memory allocation API in its portable layer. The portable 
layer is outside of the source files that implement the core RTOS functionality, so you can provide 
an application-specific implementation appropriate for the real-time system you're developing. 
When the RTOS kernel requires RAM, it calls pvPortMalloc() instead of malloc()(). When RAM 
is being freed, the RTOS kernel calls vPortFree() instead of free().

Application memory management

When applications need memory, they can allocate it from the FreeRTOS heap. FreeRTOS offers 
several heap management schemes that range in complexity and features. You can also provide 
your own heap implementation.

Memory management 7



FreeRTOS User Guide

The FreeRTOS kernel includes five heap implementations:

heap_1

Is the simplest implementation. Does not permit memory to be freed.

heap_2

Permits memory to be freed, but not does coalesce adjacent free blocks.

heap_3

Wraps the standard malloc() and free() for thread safety.

heap_4

Coalesces adjacent free blocks to avoid fragmentation. Includes an absolute address placement 
option.

heap_5

Is similar to heap_4. Can span the heap across multiple, non-adjacent memory areas.

Intertask coordination

This section contains information about FreeRTOS primitives.

Queues

Queues are the primary form of intertask communication. They can be used to send messages 
between tasks and between interrupts and tasks. In most cases, they are used as thread-safe, First 
In First Out (FIFO) buffers with new data being sent to the back of the queue. (Data can also be 
sent to the front of the queue.) Messages are sent through queues by copy, meaning the data 
(which can be a pointer to larger buffers) is itself copied into the queue rather than simply storing a 
reference to the data.

Queue APIs permit a block time to be specified. When a task attempts to read from an empty 
queue, the task is placed into the Blocked state until data becomes available on the queue or the 
block time elapses. Tasks in the Blocked state do not consume any CPU time, allowing other tasks 
to run. Similarly, when a task attempts to write to a full queue, the task is placed into the Blocked 
state until space becomes available in the queue or the block time elapses. If more than one task 
blocks on the same queue, the task with the highest priority is unblocked first.

Intertask coordination 8



FreeRTOS User Guide

Other FreeRTOS primitives, such as direct-to-task notifications and stream and message buffers, 
offer lightweight alternatives to queues in many common design scenarios.

Semaphores and mutexes

The FreeRTOS kernel provides binary semaphores, counting semaphores, and mutexes for both 
mutual exclusion and synchronization purposes.

Binary semaphores can only have two values. They are a good choice for implementing 
synchronization (either between tasks or between tasks and an interrupt). Counting semaphores 
take more than two values. They allow many tasks to share resources or perform more complex 
synchronization operations.

Mutexes are binary semaphores that include a priority inheritance mechanism. This means that 
if a high priority task blocks while attempting to obtain a mutex that is currently held by a lower 
priority task, the priority of the task holding the token is temporarily raised to that of the blocking 
task. This mechanism is designed to ensure the higher priority task is kept in the Blocked state for 
the shortest time possible, to minimize the priority inversion that has occurred.

Direct-to-task notifications

Task notifications allow tasks to interact with other tasks, and to synchronize with interrupt service 
routines (ISRs), without the need for a separate communication object like a semaphore. Each RTOS 
task has a 32-bit notification value that is used to store the content of the notification, if any. An 
RTOS task notification is an event sent directly to a task that can unblock the receiving task and 
optionally update the receiving task's notification value.

RTOS task notifications can be used as a faster and lightweight alternative to binary and counting 
semaphores and, in some cases, queues. Task notifications have both speed and RAM footprint 
advantages over other FreeRTOS features that can be used to perform equivalent functionality. 
However, task notifications can only be used when there is only one task that can be the recipient 
of the event.

Stream buffers

Stream buffers allow a stream of bytes to be passed from an interrupt service routine to a task, or 
from one task to another. A byte stream can be of arbitrary length and does not necessarily have a 
beginning or an end. Any number of bytes can be written at one time, and any number of bytes can 
be read at one time. You enable stream buffer functionality by including the stream_buffer.c
source file in your project.

Semaphores and mutexes 9



FreeRTOS User Guide

Stream buffers assume there is only one task or interrupt that writes to the buffer (the writer), 
and only one task or interrupt that reads from the buffer (the reader). It is safe for the writer and 
reader to be different tasks or interrupt service routines, but it is not safe to have multiple writers 
or readers.

The stream buffer implementation uses direct-to-task notifications. Therefore, calling a stream 
buffer API that places the calling task into the Blocked state can change the calling task's 
notification state and value.

Sending data

xStreamBufferSend() is used to send data to a stream buffer in a task.
xStreamBufferSendFromISR() is used to send data to a stream buffer in an interrupt service 
routine (ISR).

xStreamBufferSend() allows a block time to be specified. If xStreamBufferSend() is called 
with a non-zero block time to write to a stream buffer and the buffer is full, the task is placed into 
the Blocked state until space becomes available or the block time expires.

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called 
(internally, by the FreeRTOS API) when data is written to a stream buffer. It takes the handle of the 
stream buffer that was updated. Both of these macros check to see if there is a task blocked on the 
stream buffer waiting for data, and if so, removes the task from the Blocked state.

You can change this default behavior by providing your own implementation of
sbSEND_COMPLETED() in FreeRTOSConfig.h. This is useful when a stream buffer is used to 
pass data between cores on a multicore processor. In that scenario, sbSEND_COMPLETED() can be 
implemented to generate an interrupt in the other CPU core, and the interrupt's service routine can 
then use the xStreamBufferSendCompletedFromISR() API to check, and if necessary unblock, 
a task that is waiting for the data.

Receiving data

xStreamBufferReceive() is used to read data from a stream buffer in a task.
xStreamBufferReceiveFromISR() is used to read data from a stream buffer in an interrupt 
service routine (ISR).

xStreamBufferReceive() allows a block time to be specified. If xStreamBufferReceive()
is called with a non-zero block time to read from a stream buffer and the buffer is empty, the task 

Stream buffers 10



FreeRTOS User Guide

is placed into the Blocked state until either a specified amount of data becomes available in the 
stream buffer, or the block time expires.

The amount of data that must be in the stream buffer before a task is unblocked is called the 
stream buffer's trigger level. A task blocked with a trigger level of 10 is unblocked when at least 10 
bytes are written to the buffer or the task's block time expires. If a reading task's block time expires 
before the trigger level is reached, the task receives any data written to the buffer. The trigger 
level of a task must be set to a value between 1 and the size of the stream buffer. The trigger level 
of a stream buffer is set when xStreamBufferCreate() is called. It can be changed by calling
xStreamBufferSetTriggerLevel().

sbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are 
called (internally, by the FreeRTOS API) when data is read from a stream buffer. The macros 
check to see if there is a task blocked on the stream buffer waiting for space to become available 
within the buffer, and if so, they remove the task from the Blocked state. You can change the 
default behavior of sbRECEIVE_COMPLETED() by providing an alternative implementation in
FreeRTOSConfig.h.

Message buffers

Message buffers allow variable-length discrete messages to be passed from an interrupt service 
routine to a task, or from one task to another. For example, messages of length 10, 20, and 123 
bytes can all be written to, and read from, the same message buffer. A 10-byte message can 
only be read as a 10-byte message, not as individual bytes. Message buffers are built on top of 
stream buffer implementation. you can enable message buffer functionality by including the
stream_buffer.c source file in your project.

Message buffers assume there is only one task or interrupt that writes to the buffer (the writer), 
and only one task or interrupt that reads from the buffer (the reader). It is safe for the writer and 
reader to be different tasks or interrupt service routines, but it is not safe to have multiple writers 
or readers.

The message buffer implementation uses direct-to-task notifications. Therefore, calling a 
stream buffer API that places the calling task into the Blocked state can change the calling task's 
notification state and value.

To enable message buffers to handle variable-sized messages, the length of each message is 
written into the message buffer before the message itself. The length is stored in a variable of type
size_t, which is typically 4 bytes on a 32-byte architecture. Therefore, writing a 10-byte message 

Message buffers 11



FreeRTOS User Guide

into a message buffer actually consumes 14 bytes of buffer space. Likewise, writing a 100-byte 
message into a message buffer actually uses 104 bytes of buffer space.

Sending data

xMessageBufferSend() is used to send data to a message buffer from a task.
xMessageBufferSendFromISR() is used to send data to a message buffer from an interrupt 
service routine (ISR).

xMessageBufferSend() allows a block time to be specified. If xMessageBufferSend() is 
called with a non-zero block time to write to a message buffer and the buffer is full, the task is 
placed into the Blocked state until either space becomes available in the message buffer, or the 
block time expires.

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called 
(internally, by the FreeRTOS API) when data is written to a stream buffer. It takes a single 
parameter, which is the handle of the stream buffer that was updated. Both of these macros check 
to see if there is a task blocked on the stream buffer waiting for data, and if so, they remove the 
task from the Blocked state.

You can change this default behavior by providing your own implementation of
sbSEND_COMPLETED() in FreeRTOSConfig.h. This is useful when a stream buffer is used to 
pass data between cores on a multicore processor. In that scenario, sbSEND_COMPLETED() can be 
implemented to generate an interrupt in the other CPU core, and the interrupt's service routine can 
then use the xStreamBufferSendCompletedFromISR() API to check, and if necessary unblock, 
a task that was waiting for the data.

Receiving data

xMessageBufferReceive() is used to read data from a message buffer in a task.
xMessageBufferReceiveFromISR() is used to read data from a message buffer in an interrupt 
service routine (ISR). xMessageBufferReceive() allows a block time to be specified. If
xMessageBufferReceive() is called with a non-zero block time to read from a message 
buffer and the buffer is empty, the task is placed into the Blocked state until either data becomes 
available, or the block time expires.

sbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are 
called (internally, by the FreeRTOS API) when data is read from a stream buffer. The macros 
check to see if there is a task blocked on the stream buffer waiting for space to become available 

Message buffers 12



FreeRTOS User Guide

within the buffer, and if so, they remove the task from the Blocked state. You can change the 
default behavior of sbRECEIVE_COMPLETED() by providing an alternative implementation in
FreeRTOSConfig.h.

Symmetric multiprocessing (SMP) support

SMP support in the FreeRTOS Kernel enables one instance of the FreeRTOS kernel to schedule 
tasks across multiple identical processor cores. The core architectures must be identical and share 
the same memory.

Modifying applications to use the FreeRTOS-SMP kernel

The FreeRTOS API remains substantially the same between single-core and SMP versions, except 
for these additional APIs. Therefore, an application written for the FreeRTOS single-core version 
should compile with the SMP version with minimal to no effort. However, there might be some 
functional issues, because some assumptions that were true for single-core applications might no 
longer be true for multi-core applications.

One common assumption is that a lower priority task can't run while a higher priority task is 
running. While this was true on a single-core system, it's no longer true for multi-core systems 
because multiple tasks can run simultaneously. If the application relies on relative task priorities to 
provide mutual exclusion, it might observe unexpected results in a multi-core environment.

One other common assumption is that ISRs can't run simultaneously with each other or with other 
tasks. This is no longer true in a multi-core environment. The application writer needs to ensure 
proper mutual exclusion while accessing data shared between tasks and ISRs.

Software timers

A software timer allows a function to be executed at a set time in the future. The function executed 
by the timer is called the timer’s callback function. The time between a timer being started and 
its callback function being executed is called the timer’s period. The FreeRTOS kernel provides an 
efficient software timer implementation because:

• It does not execute timer callback functions from an interrupt context.

• It does not consume any processing time unless a timer has actually expired.

• It does not add any processing overhead to the tick interrupt.

Symmetric multiprocessing (SMP) support 13

https://freertos.org/symmetric-multiprocessing-introduction.html
https://freertos.org/symmetric-multiprocessing-introduction.html#smp-specific-apis


FreeRTOS User Guide

• It does not walk any link list structures while interrupts are disabled.

Low power support

Like most embedded operating systems, the FreeRTOS kernel uses a hardware timer to generate 
periodic tick interrupts, which are used to measure time. The power saving of regular hardware 
timer implementations is limited by the necessity to periodically exit and then re-enter the low 
power state to process tick interrupts. If the frequency of the tick interrupt is too high, the energy 
and time consumed entering and exiting a low power state for every tick outweighs any potential 
power-saving gains for all but the lightest power-saving modes.

To address this limitation, FreeRTOS includes a tickless timer mode for low-power applications. 
The FreeRTOS tickless idle mode stops the periodic tick interrupt during idle periods (periods when 
there are no application tasks that are able to execute), and then makes a correcting adjustment to 
the RTOS tick count value when the tick interrupt is restarted. Stopping the tick interrupt allows 
the microcontroller to remain in a deep power-saving state until either an interrupt occurs, or it is 
time for the RTOS kernel to transition a task into the ready state.

Kernel configuration

You can configure the FreeRTOS kernel for a specific board and application with the
FreeRTOSConfig.h header file. Every application built on the kernel must have a
FreeRTOSConfig.h header file in its preprocessor include path. FreeRTOSConfig.h is 
application-specific and should be placed under an application directory, and not in one of the 
FreeRTOS kernel source code directories.

The FreeRTOSConfig.h files for the FreeRTOS demo and test applications are located 
at freertos/vendors/vendor/boards/board/aws_demos/config_files/
FreeRTOSConfig.h and freertos/vendors/vendor/boards/board/aws_tests/
config_files/FreeRTOSConfig.h.

For a list of the available configuration parameters to specify in FreeRTOSConfig.h, see
FreeRTOS.org.

Low power support 14

https://www.freertos.org/a00110.html


FreeRTOS User Guide

AWS IoT Device SDK for Embedded C

Note

This SDK is intended for use by experienced embedded-software developers.

The AWS IoT Device SDK for Embedded C (C-SDK) is a collection of C source files under the MIT 
open source license that can be used in embedded applications to securely connect IoT devices to 
AWS IoT Core. It includes an MQTT client, HTTP client, JSON Parser, and AWS IoT Device Shadow, 
AWS IoT Jobs, AWS IoT Fleet Provisioning, and AWS IoT Device Defender libraries. This SDK is 
distributed in source form and can be built into customer firmware along with application code, 
other libraries, and an operating system (OS) of your choice.

The AWS IoT Device SDK for Embedded C is generally targeted at resource constrained devices that 
require an optimized C language runtime. You can use the SDK on any operating system and host 
it on any processor type (for example, MCUs and MPUs). However, if your devices have sufficient 
memory and processing resources, we recommend that you use one of the higher order AWS IoT 
Device SDKs.

For more information, see the following:

• AWS IoT Device SDK for Embedded C

• AWS IoT Device SDK for Embedded C on GitHub

• AWS IoT Device SDK for Embedded C Readme

• AWS IoT Device SDK for Embedded C Samples

15

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html#iot-device-sdks
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html#iot-device-sdks
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C#aws-iot-device-sdk-for-embedded-c
https://docs.aws.amazon.com/embedded-csdk/202012.00/lib-ref/docs/doxygen/output/html/demos_main.html


FreeRTOS User Guide

Common IO

Common IO APIs act as hardware abstraction layers (HAL) that provide a common interface 
between drivers and higher-level application code. FreeRTOS Common IO provides a set 
of standard APIs for accessing common serial devices on supported reference boards; 
implementations of these APIs are not included. These common APIs communicate and interact 
with these peripherals and enable your code to function across platforms. Without Common IO, 
writing code to work with low level devices is silicon-vendor specific.

Note

FreeRTOS does not require implementations of the Common IO APIs to function, but it will 
attempt to use the Common IO APIs as a way to interface with the specific peripherals on a 
microcontroller-based board instead of vendor-specific APIs.

In general, device drivers are independent of the underlying operating system and are specific to 
a given hardware configuration. The HAL abstracts away the details of how a specific driver works 
and provides a uniform API to control such devices. You can use the same APIs to access various 
device drivers across multiple microcontroller- (MCU-) based reference boards.

Libraries

Currently, FreeRTOS provides two Common IO libraries: Common IO - basic and Common IO - BLE.

Common IO - basic

Overview

Common IO - basic provides APIs that deal with basic I/O peripherals and functions that you 
may find on MCU-based boards. The Common IO - basic repository is available on GitHub.

Supported peripherals

• ADC

• GPIO

• I2C

Libraries 16

https://aws.github.io/common-io-basic/
https://github.com/aws/common-io-basic


FreeRTOS User Guide

• PWM

• SPI

• UART

• Watchdog

• Flash

• RTC

• EFUSE

• Resets

• I2S

• Performance counter

• Hardware platform information

Supported features

• Synchronous read/write

The function doesn't return until the requested amount of data is transferred.

• Asynchronous read/write

The function returns immediately and the data transfer happens asynchronously. When the 
action completes, a registered user callback is invoked.

Peripheral specific

• I2C

Combine multiple operations into one transaction. Used to do write then read actions in one 
transaction.

• SPI

Transfer data between primary and secondary, which means the write and read happen 
simultaneously.

API reference

For a full API reference, see the Common IO - basic API reference.

Common IO - basic 17

https://aws.github.io/common-io-basic/


FreeRTOS User Guide

Common IO - BLE

Overview

Common IO - BLE provides abstraction from the manufacturer's Bluetooth Low Energy stack. It 
provides the following interfaces which can be used to control the device, and perform GAP and 
GATT operations. The Common IO - BLE repository is available on  GitHub.

Bluetooth Device Manager:

This provides an interface to control the Bluetooth device, perform device discovery operations 
and other connectivity related tasks.

BLE Adapter Manager:

This provides an interface for the GAP API functions that are specific to BLE.

Bluetooth Classic Adapter Manager:

This provides an interface to control BT classic functionalities of a device.

GATT Server:

This provides an interface to use the Bluetooth GATT server feature.

GATT Client:

This provides an interface to use the Bluetooth GATT client feature.

A2DP Connection Interface:

This provides an interface for the A2DP Source profile for the local device.

API reference

For a full API reference, see the Common IO - BLE API reference.

Common IO for Amazon Common Software

The Common IO APIs are a part of the required implementations needed by Amazon Common 
Software for Devices, specifically to be implemented in a vendor device porting kit (DPK).

What is ACS?

Amazon Common Software (ACS) for Devices is software that makes it faster for you to integrate 
Amazon Device SDKs on your devices. ACS provides a unified API integration layer, pre-validated 

Common IO - BLE 18

https://github.com/aws/common-io-ble
https://aws.github.io/common-io-ble/
https://developer.amazon.com/acs-devices
https://developer.amazon.com/acs-devices


FreeRTOS User Guide

and memory efficient components for common functions such as connectivity, a device porting kit 
(DPK), and multi-tier test suites.

Qualification Program

The Amazon Common Software for Devices qualification program verifies that a build of the ACS 
DPK (Device Porting Kit) which runs on a specific microcontroller-based development board is 
compatible with the program's published best practices and robust enough to pass ACS-mandated 
tests specified by the qualification program.

Vendors qualified under this program are listed on the ACS Chipset Vendors page.

For information about qualifying, contact ACS for Devices.

Qualification Program 19

https://developer.amazon.com/acs-devices
https://developer.amazon.com/avs-silicon-vendors
https://developer.amazon.com/acs-devices


FreeRTOS User Guide

Getting Started with FreeRTOS

Topics:

• Getting Started with AWS IoT and FreeRTOS using Quick Connect

• Explore FreeRTOS libraries

• Understand how to build a secure and robust AWS IoT product

• Develop your AWS IoT application product

Getting Started with AWS IoT and FreeRTOS using Quick 
Connect

To quickly explore AWS IoT, start with AWS Quick Connect Demos. Quick Connect demos are simple 
to setup and connect a partner provided, FreeRTOS qualified board to AWS IoT.

Follow the AWS IoT Getting Started tutorial for a better understanding of AWS IoT and the AWS 
IoT console. You can modify the demo source code provided with the Quick Connect demos using 
the chosen board’s build system and tools to connect to your AWS account. The data flow from the 
AWS IoT console on your account is visible now.

Explore FreeRTOS libraries

Once you have an understanding of how an IoT device and AWS IoT work together, you can start 
exploring FreeRTOS libraries, and the Long-Term Support (LTS) libraries.

Some commonly used libraries for FreeRTOS based AWS IoT devices are:

• FreeRTOS Kernel

• coreMQTT

• AWS IoT Over-the-Air (OTA)

Visit freertos.org for library-specific technical documentation and demos.

Getting Started with AWS IoT and FreeRTOS using Quick Connect 20

https://freertos.org/quickconnect/index.html
https://aws.amazon.com/iot/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://www.freertos.org/all-library.html
https://www.freertos.org/lts-libraries.html
https://www.freertos.org/RTOS.html
https://www.freertos.org/mqtt/index.html
https://www.freertos.org/ota/index.html
https://freertos.org/


FreeRTOS User Guide

Understand how to build a secure and robust AWS IoT product

Refer to  Featured FreeRTOS AWS IoT Integrations to learn about best practices in making IoT 
device software more secure and robust. These FreeRTOS IoT integrations are designed for 
improved security using a combination of FreeRTOS software, and a partner-provided board with 
hardware security features. Use them in production as is, or use them as a model for your own 
designs.

Develop your AWS IoT application product

Follow these steps to create an application project for your AWS IoT product:

1. Download the latest FreeRTOS or Long Term Support (LTS) version from freertos.org, or clone 
from the FreeRTOS-LTS GitHub repository. You can also integrate the required FreeRTOS 
libraries into your project from the MCU vendor’s toolchain if available.

2. Follow the FreeRTOS Porting guide to create a project, set up the development environment, 
and integrate FreeRTOS libraries into your project. Use the FreeRTOS-Libraries-Integration-
Tests GitHub repository to validate the porting.

Understand how to build a secure and robust AWS IoT product 21

https://www.freertos.org/featured-freertos-iot-integrations.html
https://www.freertos.org/a00104.html
https://github.com/FreeRTOS/FreeRTOS-LTS
https://freertos.org/2021/10/freertos-lts-libraries-are-now-part-of-our-partner-toolchains.html
https://docs.aws.amazon.com/freertos/latest/portingguide/porting-guide.html
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests


FreeRTOS User Guide

AWS IoT Device Tester for FreeRTOS

The IDT for FreeRTOS is a tool to qualify data throughput rate with the FreeRTOS operating 
system. The device tester (IDT) first opens a USB or UART connection to a device. It then flashes an 
image of FreeRTOS configured to test the device functionality under various conditions. AWS IoT 
Device Tester suites are extensible and IDT is used for customer AWS IoT test orchestration.

IDT for FreeRTOS runs on a host computer (Windows, macOS, or Linux) that is connected to the 
device being tested. IDT configures and orchestrates test cases, and aggregates results. It also 
provides a command line interface to manage test execution.

FreeRTOS qualification suite

IDT for FreeRTOS verifies the port of FreeRTOS on your micro-controller, and if it can communicate 
effectively with AWS IoT in a reliable and secure manner. Specifically, it verifies if the porting layer 
interfaces for FreeRTOS libraries are implemented correctly. It also performs end-to-end tests 
with AWS IoT Core. For example, it verifies if your board can send and receive MQTT messages and 
process them correctly.

FreeRTOS qualification (FRQ) 2.0 suite uses tests cases from FreeRTOS-Libraries-Integration-Tests 
and Device Advisor defined in the  FreeRTOS Qualification Guide.

IDT for FreeRTOS generates test reports that you can submit to AWS Partner Network (APN) for 
inclusion of your FreeRTOS devices in the AWS Partner Device Catalog. For more information, see
AWS Device Qualification Program.

The following diagram shows the test infrastructure setup for FreeRTOS qualification.

FreeRTOS qualification suite 22

https://docs.aws.amazon.com/freertos/latest/qualificationguide/freertos-qualification.html#qualifying-your-device-idt
https://aws.amazon.com/partners/dqp/


FreeRTOS User Guide

IDT for FreeRTOS organizes test resources into test suites and test groups:

• A test suite is the set of test groups used to verify that a device works with particular versions of 
FreeRTOS.

• A test group is the set of individual test cases related to a particular feature, such as BLE and 
MQTT messaging.

For more information, see Test suite versions

Custom test suites

IDT for FreeRTOS combines a standardized configuration setup and result format with a test suite 
environment. This environment lets you develop custom test suites for your devices and device 
software. You can add custom tests for your own internal validation, or provide them to your 
customers for device verification.

How you configure custom test suites determines the setting configurations that you must provide 
to your users to run your custom test suites. For more information, see Use IDT to develop and run 
your own test suites.

Custom test suites 23



FreeRTOS User Guide

Supported versions of AWS IoT Device Tester for FreeRTOS

This topic lists supported versions of AWS IoT Device Tester for FreeRTOS. As a best practice, 
we recommend that you use the latest version of IDT for FreeRTOS that supports your target 
version of FreeRTOS. Each version of IDT for FreeRTOS has one or more corresponding versions of 
FreeRTOS that it supports. We recommend that you download a new version of IDT for FreeRTOS 
when a new version of FreeRTOS is released.

By downloading the software, you agree to the AWS IoT Device Tester License Agreement 
contained in the download archive.

Note

When you use AWS IoT Device Tester for FreeRTOS, we recommend that you update to the 
latest patch release of the most recent FreeRTOS-LTS version.

Important

As of October 2022, AWS IoT Device Tester for AWS IoT FreeRTOS Qualification (FRQ) 1.0 
doesn't generate signed qualification reports. You can't qualify new AWS IoT FreeRTOS 
devices to list in the AWS Partner Device Catalog through the AWS Device Qualification 
Program using IDT FRQ 1.0 versions. While you can't qualify FreeRTOS devices using IDT 
FRQ 1.0, you can continue to test your FreeRTOS devices with FRQ 1.0. We recommend 
that you use IDT FRQ 2.0 to qualify and list FreeRTOS devices in the AWS Partner Device 
Catalog.

Latest version of AWS IoT Device Tester for FreeRTOS

Use the following links to download the latest versions of IDT for FreeRTOS.

Supported versions of IDT for FreeRTOS 24

https://devices.amazonaws.com/
http://aws.amazon.com/partners/programs/dqp/
http://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/freertos/latest/userguide/lts-idt-freertos-qualification.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/


FreeRTOS User Guide

Latest version of AWS IoT Device Tester for FreeRTOS

AWS IoT 
Device 
Tester 
version

Test suite 
versions

Supported 
FreeRTOS 
versions

Download 
links

Release date Release 
notes

IDT v4.9.0 FRQ_2.5.0 • 202112.00

• 202212.00

• 202212.01

• All 
patches of 
FreeRTOS 
202210-LT 
S that use 
FreeRTOS 
LTS 
libraries.

• Linux

• macOS

• Windows

2023.04.04 • Supports 
testing 
against 
FreeRTOS
202112,
202212,
202212.01
 and all 
patches of 
FreeRTOS
202210-LT 
S that uses 
FreeRTOS 
libraries 
. See
README.md
 for more 
informati 
on. You 
must 
include 
the patch 
version for 
FreeRTOS- 
LTS in your
manifest. 
yml .

• Improved 
run time of 

Latest version of IDT for FreeRTOS 25

https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.9.0_testsuite_2.5.0_linux.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.9.0_testsuite_2.5.0_mac.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.9.0_testsuite_2.5.0_win.zip
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md


FreeRTOS User Guide

AWS IoT 
Device 
Tester 
version

Test suite 
versions

Supported 
FreeRTOS 
versions

Download 
links

Release date Release 
notes

OTA E2E 
tests.

• Limits 
number 
of devices 
listed in
device.js 
on  to 1.

• Minor bug 
fixes and 
improveme 
nts.

Note

We don't recommend that multiple users run IDT from a shared location, such as an NFS 
directory or a Windows network shared folder. This practice might result in crashes or data 
corruption. We recommend that you extract the IDT package to a local drive and run the 
IDT binary on your local workstation.

Earlier IDT versions for FreeRTOS

The following earlier versions of IDT for FreeRTOS are also supported.

Earlier IDT versions 26



FreeRTOS User Guide

Earlier versions of AWS IoT Device Tester for FreeRTOS

AWS IoT 
Device 
Tester 
version

Test suite 
versions

Supported 
FreeRTOS 
versions

Download 
links

Release date Release 
notes

IDT v4.8.1 FRQ_2.4.0 • 202112.00

• 202212.00

• 202212.01

• All 
patches of 
FreeRTOS 
202210-LT 
S that use 
FreeRTOS 
LTS 
libraries.

• Linux

• macOS

• Windows

2023.01.23 • See 
README.MD
 for further 
informati 
on. You 
must 
include 
the patch 
version for 
FreeRTOS- 
LTS in your
manifest. 
yml .

• Minor bug 
fixes and 
improveme 
nts.

IDT v4.6.0 FRQ_2.3.0 • 202112.00

• 202212.00

• 202212.01

• 202210-LT 
S that use 
FreeRTOS 
LTS 
libraries.

• Linux

• macOS

• Windows

2022.11.16 • See 
README.MD
 for further 
informati 
on. You 
must 
include 
the patch 
version for 
FreeRTOS- 
LTS in your

Earlier IDT versions 27

https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.8.1_testsuite_2.4.0_linux.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.8.1_testsuite_2.4.0_mac.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.8.1_testsuite_2.4.0_win.zip
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.6.0_testsuite_2.3.0_linux.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.6.0_testsuite_2.3.0_mac.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.6.0_testsuite_2.3.0_win.zip
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md


FreeRTOS User Guide

AWS IoT 
Device 
Tester 
version

Test suite 
versions

Supported 
FreeRTOS 
versions

Download 
links

Release date Release 
notes

manifest. 
yml .

• For more 
informati 
on about 
what's 
included 
in the 
FreeRTOS
202210-LT 
S release, 
see the
CHANGELOG 
.md file on 
GitHub.

• Adds the 
ability to 
configure 
and run 
AWS IoT 
Device 
Tester for 
FreeRTOS 
through 
a web 
based user 
interface 
. See Use 
the IDT for 
FreeRTOS 
user 

Earlier IDT versions 28

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202210-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202210-LTS/CHANGELOG.md


FreeRTOS User Guide

AWS IoT 
Device 
Tester 
version

Test suite 
versions

Supported 
FreeRTOS 
versions

Download 
links

Release date Release 
notes

interface 
to run the 
FreeRTOS 
qualifica 
tion suite 
2.0 (FRQ 
2.0) to get 
started.

• Adds an 
option to 
retain the 
modified 
copies of 
the source 
code 
created 
and used 
at runtime 
for post-
test 
debugging 
. See
Configure 
build, 
flash, 
and test 
settings
for more 
informati 
on.

Earlier IDT versions 29



FreeRTOS User Guide

AWS IoT 
Device 
Tester 
version

Test suite 
versions

Supported 
FreeRTOS 
versions

Download 
links

Release date Release 
notes

• Adds IDT 
Client SDK 
support 
for Java. 
For more 
informati 
on about 
the IDT 
Client SDK, 
see Use IDT 
to develop 
and run 
your own 
test suites.

Earlier IDT versions 30



FreeRTOS User Guide

AWS IoT 
Device 
Tester 
version

Test suite 
versions

Supported 
FreeRTOS 
versions

Download 
links

Release date Release 
notes

IDT v4.5.11 FRQ_2.2.0 • 202112.00

• 202212.00

• 202212.01

• 202210-LT 
S that use 
FreeRTOS 
LTS 
libraries.

• Linux

• macOS

• Windows

2022.10.14 • See 
README.MD
 for further 
informati 
on. You 
must 
include 
the patch 
version for 
FreeRTOS- 
LTS in your
manifest. 
yml .

• For more 
informati 
on about 
what's 
included 
in the 
FreeRTOS
202210-LT 
S release, 
see the
CHANGELOG 
.md file on 
GitHub.

• Minor bug 
fixes and 
improveme 
nts.

Earlier IDT versions 31

https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.5.11_testsuite_2.2.0_linux.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.5.11_testsuite_2.2.0_mac.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.5.11_testsuite_2.2.0_win.zip
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202210-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202210-LTS/CHANGELOG.md


FreeRTOS User Guide

For more information, see Support policy for AWS IoT Device Tester for FreeRTOS.

Unsupported IDT versions for FreeRTOS

This section lists unsupported versions of IDT for FreeRTOS. Unsupported versions do not receive 
bug fixes or updates. For more information, see Support policy for AWS IoT Device Tester for 
FreeRTOS.

The following versions of IDT-FreeRTOS are no longer supported.

Unsupported versions of AWS IoT Device Tester for FreeRTOS

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.5.10 FRQ_2.1.4 • 202112.00

• 202012-LT 
S that use 
FreeRTOS LTS 
libraries.

2022.09.02 • For more 
information 
about what's 
included in 
the FreeRTOS
202012-LT 
S release, 
see the 
CHANGELOG 
.md file on 
GitHub.

• Resolved an 
issue affecting 
the OTA End 
to End test 
group.

• Removed
FullTrans 
portInter 
facePlain 
Text  from 
running in 

Unsupported IDT versions 32

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

qualification 
runs. Plain 
text can still 
be ran as a 
development 
test group by 
using the -\-
group-id
flag.

• Improved the 
logging and 
the readability 
of console and 
file output.

• Minor bug 
fixes and 
improveme 
nts.

Unsupported IDT versions 33



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.5.9 FRQ_2.1.3 • 202112.00

• 202012.04-
LTS that use 
FreeRTOS LTS 
libraries.

2022.08.17 • For more 
information 
about what's 
included in 
the FreeRTOS 
202012.04-
LTS release, 
see the 
CHANGELOG 
.md file on 
GitHub.

• Resolved 
an issue 
affecting the
FreeRTOSI 
ntegrity
test group.

• Updated
FullCloud 
IoT  test 
group by 
removing 
“MQTT 
Connect 
Exponenti 
al Backoff 
Retries” test 
case.

• Minor bug 
fixes and 

Unsupported IDT versions 34

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

improveme 
nts.

IDT v4.5.6 FRQ_2.1.2 • 202112.00

• 202012.04-
LTS that use 
FreeRTOS LTS 
libraries.

2022.06.29 • For more 
information 
about what's 
included in 
the FreeRTOS 
202012.04-
LTS release, 
see the 
CHANGELOG 
.md file on 
GitHub.

• Adds new 
test group
FullCloud 
IoT  which 
tests the 
board against 
AWS IoT 
Core Device 
Advisor.

• Resolved an 
issue affecting 
the OTA E2E 
test cases.

• Minor bug 
fixes and 
improveme 
nts.

Unsupported IDT versions 35

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.5.5 FRQ_2.1.1 • 202112.00

• 202012.04-
LTS that use 
FreeRTOS LTS 
libraries.

2022.06.06 • For more 
information 
about what's 
included in 
the FreeRTOS 
202012.04-
LTS release, 
see the
CHANGELOG 
.md file on 
GitHub.

• Adds new 
test group
FullCloud 
IoT  which 
tests the 
board against 
AWS IoT 
Core Device 
Advisor.

• Resolved 
an issue 
affecting the 
FreeRTOSV 
ersion and 
FreeRTOSI 
ntegrity test 
cases.

• Minor bug 
fixes and 

Unsupported IDT versions 36

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

improveme 
nts.

IDT v4.5.5 FRQ_2.1.0 • 202107.00

• 202112.00

• 202012.04-
LTS that use 
FreeRTOS LTS 
libraries.

2022.05.31 • For more 
information 
about what's 
included in 
the FreeRTOS 
202012.04-
LTS release, 
see the
CHANGELOG 
.md file on 
GitHub.

• Adds new 
test group
FullCloud 
IoT  which 
tests the 
board against 
AWS IoT 
Core Device 
Advisor.

• Minor bug 
fixes and 
improveme 
nts.

Unsupported IDT versions 37

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.5.4 FRQ_2.0.0 • 202112.00

• 202012.04-
LTS that use 
FreeRTOS LTS 
libraries.

2022.05.09 • For more 
information 
about what's 
included in 
the FreeRTOS 
202012.04-
LTS release, 
see the 
CHANGELOG 
.md file on 
GitHub.

• Removes the 
requireme 
nt to qualify 
boards using 
only versions 
of Amazon 
FreeRTOS 
from the aws/
amazon-
freerto 
s  GitHub 
repository.

• Minor bug 
fixes and 
improveme 
nts.

Unsupported IDT versions 38



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.5.2 FRQ_1.6.2 202107.00 2022.01.25 • For more 
information 
about what's 
included in 
the FreeRTOS 
202107.00 
release, 
see the 
CHANGELOG 
.md file on 
GitHub.

• Implement 
s the new 
IDT test 
orchestrator 
for configuri 
ng custom 
test suites. 
For more 
information, 
see  Configure 
the IDT test 
orchestrator.

• Minor bug 
fixes and 
improveme 
nts.

Unsupported IDT versions 39

https://docs.aws.amazon.com/freertos/latest/userguide/idt-test-orchestrator.html
https://docs.aws.amazon.com/freertos/latest/userguide/idt-test-orchestrator.html
https://docs.aws.amazon.com/freertos/latest/userguide/idt-test-orchestrator.html


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.0.3 FRQ_1.5.1 202012.00 2021.07.30 • Support for 
qualifica 
tion of 
devices with 
locked-down 
credentials on 
a Hardware 
Security 
Module.

• Minor bug 
fixes and 
improveme 
nts.

Unsupported IDT versions 40



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.3.0 FRQ_1.6.1 202107.00 2021.07.26 • For more 
information 
about what's 
included in 
the FreeRTOS 
202107.00 
 release, 
see the
CHANGELOG 
.md file on 
GitHub.

• Adds the 
ability to 
configure and 
run AWS IoT 
Device Tester 
for FreeRTOS 
through a web 
based user 
interface. See
Use the IDT 
for FreeRTOS 
user interface 
to run the 
FreeRTOS 
qualification 
suite to get 
started.

Unsupported IDT versions 41

https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.1.0 FRQ_1.6.0 202107.00 2021.07.21 • For more 
information 
about what's 
included in 
the FreeRTOS 
202107.00 
release, 
see the 
CHANGELOG 
.md file on 
GitHub.

• Removes the 
following test 
cases from 
OTA qualifica 
tion:

• OTA Agent

• OTA Missing 
Filename

• OTA Max 
Configured 
Number of 
Blocks

• Removes 
the OTA 
Dataplane
Both test 
group from 
OTA Qualifica 
tion. In the
device.js 

Unsupported IDT versions 42

https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

on  file, the
OTADataPl 
aneProtoc 
ol  configura 
tion now 
accepts only
HTTP or MQTT
as supported 
values.

• Implements 
the following 
changes to the
freertosF 
ileConfig 
uration
configura 
tion in the
userdata. 
json  file for 
changes to 
the FreeRTOS 
source code:

• Changes 
the file 
name that is 
specified for
otaAgentT 
estsConfi 
g  and
otaAgentD 
emosConfi 
g  from

Unsupported IDT versions 43



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

aws_ota_a 
gent_conf 
ig.h  to
ota_confi 
g.h .

• Adds a new
otaDemosC 
onfig
optional 
configura 
tion to 
specify the 
file path 
to the new
ota_demo_ 
config.h
file.

• Adds a 
new field
testStart 
Delayms  to
userdata. 
json  to 
specify a 
delay between 
the time 
a device is 
flashed to run 
a FreeRTOS 
test group 
and when it 
starts running 

Unsupported IDT versions 44



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

tests. The 
value should 
be given in 
milliseconds. 
This delay 
can be used 
to give IDT 
a chance to 
connect so 
that no test 
output is 
missed.

Unsupported IDT versions 45



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v4.0.1 FRQ_1.4.1 202012.00 2021.01.19 • For more 
information 
about what's 
included in 
the FreeRTOS 
202012.00 
release, 
see the
CHANGELOG 
.md file in 
GitHub.

• Introduces 
additional 
OTA (Over-the 
-air) E2E (end-
to-end) test 
cases.

• Supports 
qualification 
of developme 
nt boards 
running 
FreeRTOS 
202012.00 
 that use 
FreeRTOS LTS 
libraries.

• Adds support 
for qualifica 
tion of 
FreeRTOS 
developme 

Unsupported IDT versions 46

https://github.com/aws/amazon-freertos/blob/202012.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202012.00/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

nt boards 
using cellular 
connectivity.

• Fixes a 
bug in the 
echo server 
configuration.

• Enables you 
to develop 
and run your 
own custom 
test suites 
using AWS IoT 
Device Tester 
for FreeRTOS. 
For more 
information, 
see Use IDT to 
develop and 
run your own 
test suites.

• Provides code 
signed IDT 
applications, 
so you don't 
need to grant 
permissions 
when you 
run it under 
Windows or 
macOS.

Unsupported IDT versions 47



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

• Refined the 
BLE test result 
parsing logic.

IDT v3.4.0 FRQ_1.3.0 202011.01 2020.11.05 • For more 
details, 
see the
CHANGELOG 
.md file in 
GitHub.

• Fixed bug 
where 'RSA' 
was not a 
valid PKCS11 
configuration 
option.

• Fixed bug 
where 
Amazon S3 
buckets aren't 
cleaned up 
correctly after 
OTA tests.

• Updates to 
support the 
new test cases 
inside of the 
FullMQTT test 
group.

Unsupported IDT versions 48

https://github.com/aws/amazon-freertos/blob/202011.01/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202011.01/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v3.3.0 FRQ_1.2.0 202007.00 2020.09.17 • For more 
details, 
see the
CHANGELOG 
.md file in 
GitHub.

• New end-
to-end tests 
to validate 
Over The Air 
(OTA) update 
suspend 
and resume 
feature.

• Fixed bug 
causing users 
in eu-centra 
l-1 Region to 
be unable to 
pass config 
validation for 
OTA tests.

• Added --
update-idt
parameter 
to the run-
suite
command. 
You can use 
this option 
to set the 
response 

Unsupported IDT versions 49

https://github.com/aws/amazon-freertos/blob/202007.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202007.00/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

for the IDT 
update 
prompt.

• Added --
update- 
managed-
policy
parameter 
to the run-
suite
command. 
You can use 
this option 
to set the 
response for 
the managed 
policy update 
prompt.

• Internal 
improvements 
and bug fixes, 
including:

• For 
automatic 
test suite 
updates, 
improveme 
nts to 
config file 
upgrade.

Unsupported IDT versions 50



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v3.0.2 FRQ_1.0.1 202002.00 • For more 
informati 
on, see the
CHANGELOG 
.md file in 
GitHub.

• Adds 
automatic 
update of test 
suites within 
IDT. IDT can 
now download 
the latest test 
suites that 
are available 
for your 
FreeRTOS 
version. With 
this feature, 
you can:

• Download 
the latest 
test suites 
using the
upgrade-
test-
suite
command.

• Download 
the latest 
test suites 
by setting 

Unsupported IDT versions 51

https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

a flag when 
you start 
IDT.

Use the -u
flag option 
where flag
can be 'y' 
to always 
download 
or 'n' to use 
the existing 
version.

When there 
are multiple 
test suite 
versions 
available, 
the latest 
version is 
used unless 
you specify 
a test suite 
ID when 
starting IDT.

• Use the new
list-supp 
orted-
versions
option to 
list the 
FreeRTOS 

Unsupported IDT versions 52



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

and test 
suite 
versions 
that are 
supported 
by the 
installed 
version of 
IDT.

• List test 
cases in 
a group 
and run 
individual 
tests.

Test suites 
are versioned 
using a
major.minor.patch
format 
starting from 
1.0.0.

• Adds the
list-supp 
orted-
products
command 
– Lists the 
FreeRTOS 
and test 
suite versions 
that are 

Unsupported IDT versions 53



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

supported by 
the installed 
 version of IDT.

• Adds list-
test-cases
command – 
Lists the test 
cases that are 
available in a 
test group.

• Adds the
test-id
option for the
run-suite

 command 
– Use this 
option to run 
individual test 
cases in a test 
group.

Unsupported IDT versions 54



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v1.7.1 FRQ_1.0.0 202002.00 • For more 
details, 
see the 
CHANGELOG 
.md file in 
GitHub.

• Supports 
the custom 
code signing 
method for 
over-the-air 
(OTA) end-
to-end test 
cases so that 
you can use 
your own 
code signing 
commands 
and scripts 
to sign OTA 
payloads.

• Adds a 
precheck for 
serial ports 
before the 
start of tests. 
Tests will fail 
quickly with 
improved 
error 
messaging if 
the serial port 

Unsupported IDT versions 55

https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

is misconfig 
ured in the
device.js 
on  file.

• Added an
AWS Managed 
Policy
AWSIoTDev 
iceTester 
ForFreeRT 
OSFullAcc 
ess  with 
permissions 
required to 
run AWS IoT 
Device Tester. 
If new releases 
require 
additiona 
l permissio 
ns, we add 
them to this 
managed 
policy so that 
you don't have 
to manually 
update your 
IAM permissio 
ns.

• The file 
named
AFQ_Repor 

Unsupported IDT versions 56

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies


FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

t.xml  in 
the results 
directory 
is now
FRQ_Repor 
t.xml .

IDT v1.6.2 FRQ_1.0.0 202002.00 • Supports 
optional tests 
for OTA over 
HTTPS to 
qualify your 
FreeRTOS 
development 
boards.

• Supports 
AWS IoT ATS 
endpoint in 
testing.

• Supports 
capability to 
inform users 
on latest IDT 
version before 
start of test 
suite.

Unsupported IDT versions 57



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v1.5.2 FRQ_1.0.0 201910.00 • Supports 
qualification 
of FreeRTOS 
devices 
with secure 
element 
(onboard key).

• Supports 
configura 
ble echo 
server ports 
for Secure 
Sockets and 
Wi-Fi test 
groups.

• Supports 
timeout 
multiplier flag 
to increase 
timeouts, 
which is useful 
when you 
troubleshoot 
for timeout-r 
elated errors.

• Added bug 
fix for log 
parsing.

• Supports iot 
ats endpoint 
in testing.

Unsupported IDT versions 58



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT v1.4.1 FRQ_1.0.0 201908.00 • Added 
support for 
new PKCS11 
library and 
test case 
updates.

• Introduced 
actionable 
error codes. 
For more 
information, 
see IDT error 
codes

• Updated IAM 
policy used to 
run IDT.

IDT v1.3.2 FRQ_1.0.0 201906.00 • Added 
support 
for testing 
Bluetooth Low 
Energy (BLE).

• Improved user 
experienc 
e for IDT 
command line 
interface (CLI) 
commands.

• Updated IAM 
policy used to 
run IDT.

Unsupported IDT versions 59



FreeRTOS User Guide

AWS IoT Device 
Tester version

Test suite 
versions

Supported 
FreeRTOS 
versions

Release date Release notes

IDT-FreeRTOS 
v1.2

FRQ_1.0.0 • FreeRTOS 
v1.4.8

• FreeRTOS 
v1.4.9

Added support 
for testing 
FreeRTOS 
devices with the 
CMAKE build 
system.

IDT-FreeRTOS 
v1.1

FRQ_1.0.0

IDT-FreeRTOS 
v1.0

FRQ_1.0.0

Download IDT for FreeRTOS

This topic describes the options to download IDT for FreeRTOS. You can either use one of the 
following software download links or you can follow instructions to programmatically download 
IDT.

Important

As of October 2022, AWS IoT Device Tester for AWS IoT FreeRTOS Qualification (FRQ) 1.0 
does not generate signed qualification reports. You cannot qualify new AWS IoT FreeRTOS 
devices to list in the AWS Partner Device Catalog through the AWS Device Qualification 
Program using IDT FRQ 1.0 versions. While you can't qualify FreeRTOS devices using IDT 
FRQ 1.0, you can continue to test your FreeRTOS devices with FRQ 1.0. We recommend 
that you use IDT FRQ 2.0 to qualify and list FreeRTOS devices in the AWS Partner Device 
Catalog.

Topics

• Download IDT manually

• Download IDT programmatically

Download IDT for FreeRTOS 60

https://devices.amazonaws.com/
http://aws.amazon.com/partners/programs/dqp/
http://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/freertos/latest/userguide/lts-idt-freertos-qualification.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/


FreeRTOS User Guide

By downloading the software, you agree to the AWS IoT Device Tester License Agreement 
contained in the download archive.

Note

IDT does not support being run by multiple users from a shared location, such as an NFS 
directory or a Windows network shared folder. We recommend that you extract the IDT 
package to a local drive and run the IDT binary on your local workstation.

Download IDT manually

This topic lists supported versions of IDT for FreeRTOS. As a best practice, we recommend that you 
use the latest version of AWS IoT Device Tester that supports your target version of FreeRTOS. New 
releases of FreeRTOS might require you to download a new version of AWS IoT Device Tester. You 
receive a notification when you start a test run if AWS IoT Device Tester is not compatible with the 
version of FreeRTOS you are using.

See Supported versions of AWS IoT Device Tester for FreeRTOS

Download IDT programmatically

IDT provides an API operation that you can use to retrieve a URL where you can download IDT 
programmatically. You can also use this API operation to check if you have the latest version of IDT. 
This API operation has the following endpoint.

https://download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt

To call this API operation, you must have permission to perform the iot-device-
tester:LatestIdt action. Include your AWS signature, with iot-device-tester as the 
Service Name

API request

HostOs – The operating system of the host machine. Choose from the following options:

• mac

• linux

• windows

Download IDT manually 61



FreeRTOS User Guide

TestSuiteType – The type of the test suite. Choose the following option:

FR – IDT for FreeRTOS

ProductVersion

(Optional) The version of FreeRTOS. The service returns the latest compatible version of IDT for 
that version of FreeRTOS. If you don't specify this option, the service returns the latest version 
of IDT.

API response

The API response has the following format. The DownloadURL includes a zip file.

{ 
    "Success": True or False, 
    "Message": Message, 
    "LatestBk": { 
        "Version": The version of the IDT binary, 
        "TestSuiteVersion": The version of the test suite, 
        "DownloadURL": The URL to download the IDT Bundle, valid for one hour
    } 
 }

Examples

You can reference the following examples to programmatically download IDT. These examples 
use credentials that you store in the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
environment variables. To follow best security practices, don't store your credentials in your code.

Example

Example: Download using cURL version 7.75.0 or later (Mac and Linux)

If you have cURL version 7.75.0 or later, you can use the aws-sigv4 flag to sign the API request. 
This example uses jq to parse the download URL from the response.

Warning

The aws-sigv4 flag requires the query parameters of the curl GET request be in the order 
of HostOs/ProductVersion/TestSuiteType or HostOs/TestSuiteType. Orders that do not 

Download IDT programmatically 62

https://stedolan.github.io/jq/


FreeRTOS User Guide

conform, will result in an error of getting mismatched signatures for the Canonical String 
from the API Gateway.
If the optional parameter ProductVersion is included, you must use a supported product 
version as documented in Supported versions of AWS IoT Device Tester for FreeRTOS.

• Replace us-west-2 with your AWS Region. For the list of Region codes, see Regional endpoints.

• Replace linux with your host machine's operating system.

• Replace 202107.00 with your version of FreeRTOS.

url=$(curl --request GET "https://
download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt?
HostOs=linux&ProductVersion=202107.00&TestSuiteType=FR" \
--user $AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY \
--aws-sigv4 "aws:amz:us-west-2:iot-device-tester" \
| jq -r '.LatestBk["DownloadURL"]')

curl $url --output devicetester.zip

Example

Example: Download using an earlier version of cURL (Mac and Linux)

You can use the following cURL command with an AWS signature that you sign and calculate. 
For more information about how to sign and calculate an AWS signature, see Signing AWS API 
requests.

• Replace linux with your host machine's operating system.

• Replace Timestamp with the date and time, such as 20220210T004606Z.

• Replace Date with the date, such as 20220210.

• Replace AWSRegion with your AWS Region. For the list of Region codes, see Regional endpoints.

• Replace AWSSignature with the AWS signature that you generate.

curl --location --request GET 'https://
download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt?
HostOs=linux&TestSuiteType=FR' \

Download IDT programmatically 63

https://docs.aws.amazon.com/freertos/latest/userguide/dev-test-versions-afr.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html


FreeRTOS User Guide

--header 'X-Amz-Date: Timestamp \
--header 'Authorization: AWS4-HMAC-SHA256 Credential=$AWS_ACCESS_KEY_ID/Date/AWSRegion/
iot-device-tester/aws4_request, SignedHeaders=host;x-amz-date, Signature=AWSSignature'

Example

Example: Download using a Python script

This example uses the Python requests library. This example is adapted from the Python example 
to Sign an AWS API request in the AWS General Reference.

• Replace us-west-2 with your region. For the list of Region codes, see Regional endpoints.

• Replace linux with your host machine's operating system.

# Copyright 2010-2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# This file is licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License. A copy of the
#License is located at
#
# http://aws.amazon.com/apache2.0/
#
# This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
# OF ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.

# See: http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
# This version makes a GET request and passes the signature
# in the Authorization header.
import sys, os, base64, datetime, hashlib, hmac  
import requests # pip install requests
# ************* REQUEST VALUES *************
method = 'GET'
service = 'iot-device-tester'
host = 'download.devicetester.iotdevicesecosystem.amazonaws.com'
region = 'us-west-2'
endpoint = 'https://download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt'
request_parameters = 'HostOs=linux&TestSuiteType=FR'

# Key derivation functions. See:
# http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-
examples-python

Download IDT programmatically 64

https://pypi.org/project/requests/
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


FreeRTOS User Guide

def sign(key, msg): 
    return hmac.new(key, msg.encode('utf-8'), hashlib.sha256).digest()

def getSignatureKey(key, dateStamp, regionName, serviceName): 
    kDate = sign(('AWS4' + key).encode('utf-8'), dateStamp) 
    kRegion = sign(kDate, regionName) 
    kService = sign(kRegion, serviceName) 
    kSigning = sign(kService, 'aws4_request') 
    return kSigning

# Read AWS access key from env. variables or configuration file. Best practice is NOT
# to embed credentials in code.
access_key = os.environ.get('AWS_ACCESS_KEY_ID')
secret_key = os.environ.get('AWS_SECRET_ACCESS_KEY')
if access_key is None or secret_key is None: 
    print('No access key is available.') 
    sys.exit()

# Create a date for headers and the credential string
t = datetime.datetime.utcnow()
amzdate = t.strftime('%Y%m%dT%H%M%SZ')
datestamp = t.strftime('%Y%m%d') # Date w/o time, used in credential scope

# ************* TASK 1: CREATE A CANONICAL REQUEST *************
# http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
# Step 1 is to define the verb (GET, POST, etc.)--already done.
# Step 2: Create canonical URI--the part of the URI from domain to query  
# string (use '/' if no path)
canonical_uri = '/latestidt'  
# Step 3: Create the canonical query string. In this example (a GET request),
# request parameters are in the query string. Query string values must
# be URL-encoded (space=%20). The parameters must be sorted by name.
# For this example, the query string is pre-formatted in the request_parameters 
 variable.
canonical_querystring = request_parameters
# Step 4: Create the canonical headers and signed headers. Header names
# must be trimmed and lowercase, and sorted in code point order from
# low to high. Note that there is a trailing \n.
canonical_headers = 'host:' + host + '\n' + 'x-amz-date:' + amzdate + '\n'
# Step 5: Create the list of signed headers. This lists the headers
# in the canonical_headers list, delimited with ";" and in alpha order.
# Note: The request can include any headers; canonical_headers and
# signed_headers lists those that you want to be included in the  
# hash of the request. "Host" and "x-amz-date" are always required.

Download IDT programmatically 65



FreeRTOS User Guide

signed_headers = 'host;x-amz-date'
# Step 6: Create payload hash (hash of the request body content). For GET
# requests, the payload is an empty string ("").
payload_hash = hashlib.sha256(('').encode('utf-8')).hexdigest()
# Step 7: Combine elements to create canonical request
canonical_request = method + '\n' + canonical_uri + '\n' + canonical_querystring + '\n' 
 + canonical_headers + '\n' + signed_headers + '\n' + payload_hash

# ************* TASK 2: CREATE THE STRING TO SIGN*************
# Match the algorithm to the hashing algorithm you use, either SHA-1 or
# SHA-256 (recommended)
algorithm = 'AWS4-HMAC-SHA256'
credential_scope = datestamp + '/' + region + '/' + service + '/' + 'aws4_request'
string_to_sign = algorithm + '\n' +  amzdate + '\n' +  credential_scope + '\n' +  
 hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()
# ************* TASK 3: CALCULATE THE SIGNATURE *************
# Create the signing key using the function defined above.
signing_key = getSignatureKey(secret_key, datestamp, region, service)
# Sign the string_to_sign using the signing_key
signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'), 
 hashlib.sha256).hexdigest()

# ************* TASK 4: ADD SIGNING INFORMATION TO THE REQUEST *************
# The signing information can be either in a query string value or in  
# a header named Authorization. This code shows how to use a header.
# Create authorization header and add to request headers
authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + 
 credential_scope + ', ' +  'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + 
 signature
# The request can include any headers, but MUST include "host", "x-amz-date",  
# and (for this scenario) "Authorization". "host" and "x-amz-date" must
# be included in the canonical_headers and signed_headers, as noted
# earlier. Order here is not significant.
# Python note: The 'host' header is added automatically by the Python 'requests' 
 library.
headers = {'x-amz-date':amzdate, 'Authorization':authorization_header}

# ************* SEND THE REQUEST *************
request_url = endpoint + '?' + canonical_querystring
print('\nBEGIN REQUEST++++++++++++++++++++++++++++++++++++')
print('Request URL = ' + request_url)
response = requests.get(request_url, headers=headers)
print('\nRESPONSE++++++++++++++++++++++++++++++++++++')
print('Response code: %d\n' % response.status_code)

Download IDT programmatically 66



FreeRTOS User Guide

print(response.text)

download_url = response.json()["LatestBk"]["DownloadURL"]
r = requests.get(download_url)
open('devicetester.zip', 'wb').write(r.content)

Use IDT with FreeRTOS qualification suite 2.0 (FRQ 2.0)

The FreeRTOS qualification suite 2.0 is an updated version of FreeRTOS qualification suite. We 
recommend developers to use FRQ 2.0 because it consists of relevant test cases to qualify devices 
that run FreeRTOS Long Term Support (LTS) libraries.

IDT for FreeRTOS verifies the port of FreeRTOS on your micro-controller, and if it communicates 
effectively with AWS IoT. Specifically, it verifies the porting layer interfaces with the FreeRTOS 
libraries, and if FreeRTOS test repositories are implemented correctly. It also performs end-to-end 
tests with AWS IoT Core. The tests run by IDT for FreeRTOS are defined in the FreeRTOS GitHub 
repository.

IDT for FreeRTOS run tests as embedded applications that it flashes on the microcontroller device 
under test. The application binary images include FreeRTOS, the ported FreeRTOS interfaces, and 
board device drivers. The purpose of the tests is to verify that the ported FreeRTOS interfaces 
function correctly on top of your device drivers.

IDT for FreeRTOS generates test reports that you can submit to AWS IoT to get your hardware 
listed on the AWS Partner Device Catalog. For more information, see AWS Device Qualification 
Program.

IDT for FreeRTOS runs on a host computer (Windows, macOS, or Linux) that is connected to the 
device under testing. IDT configures and orchestrates test cases and aggregates results. It also 
provides a command line interface to manage running the tests.

In order to test your device, IDT for FreeRTOS creates resources such as AWS IoT things, FreeRTOS 
groups, Lambda functions. To create these resources, IDT for FreeRTOS uses the AWS credentials 
configured in the config.json to make API calls on your behalf. These resources are provisioned 
at various times during a test.

When you run IDT for FreeRTOS on your host computer, it performs the following steps:

1. Loads and validates your device and credentials configuration.

2. Performs selected tests with the required local and cloud resources.

Use IDT with FreeRTOS qualification suite 2.0 (FRQ 2.0) 67

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://aws.amazon.com/partners/dqp/
https://aws.amazon.com/partners/dqp/


FreeRTOS User Guide

3. Cleans up local and cloud resources.

4. Generates tests reports that indicate if your board passed the tests required for qualification.

Topics

• Prerequisites

• Preparing to test your microcontroller board for the first time

• Use the IDT for FreeRTOS user interface to run the FreeRTOS qualification suite 2.0 (FRQ 2.0)

• Running the FreeRTOS qualification 2.0 suite

• Understanding results and logs

Prerequisites

This section describes the prerequisites for testing microcontrollers with AWS IoT Device Tester.

Prepare for FreeRTOS qualification

Note

AWS IoT Device Tester for FreeRTOS strongly recommends using the latest patch release of 
the most recently FreeRTOS-LTS version.

IDT for FRQ 2.0 is a qualification for FreeRTOS. Before running IDT FRQ 2.0 for qualification, you 
must complete Qualifying your board in the FreeRTOS Qualification Guide. To port libraries, tests, 
and setup the manifest.yml, see Porting the FreeRTOS libraries in the FreeRTOS Porting Guide. 
FRQ 2.0 contains a different process for qualification. See Latest changes in qualification in the
FreeRTOS qualification guide for details.

The FreeRTOS-Libraries-Integration-Tests repository must be present for IDT to run. See the
README.md on how to clone and port this repository to your source project. FreeRTOS-Libraries-
Integration-Tests must include the manifest.yml located in the root of your project, for IDT to 
run.

Note

IDT is dependent on the tests repository's implementation of UNITY_OUTPUT_CHAR. 
The test output logs and the device logs must not interleave with each other. See 

Prerequisites 68

https://docs.aws.amazon.com/freertos/latest/qualificationguide/freertos-qualification.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/latest-changes.html
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-library-logging-macros.html


FreeRTOS User Guide

Implementing the library logging macros section in the FreeRTOS Porting Guide for further 
details.

Download IDT for FreeRTOS

Every version of FreeRTOS has a corresponding version of IDT for FreeRTOS to perform 
qualification tests. Download the appropriate version of IDT for FreeRTOS from  Supported 
versions of AWS IoT Device Tester for FreeRTOS.

Extract IDT for FreeRTOS to a location on the file system where you have read and write 
permissions. Since Microsoft Windows has a character limit for the path length, extract IDT for 
FreeRTOS into a root directory such as C:\ or D:\.

Note

Multiple users must not run IDT from a shared location, such as an NFS directory or 
a Windows network shared folder. This will result in crashes or data corruption. We 
recommend that you extract the IDT package to a local drive.

Download Git

IDT must have Git installed as a prerequisite to ensure source code integrity.

Follow the instructions in the GitHub guide to install Git. To verify the current installed version of 
Git, enter the command git --version at the terminal.

Warning

IDT uses Git to align with a directory's status of clean or dirty. If Git is not installed, the
FreeRTOSIntegrity test groups will either fail, or won't run as expected. If IDT returns an 
error such as git executable not found or git command not found, install or re-
install Git and try again.

Prerequisites 69

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-library-logging-macros.html
https://docs.aws.amazon.com/freertos/latest/userguide/dev-test-versions-afr.html
https://docs.aws.amazon.com/freertos/latest/userguide/dev-test-versions-afr.html
https://github.com/git-guides/install-git


FreeRTOS User Guide

Create and configure an AWS account

Note

The full IDT qualification suite is supported only in the following AWS Regions

• US East (N. Virginia)

• US West (Oregon)

• Asia Pacific (Tokyo)

• Europe (Ireland)

In order to test your device, IDT for FreeRTOS creates resources like AWS IoT things, FreeRTOS 
groups and Lambda functions. To create those resources, IDT for FreeRTOS requires you to create 
and configure an AWS account, and an IAM policy that grants IDT for FreeRTOS permission to 
access resources on your behalf while running tests.

The following steps are to create and configure your AWS account.

1. If you already have an AWS account, skip to the next step. Else create an AWS account.

2. Follow the steps in  Creating IAM roles. Do not add permissions or policies at this time.

3. To run OTA qualification tests, go to Step 4. Else go to Step 5.

4. Attach the OTA IAM permissions inline policy to your IAM role.

a.
Important

The following policy template grants IDT permission to create roles, create 
policies, and attach policies to roles. IDT for FreeRTOS uses these permissions for 
tests that create roles. Although the policy template doesn't provide administrator 
privileges to the user, the permissions can be used to gain administrator access to 
your AWS account.

b. Follow the steps below to attach the necessary permissions to your IAM role:

i. On the Permissions page, choose Add permissions.

ii. Choose Create inline policy.

Prerequisites 70

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html


FreeRTOS User Guide

iii. Choose the JSON tab and copy the following permissions in to the JSON text box. Use 
the template under Most Regions if you are not in the China region. If you are in the 
China region, use the template under Beijing and Ningxia Regions.

Most Regions

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "iotdeviceadvisor:*", 
            "Resource": [ 
                "arn:aws:iotdeviceadvisor:*:*:suiterun/*/*", 
                "arn:aws:iotdeviceadvisor:*:*:suitedefinition/*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "iam:PassRole", 
            "Resource": "arn:aws:iam::*:role/idt*", 
            "Condition": { 
                "StringEquals": { 
                    "iam:PassedToService": 
 "iotdeviceadvisor.amazonaws.com" 
                } 
            } 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "execute-api:Invoke*", 
                "iam:ListRoles", 
                "iot:Connect",   
                "iot:CreateJob", 
                "iot:DeleteJob", 
                "iot:DescribeCertificate",  
                "iot:DescribeEndpoint", 
                "iot:DescribeJobExecution", 
                "iot:DescribeJob",                                  
                "iot:DescribeThing", 
                "iot:GetPolicy", 
                "iot:ListAttachedPolicies", 

Prerequisites 71



FreeRTOS User Guide

                "iot:ListCertificates", 
                "iot:ListPrincipalPolicies", 
                "iot:ListThingPrincipals", 
                "iot:ListThings", 
                "iot:Publish",     
                "iot:UpdateThingShadow",                 
                "logs:CreateLogGroup", 
                "logs:CreateLogStream", 
                "logs:DescribeLogGroups", 
                "logs:DescribeLogStreams", 
                "logs:PutLogEvents", 
                "logs:PutRetentionPolicy" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "iotdeviceadvisor:*", 
            "Resource": "*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "logs:DeleteLogGroup", 
            "Resource": "arn:aws:logs:*:*:log-group:/aws/iot/
deviceadvisor/*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "logs:GetLogEvents", 
            "Resource": "arn:aws:logs:*:*:log-group:/aws/iot/
deviceadvisor/*:log-stream:*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "iam:CreatePolicy", 
                "iam:DetachRolePolicy", 
                "iam:DeleteRolePolicy", 
                "iam:DeletePolicy", 
                "iam:CreateRole", 
                "iam:DeleteRole", 
                "iam:AttachRolePolicy" 
            ], 
            "Resource": [ 

Prerequisites 72



FreeRTOS User Guide

                "arn:aws:iam::*:policy/idt*", 
                "arn:aws:iam::*:role/idt*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ssm:GetParameters" 
            ], 
            "Resource": [ 
                "arn:aws:ssm:*::parameter/aws/service/ami-amazon-linux-
latest/amzn2-ami-hvm-x86_64-gp2" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:DescribeInstances", 
                "ec2:RunInstances", 
                "ec2:CreateSecurityGroup", 
                "ec2:CreateTags", 
                "ec2:DeleteTags" 
            ], 
            "Resource": [ 
                "*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:CreateKeyPair", 
                "ec2:DeleteKeyPair" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:key-pair/idt-ec2-ssh-key-*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Condition": { 
                "StringEqualsIgnoreCase": { 
                    "aws:ResourceTag/Owner": "IoTDeviceTester" 
                } 
            }, 

Prerequisites 73



FreeRTOS User Guide

            "Action": [ 
                "ec2:TerminateInstances", 
                "ec2:DeleteSecurityGroup", 
                "ec2:AuthorizeSecurityGroupIngress", 
                "ec2:RevokeSecurityGroupIngress" 
            ], 
            "Resource": [ 
                "*" 
            ] 
        } 
    ]
}

Beijing and Ningxia Regions

The following policy template can be used in the Beijing and Ningxia Regions.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "iam:CreatePolicy", 
                "iam:DetachRolePolicy", 
                "iam:DeleteRolePolicy", 
                "iam:DeletePolicy", 
                "iam:CreateRole", 
                "iam:DeleteRole", 
                "iam:AttachRolePolicy" 
            ], 
            "Resource": [ 
                "arn:aws-cn:iam::*:policy/idt*", 
                "arn:aws-cn:iam::*:role/idt*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ssm:GetParameters" 
            ], 
            "Resource": [ 

Prerequisites 74



FreeRTOS User Guide

                "arn:aws-cn:ssm:*::parameter/aws/service/ami-amazon-
linux-latest/amzn2-ami-hvm-x86_64-gp2" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:DescribeInstances", 
                "ec2:RunInstances", 
                "ec2:CreateSecurityGroup", 
                "ec2:CreateTags", 
                "ec2:DeleteTags" 
            ], 
            "Resource": [ 
                "*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:CreateKeyPair", 
                "ec2:DeleteKeyPair" 
            ], 
            "Resource": [ 
                "arn:aws-cn:ec2:*:*:key-pair/idt-ec2-ssh-key-*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Condition": { 
                "StringEqualsIgnoreCase": { 
                    "aws-cn:ResourceTag/Owner": "IoTDeviceTester" 
                } 
            }, 
            "Action": [ 
                "ec2:TerminateInstances", 
                "ec2:DeleteSecurityGroup", 
                "ec2:AuthorizeSecurityGroupIngress", 
                "ec2:RevokeSecurityGroupIngress" 
            ], 
            "Resource": [ 
                "*" 
            ] 
        }        

Prerequisites 75



FreeRTOS User Guide

    ]
}

iv. When you're finished, choose Review policy.

v. Enter IDTFreeRTOSIAMPermissions as the policy name.

vi. Choose Create policy.

5. Attach AWSIoTDeviceTesterForFreeRTOSFullAccess to your IAM role.

a. To attach the necessary permissions to your IAM role:

i. On the Permissions page, choose Add permissions.

ii. Choose Attach policies.

iii. Search for the AWSIoTDeviceTesterForFreeRTOSFullAccess policy. Check the box.

b. Choose Add permissions.

6. Export credentials for IDT. See Getting IAM role credentials for CLI access for details.

AWS IoT Device Tester managed policy

The AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following 
AWS IoT Device Tester permissions for version checking, auto update features, and collection of 
metrics.

• iot-device-tester:SupportedVersion

Grants AWS IoT Device Tester permission to fetch the list of supported products, test suites and 
IDT versions.

• iot-device-tester:LatestIdt

Grants AWS IoT Device Tester permission to fetch the latest IDT version available for download.

• iot-device-tester:CheckVersion

Grants AWS IoT Device Tester permission to check version compatibility for IDT, test suites and 
products.

• iot-device-tester:DownloadTestSuite

Grants AWS IoT Device Tester permission to download test suite updates.

• iot-device-tester:SendMetrics
Prerequisites 76

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html


FreeRTOS User Guide

Grants AWS permission to collect metrics about AWS IoT Device Tester internal usage.

(Optional) Install the AWS Command Line Interface

You might prefer to use the AWS CLI to perform some operations. If you don't have the AWS CLI 
installed, follow the instructions at Install the AWS CLI.

Configure the AWS CLI for the AWS Region you want to use by running aws configure from a 
command line. For information about the AWS Regions that support IDT for FreeRTOS, see AWS 
Regions and Endpoints. For more information about aws configure see  Quick configuration with
aws configure.

Preparing to test your microcontroller board for the first time

You can use IDT for FreeRTOS to test your implementation of the FreeRTOS libraries. After you 
have ported the FreeRTOS libraries for your board’s device drivers, use AWS IoT Device Tester to 
run the qualification tests on your microcontroller board.

Add library porting layers and implement a FreeRTOS tests repository

To port FreeRTOS for your device, see the FreeRTOS Porting Guide. When implementing the 
FreeRTOS tests repository and porting the FreeRTOS layers, you must provide a manifest.yml
with paths to each library, including the tests repository. This file will be in the root directory of 
your source code. See  manifest file instructions for details.

Configure your AWS credentials

You need to configure your AWS credentials for AWS IoT Device Tester to communicate 
with the AWS Cloud. For more information, see Set up AWS Credentials and Region for 
Development. Valid AWS credentials are specified in the devicetester_extract_location/
devicetester_freertos_[win|mac|linux]/configs/config.json configuration file.

"auth": { 
   "method": "environment"
}

"auth": { 
    "method": "file", 
    "credentials": { 

Preparing to test your microcontroller board for the first time 77

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/freertos/latest/portingguide/porting-guide.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/afq-checklist-manifest-instr.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html


FreeRTOS User Guide

        "profile": "<your-aws-profile>" 
    }
}

The auth attribute of the config.json file has a method field that controls AWS authentication, 
and can be declared as either file or environment. Setting the field to environment pulls your AWS 
credentials from your host machine’s environment variables. Setting the field to file imports a 
specified profile from the .aws/credentials config file.

Create a device pool in IDT for FreeRTOS

Devices to be tested are organized in device pools. Each device pool consists of one or more 
identical devices. You can configure IDT for FreeRTOS to test a single device, or multiple devices 
in a pool. To accelerate the qualification process, IDT for FreeRTOS can test devices with the same 
specifications in parallel. It uses a round-robin method to execute a different test group on each 
device in a device pool.

The device.json file has an array in its top level. Each array attribute is a new device pool. Each 
device pool has a devices array attribute, which has multiple devices declared. In the template, 
there is a device pool and only one device in that device pool. You can add one or more devices to a 
device pool by editing the devices section of the device.json template in the configs folder.

Note

All devices in the same pool must be of the same technical specification and SKU. To 
enable parallel builds of the source code for different test groups, IDT for FreeRTOS 
copies the source code to a results folder inside the IDT for FreeRTOS extracted folder. 
You must reference the source code path in your build or flash command using the
testdata.sourcePath variable. IDT for FreeRTOS replaces this variable with a temporary 
path of the copied source code. For more information, see IDT for FreeRTOS variables.

The following is an example device.json file was used to create a device pool with multiple 
devices.

[ 
    { 
        "id": "pool-id", 
        "sku": "sku", 
        "features": [ 

Preparing to test your microcontroller board for the first time 78



FreeRTOS User Guide

           { 
              "name": "Wifi", 
              "value": "Yes | No" 
           }, 
           { 
              "name": "Cellular", 
              "value": "Yes | No" 
           }, 
           { 
              "name": "BLE", 
              "value": "Yes | No" 
          }, 
          { 
             "name": "PKCS11", 
             "value": "RSA | ECC | Both" 
          }, 
          { 
              "name": "OTA", 
              "value": "Yes | No", 
              "configs": [ 
              { 
                  "name": "OTADataPlaneProtocol", 
                  "value": "MQTT | HTTP | None" 
              } 
            ] 
          }, 
          { 
             "name": "KeyProvisioning", 
             "value": "Onboard | Import | Both | No" 
          } 
        ], 
        "devices": [ 
          { 
            "id": "device-id", 
            "connectivity": { 
              "protocol": "uart", 
              "serialPort": "/dev/tty*" 
            }, 
            "secureElementConfig" : { 
              "publicKeyAsciiHexFilePath": "absolute-path-to/public-key-txt-file: 
 contains-the-hex-bytes-public-key-extracted-from-onboard-private-key", 
              "publiDeviceCertificateArn": "arn:partition:iot:region:account-
id:resourcetype:resource:qualifier", 
              "secureElementSerialNumber": "secure-element-serialNo-value", 

Preparing to test your microcontroller board for the first time 79



FreeRTOS User Guide

              "preProvisioned"           : "Yes | No", 
              "pkcs11JITPCodeVerifyRootCertSupport": "Yes | No" 
            },          
            "identifiers": [ 
              { 
                "name": "serialNo", 
                "value": "serialNo-value" 
              } 
            ] 
          } 
        ] 
    }
]

The following attributes are used in the device.json file:

id

A user-defined alphanumeric ID that uniquely identifies a pool of devices. Devices that belong 
to a pool must be of the same type. When a suite of tests is running, devices in the pool are 
used to parallelize the workload.

sku

An alphanumeric value that uniquely identifies the board you are testing. The SKU is used to 
track qualified boards.

Note

If you want to list your board in AWS Partner Device Catalog, the SKU you specify here 
must match the SKU that you use in the listing process.

features

An array that contains the device's supported features. AWS IoT Device Tester uses this 
information to select the qualification tests to run.

Supported values are:

Wifi

Indicates if your board has Wi-Fi capabilities.

Preparing to test your microcontroller board for the first time 80



FreeRTOS User Guide

Cellular

Indicates if your board has cellular capabilities.

PKCS11

Indicates the public key cryptography algorithm that the board supports. PKCS11 is required 
for qualification. Supported values are ECC, RSA, and Both. Both indicates the board 
supports both ECC and RSA.

KeyProvisioning

Indicates the method of writing a trusted X.509 client certificate onto your board.

Valid values are Import, Onboard, Both and No. Onboard, Both, or No key provisioning is 
required for qualification. Import alone is not a valid option for qualification.

• Use Import only if your board allows the import of private keys. Selecting Import is 
not a valid configuration for qualification and should be used only for testing purposes, 
specifically with PKCS11 test cases. Onboard, Both or No is required for qualification.

• Use Onboard if your board supports on-board private keys (for example, if your device has 
a secure element, or if you prefer to generate your own device key pair and certificate). 
Make sure you add a secureElementConfig element in each of the device sections and 
put the absolute path to the public key file in the publicKeyAsciiHexFilePath field.

• Use Both if your board supports both importing private keys and on-board key generation 
for key provisioning.

• Use No if your board doesn't support key provisioning. Nois only a valid option when your 
device is also pre-provisioned.

OTA

Indicates if your board supports over-the-air (OTA) update functionality. The
OtaDataPlaneProtocol attribute indicates which OTA dataplane protocol the 
device supports. OTA with either HTTP or MQTT dataplane protocol is required for 
qualification. To skip running OTA tests while testing, set the OTA feature to No and the
OtaDataPlaneProtocol attribute to None. This will not be a qualification run.

BLE

Indicates if your board supports Bluetooth Low Energy (BLE).

devices.id

A user-defined unique identifier for the device being tested.

Preparing to test your microcontroller board for the first time 81



FreeRTOS User Guide

devices.connectivity.serialPort

The serial port of the host computer used to connect to the devices being tested.

devices.secureElementConfig.PublicKeyAsciiHexFilePath

Required if your board is NOT pre-provisioned or PublicDeviceCertificateArn
is not provided. Since Onboardis a required type of Key Provisioning, this field is currently 
required for the FullTransportInterfaceTLS test group. If your device is pre-provisioned,
PublicKeyAsciiHexFilePath is optional and need not be included.

The following block is an absolute path to the file that contains the hex bytes public key 
extracted from Onboard private key.

3059 3013 0607 2a86 48ce 3d02 0106 082a
8648 ce3d 0301 0703 4200 04cd 6569 ceb8
1bb9 1e72 339f e8cf 60ef 0f9f b473 33ac
6f19 1813 6999 3fa0 c293 5fae 08f1 1ad0
41b7 345c e746 1046 228e 5a5f d787 d571
dcb2 4e8d 75b3 2586 e2cc 0c 

If your public key is in .der format, you can hex encode the public key directly to generate the 
hex file.

To generate the hex file from a .der public key, enter the following xxd command:

xxd -p pubkey.der > outFile

If your public key is in .pem format, you can extract the base64 encoded headers and footers 
and decode it into binary format. Then, you hex encode the binary string to generate the hex 
file.

To generate a hex file for a .pem public key, do the following:

1. Run the following base64 command to remove the base64 header and footer from the 
public key. The decoded key, named base64key, is then output to the file pubkey.der:

base64 —decode base64key > pubkey.der

2. Run the following xxd command to convert pubkey.der to hex format. The resulting key 
is saved as outFile

Preparing to test your microcontroller board for the first time 82



FreeRTOS User Guide

xxd -p pubkey.der > outFile

devices.secureElementConfig.PublicDeviceCertificateArn

The ARN of the certificate from your secure element that is uploaded to AWS IoT Core. For 
information about uploading your certificate to AWS IoT Core, see X.509 client certificates in 
the AWS IoT Developer Guide.

devices.secureElementConfig.SecureElementSerialNumber

(Optional) The serial number of the secure element. The serial number is optionally used to 
create device certificates for JITR key provisioning.

devices.secureElementConfig.preProvisioned

(Optional) Set to "Yes" if the device has a pre-provisioned secure element with locked-down 
credentials, that cannot import, create, or destroy objects. If this attribute is set to Yes, you 
must provide the corresponding pkcs11 labels.

devices.secureElementConfig.pkcs11JITPCodeVerifyRootCertSupport

(Optional) Set to Yes if the device’s corePKCS11 implementation supports storage for JITP. This 
will enable the JITP codeverify test when testing core PKCS 11, and requires code verification 
key, JITP certificate, and root certificate PKCS 11 labels to be provided.

identifiers

(Optional) An array of arbitrary name-value pairs. You can use these values in the build and 
flash commands described in the next section.

Configure build, flash, and test settings

IDT for FreeRTOS builds and flashes tests on to your board automatically. To enable this, you 
must configure IDT to run the build and flash commands for your hardware. The build and flash 
command settings are configured in the userdata.json template file located in the config
folder.

Configure settings for testing devices

Build, flash, and test settings are made in the configs/userdata.json file. The following JSON 
example shows how you can configure IDT for FreeRTOS to test multiple devices:

Preparing to test your microcontroller board for the first time 83

https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html


FreeRTOS User Guide

{ 
    "sourcePath": "</path/to/freertos>", 
    "retainModifiedSourceDirectories": true | false, 
    "freeRTOSVersion": "<freertos-version>", 
    "freeRTOSTestParamConfigPath": "{{testData.sourcePath}}/path/from/source/path/to/
test_param_config.h", 
    "freeRTOSTestExecutionConfigPath": "{{testData.sourcePath}}/path/from/source/path/
to/test_execution_config.h", 
    "buildTool": { 
        "name": "your-build-tool-name", 
        "version": "your-build-tool-version", 
        "command": [ 
            "<build command> -any-additional-flags {{testData.sourcePath}}" 
        ] 
    }, 
    "flashTool": { 
        "name": "your-flash-tool-name", 
        "version": "your-flash-tool-version", 
        "command": [ 
            "<flash command> -any-additional-flags {{testData.sourcePath}} -any-
additional-flags" 
        ] 
    }, 
    "testStartDelayms": 0, 
    "echoServerConfiguration": { 
      "keyGenerationMethod": "EC | RSA", 
      "serverPort": 9000       
    }, 
    "otaConfiguration": { 
        "otaE2EFirmwarePath": "{{testData.sourcePath}}/relative-path-to/ota-image-
generated-in-build-process", 
        "otaPALCertificatePath": "/path/to/ota/pal/certificate/on/device", 
        "deviceFirmwarePath" : "/path/to/firmware/image/name/on/device", 
        "codeSigningConfiguration": { 
            "signingMethod": "AWS | Custom", 
            "signerHashingAlgorithm": "SHA1 | SHA256", 
            "signerSigningAlgorithm": "RSA | ECDSA", 
            "signerCertificate": "arn:partition:service:region:account-
id:resource:qualifier | /absolute-path-to/signer-certificate-file", 
            "untrustedSignerCertificate": "arn:partition:service:region:account-
id:resourcetype:resource:qualifier", 
            "signerCertificateFileName": "signerCertificate-file-name", 
            "compileSignerCertificate": true | false, 

Preparing to test your microcontroller board for the first time 84



FreeRTOS User Guide

            // ***********Use signerPlatform if you choose AWS for 
 signingMethod*************** 
            "signerPlatform": "AmazonFreeRTOS-Default | AmazonFreeRTOS-TI-CC3220SF"     
         
            ] 
         }    
    }, 
    ********** 
    This section is used for PKCS #11 labels of private key, public key, device 
 certificate, code verification key, JITP certificate, and root certificate. 
    When configuring PKCS11, you set up labels and you must provide the labels of the 
 device certificate, public key,  
    and private key for the key generation type (EC or RSA) it was created with. If 
 your device supports PKCS11 storage of JITP certificate,  
    code verification key, and root certificate, set 
 'pkcs11JITPCodeVerifyRootCertSupport' to 'Yes' in device.json and provide the 
 corresponding labels. 
    ********** 
    "pkcs11LabelConfiguration":{ 
        "pkcs11LabelDevicePrivateKeyForTLS": "<device-private-key-label>", 
        "pkcs11LabelDevicePublicKeyForTLS": "<device-public-key-label>", 
        "pkcs11LabelDeviceCertificateForTLS": "<device-certificate-label>", 
        "pkcs11LabelPreProvisionedECDevicePrivateKeyForTLS": "<preprovisioned-ec-
device-private-key-label>", 
        "pkcs11LabelPreProvisionedECDevicePublicKeyForTLS": "<preprovisioned-ec-device-
public-key-label>", 
        "pkcs11LabelPreProvisionedECDeviceCertificateForTLS": "<preprovisioned-ec-
device-certificate-label>", 
        "pkcs11LabelPreProvisionedRSADevicePrivateKeyForTLS": "<preprovisioned-rsa-
device-private-key-label>", 
        "pkcs11LabelPreProvisionedRSADevicePublicKeyForTLS": "<preprovisioned-rsa-
device-public-key-label>", 
        "pkcs11LabelPreProvisionedRSADeviceCertificateForTLS": "<preprovisioned-rsa-
device-certificate-label>", 
        "pkcs11LabelCodeVerifyKey": "<code-verification-key-label>", 
        "pkcs11LabelJITPCertificate": "<JITP-certificate-label>", 
        "pkcs11LabelRootCertificate": "<root-certificate-label>" 
     }    
  }

The following lists the attributes used in userdata.json:

Preparing to test your microcontroller board for the first time 85



FreeRTOS User Guide

 sourcePath

The path to the root of the ported FreeRTOS source code.

 retainModifiedSourceDirectories

(Optional) Checks if to retain the modified source directories used during building and flashing 
for debugging purposes. If set to true, the modified source directories are named retainedSrc 
and found within the results log folders in each test group run. If not included, the field defaults 
to false.

 freeRTOSTestParamConfigPath

The path to test_param_config.h file for FreeRTOS-Libraries-Integration-Tests integration. 
This file must use the {{testData.sourcePath}} placeholder variable to make it relative 
to the source code root. AWS IoT Device Tester uses the parameters in this file to configure the 
tests.

 freeRTOSTestExecutionConfigPath

The path to test_execution_config.h file for FreeRTOS-Libraries-Integration-Tests 
integration. This file must use the {{testData.sourcePath}} placeholder variable to make 
it relative to the repository root. AWS IoT Device Tester uses this file to control which tests must 
run.

 freeRTOSVersion

The version of FreeRTOS including the patch version used in your implementation. See
Supported versions of AWS IoT Device Tester for FreeRTOS for the FreeRTOS versions 
compatible with AWS IoT Device Tester for FreeRTOS.

 buildTool

The command to build your source code. All references to the source code path 
in the build command must be replaced by the AWS IoT Device Tester variable
{{testData.sourcePath}}. Use the {{config.idtRootPath}} placeholder to reference a 
build script relative to the AWS IoT Device Tester root path.

 flashTool

The command to flash an image to your device. All references to the source code 
path in the flash command must be replaced by the AWS IoT Device Tester variable
{{testData.sourcePath}}. Use the {{config.idtRootPath}} placeholder to reference a 
flash script relative to the AWS IoT Device Tester root path.

Preparing to test your microcontroller board for the first time 86

https://docs.aws.amazon.com/freertos/latest/userguide/dev-test-versions-afr.html


FreeRTOS User Guide

Note

The new integration tests structure with FRQ 2.0 doesn't require path variables such 
as {{enableTests}} and {{buildImageName}}. The OTA End to End tests are run 
with the config templates provided in the  FreeRTOS-Libraries-Integration-Tests GitHub 
repository. If the files in the GitHub repository are present in your parent source project, 
the source code isn't changed between tests. If a different build image for OTA End 
to End is needed, you must build this image in the build script and specify it in the
userdata.json file specified under otaConfiguration.

 testStartDelayms

Specifies how many milliseconds the FreeRTOS test runner will wait before starting to run tests. 
This can be useful if the device under test begins to output important test information before 
IDT has a chance to connect and start logging due to network or other latency issues. This value 
is applicable to FreeRTOS test groups only, and not to other test groups that do not utilize the 
FreeRTOS test runner, such as the OTA tests. If you receive an error related to expected 10 but 
received 5, this field should be set to 5000.

 echoServerConfiguration

The configuration to setup the echo server for the TLS test. This field is required.

keyGenerationMethod

The echo server is configured with this option. The options are EC, or RSA.

serverPort

The port number on which the echo server runs.

 otaConfiguration

The configuration for OTA PAL and OTA E2E tests. This field is required.

otaE2EFirmwarePath

Path to the OTA bin image that IDT uses for the OTA End to End tests.

otaPALCertificatePath

The path to the certificate for OTA PAL test on device. This is used to verify the signature. 
For example, ecdsa-sha256-signer.crt.pem.

Preparing to test your microcontroller board for the first time 87

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/config_template/


FreeRTOS User Guide

deviceFirmwarePath

The path to the hard coded name for the firmware image to boot. If your device does NOT 
use the file system for firmware boot, specify this field as 'NA'. If your device uses the file 
system for firmware boot, specify the path or name to the firmware boot image.

codeSigningConfiguration

signingMethod

The code signing method. Possible values are AWS or Custom.

Note

For the Beijing and Ningxia Regions, use Custom. AWS code signing is not 
supported in that region.

signerHashingAlgorithm

The hashing algorithm supported on the device. Possible values are SHA1 or SHA256.

signerSigningAlgorithm

The signing algorithm supported on the device. Possible values are RSA or ECDSA.

signerCertificate

The trusted certificate used for OTA. For the AWS code signing method, use the Amazon 
Resource Name (ARN) for the trusted certificate uploaded to the AWS Certificate 
Manager. For the Custom code signing method, use the absolute path to the signer 
certificate file. For information about creating a trusted certificate, see  Create a code-
signing certificate.

untrustedSignerCertificate

The ARN or filepath for a second certificate used in some OTA tests as an untrusted 
certificate. For information about creating a certificate, see  Create a code-signing 
certificate.

signerCertificateFileName

The file name of the code signing certificate on the device. This value must match the file 
name that you provided when you ran the aws acm import-certificate command.

Preparing to test your microcontroller board for the first time 88

https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com//freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com//freertos/latest/userguide/ota-code-sign-cert.html


FreeRTOS User Guide

compileSignerCertificate

Boolean value that determines the status of the signature verification certificate. Valid 
values are true and false.

Set this value to true if the code signer signature verification certificate is not 
provisioned or flashed. It must be compiled into the project. AWS IoT Device Tester 
fetches the trusted certificate and compiles it into aws_codesigner_certificate.h.

signerPlatform

The signing and hashing algorithm that AWS Code Signer uses while creating the OTA 
update job. Currently, the possible values for this field are AmazonFreeRTOS-TI-
CC3220SF and AmazonFreeRTOS-Default.

• Choose AmazonFreeRTOS-TI-CC3220SF if SHA1 and RSA.

• Choose AmazonFreeRTOS-Default if SHA256 and ECDSA.

• If you need SHA256 | RSA or SHA1 | ECDSA for your configuration, contact us for 
further support.

• Configure signCommand if you chose Custom for signingMethod.

signCommand

Two placeholders {{inputImageFilePath}} and {{outputSignatureFilePath}}
are required in the command. {{inputImageFilePath}} is the file path of the image 
built by IDT to be signed. {{outputSignatureFilePath}} is the file path of the 
signature which will be generated by the script.

 pkcs11LabelConfiguration

PKCS11 label configuration requires at least one set of labels of device certificate label, public 
key label, and private key label to run the PKCS11 test groups. The required PKCS11 labels are 
based on your device configuration in the device.json file. If pre-provisioned is set to Yes in
device.json, then the required labels must be one of the below depending on what's chosen 
for the PKCS11 feature.

• PreProvisionedEC

• PreProvisionedRSA

If pre-provisioned is set to No in device.json, then the required labels are:

Preparing to test your microcontroller board for the first time 89



FreeRTOS User Guide

• pkcs11LabelDevicePrivateKeyForTLS

• pkcs11LabelDevicePublicKeyForTLS

• pkcs11LabelDeviceCertificateForTLS

The following three labels are required only if you select Yes for
pkcs11JITPCodeVerifyRootCertSupport in your device.json file.

• pkcs11LabelCodeVerifyKey

• pkcs11LabelRootCertificate

• pkcs11LabelJITPCertificate

The values for these fields should match the values defined in the FreeRTOS Porting Guide.

pkcs11LabelDevicePrivateKeyForTLS

(Optional) This label is used for the PKCS #11 label of the private key. For devices with 
onboard and import support of key provisioning, this label is used for testing. This label may 
be different than the one defined for the pre-provisioned case. If you have key provisioning 
set to No and pre-provisioned set to Yes, in device.json, this will be undefined.

pkcs11LabelDevicePublicKeyForTLS

(Optional) This label is used for the PKCS #11 label of the public key. For devices with 
onboard and import support of key provisioning, this label is used for testing. This label may 
be different than the one defined for pre-provisioned case. If you have key provisioning set 
to No and pre-provisioned set to Yes, in device.json, this will be undefined.

pkcs11LabelDeviceCertificateForTLS

(Optional) This label is used for the PKCS #11 label of the device certificate. For devices with 
onboard and import support of key provisioning, this label will be used for testing. This label 
may be different than the one defined for pre-provisioned case. If you have key provisioning 
set to No and pre-provisioned set to Yes, in device.json, this will be undefined.

pkcs11LabelPreProvisionedECDevicePrivateKeyForTLS

(Optional) This label is used for the PKCS #11 label of the private key. For devices 
with secure elements or hardware limitations, this will have a different label to 
preserve AWS IoT credentials. If your device supports pre-provisioning with an EC 
key, provide this label. When preProvisioned is set to Yes in device.json, this label,

Preparing to test your microcontroller board for the first time 90

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html


FreeRTOS User Guide

pkcs11LabelPreProvisionedRSADevicePrivateKeyForTLS, or both must be 
provided. This label may be different than the one defined for onboard and import cases.

pkcs11LabelPreProvisionedECDevicePublicKeyForTLS

(Optional) This label is used for the PKCS #11 label of the public key. For devices 
with secure elements or hardware limitations, this will have a different label to 
preserve AWS IoT credentials. If your device supports pre-provisioning with an EC 
key, provide this label. When preProvisioned is set to Yes in device.json, this label,
pkcs11LabelPreProvisionedRSADevicePublicKeyForTLS, or both must be provided. 
This label may be different than the one defined for onboard and import cases.

pkcs11LabelPreProvisionedECDeviceCertificateForTLS

(Optional) This label is used for the PKCS #11 label of the device certificate. For 
devices with secure elements or hardware limitations, this will have a different label 
to preserve AWS IoT credentials. If your device supports pre-provisioning with an EC 
key, provide this label. When preProvisioned is set to Yes in device.json, this label,
pkcs11LabelPreProvisionedRSADeviceCertificateForTLS, or both must be 
provided. This label may be different than the one defined for onboard and import cases.

pkcs11LabelPreProvisionedRSADevicePrivateKeyForTLS

(Optional) This label is used for the PKCS #11 label of the private key. For devices 
with secure elements or hardware limitations, this will have a different label to 
preserve AWS IoT credentials. If your device supports pre-provisioning with an RSA 
key, provide this label. When preProvisioned is set to Yes in device.json, this label,
pkcs11LabelPreProvisionedECDevicePrivateKeyForTLS, or both must be provided.

pkcs11LabelPreProvisionedRSADevicePublicKeyForTLS

(Optional) This label is used for the PKCS #11 label of the public key. For devices 
with secure elements or hardware limitations, this will have a different label to 
preserve AWS IoT credentials. If your device supports pre-provisioning with an RSA 
key, provide this label. When preProvisioned is set to Yes in device.json, this label,
pkcs11LabelPreProvisionedECDevicePublicKeyForTLS, or both must be provided.

pkcs11LabelPreProvisionedRSADeviceCertificateForTLS

(Optional) This label is used for the PKCS #11 label of the device certificate. For 
devices with secure elements or hardware limitations, this will have a different label 
to preserve AWS IoT credentials. If your device supports pre-provisioning with an RSA 

Preparing to test your microcontroller board for the first time 91



FreeRTOS User Guide

key, provide this label. When preProvisioned is set to Yes in device.json, this label,
pkcs11LabelPreProvisionedECDeviceCertificateForTLS, or both must be 
provided.

pkcs11LabelCodeVerifyKey

(Optional) This label is used for the PKCS #11 label of the code verification key. If your 
device has PKCS #11 storage support of the JITP certificate, code verification key, and 
root certificate, provide this label. When pkcs11JITPCodeVerifyRootCertSupport in
device.json is set to Yes, this label must be provided.

pkcs11LabelJITPCertificate

(Optional) This label is used for the PKCS #11 label of the JITP certificate. If your device has 
PKCS #11 storage support of the JITP certificate, code verification key, and root certificate, 
provide this label. When pkcs11JITPCodeVerifyRootCertSupport in device.json is 
set to Yes, this label must be provided.

IDT for FreeRTOS variables

The commands to build your code and flash the device might require connectivity or other 
information about your devices to run successfully. AWS IoT Device Tester allows you to reference 
device information in flash and build commands using JsonPath. By using simple JsonPath 
expressions, you can fetch the required information specified in your device.json file.

Path variables

IDT for FreeRTOS defines the following path variables that can be used in command lines and 
configuration files:

{{testData.sourcePath}}

Expands to the source code path. If you use this variable, it must be used in both the flash and 
build commands.

{{device.connectivity.serialPort}}

Expands to the serial port.

{{device.identifiers[?(@.name == 'serialNo')].value[0]}}

Expands to the serial number of your device.

Preparing to test your microcontroller board for the first time 92

http://goessner.net/articles/JsonPath/


FreeRTOS User Guide

{{config.idtRootPath}}

Expands to the AWS IoT Device Tester root path.

Use the IDT for FreeRTOS user interface to run the FreeRTOS 
qualification suite 2.0 (FRQ 2.0)

AWS IoT Device Tester for FreeRTOS (IDT for FreeRTOS) includes a web-based user interface (UI) 
where you can interact with the IDT command line application and related configuration files. You 
use the IDT for FreeRTOS UI to create a new configuration, or modify an existing one, for your 
device. You can also use the UI to call the IDT application and run the FreeRTOS tests against your 
device.

For information about how to use the command line to run qualification tests, see Preparing to test 
your microcontroller board for the first time.

This section describes the prerequisites for the IDT for FreeRTOS UI and how to run qualifications 
tests from the UI.

Topics

• Prerequisites

• Configure AWS credentials

• Open the IDT for FreeRTOS UI

• Create a new configuration

• Modify an existing configuration

• Run qualification tests

Prerequisites

To run tests through the AWS IoT Device Tester (IDT) for FreeRTOS UI, you must complete the 
prerequisites on the Prerequisites page for IDT FreeRTOS Qualification (FRQ) 2.x.

Configure AWS credentials

You must configure your IAM user credentials for the AWS user you created in Create and configure 
an AWS account. You can specify your credentials in one of two ways:

• In a credentials file

Use the IDT UI to run the FreeRTOS qualification suite 93



FreeRTOS User Guide

• As environment variables

Configure AWS credentials with a credentials file

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and 
credential files.

The location of the credentials file varies based on the operating system you use:

• macOS and Linux – ~/.aws/credentials

• Windows – C:\Users\UserName\.aws\credentials

Add your AWS credentials to the credentials file in the following format:

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

Note

If you don't use the default AWS profile, you must specify the profile name in the IDT for 
FreeRTOS UI. For more information about profiles, see  Named profiles.

Configure AWS credentials with environment variables

Environment variables are variables maintained by the operating system and used by system 
commands. They're not saved if you close the SSH session. The IDT for FreeRTOS UI uses the
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to store your AWS 
credentials.

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=your_access_key_id

Use the IDT UI to run the FreeRTOS qualification suite 94

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html


FreeRTOS User Guide

set AWS_SECRET_ACCESS_KEY=your_secret_access_key

Open the IDT for FreeRTOS UI

To open the IDT for FreeRTOS UI

1. Download a supported IDT for FreeRTOS version. Then extract the downloaded archive to a 
directory that you have read and write permissions for.

2. Navigate to the IDT for FreeRTOS installation directory:

cd devicetester-extract-location/bin 

3. Run the following command to open the IDT for FreeRTOS UI:

Linux

.devicetester_ui_linux_x86-64

Windows

./devicetester_ui_win_x64-64

macOS

./devicetester_ui_mac_x86-64

Note

In macOS, to allow your system to run the UI, go to System Preferences -> Security 
& Privacy. When you run the tests, you may need to do this three more times. this

The IDT for FreeRTOS UI opens in your default browser. The latest three major versions of the 
following browsers support the UI:

• Google Chrome

• Mozilla Firefox

• Microsoft Edge
Use the IDT UI to run the FreeRTOS qualification suite 95



FreeRTOS User Guide

• Apple Safari for macOS

Note

For a better experience, we recommend Google Chrome or Mozilla Firefox to access the 
IDT for FreeRTOS UI. Microsoft Internet Explorer isn't supported by the UI.

Important

You must configure your AWS credentials before you open the UI. If you haven't 
configured your credentials, close the IDT for FreeRTOS UI browser window, follow the 
steps in Configure AWS credentials, and then reopen the IDT for FreeRTOS UI.

Create a new configuration

If you're a first-time user, you must create a new configuration to set up the JSON configuration 
files that IDT for FreeRTOS requires to run tests. You can then run tests or modify the created 
configuration.

For examples of the config.json, device.json, and userdata.json files, see Preparing to 
test your microcontroller board for the first time.

To create a new configuration

1. In the IDT for FreeRTOS UI, open the navigation menu, and choose Create new configuration.

Use the IDT UI to run the FreeRTOS qualification suite 96



FreeRTOS User Guide

Use the IDT UI to run the FreeRTOS qualification suite 97



FreeRTOS User Guide

2. Follow the configuration wizard to enter the IDT configuration settings used to run 
qualification tests. The wizard configures the following settings in JSON configuration files 
located in the devicetester-extract-location/config directory.

• Device settings – The device pool settings for the devices to be tested. These settings 
are configured in the id and sku fields, and the devices block for the device pool in the
config.json file.

Use the IDT UI to run the FreeRTOS qualification suite 98



FreeRTOS User Guide

• AWS account settings – The AWS account information that IDT for FreeRTOS uses to create 
AWS resources during test runs. These settings are configured in the config.json file.

Use the IDT UI to run the FreeRTOS qualification suite 99



FreeRTOS User Guide

• FreeRTOS implementation – The absolute path to the FreeRTOS repository and ported 
code, and the FreeRTOS version you want to run IDT FRQ on. The paths to the execution 
and parameter config header files from the FreeRTOS-Libraries-Integration-Tests
GitHub repository. The build and flash commands for your hardware that allow IDT to 
build and flash tests onto your board automatically. These settings are configured in the
userdata.json file.

Use the IDT UI to run the FreeRTOS qualification suite 100



FreeRTOS User Guide

• PKCS #11 labels and Echo server – The PKCS #11 labels that correspond to the keys 
provisioned in your hardware based on the key functionality and key provisioning method. 
The echo server configuration settings for the Transport Interface tests. These settings are 
configured in the userdata.json and device.json files.

Use the IDT UI to run the FreeRTOS qualification suite 101

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html


FreeRTOS User Guide

• Over-the-air (OTA) updates – The settings that control OTA functionality tests. These 
settings are configured in the features block of the device.json and userdata.json
files.

Use the IDT UI to run the FreeRTOS qualification suite 102



FreeRTOS User Guide

Use the IDT UI to run the FreeRTOS qualification suite 103



FreeRTOS User Guide

3. On the Review page, verify your configuration information.

After you finish reviewing your configuration, to run your qualification tests, choose Run tests.

Modify an existing configuration

If you have already set up configuration files for IDT for FreeRTOS, you can use the IDT for 
FreeRTOS UI to modify your existing configuration. The existing configuration files must be located 
in the devicetester-extract-location/config directory.

To modify a configuration

1. In the IDT for FreeRTOS UI, open the navigation menu, and choose Edit existing configuration.

The configuration dashboard displays information about your existing configuration settings. 
If a configuration is incorrect or unavailable, the status for that configuration is Error 
validating configuration.

Use the IDT UI to run the FreeRTOS qualification suite 104



FreeRTOS User Guide

2. To modify an existing configuration setting, complete the following steps:

a. Choose the name of a configuration setting to open its settings page.

b. Modify the settings, and then choose Save to regenerate the corresponding configuration 
file.

3. To modify the IDT for FreeRTOS test run settings, choose IDT test run settings in the edit view:

Use the IDT UI to run the FreeRTOS qualification suite 105



FreeRTOS User Guide

After you finish modifying your configuration, verify that all of your configuration settings pass 
validation. If the status for each configuration setting is Valid, you can run your qualification tests 
with this configuration.

Run qualification tests

After you create a configuration for the IDT for FreeRTOS UI you can run your qualification tests.

To run qualification tests

1. In the navigation menu, choose Run tests.

2. Choose Start tests to start the test run. By default, all applicable tests are run for your device 
configuration. IDT for FreeRTOS generates a qualification report when all tests finish.

IDT for FreeRTOS runs the qualification tests. It then displays the test run summary and any errors 
in the Test runner console. After the test run is complete, you can view the test results and logs 
from the following locations:

• Test results are located in the devicetester-extract-location/results/execution-id
directory.

Use the IDT UI to run the FreeRTOS qualification suite 106



FreeRTOS User Guide

• Test logs are located in the devicetester-extract-location/results/execution-id/
logs directory.

For more information about test results and logs, see Understanding results and logs.

Running the FreeRTOS qualification 2.0 suite

Use the AWS IoT Device Tester for FreeRTOS executable to interact with IDT for FreeRTOS. The 
following command line examples show you how to run the qualification tests for a device pool (a 
set of identical devices).

IDT v4.5.2 and later

devicetester_[linux | mac | win] run-suite  \ 

Running the FreeRTOS qualification 2.0 suite 107



FreeRTOS User Guide

    --suite-id suite-id  \ 
    --group-id group-id  \ 
    --pool-id your-device-pool \ 
    --test-id test-id  \ 
    --userdata userdata.json

Runs a suite of tests on a pool of devices. The userdata.json file must be located in the
devicetester_extract_location/devicetester_freertos_[win|mac|linux]/
configs/ directory.

Note

If you're running IDT for FreeRTOS on Windows, use forward slashes (/) to specify the 
path to the userdata.json file.

Use the following command to run a specific test group:

devicetester_[linux | mac | win] run-suite  \ 
    --suite-id FRQ_1.99.0  \ 
    --group-id group-id  \ 
    --pool-id pool-id  \ 
    --userdata userdata.json

The suite-id and pool-id parameters are optional if you're running a single test suite on a 
single device pool (that is, you have only one device pool defined in your device.json file).

Use the following command to run a specific test case in a test group:

devicetester_[linux | mac | win_x86-64] run-suite  \ 
    --group-id group-id  \ 
    --test-id test-id

You can use the list-test-cases command to list the test cases in a test group.

IDT for FreeRTOS command line options

group-id

(Optional) The test groups to run, as a comma-separated list. If not specified, IDT runs all 
test groups in the test suite.

Running the FreeRTOS qualification 2.0 suite 108



FreeRTOS User Guide

pool-id

(Optional) The device pool to test. This is required if you define multiple device pools in
device.json. If you only have one device pool, you can omit this option.

suite-id

(Optional) The test suite version to run. If not specified, IDT uses the latest version in the 
tests directory on your system.

test-id

(Optional) The tests to run, as a comma-separated list. If specified, group-id must specify a 
single group.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id FreeRTOSVersion --
test-id FreeRTOSVersion

h

Use the help option to learn more about run-suite options.

Example

Example

devicetester_[linux | mac | win_x86-64] run-suite -h

IDT for FreeRTOS commands

The IDT for FreeRTOS command supports the following operations:

IDT v4.5.2 and later

help

Lists information about the specified command.

list-groups

Lists the groups in a given suite.

Running the FreeRTOS qualification 2.0 suite 109



FreeRTOS User Guide

list-suites

Lists the available suites.

list-supported-products

Lists the supported products and test suite versions.

list-supported-versions

Lists the FreeRTOS and test suite versions supported by the current IDT version.

list-test-cases

Lists the test cases in a specified group.

run-suite

Runs a suite of tests on a pool of devices.

Use the --suite-id option to specify a test suite version, or omit it to use the latest 
version on your system.

Use the --test-id to run an individual test case.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id FreeRTOSVersion --
test-id FreeRTOSVersion

Note

Starting in IDT v3.0.0, IDT checks online for newer test suites. For more information, 
see Test suite versions.

Understanding results and logs

This section describes how to view and interpret IDT result reports and logs.

Viewing results

While running, IDT writes errors to the console, log files, and test reports. After IDT completes the 
qualification test suite, it writes a test run summary to the console and generates two test reports. 

Understanding results and logs 110



FreeRTOS User Guide

These reports can be found in devicetester-extract-location/results/execution-id/. 
Both reports capture the results from the qualification test suite execution.

The awsiotdevicetester_report.xml is the qualification test report that you submit to AWS 
to list your device in the AWS Partner Device Catalog. The report contains the following elements:

• The IDT for FreeRTOS version.

• The FreeRTOS version that was tested.

• The features of FreeRTOS that are supported by the device based on the tests passed.

• The SKU and the device name specified in the device.json file.

• The features of the device specified in the device.json file.

• The aggregate summary of test case results.

• A breakdown of test case results by libraries that were tested based on the device features.

The FRQ_Report.xml is a report in standard JUnit XML format. You can integrate it into CI/CD 
platforms like Jenkins, Bamboo, and so on. The report contains the following elements:

• An aggregate summary of test case results.

• A breakdown of test case results by libraries that were tested based on the device features.

Interpreting IDT for FreeRTOS results

The report section in awsiotdevicetester_report.xml or FRQ_Report.xml lists the results 
of the tests that are executed.

The first XML tag <testsuites> contains the overall summary of the test execution. For example:

<testsuites name="FRQ results" time="5633" tests="184" failures="0" 
errors="0" disabled="0">

Attributes used in the <testsuites> tag

name

The name of the test suite.

time

The time, in seconds, it took to run the qualification suite.

Understanding results and logs 111

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo


FreeRTOS User Guide

tests

The number of test cases executed.

failures

The number of test cases that were run, but did not pass.

errors

The number of test cases that IDT for FreeRTOS couldn't execute.

disabled

This attribute is not used and can be ignored.

If there are no test case failures or errors, your device meets the technical requirements to run 
FreeRTOS and can interoperate with AWS IoT services. If you choose to list your device in the AWS 
Partner Device Catalog, you can use this report as qualification evidence.

In the event of test case failures or errors, you can identify the test case that failed by reviewing 
the <testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag shows 
the test case result summary for a test group.

<testsuite name="FreeRTOSVersion" package="" tests="1" failures="0" 
time="2" disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with an attribute called skipped that is not 
used and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each 
of the test cases that were executed for a test group. For example:

<testcase classname="FRQ FreeRTOSVersion" name="FreeRTOSVersion" 
attempts="1"></testcase>

Attributes used in the <awsproduct> tag

name

The name of the product being tested.

version

The version of the product being tested.

Understanding results and logs 112



FreeRTOS User Guide

features

The features validated. Features marked as required are required to submit 
your board for qualification. The following snippet shows how this appears in the
awsiotdevicetester_report.xml file.

<feature name="core-freertos" value="not-supported" type="required"></feature>

Features marked as optional are not required for qualification. The following snippets show 
optional features.

<feature name="ota-dataplane-mqtt" value="not-supported" type="optional"></feature>
<feature name="ota-dataplane-http" value="not-supported" type="optional"></feature>

If there are no test failures or errors for the required features, your device meets the technical 
requirements to run FreeRTOS and can interoperate with AWS IoT services. If you want to list 
your device in the AWS Partner Device Catalog, you can use this report as qualification evidence.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the 
test result summary for a test group. For example:

<testsuite name="FreeRTOSVersion" package="" tests="1" failures="1" time="2" 
 disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but has a skipped attribute that is not used 
and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each 
executed test for a test group. For example:

<testcase classname="FreeRTOSVersion" name="FreeRTOSVersion"></testcase>

Attributes used in the <testcase> tag

name

The name of the test case.

attempts

The number of times IDT for FreeRTOS executed the test case.

Understanding results and logs 113

https://devices.amazonaws.com/


FreeRTOS User Guide

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="FRQ FreeRTOSVersion" name="FreeRTOSVersion">  
    <failure type="Failure">Reason for the test case failure</failure>  
    <error>Reason for the test case execution error</error>  
</testcase>

For more information, see Troubleshooting.

Viewing logs

You can find logs that IDT for FreeRTOS generates from test execution in devicetester-
extract-location/results/execution-id/logs. Two sets of logs are generated:

• test_manager.log

Contains logs generated from IDT for FreeRTOS (for example, logs related configuration and 
report generation).

• test_group_id/test_case_id/test_case_id.log

The log file for a test case, including output from the device under test. The log file is named 
according to the test group and test case that was run.

Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0)

Important

As of October 2022, AWS IoT Device Tester for AWS IoT FreeRTOS Qualification (FRQ) 1.0 
does not generate signed qualification reports. You cannot qualify new AWS IoT FreeRTOS 
devices to list in the AWS Partner Device Catalog through the AWS Device Qualification 
Program using IDT FRQ 1.0 versions. While you can't qualify FreeRTOS devices using IDT 
FRQ 1.0, you can continue to test your FreeRTOS devices with FRQ 1.0. We recommend 
that you use IDT FRQ 2.0 to qualify and list FreeRTOS devices in the AWS Partner Device 
Catalog.

You can use IDT for FreeRTOS qualification to verify that the FreeRTOS operating system works 
locally on your device and can communicate with AWS IoT. Specifically, it verifies that the porting 

Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0) 114

https://devices.amazonaws.com/
http://aws.amazon.com/partners/programs/dqp/
http://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/freertos/latest/userguide/lts-idt-freertos-qualification.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/


FreeRTOS User Guide

layer interfaces for the FreeRTOS libraries are implemented correctly. It also performs end-to-end 
tests with AWS IoT Core. For example, it verifies your board can send and receive MQTT messages 
and process them correctly. The tests run by IDT for FreeRTOS are defined in the FreeRTOS GitHub 
repository.

The tests run as embedded applications that are flashed onto your board. The application binary 
images include FreeRTOS, the semiconductor vendor’s ported FreeRTOS interfaces, and board 
device drivers. The purpose of the tests is to verify the ported FreeRTOS interfaces function 
correctly on top of the device drivers.

IDT for FreeRTOS generates test reports that you can submit to AWS IoT to add your hardware to 
the AWS Partner Device Catalog. For more information, see AWS Device Qualification Program.

IDT for FreeRTOS runs on a host computer (Windows, macOS, or Linux) that is connected to the 
board to be tested. IDT executes test cases and aggregates results. It also provides a command line 
interface to manage test execution.

In addition to testing devices, IDT for FreeRTOS creates resources (for example, AWS IoT things, 
FreeRTOS groups, Lambda functions, and so on) to facilitate the qualification process. To create 
these resources, IDT for FreeRTOS uses the AWS credentials configured in the config.json to 
make API calls on your behalf. These resources are provisioned at various times during a test.

When you run IDT for FreeRTOS on your host computer, it performs the following steps:

1. Loads and validates your device and credentials configuration.

2. Performs selected tests with the required local and cloud resources.

3. Cleans up local and cloud resources.

4. Generates tests reports that indicate if your board passed the tests required for qualification.

Topics

• Prerequisites

• Preparing to test your microcontroller board for the first time

• Use the IDT for FreeRTOS user interface to run the FreeRTOS qualification suite

• Running Bluetooth Low Energy tests

• Running the FreeRTOS qualification suite

• Understanding results and logs

Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0) 115

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos
https://aws.amazon.com/partners/dqp/


FreeRTOS User Guide

Prerequisites

This section describes the prerequisites for testing microcontrollers with AWS IoT Device Tester.

Download FreeRTOS

You can download a release of FreeRTOS from GitHub with the following command:

git clone --branch <FREERTOS_RELEASE_VERSION> --recurse-submodules https://github.com/
aws/amazon-freertos.git
cd amazon-freertos
git submodule update --checkout --init --recursive

where <FREERTOS_RELEASE_VERSION> is a version of FreeRTOS (for example, 202007.00) 
corresponding to an IDT version listed in Supported versions of AWS IoT Device Tester for 
FreeRTOS. This ensures you have the full source code, including submodules, and are using the 
correct version of IDT for your version of FreeRTOS, and vice versa.

Windows has a path length limitation of 260 characters. The path structure of FreeRTOS is many 
levels deep, so if you are using Windows, keep your file paths under the 260-character limit. 
For example, clone FreeRTOS to C:\FreeRTOS rather than C:\Users\username\programs
\projects\myproj\FreeRTOS\.

Considerations for LTS qualification (qualification for FreeRTOS that uses LTS libraries)

• In order for your microcontroller to be designated as supporting long-term support (LTS) based 
versions of FreeRTOS in the AWS Partner Device Catalog, you must provide a manifest file. For 
more information, see the  FreeRTOS Qualification Checklist in the FreeRTOS Qualification Guide.

• In order to validate that your microcontroller supports LTS based versions of FreeRTOS and 
qualify it for submission to the AWS Partner Device Catalog, you must use AWS IoT Device Tester 
(IDT) with FreeRTOS Qualification (FRQ) test suite version v1.4.x.

• Support for LTS based versions of FreeRTOS is limited to the 202012.xx version of FreeRTOS.

Download IDT for FreeRTOS

Every version of FreeRTOS has a corresponding version of IDT for FreeRTOS to perform 
qualification tests. Download the appropriate version of IDT for FreeRTOS from Supported versions 
of AWS IoT Device Tester for FreeRTOS.

Prerequisites 116

https://github.com/aws/amazon-freertos
https://docs.aws.amazon.com/freertos/latest/qualificationguide/afq-checklist.html


FreeRTOS User Guide

Extract IDT for FreeRTOS to a location on the file system where you have read and write 
permissions. Because Microsoft Windows has a character limit for the path length, extract IDT for 
FreeRTOS into a root directory such as C:\ or D:\.

Note

We don't recommend that multiple users run IDT from a shared location, such as an 
NFS directory or a Windows network shared folder. This may result in crashes or data 
corruption. We recommend that you extract the IDT package to a local drive.

Create and configure an AWS account

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Prerequisites 117

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/


FreeRTOS User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

Prerequisites 118

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html


FreeRTOS User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

AWS IoT Device Tester managed policy

The AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following 
AWS IoT Device Tester permissions for version checking, auto update features, and collection of 
metrics.

• iot-device-tester:SupportedVersion

Grants AWS IoT Device Tester permission to fetch the list of supported products, test suites and 
IDT versions.

• iot-device-tester:LatestIdt

Grants AWS IoT Device Tester permission to fetch the latest IDT version available for download.

• iot-device-tester:CheckVersion

Grants AWS IoT Device Tester permission to check version compatibility for IDT, test suites and 
products.

• iot-device-tester:DownloadTestSuite

Grants AWS IoT Device Tester permission to download test suite updates.

• iot-device-tester:SendMetrics

Grants AWS permission to collect metrics about AWS IoT Device Tester internal usage.

(Optional) Install the AWS Command Line Interface

You might prefer to use the AWS CLI to perform some operations. If you don't have the AWS CLI 
installed, follow the instructions at Install the AWS CLI.

Configure the AWS CLI for the AWS Region you want to use by running aws configure from a 
command line. For information about the AWS Regions that support IDT for FreeRTOS, see AWS 
Regions and Endpoints. For more information about aws configure see  Quick configuration with
aws configure.

Prerequisites 119

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config


FreeRTOS User Guide

Preparing to test your microcontroller board for the first time

You can use IDT for FreeRTOS to test as you port the FreeRTOS interfaces. After you have ported 
the FreeRTOS interfaces for your board’s device drivers, you use AWS IoT Device Tester to run the 
qualification tests on your microcontroller board.

Add library porting layers

To port FreeRTOS for your device, follow the instructions in the FreeRTOS Porting Guide.

Configure your AWS credentials

You need to configure your AWS credentials for AWS IoT Device Tester to communicate with the 
AWS Cloud. For more information, see Set up AWS Credentials and Region for Development. 
Valid AWS credentials must be specified in the devicetester_extract_location/
devicetester_afreertos_[win|mac|linux]/configs/config.json configuration file.

Create a device pool in IDT for FreeRTOS

Devices to be tested are organized in device pools. Each device pool consists of one or more 
identical devices. You can configure IDT for FreeRTOS to test a single device in a pool or multiple 
devices in a pool. To accelerate the qualification process, IDT for FreeRTOS can test devices with the 
same specifications in parallel. It uses a round-robin method to execute a different test group on 
each device in a device pool.

You can add one or more devices to a device pool by editing the devices section of the
device.json template in the configs folder.

Note

All devices in the same pool must be of same technical specification and SKU.

To enable parallel builds of the source code for different test groups, IDT for FreeRTOS copies the 
source code to a results folder inside the IDT for FreeRTOS extracted folder. The source code path 
in your build or flash command must be referenced using either the testdata.sourcePath or
sdkPath variable. IDT for FreeRTOS replaces this variable with a temporary path of the copied 
source code. For more information see, IDT for FreeRTOS variables.

Preparing to test your microcontroller board for the first time 120

https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html


FreeRTOS User Guide

The following is an example device.json file used to create a device pool with multiple devices.

[ 
    { 
        "id": "pool-id", 
        "sku": "sku", 
        "features": [ 
            { 
                "name": "WIFI", 
                "value": "Yes | No" 
            }, 
            { 
                "name": "Cellular", 
                "value": "Yes | No" 
            }, 
            { 
                "name": "OTA", 
                "value": "Yes | No", 
                "configs": [ 
                    { 
                        "name": "OTADataPlaneProtocol", 
                        "value": "HTTP | MQTT" 
                    } 
                ] 
            }, 
            { 
                "name": "BLE", 
                "value": "Yes | No" 
            }, 
            { 
                "name": "TCP/IP", 
                "value": "On-chip | Offloaded | No" 
            }, 
            { 
                "name": "TLS", 
                "value": "Yes | No" 
            }, 
            { 
                "name": "PKCS11", 
                "value": "RSA | ECC | Both | No" 
            }, 
            { 
                "name": "KeyProvisioning", 
                "value": "Import | Onboard | No" 

Preparing to test your microcontroller board for the first time 121



FreeRTOS User Guide

            } 
        ], 

        "devices": [ 
          { 
            "id": "device-id", 
            "connectivity": { 
              "protocol": "uart", 
              "serialPort": "/dev/tty*" 
            }, 
            ***********Remove the section below if the device does not support onboard 
 key generation*************** 
            "secureElementConfig" : { 
              "publicKeyAsciiHexFilePath": "absolute-path-to/public-key-txt-file: 
 contains-the-hex-bytes-public-key-extracted-from-onboard-private-key", 
              "secureElementSerialNumber": "secure-element-serialNo-value", 
              "preProvisioned"           : "Yes | No" 
            }, 
            
 ********************************************************************************************************** 
            "identifiers": [ 
              { 
                "name": "serialNo", 
                "value": "serialNo-value" 
              } 
            ] 
          } 
        ] 
    }
]

The following attributes are used in the device.json file:

id

A user-defined alphanumeric ID that uniquely identifies a pool of devices. Devices that belong 
to a pool must be of the same type. When a suite of tests is running, devices in the pool are 
used to parallelize the workload.

sku

An alphanumeric value that uniquely identifies the board you are testing. The SKU is used to 
track qualified boards.

Preparing to test your microcontroller board for the first time 122



FreeRTOS User Guide

Note

If you want to list your board in AWS Partner Device Catalog, the SKU you specify here 
must match the SKU that you use in the listing process.

features

An array that contains the device's supported features. AWS IoT Device Tester uses this 
information to select the qualification tests to run.

Supported values are:

TCP/IP

Indicates if your board supports a TCP/IP stack and whether it is supported on-chip (MCU) or 
offloaded to another module. TCP/IP is required for qualification.

WIFI

Indicates if your board has Wi-Fi capabilities. Must be set to No if Cellular is set to Yes.

Cellular

Indicates if your board has cellular capabilities. Must be set to No if WIFI is set to Yes. When 
this feature is set to Yes, the FullSecureSockets test will be executed using AWS t2.micro 
EC2 instances and this may incur additional costs to your account. For more information, see
Amazon EC2 pricing.

TLS

Indicates if your board supports TLS. TLS is required for qualification.

PKCS11

Indicates the public key cryptography algorithm that the board supports. PKCS11 is required 
for qualification. Supported values are ECC, RSA, Both and No. Both indicates the board 
supports both the ECC and RSA algorithms.

KeyProvisioning

Indicates the method of writing a trusted X.509 client certificate onto your board. Valid 
values are Import, Onboard and No. Key provisioning is required for qualification.

Preparing to test your microcontroller board for the first time 123

https://aws.amazon.com/ec2/pricing/


FreeRTOS User Guide

• Use Import if your board allows the import of private keys. IDT will create a private key 
and build this to the FreeRTOS source code.

• Use Onboard if your board supports on-board private key generation (for example, 
if your device has a secure element, or if you prefer to generate your own device 
key pair and certificate). Make sure you add a secureElementConfig element in 
each of the device sections and put the absolute path to the public key file in the
publicKeyAsciiHexFilePath field.

• Use No if your board does not support key provisioning.

OTA

Indicates if your board supports over-the-air (OTA) update functionality. The
OtaDataPlaneProtocol attribute indicates which OTA dataplane protocol the device 
supports. The attribute is ignored if the OTA feature is not supported by the device. When
"Both" is selected, the OTA test execution time is prolonged due to running both MQTT, 
HTTP, and mixed tests.

Note

Starting with IDT v4.1.0, OtaDataPlaneProtocol accepts only HTTP and MQTT as 
supported values.

BLE

Indicates if your board supports Bluetooth Low Energy (BLE).

devices.id

A user-defined unique identifier for the device being tested.

devices.connectivity.protocol

The communication protocol used to communicate with this device. Supported value: uart.

devices.connectivity.serialPort

The serial port of the host computer used to connect to the devices being tested.

devices.secureElementConfig.PublicKeyAsciiHexFilePath

The absolute path to the file that contains the hex bytes public key extracted from onboard 
private key.

Preparing to test your microcontroller board for the first time 124



FreeRTOS User Guide

Example format:

3059 3013 0607 2a86 48ce 3d02 0106 082a
8648 ce3d 0301 0703 4200 04cd 6569 ceb8
1bb9 1e72 339f e8cf 60ef 0f9f b473 33ac
6f19 1813 6999 3fa0 c293 5fae 08f1 1ad0
41b7 345c e746 1046 228e 5a5f d787 d571
dcb2 4e8d 75b3 2586 e2cc 0c 

If your public key is in .der format, you can hex encode the public key directly to generate the 
hex file.

Example command for .der public key to generate hex file:

xxd -p pubkey.der > outFile

If your public key is in .pem format, you can extract the base64 encoded part, decode it into 
binary format, and then hex encode it to generate the hex file.

For example, use these commands to generate a hex file for a .pem public key:

1. Take out the base64 encoded part of the key (strip the header and footer ) and store it in a 
file, for example name it base64key, run this command to convert it to .der format:

base64 —decode base64key > pubkey.der

2. Run the xxd command to convert it to hex format.

xxd -p pubkey.der > outFile

devices.secureElementConfig.SecureElementSerialNumber

(Optional) The serial number of the secure element. Provide this field when the serial number is 
printed out along with the device public key when you run the FreeRTOS demo/test project.

devices.secureElementConfig.preProvisioned

(Optional) Set to "Yes" if the device has a pre-provisioned secure element with locked-down 
credentials, that cannot import, create, or destroy objects. This configuration takes effect only 
when features has KeyProvisioning set to "Onboard", along with PKCS11 set to "ECC".

Preparing to test your microcontroller board for the first time 125



FreeRTOS User Guide

identifiers

(Optional) An array of arbitrary name-value pairs. You can use these values in the build and 
flash commands described in the next section.

Configure build, flash, and test settings

For IDT for FreeRTOS to build and flash tests on to your board automatically, you must configure 
IDT to run the build and flash commands for your hardware. The build and flash command settings 
are configured in the userdata.json template file located in the config folder.

Configure settings for testing devices

Build, flash, and test settings are made in the configs/userdata.json file. We support 
Echo Server configuration by loading both the client and server certificates and keys in the
customPath. For more information, see Setting up an echo server in the FreeRTOS Porting Guide. 
The following JSON example shows how you can configure IDT for FreeRTOS to test multiple 
devices:

{ 
    "sourcePath": "/absolute-path-to/freertos", 
    "vendorPath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-name", 
    // ***********The sdkConfiguration block below is needed if you are not using the 
 default, unmodified FreeRTOS repo.  
    // In other words, if you are using the default, unmodified FreeRTOS repo then 
 remove this block*************** 
    "sdkConfiguration": { 
        "name": "sdk-name", 
        "version": "sdk-version", 
        "path": "/absolute-path-to/sdk" 
    }, 
    "buildTool": { 
        "name": "your-build-tool-name", 
        "version": "your-build-tool-version", 
        "command": [ 
            "{{config.idtRootPath}}/relative-path-to/build-parallel.sh
 {{testData.sourcePath}} {{enableTests}}" 
        ] 
    }, 
    "flashTool": { 
        "name": "your-flash-tool-name", 
        "version": "your-flash-tool-version", 

Preparing to test your microcontroller board for the first time 126

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-echo-server.html


FreeRTOS User Guide

        "command": [ 
            "/{{config.idtRootPath}}/relative-path-to/flash-parallel.sh
 {{testData.sourcePath}} {{device.connectivity.serialPort}} {{buildImageName}}" 
        ], 
        "buildImageInfo" : { 
            "testsImageName": "tests-image-name", 
            "demosImageName": "demos-image-name" 
        } 
    }, 
    "testStartDelayms": 0, 
    "clientWifiConfig": { 
        "wifiSSID": "ssid", 
        "wifiPassword": "password", 
        "wifiSecurityType": "eWiFiSecurityOpen | eWiFiSecurityWEP | eWiFiSecurityWPA | 
 eWiFiSecurityWPA2 | eWiFiSecurityWPA3" 
    }, 
    "testWifiConfig": { 
        "wifiSSID": "ssid", 
        "wifiPassword": "password", 
        "wifiSecurityType": "eWiFiSecurityOpen | eWiFiSecurityWEP | eWiFiSecurityWPA | 
 eWiFiSecurityWPA2 | eWiFiSecurityWPA3" 
    }, 
    //********** 
    //This section is used to start echo server based on server certificate generation 
 method, 
    //When certificateGenerationMethod is set as Automatic specify the eccCurveFormat 
 to generate certifcate and key based on curve format, 
    //When certificateGenerationMethod is set as Custom specify the certificatePath and 
 PrivateKeyPath to be used to start echo server 
    //********** 
    "echoServerCertificateConfiguration": { 
      "certificateGenerationMethod": "Automatic | Custom", 
      "customPath": { 
          "clientCertificatePath":"/path/to/clientCertificate", 
          "clientPrivateKeyPath": "/path/to/clientPrivateKey", 
          "serverCertificatePath":"/path/to/serverCertificate", 
          "serverPrivateKeyPath": "/path/to/serverPrivateKey" 
      }, 
    "eccCurveFormat": "P224 | P256 | P384 | P521" 
    }, 
    "echoServerConfiguration": { 
        "securePortForSecureSocket": 33333, // Secure tcp port used by SecureSocket 
 test. Default value is 33333. Ensure that the port configured isn't blocked by the 
 firewall or your corporate network 

Preparing to test your microcontroller board for the first time 127



FreeRTOS User Guide

        "insecurePortForSecureSocket": 33334, // Insecure tcp port used by SecureSocket 
 test. Default value is 33334. Ensure that the port configured isn't blocked by the 
 firewall or your corporate network 
        "insecurePortForWiFi": 33335 // Insecure tcp port used by Wi-Fi test. Default 
 value is 33335. Ensure that the port configured isn't blocked by the firewall or your 
 corporate network 
    }, 
    "otaConfiguration": { 
        "otaFirmwareFilePath": "{{testData.sourcePath}}/relative-path-to/ota-image-
generated-in-build-process", 
        "deviceFirmwareFileName": "ota-image-name-on-device", 
        "otaDemoConfigFilePath": "{{testData.sourcePath}}/relative-path-to/ota-demo-
config-header-file", 
        "codeSigningConfiguration": { 
            "signingMethod": "AWS | Custom", 
            "signerHashingAlgorithm": "SHA1 | SHA256", 
            "signerSigningAlgorithm": "RSA | ECDSA", 
            "signerCertificate": "arn:partition:service:region:account-
id:resource:qualifier | /absolute-path-to/signer-certificate-file", 
            "signerCertificateFileName": "signerCertificate-file-name", 
            "compileSignerCertificate": boolean, 
            // ***********Use signerPlatform if you choose aws for 
 signingMethod*************** 
            "signerPlatform": "AmazonFreeRTOS-Default | AmazonFreeRTOS-TI-CC3220SF", 
            "untrustedSignerCertificate": "arn:partition:service:region:account-
id:resourcetype:resource:qualifier", 
            // ***********Use signCommand if you choose custom for 
 signingMethod*************** 
            "signCommand": [ 
                "/absolute-path-to/sign.sh {{inputImageFilePath}} 
 {{outputSignatureFilePath}}" 
            ] 
        } 
    }, 
    // ***********Remove the section below if you're not configuring 
 CMake*************** 
    "cmakeConfiguration": { 
        "boardName": "board-name", 
        "vendorName": "vendor-name", 
        "compilerName": "compiler-name", 
        "frToolchainPath": "/path/to/freertos/toolchain", 
        "cmakeToolchainPath": "/path/to/cmake/toolchain" 
    }, 
    "freertosFileConfiguration": { 

Preparing to test your microcontroller board for the first time 128



FreeRTOS User Guide

        "required": [ 
            { 
                "configName": "pkcs11Config", 
                "filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_tests/config_files/core_pkcs11_config.h" 
            }, 
            { 
                "configName": "pkcs11TestConfig", 
                "filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_tests/config_files/iot_test_pkcs11_config.h" 
            } 
        ], 
        "optional": [ 
            { 
                "configName": "otaAgentTestsConfig", 
                "filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_tests/config_files/ota_config.h" 
            }, 
            { 
                "configName": "otaAgentDemosConfig", 
                "filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_demos/config_files/ota_config.h" 
            }, 
            { 
                "configName": "otaDemosConfig", 
                "filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_demos/config_files/ota_demo_config.h" 
            } 
        ] 
    }
}

The following lists the attributes used in userdata.json:

sourcePath

The path to the root of the ported FreeRTOS source code. For parallel testing with an SDK, the
sourcePath can be set using the {{userData.sdkConfiguration.path}} place holder. 
For example:

{ "sourcePath":"{{userData.sdkConfiguration.path}}/freertos" }

Preparing to test your microcontroller board for the first time 129



FreeRTOS User Guide

vendorPath

The path to the vendor specific FreeRTOS code. For serial testing, the vendorPath can be set 
as an absolute path. For example:

{ "vendorPath":"C:/path-to-freertos/vendors/espressif/boards/esp32" }

For parallel testing, the vendorPath can be set using the {{testData.sourcePath}} place 
holder. For example:

{ "vendorPath":"{{testData.sourcePath}}/vendors/espressif/boards/esp32" }

The vendorPath variable is only necessary when running without an SDK, it can be removed 
otherwise.

Note

When running tests in parallel without an SDK, the {{testData.sourcePath}}
placeholder must be used in the vendorPath, buildTool, flashTool fields. When 
running test with a single device, absolute paths must be used in the vendorPath,
buildTool, flashTool fields. When running with an SDK, the {{sdkPath}}
placeholder must be used in the sourcePath, buildTool, and flashTool
commands.

sdkConfiguration

If you are qualifying FreeRTOS with any modifications to files and folder structure beyond what 
is required for porting, then you will need to configure your SDK information in this block. If 
you're not qualifying with a ported FreeRTOS inside of an SDK, then you should omit this block 
entirely.

sdkConfiguration.name

The name of the SDK you're using with FreeRTOS. If you're not using an SDK, then the entire
sdkConfiguration block should be omitted.

sdkConfiguration.version

The version of the SDK you're using with FreeRTOS. If you're not using an SDK, then the 
entire sdkConfiguration block should be omitted.

Preparing to test your microcontroller board for the first time 130



FreeRTOS User Guide

sdkConfiguration.path

The absolute path to your SDK directory that contains your FreeRTOS code. If you're not 
using an SDK, then the entire sdkConfiguration block should be omitted.

buildTool

The full path to your build script (.bat or .sh) that contains the commands to build your source 
code. All references to the source code path in the build command must be replaced by the AWS 
IoT Device Tester variable {{testdata.sourcePath}} and references to the SDK path should 
be replaced by {{sdkPath}}. Use the {{config.idtRootPath}} placeholder to reference 
the absolute or relative IDT path.

testStartDelayms

Specifies how many milliseconds the FreeRTOS test runner will wait before starting to run tests. 
This can be useful if the device under test begins outputting important test information before 
IDT has a chance to connect and start logging due to network or other latency. The max allowed 
value is 30000 ms (30 seconds). This value is applicable to FreeRTOS test groups only, and not 
applicable to other test groups that do not utilize the FreeRTOS test runner, such as the OTA 
tests.

flashTool

Full path to your flash script (.sh or .bat) that contains the flash commands for your device. 
All references to the source code path in the flash command must be replaced by the IDT for 
FreeRTOS variable {{testdata.sourcePath}} and all references to your SDK path must be 
replaced by the IDT for FreeRTOS variable {{sdkPath}}.Use the {{config.idtRootPath}}
placeholder to reference the absolute or relative IDT path.

buildImageInfo

testsImageName

The name of the file produced by the build command when building tests from the
freertos-source/tests folder.

demosImageName

The name of the file produced by the build command when building tests from the
freertos-source/demos folder.

Preparing to test your microcontroller board for the first time 131



FreeRTOS User Guide

clientWifiConfig

The client Wi-Fi configuration. The Wi-Fi library tests require an MCU board to connect to two 
access points. (The two access points can be the same.) This attribute configures the Wi-Fi 
settings for the first access point. Some of the Wi-Fi test cases expect the access point to have 
some security and not to be open. Please make sure both access points are on the same subnet 
as the host computer running IDT.

wifi_ssid

The Wi-Fi SSID.

wifi_password

The Wi-Fi password.

wifiSecurityType

The type of Wi-Fi security used. One of the values:

• eWiFiSecurityOpen

• eWiFiSecurityWEP

• eWiFiSecurityWPA

• eWiFiSecurityWPA2

• eWiFiSecurityWPA3

Note

If your board does not support Wi-Fi, you must still include the clientWifiConfig
section in your device.json file, but you can omit values for these attributes.

testWifiConfig

The test Wi-Fi configuration. The Wi-Fi library tests require an MCU board to connect to two 
access points. (The two access points can be the same.) This attribute configures the Wi-Fi 
setting for the second access point. Some of the Wi-Fi test cases expect the access point to have 
some security and not to be open. Please make sure both access points are on the same subnet 
as the host computer running IDT.

wifiSSID

The Wi-Fi SSID.

Preparing to test your microcontroller board for the first time 132



FreeRTOS User Guide

wifiPassword

The Wi-Fi password.

wifiSecurityType

The type of Wi-Fi security used. One of the values:

• eWiFiSecurityOpen

• eWiFiSecurityWEP

• eWiFiSecurityWPA

• eWiFiSecurityWPA2

• eWiFiSecurityWPA3

Note

If your board does not support Wi-Fi, you must still include the testWifiConfig
section in your device.json file, but you can omit values for these attributes.

echoServerCertificateConfiguration

The configurable echo server certificate generation placeholder for secure socket tests. This 
field is required.

certificateGenerationMethod

Specifies whether the server certificate is generated automatically or provided manually.

customPath

If certificateGenerationMethod is "Custom", certificatePath and
privateKeyPath are required.

certificatePath

Specifies the filepath for the server certificate.

privateKeyPath

Specifies the filepath for the private key.

Preparing to test your microcontroller board for the first time 133



FreeRTOS User Guide

eccCurveFormat

Specifies the curve format supported by the board. Required when PKCS11 is set to "ecc" in
device.json. Valid values are "P224", "P256", "P384", or "P521".

echoServerConfiguration

The configurable echo server ports for WiFi and secure sockets tests. This field is optional.

securePortForSecureSocket

The port which is used to setup an echo server with TLS for the secure sockets test. The 
default value is 33333. Ensure the port configured is not blocked by a firewall or your 
corporate network.

insecurePortForSecureSocket

The port which is used to setup echo server without TLS for the secure sockets test. The 
default value used in the test is 33334. Ensure the port configured is not blocked by a 
firewall or your corporate network.

insecurePortForWiFi

The port which is used to setup echo server without TLS for WiFi test. The default value used 
in the test is 33335. Ensure the port configured is not blocked by a firewall or your corporate 
network.

otaConfiguration

The OTA configuration. [Optional]

otaFirmwareFilePath

The full path to the OTA image created after the build. For example,
{{testData.sourcePath}}/relative-path/to/ota/image/from/source/root.

deviceFirmwareFileName

The full file path on the MCU device where the OTA firmware is located. Some devices do not 
use this field, but you still must provide a value.

otaDemoConfigFilePath

The full path to aws_demo_config.h, found in afr-source/vendors/vendor/boards/
board/aws_demos/config_files/. These files are included in the porting code template 
that FreeRTOS provides.

Preparing to test your microcontroller board for the first time 134



FreeRTOS User Guide

codeSigningConfiguration

The code signing configuration.

signingMethod

The code signing method. Possible values are AWS or Custom.

Note

For the Beijing and Ningxia Regions, use Custom. AWS code signing isn't supported in 
these Regions.

signerHashingAlgorithm

The hashing algorithm supported on the device. Possible values are SHA1 or SHA256.

signerSigningAlgorithm

The signing algorithm supported on the device. Possible values are RSA or ECDSA.

signerCertificate

The trusted certificate used for OTA.

For AWS code signing method, use the Amazon Resource Name (ARN) for the trusted 
certificate uploaded to the AWS Certificate Manager.

For Custom code signing method, use the absolute path to the signer certificate file.

For more information about creating a trusted certificate, see Create a code-signing 
certificate.

signerCertificateFileName

The file name of the code signing certificate on the device. This value must match the file 
name that you provided when you ran the aws acm import-certificate command.

For more information, see Create a code-signing certificate.

compileSignerCertificate

Set to true if the code signer signature verification certificate isn't provisioned or flashed, 
so it must be compiled into the project. AWS IoT Device Tester fetches the trusted certificate 
and compiles it into aws_codesigner_certifiate.h.

Preparing to test your microcontroller board for the first time 135



FreeRTOS User Guide

untrustedSignerCertificate

The ARN or filepath for a second certificate used in some OTA tests as an untrusted 
certificate. For more information about creating a certificate, see  Create a code-signing 
certificate.

signerPlatform

The signing and hashing algorithm that AWS Code Signer uses while creating the OTA 
update job. Currently, the possible values for this field are AmazonFreeRTOS-TI-CC3220SF
and AmazonFreeRTOS-Default.

• Choose AmazonFreeRTOS-TI-CC3220SF if SHA1 and RSA.

• Choose AmazonFreeRTOS-Default if SHA256 and ECDSA.

If you need SHA256 | RSA or SHA1 | ECDSA for your configuration, contact us for further 
support.

Configure signCommand if you chose Custom for signingMethod.

signCommand

The command used to perform custom code signing. You can find the template in the /
configs/script_templates directory.

Two placeholders {{inputImageFilePath}} and {{outputSignatureFilePath}} are 
required in the command. {{inputImageFilePath}} is the file path of the image built by 
IDT to be signed. {{outputSignatureFilePath}} is the file path of the signature which 
will be generated by the script.

cmakeConfiguration

CMake configuration [Optional]

Note

To execute CMake test cases, you must provide the board name, vendor name, 
and either the frToolchainPath or compilerName. You may also provide the
cmakeToolchainPath if you have a custom path to the CMake toolchain.

Preparing to test your microcontroller board for the first time 136

https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html


FreeRTOS User Guide

boardName

The name of the board under test. The board name should be the same as the folder name 
under path/to/afr/source/code/vendors/vendor/boards/board.

vendorName

The vendor name for the board under test. The vendor should be the same as the folder 
name under path/to/afr/source/code/vendors/vendor.

compilerName

The compiler name.

frToolchainPath

The fully-qualified path to the compiler toolchain

cmakeToolchainPath

The fully-qualified path to the CMake toolchain. This field is optional

freertosFileConfiguration

The configuration of the FreeRTOS files that IDT modifies before running tests.

required

This section specifies required tests whose config files you have moved, for example, 
PKCS11, TLS, and so on.

configName

The name of the test that is being configured.

filePath

The absolute path to the configuration files within the freertos repo. Use the
{{testData.sourcePath}} variable to define the path.

optional

This section specifies optional tests whose config files you have moved, for example OTA, 
WiFi, and so on.

configName

The name of the test that is being configured.

Preparing to test your microcontroller board for the first time 137



FreeRTOS User Guide

filePath

The absolute path to the configuration files within the freertos repo. Use the
{{testData.sourcePath}} variable to define the path.

Note

To execute CMake test cases, you must provide the board name, vendor name, and either 
the afrToolchainPath or compilerName. You may also provide cmakeToolchainPath
if you have a custom path to the CMake toolchain.

IDT for FreeRTOS variables

The commands to build your code and flash the device might require connectivity or other 
information about your devices to run successfully. AWS IoT Device Tester allows you to reference 
device information in flash and build commands using JsonPath. By using simple JsonPath 
expressions, you can fetch the required information specified in your device.json file.

Path variables

IDT for FreeRTOS defines the following path variables that can be used in command lines and 
configuration files:

{{testData.sourcePath}}

Expands to the source code path. If you use this variable, it must be used in both the flash and 
build commands.

{{sdkPath}}

Expands to the value in your userData.sdkConfiguration.path when used in the build 
and flash commands.

{{device.connectivity.serialPort}}

Expands to the serial port.

{{device.identifiers[?(@.name == 'serialNo')].value[0]}}

Expands to the serial number of your device.

Preparing to test your microcontroller board for the first time 138

http://goessner.net/articles/JsonPath/


FreeRTOS User Guide

{{enableTests}}

Integer value indicating whether the build is for tests (value 1) or demos (value 0).

{{buildImageName}}

The file name of the image built by the build command.

{{otaCodeSignerPemFile}}

PEM file for the OTA code signer.

{{config.idtRootPath}}

Expands to the AWS IoT Device Tester root path. This variable replaces the absolute path for IDT 
when used by the build and flash commands.

Use the IDT for FreeRTOS user interface to run the FreeRTOS 
qualification suite

Starting with IDT v4.3.0, AWS IoT Device Tester for FreeRTOS (IDT-FreeRTOS) includes a web-based 
user interface that enables you to interact with the IDT command line executable and related 
configuration files. You can use the IDT-FreeRTOS UI to create a new configuration to run IDT tests, 
or to modify an existing configuration. You can also use the UI to invoke the IDT executable and run 
tests.

The IDT-FreeRTOS UI provides the following functions:

• Simplify setting up configuration files for IDT-FreeRTOS tests.

• Simplify using IDT-FreeRTOS to run qualification tests.

For information about the using the command line to run qualification tests, see Preparing to test 
your microcontroller board for the first time.

This section describes the prerequisites for using the IDT-FreeRTOS UI, and shows you how to get 
started running qualification tests in the UI.

Topics

• Prerequisites

• Getting started with the IDT-FreeRTOS UI

Use the IDT UI to run the FreeRTOS qualification suite 139



FreeRTOS User Guide

Prerequisites

This section describes the prerequisites for testing microcontrollers with AWS IoT Device Tester.

Topics

• Use a supported web browser

• Download FreeRTOS

• Download IDT for FreeRTOS

• Create and configure an AWS account

• AWS IoT Device Tester managed policy

Use a supported web browser

The IDT-FreeRTOS UI supports the following web browsers.

Browser Version

Google Chrome Latest three major versions

Mozilla Firefox Latest three major versions

Microsoft Edge Latest three major versions

Apple Safari for macOS Latest three major versions

We recommend that you use Google Chrome or Mozilla Firefox for a better experience.

Note

The IDT-FreeRTOS UI doesn't support Microsoft Internet Explorer.

Download FreeRTOS

You can download a release of FreeRTOS from GitHub with the following command:

git clone --branch <FREERTOS_RELEASE_VERSION> --recurse-submodules https://github.com/
aws/amazon-freertos.git

Use the IDT UI to run the FreeRTOS qualification suite 140

https://github.com/aws/amazon-freertos


FreeRTOS User Guide

cd amazon-freertos
git submodule update --checkout --init --recursive

where <FREERTOS_RELEASE_VERSION> is a version of FreeRTOS (for example, 202007.00) 
corresponding to an IDT version listed in Supported versions of AWS IoT Device Tester for 
FreeRTOS. This ensures you have the full source code, including submodules, and are using the 
correct version of IDT for your version of FreeRTOS, and vice versa.

Windows has a path length limitation of 260 characters. The path structure of FreeRTOS is many 
levels deep, so if you're using Windows, keep your file paths under the 260-character limit. 
For example, clone FreeRTOS to C:\FreeRTOS rather than C:\Users\username\programs
\projects\myproj\FreeRTOS\.

Considerations for LTS qualification (qualification for FreeRTOS that uses LTS libraries)

• In order for your microcontroller to be designated as supporting long-term support (LTS) based 
versions of FreeRTOS in the AWS Partner Device Catalog, you must provide a manifest file. For 
more information, see the FreeRTOS Qualification Checklist in the FreeRTOS Qualification Guide.

• In order to validate that your microcontroller supports LTS based versions of FreeRTOS and 
qualify it for submission to the AWS Partner Device Catalog, you must use AWS IoT Device Tester 
(IDT) with FreeRTOS Qualification (FRQ) test suite version v1.4.x.

• Support for LTS based versions of FreeRTOS is limited to the 202012.xx version of FreeRTOS.

Download IDT for FreeRTOS

Every version of FreeRTOS has a corresponding version of IDT for FreeRTOS for performing 
qualification tests. Download the appropriate version of IDT for FreeRTOS from Supported versions 
of AWS IoT Device Tester for FreeRTOS.

Extract IDT for FreeRTOS to a location on the file system where you have read and write 
permissions. Because Microsoft Windows has a character limit for the path length, extract IDT for 
FreeRTOS into a root directory such as C:\ or D:\.

Note

We recommend that you extract the IDT package to a local drive.Allowing multiple users 
to run IDT from a shared location, such as an NFS directory or a Windows network shared 
folder, might result in the system not responding or data corruption.

Use the IDT UI to run the FreeRTOS qualification suite 141

https://docs.aws.amazon.com/freertos/latest/qualificationguide/afq-checklist.html


FreeRTOS User Guide

Create and configure an AWS account

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Use the IDT UI to run the FreeRTOS qualification suite 142

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html


FreeRTOS User Guide

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

AWS IoT Device Tester managed policy

To enable device tester to run and to collect metrics, the
AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following 
permissions:

• iot-device-tester:SupportedVersion

Use the IDT UI to run the FreeRTOS qualification suite 143

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html


FreeRTOS User Guide

Grants permission to get the list of FreeRTOS versions and test suite versions supported by IDT, 
so that they're available from the AWS CLI.

• iot-device-tester:LatestIdt

Grants permission to get the latest AWS IoT Device Tester version that is available for download.

• iot-device-tester:CheckVersion

Grants permission to check that a combination of product, test suite, and AWS IoT Device Tester 
versions are compatible.

• iot-device-tester:DownloadTestSuite

Grants permission to AWS IoT Device Tester to download test suites.

• iot-device-tester:SendMetrics

Grants permission to publish AWS IoT Device Tester usage metrics data.

Getting started with the IDT-FreeRTOS UI

This section shows you how to use the IDT-FreeRTOS UI to create or modify your configuration, and 
then shows you how to run tests.

Topics

• Configure AWS credentials

• Open the IDT-FreeRTOS UI

• Create a new configuration

• Modify an existing configuration

• Run qualification tests

Configure AWS credentials

You must configure credentials for the AWS user that you created in Create and configure an AWS 
account. You can specify your credentials in one of two ways:

• In a credentials file

• As environment variables

Use the IDT UI to run the FreeRTOS qualification suite 144



FreeRTOS User Guide

Configure AWS credentials with a credentials file

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and 
credential files.

The location of the credentials file varies, depending on the operating system you're using:

• macOS, Linux: ~/.aws/credentials

• Windows: C:\Users\UserName\.aws\credentials

Add your AWS credentials to the credentials file in the following format:

[default]
aws_access_key_id = <your_access_key_id>
aws_secret_access_key = <your_secret_access_key>

Note

If you don't use the default AWS profile, be sure to specify the profile name in the IDT-
FreeRTOS UI. For more information about profiles, see  Named profiles.

Configure AWS credentials with environment variables

Environment variables are variables maintained by the operating system and used by system 
commands. They're not saved if you close the SSH session. The IDT-FreeRTOS UI uses the
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to store your AWS 
credentials.

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=<your_access_key_id>
export AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=<your_access_key_id>
set AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

Use the IDT UI to run the FreeRTOS qualification suite 145

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html


FreeRTOS User Guide

Open the IDT-FreeRTOS UI

To open the IDT-FreeRTOS UI

1. Download a supported IDT-FreeRTOS version and extract the downloaded archive into a 
location on your file system where you have read and write permissions.

2. Run the following command to navigate to the IDT-FreeRTOS installation directory:

cd devicetester-extract-location/bin 

3. Run the following command to open the IDT-FreeRTOS UI:

Linux

.devicetestergui_linux_x86-64.exe

Windows

./devicetestergui_win_x64-64

macOS

./devicetestergui_mac_x86-64

Note

On Mac, to allow your system to run the UI, go to System Preferences -> Security 
& Privacy. When you run the tests, you may need to do this three more times.

The IDT-FreeRTOS UI opens in your default browser. For information about supported 
browsers, see Use a supported web browser.

Create a new configuration

If you're a first-time user, then you must create a new configuration to set up the JSON 
configuration files that IDT-FreeRTOS requires to run tests. You can then run tests or modify the 
configuration that was created.

Use the IDT UI to run the FreeRTOS qualification suite 146



FreeRTOS User Guide

For examples of the config.json, device.json, and userdata.json files, see Preparing to 
test your microcontroller board for the first time. For an example of the resource.json file that 
is used only for running Bluetooth Low Energy (BLE) tests, see Running Bluetooth Low Energy 
tests.

To create a new configuration

1. In the IDT-FreeRTOS UI, open the navigation menu, and then choose Create new 
configuration.

Important

You must configure your AWS credentials before you open the UI. If you haven't 
configured your credentials, close the IDT-FreeRTOS UI browser window, follow the 
steps in Configure AWS credentials, and then reopen the IDT-FreeRTOS UI.

2. Follow the configuration wizard to enter the IDT configuration settings that are used to run 
qualification tests. The wizard configures the following settings in JSON configuration files 
that are located in the devicetester-extract-location/config directory.

• AWS settings—The AWS account information that IDT-FreeRTOS uses to create AWS 
resources during test runs. These settings are configured in the config.json file.

• FreeRTOS repository—The absolute path to the FreeRTOS repository and ported code, 
and the type of qualification you want to perform. These settings are configured in the
userdata.json file.

You must port FreeRTOS for your device before you can run qualification tests. For more 
information, see the FreeRTOS Porting Guide

• Build and flash—The build and flash commands for your hardware that allow IDT to 
build and flash tests on to your board automatically. These settings are configured in the
userdata.json file.

• Devices—The device pool settings for the devices to be tested. These settings are configured 
in id and sku fields, and the devices block for the device pool in the device.json file.

• Networking—The settings to test network communication support for your devices. 
These settings are configured in the features block of the device.json file, and in the
clientWifiConfig and testWifiConfig blocks in the userdata.json file.

Use the IDT UI to run the FreeRTOS qualification suite 147

https://docs.aws.amazon.com/freertos/latest/portingguide/


FreeRTOS User Guide

• Echo server—The echo server configuration settings for secure socket tests. These settings 
are configured in the userdata.json file.

For more information about echo server configuration, see https://docs.aws.amazon.com/ 
freertos/latest/portingguide/afr-echo-server.html.

• CMake—(Optional) The settings to run CMake build functionality tests. This configuration 
is required only if you're using CMake as your build system. These settings are configured in 
the userdata.json file.

• BLE—The settings to run Bluetooth Low Energy functionality tests. These settings are 
configured in the features block of the device.json file and in the resource.json file.

• OTA—The settings to run OTA functionality tests. These settings are configured in the
features block of the device.json file and in the userdata.json file.

3. On the Review page, verify your configuration information.

After you finish reviewing your configuration, to run your qualification tests, choose Run tests.

Modify an existing configuration

If you have already set up configuration files for IDT, then you can use the IDT-FreeRTOS UI to 
modify your existing configuration. Make sure that your existing configuration files are available in 
the devicetester-extract-location/config directory.

To modify a new configuration

1. In the IDT-FreeRTOS UI, open the navigation menu, and then choose Edit existing 
configuration.

The configuration dashboard displays information about your existing configuration settings. 
If a configuration is incorrect or unavailable, the status for that configuration is Error 
validating configuration.

2. To modify an existing configuration setting, complete the following steps:

a. Choose the name of a configuration setting to open its settings page.

b. Modify the settings, and then choose Save to regenerate the corresponding configuration 
file.

Use the IDT UI to run the FreeRTOS qualification suite 148

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-echo-server.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-echo-server.html


FreeRTOS User Guide

After you finish modifying your configuration, verify that all of your configuration settings pass 
validation. If the status for each configuration setting is Valid, you can run your qualification tests 
using this configuration.

Run qualification tests

After you have created a configuration for IDT-FreeRTOS, you can run your qualification tests.

To run qualification tests

1. Validate your configuration.

2. In the navigation menu, choose Run tests.

3. To start the test run, choose Start tests.

IDT-FreeRTOS runs the qualification tests, and displays the test run summary and any errors in the
Test runner console. After the test run is complete, you can view the test results and logs from the 
following locations:

• Test results are located in the devicetester-extract-location/results/execution-id
directory.

• Test logs are located in the devicetester-extract-location/results/execution-id/
logs directory.

For more information about test results and logs, see Understanding results and logs.

Running Bluetooth Low Energy tests

This section describes how to set up and run the Bluetooth tests using AWS IoT Device Tester for 
FreeRTOS. Bluetooth tests are not required for core qualification. If you do not want to test your 
device with FreeRTOS Bluetooth support you may skip this setup, be sure to leave the BLE feature 
in device.json set to No.

Prerequisites

• Follow the instructions in Preparing to test your microcontroller board for the first time.

• A Raspberry Pi 4B or 3B+. (Required to run the Raspberry Pi BLE companion application)

• A micro SD card and SD card adapter for the Raspberry Pi software.

Running Bluetooth Low Energy tests 149



FreeRTOS User Guide

 

Raspberry Pi setup

To test the BLE capabilities of the device under test (DUT), you must have a Raspberry Pi Model 4B 
or 3B+.

To set up your Raspberry Pi to run BLE tests

1. Download one of the custom Yocto images that contains the software required to perform the 
tests.

• Image for Raspberry Pi 4B

• Image for Raspberry Pi 3B+

Note

The Yocto image should only be used for testing with AWS IoT Device Tester for 
FreeRTOS and not for any other purpose.

2. Flash the yocto image onto the SD card for Raspberry Pi.

• Using an SD card-writing tool such as Etcher, flash the downloaded image-name.rpi-
sd.img file onto the SD card. Because the operating system image is large, this step 
might take some time. Then eject your SD card from your computer and insert the 
microSD card into your Raspberry Pi.

3. Configure your Raspberry Pi.

a. For the first boot, we recommend that you connect the Raspberry Pi to a monitor, 
keyboard, and mouse.

b. Connect your Raspberry Pi to a micro USB power source.

c. Sign in using the default credentials. For user ID, enter root. For password, enter idtafr.

d. Using an Ethernet or Wi-Fi connection, connect the Raspberry Pi to your network.

i. To connect your Raspberry Pi over Wi-Fi, open /etc/wpa_supplicant.conf on the 
Raspberry Pi and add your Wi-Fi credentials to the Network configuration.

ctrl_interface=/var/run/wpa_supplicant

Running Bluetooth Low Energy tests 150

https://docs.aws.amazon.com/freertos/latest/userguide/freertos/IDTFR_BLE_RaspberryPi4B_1.0.0_2021-04-13.rpi-sd.img
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/IDTFR_BLE_RaspberryPi3Bplus_1.0.0_2021-04-13.rpi-sd.img
https://www.balena.io/etcher


FreeRTOS User Guide

ctrl_interface_group=0
update_config=1

network={ 
        scan_ssid=1 
        ssid="your-wifi-ssid" 
        psk="your-wifi-password" 
        }

ii. Run ifup wlan0 to start the Wi-Fi connection. It might take a minute to connect to 
your Wi-Fi network.

e. For an Ethernet connection, run ifconfig eth0. For a Wi-Fi connection, run ifconfig 
wlan0. Make a note of the IP address, which appears as inet addr in the command 
output. You need the IP address later in this procedure.

f. (Optional) The tests execute commands on the Raspberry Pi over SSH using the default 
credentials for the yocto image. For additional security, we recommend that you set up 
public key authentication for SSH and disable password-based SSH.

i. Create an SSH key using the OpenSSL ssh-keygen command. If you already have an 
SSK key pair on your host computer, it is a best practice to create a new one to allow 
AWS IoT Device Tester for FreeRTOS to sign in to your Raspberry Pi.

Note

Windows does not come with an installed SSH client. For information about 
how to install an SSH client on Windows, see Download SSH Software.

ii. The ssh-keygen command prompts you for a name and path to store the key pair. 
By default, the key pair files are named id_rsa (private key) and id_rsa.pub
(public key). On macOS and Linux, the default location of these files is ~/.ssh/. On 
Windows, the default location is C:\Users\user-name.

iii. When you are prompted for a key phrase, just press ENTER to continue.

iv. To add your SSH key onto your Raspberry Pi so AWS IoT Device Tester for FreeRTOS 
can sign into the device, use the ssh-copy-id command from your host computer. 
This command adds your public key into the ~/.ssh/authorized_keys file on your 
Raspberry Pi.

ssh-copy-id root@raspberry-pi-ip-address

Running Bluetooth Low Energy tests 151

https://www.ssh.com/ssh/#sec-Download-client-software


FreeRTOS User Guide

v. When prompted for a password, enter idtafr. This is the default password for the 
yocto image.

Note

The ssh-copy-id command assumes the public key is named id_rsa.pub. 
On macOS and Linux, the default location is  ~/.ssh/. On Windows, the 
default location is C:\Users\user-name\.ssh. If you gave the public key 
a different name or stored it in a different location, you must specify the fully 
qualified path to your SSH public key using the -i option to ssh-copy-
id (for example, ssh-copy-id -i ~/my/path/myKey.pub). For more 
information about creating SSH keys and copying public keys, see SSH-COPY-
ID.

vi. To test that the public key authentication is working, run ssh -i /my/path/myKey
root@raspberry-pi-device-ip.

If you are not prompted for a password, your public key authentication is working.

vii. Verify that you can sign in to your Raspberry Pi using a public key, and then disable 
password-based SSH.

A. On the Raspberry Pi, edit the /etc/ssh/sshd_config file.

B. Set the PasswordAuthentication attribute to no.

C. Save and close the sshd_config file.

D. Reload the SSH server by running /etc/init.d/sshd reload.

g. Create a resource.json file.

i. In the directory in which you extracted AWS IoT Device Tester, create a file named
resource.json.

ii. Add the following information about your Raspberry Pi to the file, replacing rasp-
pi-ip-address with the IP address of your Raspberry Pi.

[ 
    { 
        "id": "ble-test-raspberry-pi", 
        "features": [ 
            {"name":"ble", "version":"4.2"} 

Running Bluetooth Low Energy tests 152

https://www.ssh.com/ssh/copy-id
https://www.ssh.com/ssh/copy-id


FreeRTOS User Guide

        ], 
        "devices": [ 
            { 
                "id": "ble-test-raspberry-pi-1", 
                "connectivity": { 
                    "protocol": "ssh", 
                    "ip": "rasp-pi-ip-address" 
                } 
            } 
        ] 
    }
]

iii. If you didn't choose to use public key authentication for SSH, add the following to the
connectivity section of the resource.json file.

"connectivity": { 
    "protocol": "ssh", 
    "ip": "rasp-pi-ip-address", 
    "auth": { 
        "method": "password", 
        "credentials": { 
            "user": "root", 
            "password": "idtafr" 
        } 
    }
}

iv. (Optional) If you chose to use public key authentication for SSH, add the following to 
the connectivity section of the resource.json file.

"connectivity": { 
    "protocol": "ssh", 
    "ip": "rasp-pi-ip-address", 
    "auth": { 
        "method": "pki", 
        "credentials": { 
            "user": "root", 
            "privKeyPath": "location-of-private-key" 
        } 
    }
}

Running Bluetooth Low Energy tests 153



FreeRTOS User Guide

FreeRTOS device setup

In your device.json file, set the BLE feature to Yes. If you are starting with a device.json file 
from before Bluetooth tests were available, you need to add the feature for BLE to the features
array:

{ 
    ... 
    "features": [ 
        { 
            "name": "BLE", 
            "value": "Yes" 
        }, 
    ...
}

Running the BLE tests

After you have enabled the BLE feature in device.json, the BLE tests run when you run
devicetester_[linux | mac | win_x86-64] run-suite without specifying a group-id.

If you want to run the BLE tests separately, you can specify the group ID for BLE:
devicetester_[linux | mac | win_x86-64] run-suite --userdata path-to-
userdata/userdata.json --group-id FullBLE.

For the most reliable performance, place your Raspberry Pi close to the device under test (DUT).

Troubleshooting BLE tests

Make sure you have followed the steps in Preparing to test your microcontroller board for the first 
time. If tests other than BLE are failing, then the problem is most likely not due to the Bluetooth 
configuration.

Running the FreeRTOS qualification suite

You use the AWS IoT Device Tester for FreeRTOS executable to interact with IDT for FreeRTOS. The 
following command line examples show you how to run the qualification tests for a device pool (a 
set of identical devices).

Running the FreeRTOS qualification suite 154



FreeRTOS User Guide

IDT v3.0.0 and later

devicetester_[linux | mac | win] run-suite  \ 
    --suite-id suite-id  \ 
    --group-id group-id  \ 
    --pool-id your-device-pool \ 
    --test-id test-id  \ 
    --upgrade-test-suite y|n  \ 
    --update-idt y|n  \ 
    --update-managed-policy y|n  \ 
    --userdata userdata.json

Runs a suite of tests on a pool of devices. The userdata.json file must be located in the
devicetester_extract_location/devicetester_afreertos_[win|mac|linux]/
configs/ directory.

Note

If you're running IDT for FreeRTOS on Windows, use forward slashes (/) to specify the 
path to the userdata.json file.

Use the following command to run a specific test group:

devicetester_[linux | mac | win] run-suite  \ 
    --suite-id FRQ_1.0.1  \ 
    --group-id group-id  \ 
    --pool-id pool-id  \ 
    --userdata userdata.json

The suite-id and pool-id parameters are optional if you're running a single test suite on a 
single device pool (that is, you have only one device pool defined in your device.json file).

Use the following command to run a specific test case in a test group:

devicetester_[linux | mac | win_x86-64] run-suite  \ 
    --group-id group-id  \ 
    --test-id test-id

You can use the list-test-cases command to list the test cases in a test group.

Running the FreeRTOS qualification suite 155



FreeRTOS User Guide

IDT for FreeRTOS command line options

group-id

(Optional) The test groups to run, as a comma-separated list. If not specified, IDT runs all 
test groups in the test suite.

pool-id

(Optional) The device pool to test. This is required if you define multiple device pools in
device.json. If you only have one device pool, you can omit this option.

suite-id

(Optional) The test suite version to run. If not specified, IDT uses the latest version in the 
tests directory on your system.

Note

Starting in IDT v3.0.0, IDT checks online for newer test suites. For more information, 
see Test suite versions.

test-id

(Optional) The tests to run, as a comma-separated list. If specified, group-id must specify a 
single group.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id mqtt --test-id 
 mqtt_test

update-idt

(Optional) If this parameter is not set and a newer IDT version is available, you will be 
prompted to update IDT. If this parameter is set to Y, IDT will stop test execution if it detects 
that a newer version is available. If this parameter is set to N, IDT will continue the test 
execution.

update-managed-policy

(Optional) If this parameter is not used and IDT detects that your managed policy isn't up-
to-date, you will be prompted to update your managed policy. If this parameter is set to Y, 

Running the FreeRTOS qualification suite 156



FreeRTOS User Guide

IDT will stop test execution if it detects that your managed policy isn't up-to-date. If this 
parameter is set to N, IDT will continue the test execution.

upgrade-test-suite

(Optional) If not used, and a newer test suite version is available, you're prompted to 
download it. To hide the prompt, specify y to always download the latest test suite, or n to 
use the test suite specified or the latest version on your system.

Example

Example

To always download and use the latest test suite, use the following command.

devicetester_[linux | mac | win_x86-64] run-suite --userdata userdata file --
group-id group ID --upgrade-test-suite y

To use the latest test suite on your system, use the following command.

devicetester_[linux | mac | win_x86-64] run-suite --userdata userdata file --
group-id group ID --upgrade-test-suite n

h

Use the help option to learn more about run-suite options.

Example

Example

devicetester_[linux | mac | win_x86-64] run-suite -h

IDT v1.7.0 and earlier

devicetester_[linux | mac | win] run-suite  \ 
    --suite-id suite-id  \ 
    --pool-id your-device-pool  \ 
    --userdata userdata.json

The userdata.json file should be located in the devicetester_extract_location/
devicetester_afreertos_[win|mac|linux]/configs/ directory.

Running the FreeRTOS qualification suite 157



FreeRTOS User Guide

Note

If you are running IDT for FreeRTOS on Windows, use forward slashes (/) to specify the 
path to the userdata.json file.

Use the following command to run a specific test group.

devicetester_[linux | mac | win] run-suite  \ 
    --suite-id FRQ_1 --group-id group-id  \ 
    --pool-id pool-id  \ 
    --userdata userdata.json

suite-id and pool-id are optional if you are running a single test suite on a single device 
pool (that is, you have only one device pool defined in your device.json file).

IDT for FreeRTOS command line options

group-id

(Optional) Specifies the test group.

pool-id

Specifies the device pool to test. If you only have one device pool, you can omit this option.

suite-id

(Optional) Specifies the test suite to run.

IDT for FreeRTOS commands

The IDT for FreeRTOS command supports the following operations:

IDT v3.0.0 and later

help

Lists information about the specified command.

list-groups

Lists the groups in a given suite.

Running the FreeRTOS qualification suite 158



FreeRTOS User Guide

list-suites

Lists the available suites.

list-supported-products

Lists the supported products and test suite versions.

list-supported-versions

Lists the FreeRTOS and test suite versions supported by the current IDT version.

list-test-cases

Lists the test cases in a specified group.

run-suite

Runs a suite of tests on a pool of devices.

Use the --suite-id option to specify a test suite version, or omit it to use the latest 
version on your system.

Use the --test-id to run an individual test case.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id mqtt --test-id 
 mqtt_test

For a complete list of options see Running the FreeRTOS qualification suite.

Note

Starting in IDT v3.0.0, IDT checks online for newer test suites. For more information, 
see Test suite versions.

IDT v1.7.0 and earlier

help

Lists information about the specified command.

Running the FreeRTOS qualification suite 159



FreeRTOS User Guide

list-groups

Lists the groups in a given suite.

list-suites

Lists the available suites.

run-suite

Runs a suite of tests on a pool of devices.

Test for re-qualification

As new versions of IDT for FreeRTOS qualification tests are released, or as you update your board-
specific packages or device drivers, you can use IDT for FreeRTOS to test your microcontroller 
boards. For subsequent qualifications, make sure that you have the latest versions of FreeRTOS and 
IDT for FreeRTOS and run the qualification tests again.

Understanding results and logs

This section describes how to view and interpret IDT result reports and logs.

Viewing results

While running, IDT writes errors to the console, log files, and test reports. After IDT completes the 
qualification test suite, it writes a test run summary to the console and generates two test reports. 
These reports can be found in devicetester-extract-location/results/execution-id/. 
Both reports capture the results from the qualification test suite execution.

The awsiotdevicetester_report.xml is the qualification test report that you submit to AWS 
to list your device in the AWS Partner Device Catalog. The report contains the following elements:

• The IDT for FreeRTOS version.

• The FreeRTOS version that was tested.

• The features of FreeRTOS that are supported by the device based on the tests passed.

• The SKU and the device name specified in the device.json file.

• The features of the device specified in the device.json file.

• The aggregate summary of test case results.

Understanding results and logs 160



FreeRTOS User Guide

• A breakdown of test case results by libraries that were tested based on the device features (for 
example, FullWiFi, FullMQTT, and so on).

• Whether this qualification of FreeRTOS is for version 202012.00 that uses LTS libraries.

The FRQ_Report.xml is a report in standard JUnit XML format. You can integrate it into CI/CD 
platforms like Jenkins, Bamboo, and so on. The report contains the following elements:

• An aggregate summary of test case results.

• A breakdown of test case results by libraries that were tested based on the device features.

Interpreting IDT for FreeRTOS results

The report section in awsiotdevicetester_report.xml or FRQ_Report.xml lists the results 
of the tests that are executed.

The first XML tag <testsuites> contains the overall summary of the test execution. For example:

<testsuites name="FRQ results" time="5633" tests="184" failures="0" 
errors="0" disabled="0">

Attributes used in the <testsuites> tag

name

The name of the test suite.

time

The time, in seconds, it took to run the qualification suite.

tests

The number of test cases executed.

failures

The number of test cases that were run, but did not pass.

errors

The number of test cases that IDT for FreeRTOS couldn't execute.

Understanding results and logs 161

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo


FreeRTOS User Guide

disabled

This attribute is not used and can be ignored.

If there are no test case failures or errors, your device meets the technical requirements to run 
FreeRTOS and can interoperate with AWS IoT services. If you choose to list your device in the AWS 
Partner Device Catalog, you can use this report as qualification evidence.

In the event of test case failures or errors, you can identify the test case that failed by reviewing 
the <testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag shows 
the test case result summary for a test group.

<testsuite name="FullMQTT" package="" tests="16" failures="0" time="76" 
disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with an attribute called skipped that is not 
used and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each 
of the test cases that were executed for a test group. For example:

<testcase classname="mcu.Full_MQTT" name="AFQP_MQTT_Connect_HappyCase" 
attempts="1"></testcase>

Attributes used in the <awsproduct> tag

name

The name of the product being tested.

version

The version of the product being tested.

sdk

If you ran IDT with an SDK, this block contains the name and version of your SDK. If you didn't 
run IDT with an SDK, then this block contains:

<sdk> 
    <name>N/A</vame> 
    <version>N/A</version>
</sdk>

Understanding results and logs 162



FreeRTOS User Guide

features

The features validated. Features marked as required are required to submit 
your board for qualification. The following snippet shows how this appears in the
awsiotdevicetester_report.xml file.

<feature name="core-freertos" value="not-supported" type="required"></feature>

Features marked as optional are not required for qualification. The following snippets show 
optional features.

<feature name="ota-dataplane-mqtt" value="not-supported" type="optional"></feature>
<feature name="ota-dataplane-http" value="not-supported" type="optional"></feature>

If there are no test failures or errors for the required features, your device meets the technical 
requirements to run FreeRTOS and can interoperate with AWS IoT services. If you want to list 
your device in the AWS Partner Device Catalog, you can use this report as qualification evidence.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the 
test result summary for a test group. For example:

<testsuite name="FreeRTOSVersion" package="" tests="1" failures="1" time="2" 
 disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but has a skipped attribute that is not used 
and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each 
executed test for a test group. For example:

<testcase classname="FreeRTOSVersion" name="FreeRTOSVersion"></testcase>

lts

True if you are qualifying for a version of FreeRTOS that uses LTS libraries, false otherwise.

Attributes used in the <testcase> tag

Understanding results and logs 163

https://devices.amazonaws.com/


FreeRTOS User Guide

name

The name of the test case.

attempts

The number of times IDT for FreeRTOS executed the test case.

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="mcu.Full_MQTT" name="AFQP_MQTT_Connect_HappyCase">  
    <failure type="Failure">Reason for the test case failure</failure>  
    <error>Reason for the test case execution error</error>  
</testcase>

For more information, see Troubleshooting.

Viewing logs

You can find logs that IDT for FreeRTOS generates from test execution in devicetester-
extract-location/results/execution-id/logs. Two sets of logs are generated:

test_manager.log

Contains logs generated from IDT for FreeRTOS (for example, logs related configuration and 
report generation).

test_group_id__test_case_id.log (for example, FullMQTT__Full_MQTT.log)

The log file for a test case, including output from the device under test. The log file is named 
according to the test group and test case that was run.

Use IDT to develop and run your own test suites

Starting in IDT v4.0.0, IDT for FreeRTOS combines a standardized configuration setup and result 
format with a test suite environment that enables you to develop custom test suites for your 
devices and device software. You can add custom tests for your own internal validation or provide 
them to your customers for device verification.

Use IDT to develop and run custom test suites, as follows:

Use IDT to develop and run your own test suites 164



FreeRTOS User Guide

To develop custom test suites

• Create test suites with custom test logic for the device that you want to test.

• Provide IDT with your custom test suites to test runners. Include information about specific 
settings configurations for your test suites.

To run custom test suites

• Set up the device that you want to test.

• Implement the settings configurations as required by the test suites that you want to use.

• Use IDT to run your custom test suites.

• View the test results and execution logs for the tests run by IDT.

Download the latest version of AWS IoT Device Tester for FreeRTOS

Download the latest version of IDT and extract the software into a location on your file system 
where you have read and write permissions.

Note

IDT does not support being run by multiple users from a shared location, such as an NFS 
directory or a Windows network shared folder. We recommend that you extract the IDT 
package to a local drive and run the IDT binary on your local workstation.
Windows has a path length limitation of 260 characters. If you are using Windows, extract 
IDT to a root directory like C:\  or D:\ to keep your paths under the 260 character limit.

Test suite creation workflow

Test suites are composed of three types of files:

• Configuration files that provide IDT with information on how to execute the test suite.

• Test executable files that IDT uses to run test cases.

• Additional files required to run tests.

Complete the following basic steps to create custom IDT tests:

1. Create configuration files for your test suite.

Download the latest version of IDT for FreeRTOS 165



FreeRTOS User Guide

2. Create test case executables that contain the test logic for your test suite.

3. Verify and document the configuration information required for test runners to run the test 
suite.

4. Verify that IDT can run your test suite and produce test results as expected.

To quickly build a sample custom suite and run it, follow the instructions in Tutorial: Build and run 
the sample IDT test suite.

To get started creating a custom test suite in Python, see Tutorial: Develop a simple IDT test suite.

Tutorial: Build and run the sample IDT test suite

The AWS IoT Device Tester download includes the source code for a sample test suite. You can 
complete this tutorial to build and run the sample test suite to understand how you can use AWS 
IoT Device Tester for FreeRTOS to run custom test suites. Although this tutorial uses SSH, it is 
useful to learn how to use AWS IoT Device Tester with FreeRTOS devices.

In this tutorial, you will complete the following steps:

1. Build the sample test suite

2. Use IDT to run the sample test suite

Prerequisites

To complete this tutorial, you need the following:

• Host computer requirements

• Latest version of AWS IoT Device Tester

• Python 3.7 or later

To check the version of Python installed on your computer, run the following command:

python3 --version

On Windows, if using this command returns an error, then use python --version instead. If 
the returned version number is 3.7 or greater, then run the following command in a Powershell 
terminal to set python3 as an alias for your python command.

Tutorial: Build and run the sample IDT test suite 166

https://www.python.org/downloads/


FreeRTOS User Guide

Set-Alias -Name "python3" -Value "python"

If no version information is returned or if the version number is less than 3.7, follow the 
instructions in Downloading Python to install Python 3.7+. For more information, see the
Python documentation.

• urllib3

To verify that urllib3 is installed correctly, run the following command:

python3 -c 'import urllib3'

If urllib3 is not installed, run the following command to install it:

python3 -m pip install urllib3

• Device requirements

• A device with a Linux operating system and a network connection to the same network as your 
host computer.

We recommend that you use a Raspberry Pi with Raspberry Pi OS. Make sure you set up SSH
on your Raspberry Pi to remotely connect to it.

Configure device information for IDT

Configure your device information for IDT to run the test. You must update the device.json
template located in the <device-tester-extract-location>/configs folder with the 
following information.

[ 
  { 
    "id": "pool", 
    "sku": "N/A", 
    "devices": [ 
      { 
        "id": "<device-id>", 
        "connectivity": { 
          "protocol": "ssh", 
          "ip": "<ip-address>", 

Tutorial: Build and run the sample IDT test suite 167

https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org
https://urllib3.readthedocs.io/en/latest/
https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/


FreeRTOS User Guide

          "port": "<port>", 
          "auth": { 
            "method": "pki | password", 
            "credentials": { 
              "user": "<user-name>", 
              "privKeyPath": "/path/to/private/key", 
              "password": "<password>" 
            } 
          } 
        } 
      } 
    ] 
  }
]

In the devices object, provide the following information:

id

A user-defined unique identifier for your device.

connectivity.ip

The IP address of your device.

connectivity.port

Optional. The port number to use for SSH connections to your device.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

Tutorial: Build and run the sample IDT test suite 168



FreeRTOS User Guide

connectivity.auth.credentials.user

The user name used to sign in to your device.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to your device.

This value applies only if connectivity.auth.method is set to pki.

devices.connectivity.auth.credentials.password

The password used for signing in to your device.

This value applies only if connectivity.auth.method is set to password.

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

Build the sample test suite

The <device-tester-extract-location>/samples/python folder contains sample 
configuration files, source code, and the IDT Client SDK that you can combine into a test suite using 
the provided build scripts. The following directory tree shows the location of these sample files:

<device-tester-extract-location>
### ...
### tests
### samples
#   ### ...
#   ### python
#       ### configuration
#       ### src
#       ### build-scripts
#           ### build.sh
#           ### build.ps1
### sdks 
    ### ... 
    ### python
        ### idt_client

Tutorial: Build and run the sample IDT test suite 169



FreeRTOS User Guide

To build the test suite, run the following commands on your host computer:

Windows

cd <device-tester-extract-location>/samples/python/build-scripts
./build.ps1

Linux, macOS, or UNIX

cd <device-tester-extract-location>/samples/python/build-scripts
./build.sh

This creates the sample test suite in the IDTSampleSuitePython_1.0.0 folder within 
the <device-tester-extract-location>/tests folder. Review the files in the
IDTSampleSuitePython_1.0.0 folder to understand how the sample test suite is structured 
and to see various examples of test case executables and test configuration files.

Note

The sample test suite includes python source code. Do not include sensitive information in 
your test suite code.

Next step: Use IDT to run the sample test suite that you created.

Use IDT to run the sample test suite

To run the sample test suite, run the following commands on your host computer:

cd <device-tester-extract-location>/bin
./devicetester_[linux | mac | win_x86-64] run-suite --suite-id IDTSampleSuitePython

IDT runs the sample test suite and streams the results to the console. When the test has finished 
running, you see the following information:

========== Test Summary ==========
Execution Time:         5s
Tests Completed:        4
Tests Passed:           4
Tests Failed:           0

Tutorial: Build and run the sample IDT test suite 170



FreeRTOS User Guide

Tests Skipped:          0
----------------------------------
Test Groups: 
    sample_group:       PASSED
----------------------------------
Path to AWS IoT Device Tester Report: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/logs
Path to Aggregated JUnit Report: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/IDTSampleSuitePython_Report.xml

Troubleshooting

Use the following information to help resolve any issues with completing the tutorial.

Test case does not run successfully

• If the test does not run successfully, IDT streams the error logs to the console that can help you 
troubleshoot the test run. Make sure that you meet all the prerequisites for this tutorial.

Cannot connect to the device under test

Verify the following:

• Your device.json file contains the correct IP address, port, and authentication information.

• You can connect to your device over SSH from your host computer.

Tutorial: Develop a simple IDT test suite

A test suite combines the following:

• Test executables that contain the test logic

• Configuration files that describe the test suite

This tutorial shows you how to use IDT for FreeRTOS to develop a Python test suite that contains 
a single test case. Although this tutorial uses SSH, it is useful to learn how to use AWS IoT Device 
Tester with FreeRTOS devices.

In this tutorial, you will complete the following steps:

Tutorial: Develop a simple IDT test suite 171



FreeRTOS User Guide

1. Create a test suite directory

2. Create configuration files

3. Create the test case executable

4. Run the test suite

Prerequisites

To complete this tutorial, you need the following:

• Host computer requirements

• Latest version of AWS IoT Device Tester

• Python 3.7 or later

To check the version of Python installed on your computer, run the following command:

python3 --version

On Windows, if using this command returns an error, then use python --version instead. If 
the returned version number is 3.7 or greater, then run the following command in a Powershell 
terminal to set python3 as an alias for your python command.

Set-Alias -Name "python3" -Value "python"

If no version information is returned or if the version number is less than 3.7, follow the 
instructions in Downloading Python to install Python 3.7+. For more information, see the
Python documentation.

• urllib3

To verify that urllib3 is installed correctly, run the following command:

python3 -c 'import urllib3'

If urllib3 is not installed, run the following command to install it:

python3 -m pip install urllib3

• Device requirements

Tutorial: Develop a simple IDT test suite 172

https://www.python.org/downloads/
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org
https://urllib3.readthedocs.io/en/latest/


FreeRTOS User Guide

• A device with a Linux operating system and a network connection to the same network as your 
host computer.

We recommend that you use a Raspberry Pi with Raspberry Pi OS. Make sure you set up SSH
on your Raspberry Pi to remotely connect to it.

Create a test suite directory

IDT logically separates test cases into test groups within each test suite. Each test case must be 
inside a test group. For this tutorial, create a folder called MyTestSuite_1.0.0 and create the 
following directory tree within this folder:

MyTestSuite_1.0.0
### suite 
    ### myTestGroup 
        ### myTestCase

Create configuration files

Your test suite must contain the following required configuration files:

Required files

suite.json

Contains information about the test suite. See Configure suite.json.

group.json

Contains information about a test group. You must create a group.json file for each test 
group in your test suite. See Configure group.json.

test.json

Contains information about a test case. You must create a test.json file for each test case in 
your test suite. See Configure test.json.

1. In the MyTestSuite_1.0.0/suite folder, create a suite.json file with the following 
structure:

{ 

Tutorial: Develop a simple IDT test suite 173

https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/


FreeRTOS User Guide

    "id": "MyTestSuite_1.0.0", 
    "title": "My Test Suite", 
    "details": "This is my test suite.", 
    "userDataRequired": false
}

2. In the MyTestSuite_1.0.0/myTestGroup folder, create a group.json file with the 
following structure:

{ 
    "id": "MyTestGroup", 
    "title": "My Test Group", 
    "details": "This is my test group.", 
    "optional": false
}

3. In the MyTestSuite_1.0.0/myTestGroup/myTestCase folder, create a test.json file 
with the following structure:

{ 
    "id": "MyTestCase", 
    "title": "My Test Case", 
    "details": "This is my test case.", 
    "execution": { 
        "timeout": 300000, 
        "linux": { 
            "cmd": "python3", 
            "args": [ 
                "myTestCase.py" 
            ] 
        }, 
        "mac": { 
            "cmd": "python3", 
            "args": [ 
                "myTestCase.py" 
            ] 
        }, 
        "win": { 
            "cmd": "python3", 
            "args": [ 
                "myTestCase.py" 
            ] 
        } 

Tutorial: Develop a simple IDT test suite 174



FreeRTOS User Guide

    }
}

The directory tree for your MyTestSuite_1.0.0 folder should now look like the following:

MyTestSuite_1.0.0
### suite 
    ### suite.json 
    ### myTestGroup 
        ### group.json 
        ### myTestCase 
            ### test.json

Get the IDT client SDK

You use the IDT client SDK to enable IDT to interact with the device under test and to report test 
results. For this tutorial, you will use the Python version of the SDK.

From the <device-tester-extract-location>/sdks/python/ folder, copy the idt_client
folder to your MyTestSuite_1.0.0/suite/myTestGroup/myTestCase folder.

To verify that the SDK was successfully copied, run the following command.

cd MyTestSuite_1.0.0/suite/myTestGroup/myTestCase
python3 -c 'import idt_client'

Create the test case executable

Test case executables contain the test logic that you want to run. A test suite can contain multiple 
test case executables. For this tutorial, you will create only one test case executable.

1. Create the test suite file.

In the MyTestSuite_1.0.0/suite/myTestGroup/myTestCase folder, create a
myTestCase.py file with the following content:

from idt_client import *

def main(): 
    # Use the client SDK to communicate with IDT 

Tutorial: Develop a simple IDT test suite 175



FreeRTOS User Guide

    client = Client()

if __name__ == "__main__": 
    main()

2. Use client SDK functions to add the following test logic to your myTestCase.py file:

a. Run an SSH command on the device under test.

from idt_client import *

def main(): 
    # Use the client SDK to communicate with IDT 
    client = Client() 
     
     # Create an execute on device request 
    exec_req = ExecuteOnDeviceRequest(ExecuteOnDeviceCommand("echo 'hello 
 world'")) 
     
    # Run the command 
    exec_resp = client.execute_on_device(exec_req) 
     
    # Print the standard output 
    print(exec_resp.stdout)

if __name__ == "__main__": 
    main()

b. Send the test result to IDT.

from idt_client import *

def main(): 
    # Use the client SDK to communicate with IDT 
    client = Client() 
     
    # Create an execute on device request 
    exec_req = ExecuteOnDeviceRequest(ExecuteOnDeviceCommand("echo 'hello 
 world'")) 
     
    # Run the command 
    exec_resp = client.execute_on_device(exec_req) 
     

Tutorial: Develop a simple IDT test suite 176



FreeRTOS User Guide

    # Print the standard output 
    print(exec_resp.stdout) 

     # Create a send result request 
    sr_req = SendResultRequest(TestResult(passed=True)) 
      
    # Send the result 
    client.send_result(sr_req)
       
if __name__ == "__main__": 
    main()

Configure device information for IDT

Configure your device information for IDT to run the test. You must update the device.json
template located in the <device-tester-extract-location>/configs folder with the 
following information.

[ 
  { 
    "id": "pool", 
    "sku": "N/A", 
    "devices": [ 
      { 
        "id": "<device-id>", 
        "connectivity": { 
          "protocol": "ssh", 
          "ip": "<ip-address>", 
          "port": "<port>", 
          "auth": { 
            "method": "pki | password", 
            "credentials": { 
              "user": "<user-name>", 
              "privKeyPath": "/path/to/private/key", 
              "password": "<password>" 
            } 
          } 
        } 
      } 
    ] 
  }

Tutorial: Develop a simple IDT test suite 177



FreeRTOS User Guide

]

In the devices object, provide the following information:

id

A user-defined unique identifier for your device.

connectivity.ip

The IP address of your device.

connectivity.port

Optional. The port number to use for SSH connections to your device.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.user

The user name used to sign in to your device.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to your device.

This value applies only if connectivity.auth.method is set to pki.

devices.connectivity.auth.credentials.password

The password used for signing in to your device.

Tutorial: Develop a simple IDT test suite 178



FreeRTOS User Guide

This value applies only if connectivity.auth.method is set to password.

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

Run the test suite

After you create your test suite, you want to make sure that it functions as expected. Complete the 
following steps to run the test suite with your existing device pool to do so.

1. Copy your MyTestSuite_1.0.0 folder into <device-tester-extract-location>/
tests.

2. Run the following commands:

cd <device-tester-extract-location>/bin
./devicetester_[linux | mac | win_x86-64] run-suite --suite-id MyTestSuite

IDT runs your test suite and streams the results to the console. When the test has finished running, 
you see the following information:

time="2020-10-19T09:24:47-07:00" level=info msg=Using pool: pool
time="2020-10-19T09:24:47-07:00" level=info msg=Using test suite "MyTestSuite_1.0.0" 
 for execution
time="2020-10-19T09:24:47-07:00" level=info msg=b'hello world\n' 
 suiteId=MyTestSuite groupId=myTestGroup testCaseId=myTestCase deviceId=my-device 
 executionId=9a52f362-1227-11eb-86c9-8c8590419f30
time="2020-10-19T09:24:47-07:00" level=info msg=All tests finished. 
 executionId=9a52f362-1227-11eb-86c9-8c8590419f30
time="2020-10-19T09:24:48-07:00" level=info msg=

========== Test Summary ==========
Execution Time:         1s
Tests Completed:        1
Tests Passed:           1
Tests Failed:           0
Tests Skipped:          0

Tutorial: Develop a simple IDT test suite 179



FreeRTOS User Guide

----------------------------------
Test Groups: 
    myTestGroup:        PASSED
----------------------------------
Path to AWS IoT Device Tester Report: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/logs
Path to Aggregated JUnit Report: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/MyTestSuite_Report.xml

Troubleshooting

Use the following information to help resolve any issues with completing the tutorial.

Test case does not run successfully

If the test does not run successfully, IDT streams the error logs to the console that can help you 
troubleshoot the test run. Before you check the error logs, verify the following:

• The IDT client SDK is in the correct folder as described in this step.

• You meet all the prerequisites for this tutorial.

Cannot connect to the device under test

Verify the following:

• Your device.json file contains the correct IP address, port, and authentication information.

• You can connect to your device over SSH from your host computer.

Create IDT test suite configuration files

This section describes the formats in which you create configuration files that you include when 
you write a custom test suite.

Required configuration files

suite.json

Contains information about the test suite. See Configure suite.json.

Tutorial: Develop a simple IDT test suite 180



FreeRTOS User Guide

group.json

Contains information about a test group. You must create a group.json file for each test 
group in your test suite. See Configure group.json.

test.json

Contains information about a test case. You must create a test.json file for each test case in 
your test suite. See Configure test.json.

Optional configuration files

test_orchestrator.yaml or state_machine.json

Defines how tests are run when IDT runs the test suite. SSe Configure test_orchestrator.yaml.

Note

Starting in IDT v4.5.2, you use the test_orchestrator.yaml file to define the test 
workflow. In previous versions of IDT, you use the state_machine.json file. For 
information about the state machine, see Configure the IDT state machine.

userdata_schema.json

Defines the schema for the userdata.json file that test runners can include in their setting 
configuration. The userdata.json file is used for any additional configuration information 
that is required to run the test but is not present in the device.json file. See Configure 
userdata_schema.json.

Configuration files are placed in your <custom-test-suite-folder> as shown here.

<custom-test-suite-folder>
### suite 
    ### suite.json 
    ### test_orchestrator.yaml 
    ### userdata_schema.json 
    ### <test-group-folder>
        ### group.json 
        ### <test-case-folder>

Tutorial: Develop a simple IDT test suite 181



FreeRTOS User Guide

            ### test.json

Configure suite.json

The suite.json file sets environment variables and determines whether user data is required 
to run the test suite. Use the following template to configure your <custom-test-suite-
folder>/suite/suite.json file:

{ 
    "id": "<suite-name>_<suite-version>", 
    "title": "<suite-title>", 
    "details": "<suite-details>", 
    "userDataRequired": true | false, 
    "environmentVariables": [ 
        { 
            "key": "<name>", 
            "value": "<value>", 
        }, 
        ... 
        { 
            "key": "<name>", 
            "value": "<value>", 
        } 
    ]
}

All fields that contain values are required as described here:

id

A unique user-defined ID for the test suite. The value of id must match the name of the test 
suite folder in which the suite.json file is located. The suite name and suite version must also 
meet the following requirements:

• <suite-name> cannot contain underscores.

• <suite-version> is denoted as x.x.x, where x is a number.

The ID is shown in IDT-generated test reports.

title

A user-defined name for the product or feature being tested by this test suite. The name is 
displayed in the IDT CLI for test runners.

Tutorial: Develop a simple IDT test suite 182



FreeRTOS User Guide

details

A short description of the purpose of the test suite.

userDataRequired

Defines whether test runners need to include custom information in a userdata.json file. If 
you set this value to true, you must also include the userdata_schema.json file in your test 
suite folder.

environmentVariables

Optional. An array of environment variables to set for this test suite.

environmentVariables.key

The name of the environment variable.

environmentVariables.value

The value of the environment variable.

Configure group.json

The group.json file defines whether a test group is required or optional. Use the following 
template to configure your <custom-test-suite-folder>/suite/<test-group>/
group.json file:

{ 
    "id": "<group-id>", 
    "title": "<group-title>", 
    "details": "<group-details>", 
    "optional": true | false,
}

All fields that contain values are required as described here:

id

A unique user-defined ID for the test group. The value of id must match the name of the test 
group folder in which the group.json file is located and should not have underscores (_). The 
ID is used in IDT-generated test reports.

Tutorial: Develop a simple IDT test suite 183



FreeRTOS User Guide

title

A descriptive name for the test group. The name is displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test group.

optional

Optional. Set to true to display this test group as an optional group after IDT finishes running 
required tests. Default value is false.

Configure test.json

The test.json file determines the test case executables and the environment variables that are 
used by a test case. For more information about creating test case executables, see Create IDT test 
case executable.

Use the following template to configure your <custom-test-suite-folder>/suite/<test-
group>/<test-case>/test.json file:

{ 
    "id": "<test-id>", 
    "title": "<test-title>", 
    "details": "<test-details>", 
    "requireDUT": true | false, 
    "requiredResources": [ 
        { 
            "name": "<resource-name>", 
            "features": [ 
                { 
                    "name": "<feature-name>", 
                    "version": "<feature-version>", 
                    "jobSlots": <job-slots>
                } 
            ] 
        } 
    ], 
    "execution": { 
        "timeout": <timeout>, 
        "mac": { 
            "cmd": "/path/to/executable", 
            "args": [ 

Tutorial: Develop a simple IDT test suite 184



FreeRTOS User Guide

                "<argument>" 
            ], 
        }, 
        "linux": { 
            "cmd": "/path/to/executable", 
            "args": [ 
                "<argument>" 
            ], 
        }, 
        "win": { 
            "cmd": "/path/to/executable", 
            "args": [ 
                "<argument>" 
            ] 
        } 
    }, 
    "environmentVariables": [ 
        { 
            "key": "<name>", 
            "value": "<value>", 
        } 
    ]
}

All fields that contain values are required as described here:

id

A unique user-defined ID for the test case. The value of id must match the name of the test 
case folder in which the test.json file is located and should not have underscores (_). The ID 
is used in IDT-generated test reports.

title

A descriptive name for the test case. The name is displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test case.

requireDUT

Optional. Set to true if a device is required to run this test, otherwise set to false. Default 
value is true. Test runners will configure the devices they will use to run the test in their
device.json file.

Tutorial: Develop a simple IDT test suite 185



FreeRTOS User Guide

requiredResources

Optional. An array that provides information about resource devices needed to run this test.

requiredResources.name

The unique name to give the resource device when this test is running.

requiredResources.features

An array of user-defined resource device features.

requiredResources.features.name

The name of the feature. The device feature for which you want to use this device. 
This name is matched against the feature name provided by the test runner in the
resource.json file.

requiredResources.features.version

Optional. The version of the feature. This value is matched against the feature version 
provided by the test runner in the resource.json file. If a version is not provided, then 
the feature is not checked. If a version number is not required for the feature, leave this 
field blank.

requiredResources.features.jobSlots

Optional. The number of simultaneous tests that this feature can support. The default 
value is 1. If you want IDT to use distinct devices for individual features, then we 
recommend that you set this value to 1.

execution.timeout

The amount of time (in milliseconds) that IDT waits for the test to finish running. For more 
information about setting this value, see Create IDT test case executable.

execution.os

The test case executables to run based on the operating system of the host computer that runs 
IDT. Supported values are linux, mac, and win.

execution.os.cmd

The path to the test case executable that you want to run for the specified operating system. 
This location must be in the system path.

Tutorial: Develop a simple IDT test suite 186



FreeRTOS User Guide

execution.os.args

Optional. The arguments to provide to run the test case executable.

environmentVariables

Optional. An array of environment variables set for this test case.

environmentVariables.key

The name of the environment variable.

environmentVariables.value

The value of the environment variable.

Note

If you specify the same environment variable in the test.json file and in the
suite.json file, the value in the test.json file takes precedence.

Configure test_orchestrator.yaml

A test orchestrator is a construct that controls the test suite execution flow. It determines the 
starting state of a test suite, manages state transitions based on user-defined rules, and continues 
to transition through those states until it reaches the end state.

If your test suite doesn't include a user-defined test orchestrator, IDT will generate a test 
orchestrator for you.

The default test orchestrator performs the following functions:

• Provides test runners with the ability to select and run specific test groups, instead of the entire 
test suite.

• If specific test groups are not selected, runs every test group in the test suite in a random order.

• Generates reports and prints a console summary that shows the test results for each test group 
and test case.

For more information about how the IDT test orchestrator functions, see Configure the IDT test 
orchestrator.

Tutorial: Develop a simple IDT test suite 187



FreeRTOS User Guide

Configure userdata_schema.json

The userdata_schema.json file determines the schema in which test runners provide user 
data. User data is required if your test suite requires information that is not present in the
device.json file. For example, your tests might need Wi-Fi network credentials, specific open 
ports, or certificates that a user must provide. This information can be provided to IDT as an input 
parameter called userdata, the value for which is a userdata.json file, that users create in their
<device-tester-extract-location>/config folder. The format of the userdata.json file 
is based on the userdata_schema.json file that you include in the test suite.

To indicate that test runners must provide a userdata.json file:

1. In the suite.json file, set userDataRequired to true.

2. In your <custom-test-suite-folder>, create a userdata_schema.json file.

3. Edit the userdata_schema.json file to create a valid IETF Draft v4 JSON Schema.

When IDT runs your test suite, it automatically reads the schema and uses it to validate the
userdata.json file provided by the test runner. If valid, the contents of the userdata.json file 
are available in both the IDT context and in the test orchestrator context.

Configure the IDT test orchestrator

Starting in IDT v4.5.2, IDT includes a new test orchestrator component. The test orchestrator is an 
IDT component that controls the test suite execution flow, and generates the test report after IDT 
finishes running all tests. The test orchestrator determines test selection and the order in which 
tests are run based on user-defined rules.

If your test suite doesn't include a user-defined test orchestrator, IDT will generate a test 
orchestrator for you.

The default test orchestrator performs the following functions:

• Provides test runners with the ability to select and run specific test groups, instead of the entire 
test suite.

• If specific test groups are not selected, runs every test group in the test suite in a random order.

• Generates reports and prints a console summary that shows the test results for each test group 
and test case.

Tutorial: Develop a simple IDT test suite 188

https://json-schema.org/specification-links.html#draft-4


FreeRTOS User Guide

The test orchestrator replaces the IDT state machine. We strongly recommend that you use the 
test orchestrator to develop your test suites instead of the IDT state machine. The test orchestrator 
provides the following improved features:

• Uses a declarative format compared to the imperative format that the IDT state machine uses. 
This allows you to specify which tests you want to run and when you want to run them.

• Manages specific group handling, report generation, error handling, and result tracking so that 
you aren't required to manually manage these actions.

• Uses the YAML format, which supports comments by default.

• Requires 80 percent less disk space than the test orchestrator to define the same workflow.

• Adds pre-test validation to verify that your workflow definition doesn't contain incorrect test IDs 
or circular dependencies.

Test orchestrator format

You can use the following template to configure your own custom-test-suite-folder/
suite/test_orchestrator.yaml file:

Aliases: 
   string: context-expression

ConditionalTests: 
  - Condition: context-expression
    Tests: 
      - test-descriptor

Order: 
  - - group-descriptor
    - group-descriptor

Features: 
  - Name: feature-name
    Value: support-description
    Condition: context-expression
    Tests: 
        - test-descriptor
    OneOfTests: 
        - test-descriptor
    IsRequired: boolean

Tutorial: Develop a simple IDT test suite 189



FreeRTOS User Guide

All fields that contain values are required as described here:

Aliases

Optional. User-defined strings that map to context expressions. Aliases allow you to generate 
friendly names to identify context expressions in your test orchestrator configuration. This is 
especially useful if you're creating complex context expressions or expressions that you use in 
multiple places.

You can use context expressions to store context queries that allow you to access data from 
other IDT configurations. For more information, see Access data in the context.

Example

Example

Aliases: 
    FizzChosen: "'{{$pool.features[?(@.name == 'Fizz')].value[0]}}' == 'yes'"     
    BuzzChosen: "'{{$pool.features[?(@.name == 'Buzz')].value[0]}}' == 'yes'"     
    FizzBuzzChosen: "'{{$aliases.FizzChosen}}' && '{{$aliases.BuzzChosen}}'"

ConditionalTests

Optional. A list of conditions, and the corresponding test cases that are run when each 
condition is satisfied. Each condition can have multiple test cases; however, you can assign a 
given test case to only one condition.

By default, IDT runs any test case that isn't assigned to a condition in this list. If you don't 
specify this section, IDT runs all test groups in the test suite.

Each item in the ConditionalTests list includes the following parameters:

Condition

A context expression that evaluates to a Boolean value. If the evaluated value is true, IDT 
runs the test cases that are specified in the Tests parameter.

Tests

The list of test descriptors.

Each test descriptor uses the test group ID and one or more test case IDs to identify the 
individual tests to run from a specific test group. The test descriptor uses the following 
format:

Tutorial: Develop a simple IDT test suite 190



FreeRTOS User Guide

GroupId: group-id
CaseIds: [test-id, test-id] # optional

Example

Example

The following example uses generic context expressions that you can define as Aliases.

ConditionalTests: 
    - Condition: "{{$aliases.Condition1}}" 
      Tests: 
          - GroupId: A 
          - GroupId: B 
    - Condition: "{{$aliases.Condition2}}" 
      Tests: 
          - GroupId: D 
    - Condition: "{{$aliases.Condition1}} || {{$aliases.Condition2}}" 
      Tests: 
          - GroupId: C

Based on the defined conditions, IDT selects test groups as follows:

• If Condition1 is true, IDT runs the tests in test groups A, B, and C.

• If Condition2 is true, IDT runs the tests in test groups C and D.

Order

Optional. The order in which to run tests. You specify the test order at the test group level. If 
you don't specify this section, IDT runs all applicable test groups in a random order. The value of
Order is a list of group descriptor lists. Any test group that you don't list in Order, can be run 
in parallel with any other listed test group.

Each group descriptor list contains one of more group descriptors, and identifies the order in 
which to run the groups that are specified in each descriptor. You can use the following formats 
to define individual group descriptors:

• group-id—The group ID of an existing test group.

• [group-id, group-id]—List of test groups that can be run in any order relative to each 
other.

Tutorial: Develop a simple IDT test suite 191



FreeRTOS User Guide

• "*"—Wildcard. This is equivalent to the list of all test groups that are not already specified in 
the current group descriptor list.

The value for Order must also meet the following requirements:

• Test group IDs that you specify in a group descriptor must exist in your test suite.

• Each group descriptor list must include at least one test group.

• Each group descriptor list must contain unique group IDs. You cannot repeat a test group ID 
within individual group descriptors.

• A group descriptor list can have at most one wildcard group descriptor. The wildcard group 
descriptor must be the first or the last item in the list.

Example

Example

For a test suite that contains test groups A, B, C, D, and E, the following list of examples shows 
different ways to specify that IDT should first run test group A, then run test group B, and then 
run test groups C, D, and E in any order.

• Order: 
    - - A 
      - B 
      - [C, D, E]

• Order: 
    - - A 
      - B 
      - "*"

• Order: 
    - - A 
      - B 
     
    - - B 
      - C 
     
    - - B 
      - D 
     
    - - B 

Tutorial: Develop a simple IDT test suite 192



FreeRTOS User Guide

      - E

Features

Optional. The list of product features that you want IDT to add to the
awsiotdevicetester_report.xml file. If you don't specify this section, IDT won't add any 
product features to the report.

A product feature is user-defined information about specific criteria that a device might 
meet. For example, the MQTT product feature can designate that the device publishes MQTT 
messages properly. In awsiotdevicetester_report.xml, product features are set as
supported, not-supported, or a custom user-defined value, based on whether specified 
tests passed.

Each item in the Features list consists of the following parameters:

Name

The name of the feature.

Value

Optional. The custom value that you want to use in the report instead of supported. If 
this value is not specified, then based IDT sets the feature value to supported or not-
supported based on test results. If you test the same feature with different conditions, 
you can use a custom value for each instance of that feature in the Features list, and IDT 
concatenates the feature values for supported conditions. For more information, see

Condition

A context expression that evaluates to a Boolean value. If the evaluated value is true, IDT 
adds the feature to the test report after it finishes running the test suite. If the evaluated 
value is false, the test is not included in the report.

Tests

Optional. The list of test descriptors. All of the tests that are specified in this list must pass 
for the feature to be supported.

Each test descriptor in this list uses the test group ID and one or more test case IDs to 
identify the individual tests to run from a specific test group. The test descriptor uses the 
following format:

Tutorial: Develop a simple IDT test suite 193



FreeRTOS User Guide

GroupId: group-id
CaseIds: [test-id, test-id] # optional

You must specify either Tests or OneOfTests for each feature in the Features list.

OneOfTests

Optional. The list of test descriptors. At least one of the tests that are specified in this list 
must pass for the feature to be supported.

Each test descriptor in this list uses the test group ID and one or more test case IDs to 
identify the individual tests to run from a specific test group. The test descriptor uses the 
following format:

GroupId: group-id
CaseIds: [test-id, test-id] # optional

You must specify either Tests or OneOfTests for each feature in the Features list.

IsRequired

The boolean value that defines whether the feature is required in the test report. The 
default value is false.

Test orchestrator context

The test orchestrator context is a read-only JSON document that contains data that is available 
to the test orchestrator during execution. The test orchestrator context is accessible only from the 
test orchestrator, and contains information that determines the test flow. For example, you can use 
information configured by test runners in the userdata.json file to determine whether a specific 
test is required to run.

The test orchestrator context uses the following format:

{ 
    "pool": { 
         <device-json-pool-element>
    }, 
    "userData": { 
         <userdata-json-content>
    }, 

Tutorial: Develop a simple IDT test suite 194



FreeRTOS User Guide

    "config": { 
         <config-json-content>
    }
}

pool

Information about the device pool selected for the test run. For a selected device pool, this 
information is retrieved from the corresponding top-level device pool array element defined in 
the device.json file.

userData

Information in the userdata.json file.

config

Information in the config.json file.

You can query the context using JSONPath notation. The syntax for JSONPath queries in state 
definitions is {{query}}. When you access data from the test orchestrator context, make sure that 
each value evaluates to a string, a number, or a Boolean.

For more information about using JSONPath notation to access data from the context, see Use the 
IDT context.

Configure the IDT state machine

Important

Starting in IDT v4.5.2, this state machine is deprecated. We strongly recommend that 
you use the new test orchestrator. For more information, see Configure the IDT test 
orchestrator.

A state machine is a construct that controls the test suite execution flow. It determines the starting 
state of a test suite, manages state transitions based on user-defined rules, and continues to 
transition through those states until it reaches the end state.

If your test suite doesn't include a user-defined state machine, IDT will generate a state machine 
for you. The default state machine performs the following functions:

Tutorial: Develop a simple IDT test suite 195



FreeRTOS User Guide

• Provides test runners with the ability to select and run specific test groups, instead of the entire 
test suite.

• If specific test groups are not selected, runs every test group in the test suite in a random order.

• Generates reports and prints a console summary that shows the test results for each test group 
and test case.

The state machine for an IDT test suite must meet the following criteria:

• Each state corresponds to an action for IDT to take, such as to run a test group or product a 
report file.

• Transitioning to a state executes the action associated with the state.

• Each state defines the transition rule for the next state.

• The end state must be either Succeed or Fail.

State machine format

You can use the following template to configure your own <custom-test-suite-folder>/
suite/state_machine.json file:

{ 
  "Comment": "<description>", 
  "StartAt": "<state-name>", 
  "States": { 
    "<state-name>": { 
      "Type": "<state-type>", 
      // Additional state configuration 
    } 
     
    // Required states 
    "Succeed": { 
      "Type": "Succeed" 
    }, 
    "Fail": { 
      "Type": "Fail" 
    } 
  }
}

All fields that contain values are required as described here:

Tutorial: Develop a simple IDT test suite 196



FreeRTOS User Guide

Comment

A description of the state machine.

StartAt

The name of the state at which IDT starts running the test suite. The value of StartAt must be 
set to one of the states listed in the States object.

States

An object that maps user-defined state names to valid IDT states. Each States.state-name
object contains the definition of a valid state mapped to the state-name.

The States object must include the Succeed and Fail states. For information about valid 
states, see Valid states and state definitions.

Valid states and state definitions

This section describes the state definitions of all of the valid states that can be used in the IDT 
state machine. Some of the following states support configurations at the test case level. However, 
we recommend that you configure state transition rules at the test group level instead of the test 
case level unless absolutely necessary.

State definitions

• RunTask

• Choice

• Parallel

• AddProductFeatures

• Report

• LogMessage

• SelectGroup

• Fail

• Succeed

RunTask

The RunTask state runs test cases from a test group defined in the test suite.

Tutorial: Develop a simple IDT test suite 197



FreeRTOS User Guide

{ 
    "Type": "RunTask", 
    "Next": "<state-name>", 
    "TestGroup": "<group-id>", 
    "TestCases": [ 
        "<test-id>" 
    ], 
    "ResultVar": "<result-name>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

TestGroup

Optional. The ID of the test group to run. If this value is not specified, then IDT runs the test 
group that the test runner selects.

TestCases

Optional. An array of test case IDs from the group specified in TestGroup. Based on the values 
of TestGroup and TestCases, IDT determines the test execution behavior as follows:

• When both TestGroup and TestCases are specified, IDT runs the specified test cases from 
the test group.

• When TestCases are specified but TestGroup is not specified, IDT runs the specified test 
cases.

• When TestGroup is specified, but TestCases is not specified, IDT runs all of the test cases 
within the specified test group.

• When neither TestGroup or TestCases is specified, IDT runs all test cases from the test 
group that the test runner selects from the IDT CLI. To enable group selection for test 
runners, you must include both RunTask and Choice states in your statemachine.json
file. For an example of how this works, see Example state machine: Run user-selected test 
groups.

For more information about enabling IDT CLI commands for test runners, see the section 
called “Enable IDT CLI commands”.

Tutorial: Develop a simple IDT test suite 198



FreeRTOS User Guide

ResultVar

The name of the context variable to set with the results of the test run. Do not specify this 
value if you did not specify a value for TestGroup. IDT sets the value of the variable that you 
define in ResultVar to true or false based on the following:

• If the variable name is of the form text_text_passed, then the value is set to whether all 
tests in the first test group passed or were skipped.

• In all other cases, the value is set to whether all tests in all test groups passed or were 
skipped.

Typically, you will use RunTask state to specify a test group ID without specifying individual test 
case IDs, so that IDT will run all of the test cases in the specified test group. All test cases that are 
run by this state run in parallel, in a random order. However, if all of the test cases require a device 
to run, and only a single device is available, then the test cases will run sequentially instead.

Error handling

If any of the specified test groups or test case IDs are not valid, then this state issues the
RunTaskError execution error. If the state encounters an execution error, then it also sets the
hasExecutionError variable in the state machine context to true.

Choice

The Choice state lets you dynamically set the next state to transition to based on user-defined 
conditions.

{ 
    "Type": "Choice", 
    "Default": "<state-name>",  
    "FallthroughOnError": true | false, 
    "Choices": [ 
        { 
            "Expression": "<expression>", 
            "Next": "<state-name>" 
        } 
    ]
}

All fields that contain values are required as described here:

Tutorial: Develop a simple IDT test suite 199



FreeRTOS User Guide

Default

The default state to transition to if none of the expressions defined in Choices can be 
evaluated to true.

FallthroughOnError

Optional. Specifies the behavior when the state encounters an error in evaluating expressions. 
Set to true if you want to skip an expression if the evaluation results in an error. If 
no expressions match, then the state machine transitions to the Default state. If the
FallthroughOnError value is not specified, it defaults to false.

Choices

An array of expressions and states to determine which state to transition to after executing the 
actions in the current state.

Choices.Expression

An expression string that evaluates to a boolean value. If the expression evaluates to true, 
then the state machine transitions to the state defined in Choices.Next. Expression strings 
retrieve values from the state machine context and then perform operations on them to 
arrive at a boolean value. For information about accessing the state machine context, see
State machine context.

Choices.Next

The name of the state to transition to if the expression defined in Choices.Expression
evaluates to true.

Error handling

The Choice state can require error handling in the following cases:

• Some variables in the choice expressions don’t exist in the state machine context.

• The result of an expression is not a boolean value.

• The result of a JSON lookup is not a string, number, or boolean.

You cannot use a Catch block to handle errors in this state. If you want to stop executing the state 
machine when it encounters an error, you must set FallthroughOnError to false. However, we 

Tutorial: Develop a simple IDT test suite 200



FreeRTOS User Guide

recommend that you set FallthroughOnError to true, and depending on your use case, do one 
of the following:

• If a variable you are accessing is expected to not exist in some cases, then use the value of
Default and additional Choices blocks to specify the next state.

• If a variable that you are accessing should always exist, then set the Default state to Fail.

Parallel

The Parallel state lets you define and run new state machines in parallel with each other.

{ 
    "Type": "Parallel", 
    "Next": "<state-name>", 
    "Branches": [ 
         <state-machine-definition>
    ]
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Branches

An array of state machine definitions to run. Each state machine definition must contain its 
own StartAt, Succeed, and Fail states. The state machine definitions in this array cannot 
reference states outside of their own definition.

Note

Because each branch state machine shares the same state machine context, setting 
variables in one branch and then reading those variables from another branch might 
result in unexpected behavior.

The Parallel state moves to the next state only after it runs all of the branch state machines. 
Each state that requires a device will wait to run until the device is available. If multiple devices 

Tutorial: Develop a simple IDT test suite 201



FreeRTOS User Guide

are available, this state runs test cases from multiple groups in parallel. If enough devices are not 
available, then test cases will run sequentially. Because test cases are run in a random order when 
they run in parallel, different devices might be used to run tests from the same test group.

Error handling

Make sure that both the branch state machine and the parent state machine transition to the Fail
state to handle execution errors.

Because branch state machines do not transmit execution errors to the parent state machine, you 
cannot use a Catch block to handle execution errors in branch state machines. Instead, use the
hasExecutionErrors value in the shared state machine context. For an example of how this 
works, see Example state machine: Run two test groups in parallel.

AddProductFeatures

The AddProductFeatures state lets you add product features to the
awsiotdevicetester_report.xml file generated by IDT.

A product feature is user-defined information about specific criteria that a device might meet. 
For example, the MQTT product feature can designate that the device publishes MQTT messages 
properly. In the report, product features are set as supported, not-supported, or a custom 
value, based on whether specified tests passed.

Note

The AddProductFeatures state does not generate reports by itself. This state must 
transition to the Report state to generate reports.

{ 
    "Type": "Parallel", 
    "Next": "<state-name>", 
    "Features": [ 
        { 
            "Feature": "<feature-name>",  
            "Groups": [ 
                "<group-id>" 
            ], 

Tutorial: Develop a simple IDT test suite 202



FreeRTOS User Guide

            "OneOfGroups": [ 
                "<group-id>" 
            ], 
            "TestCases": [ 
                "<test-id>" 
            ], 
            "IsRequired": true | false, 
            "ExecutionMethods": [ 
                "<execution-method>" 
            ] 
        } 
    ]
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Features

An array of product features to show in the awsiotdevicetester_report.xml file.

Feature

The name of the feature

FeatureValue

Optional. The custom value to use in the report instead of supported. If this value is 
not specified, then based on test results, the feature value is set to supported or not-
supported.

If you use a custom value for FeatureValue, you can test the same feature with different 
conditions, and IDT concatenates the feature values for the supported conditions. For 
example, the following excerpt shows the MyFeature feature with two separate feature 
values:

...
{ 
    "Feature": "MyFeature", 
    "FeatureValue": "first-feature-supported", 
    "Groups": ["first-feature-group"]

Tutorial: Develop a simple IDT test suite 203



FreeRTOS User Guide

},
{ 
    "Feature": "MyFeature", 
    "FeatureValue": "second-feature-supported", 
    "Groups": ["second-feature-group"]
},
...

If both test groups pass, then the feature value is set to first-feature-supported, 
second-feature-supported.

Groups

Optional. An array of test group IDs. All tests within each specified test group must pass for 
the feature to be supported.

OneOfGroups

Optional. An array of test group IDs. All tests within at least one of the specified test groups 
must pass for the feature to be supported.

TestCases

Optional. An array of test case IDs. If you specify this value, then the following apply:

• All of the specified test cases must pass for the feature to be supported.

• Groups must contain only one test group ID.

• OneOfGroups must not be specified.

IsRequired

Optional. Set to false to mark this feature as an optional feature in the report. The default 
value is true.

ExecutionMethods

Optional. An array of execution methods that match the protocol value specified in the
device.json file. If this value is specified, then test runners must specify a protocol
value that matches one of the values in this array to include the feature in the report. If this 
value is not specified, then the feature will always be included in the report.

To use the AddProductFeatures state, you must set the value of ResultVar in the RunTask
state to one of the following values:

Tutorial: Develop a simple IDT test suite 204



FreeRTOS User Guide

• If you specified individual test case IDs, then set ResultVar to group-id_test-id_passed.

• If you did not specify individual test case IDs, then set ResultVar to group-id_passed.

The AddProductFeatures state checks for test results in the following manner:

• If you did not specify any test case IDs, then the result for each test group is determined from 
the value of the group-id_passed variable in the state machine context.

• If you did specify test case IDs, then the result for each of the tests is determined from the value 
of the group-id_test-id_passed variable in the state machine context.

Error handling

If a group ID provided in this state is not a valid group ID, then this state results in the
AddProductFeaturesError execution error. If the state encounters an execution error, then it 
also sets the hasExecutionErrors variable in the state machine context to true.

Report

The Report state generates the suite-name_Report.xml and
awsiotdevicetester_report.xml files. This state also streams the report to the console.

{ 
    "Type": "Report", 
    "Next": "<state-name>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

You should always transition to the Report state towards the end of the test execution flow so 
that test runners can view test results. Typically, the next state after this state is Succeed.

Error handling

If this state encounters issues with generating the reports, then it issues the ReportError
execution error.

Tutorial: Develop a simple IDT test suite 205



FreeRTOS User Guide

LogMessage

The LogMessage state generates the test_manager.log file and streams the log message to the 
console.

{ 
    "Type": "LogMessage", 
    "Next": "<state-name>" 
    "Level": "info | warn | error" 
    "Message": "<message>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Level

The error level at which to create the log message. If you specify a level that is not valid, this 
state generates an error message and discards it.

Message

The message to log.

SelectGroup

The SelectGroup state updates the state machine context to indicate which groups are selected. 
The values set by this state are used by any subsequent Choice states.

{ 
    "Type": "SelectGroup", 
    "Next": "<state-name>" 
    "TestGroups": [ 
         <group-id>" 
    ]
}

All fields that contain values are required as described here:

Tutorial: Develop a simple IDT test suite 206



FreeRTOS User Guide

Next

The name of the state to transition to after executing the actions in the current state.

TestGroups

An array of test groups that will be marked as selected. For each test group ID in this array, the
group-id_selected variable is set to true in the context. Make sure that you provide valid 
test group IDs because IDT does not validate whether the specified groups exist.

Fail

The Fail state indicates that the state machine did not execute correctly. This is an end state for 
the state machine, and each state machine definition must include this state.

{ 
    "Type": "Fail"
}

Succeed

The Succeed state indicates that the state machine executed correctly. This is an end state for the 
state machine, and each state machine definition must include this state.

{ 
    "Type": "Succeed"
}

State machine context

The state machine context is a read-only JSON document that contains data that is available 
to the state machine during execution. The state machine context is accessible only from the 
state machine, and contains information that determines the test flow. For example, you can use 
information configured by test runners in the userdata.json file to determine whether a specific 
test is required to run.

The state machine context uses the following format:

{ 
    "pool": { 
         <device-json-pool-element>

Tutorial: Develop a simple IDT test suite 207



FreeRTOS User Guide

    }, 
    "userData": { 
         <userdata-json-content>
    }, 
    "config": { 
         <config-json-content>
    }, 
    "suiteFailed": true | false, 
    "specificTestGroups": [ 
        "<group-id>" 
    ], 
    "specificTestCases": [ 
        "<test-id>" 
    ], 
    "hasExecutionErrors": true
}

pool

Information about the device pool selected for the test run. For a selected device pool, this 
information is retrieved from the corresponding top-level device pool array element defined in 
the device.json file.

userData

Information in the userdata.json file.

config

Information pin the config.json file.

suiteFailed

The value is set to false when the state machine starts. If a test group fails in a RunTask
state, then this value is set to true for the remaining duration of the state machine execution.

specificTestGroups

If the test runner selects specific test groups to run instead of the entire test suite, this key is 
created and contains the list of specific test group IDs.

specificTestCases

If the test runner selects specific test cases to run instead of the entire test suite, this key is 
created and contains the list of specific test case IDs.

Tutorial: Develop a simple IDT test suite 208



FreeRTOS User Guide

hasExecutionErrors

Does not exit when the state machine starts. If any state encounters an execution errors, this 
variable is created and set to true for the remaining duration of the state machine execution.

You can query the context using JSONPath notation. The syntax for JSONPath queries in state 
definitions is {{$.query}}. You can use JSONPath queries as placeholder strings within some 
states. IDT replaces the placeholder strings with the value of the evaluated JSONPath query from 
the context. You can use placeholders for the following values:

• The TestCases value in RunTask states.

• The Expression value Choice state.

When you access data from the state machine context, make sure the following conditions are met:

• Your JSON paths must begin with $.

• Each value must evaluate to a string, a number, or a boolean.

For more information about using JSONPath notation to access data from the context, see Use the 
IDT context.

Execution errors

Execution errors are errors in the state machine definition that the state machine encounters 
when executing a state. IDT logs information about each error in the test_manager.log file and 
streams the log message to the console.

You can use the following methods to handle execution errors:

• Add a Catch block in the state definition.

• Check the value of the hasExecutionErrors value in the state machine context.

Catch

To use Catch, add the following to your state definition:

"Catch": [ 
    {     

Tutorial: Develop a simple IDT test suite 209



FreeRTOS User Guide

        "ErrorEquals": [ 
            "<error-type>" 
        ] 
        "Next": "<state-name>"  
    }
]

All fields that contain values are required as described here:

Catch.ErrorEquals

An array of the error types to catch. If an execution error matches one of the specified values, 
then the state machine transitions to the state specified in Catch.Next. See each state 
definition for information about the type of error it produces.

Catch.Next

The next state to transition to if the current state encounters an execution error that matches 
one of the values specified in Catch.ErrorEquals .

Catch blocks are handled sequentially until one matches. If the no errors match the ones listed 
in the Catch blocks, then the state machines continues to execute. Because execution errors are 
a result of incorrect state definitions, we recommend that you transition to the Fail state when a 
state encounters an execution error.

hasExecutionError

When some states encounter execution errors, in addition to issuing the error, they also set the
hasExecutionError value to true in the state machine context. You can use this value to detect 
when an error occurs, and then use a Choice state to transition the state machine to the Fail
state.

This method has the following characteristics.

• The state machine does not start with any value assigned to hasExecutionError, and this 
value is not available until a particular state sets it. This means that you must explicitly set the
FallthroughOnError to false for the Choice states that access this value to prevent the 
state machine from stopping if no execution errors occur.

• Once it is set to true, hasExecutionError is never set to false or removed from the 
context. This means that this value is useful only the first time that it is set to true, and for all 
subsequent states, it does not provide a meaningful value.

Tutorial: Develop a simple IDT test suite 210



FreeRTOS User Guide

• The hasExecutionError value is shared with all branch state machines in the Parallel state, 
which can result in unexpected results depending on the order in which it is accessed.

Because of these characteristics, we do not recommend that you use this method if you can use a 
Catch block instead.

Example state machines

This section provides some example state machine configurations.

Examples

• Example state machine: Run a single test group

• Example state machine: Run user-selected test groups

• Example state machine: Run a single test group with product features

• Example state machine: Run two test groups in parallel

Example state machine: Run a single test group

This state machine:

• Runs the test group with id GroupA, which must be present in the suite in a group.json file.

• Checks for execution errors and transitions to Fail if any are found.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise.

{ 
    "Comment": "Runs a single group and then generates a report.", 
    "StartAt": "RunGroupA", 
    "States": { 
        "RunGroupA": { 
            "Type": "RunTask", 
            "Next": "Report", 
            "TestGroup": "GroupA", 
            "Catch": [ 
                { 
                    "ErrorEquals": [ 
                        "RunTaskError" 
                    ], 
                    "Next": "Fail" 

Tutorial: Develop a simple IDT test suite 211



FreeRTOS User Guide

                } 
            ] 
        }, 
        "Report": { 
            "Type": "Report", 
            "Next": "Succeed", 
            "Catch": [ 
                { 
                    "ErrorEquals": [ 
                        "ReportError" 
                    ], 
                    "Next": "Fail" 
                } 
            ] 
        }, 
        "Succeed": { 
            "Type": "Succeed" 
        }, 
        "Fail": { 
            "Type": "Fail" 
        } 
    }
}

Example state machine: Run user-selected test groups

This state machine:

• Checks if the test runner selected specific test groups. The state machine does not check for 
specific test cases because test runners cannot select test cases without also selecting a test 
group.

• If test groups are selected:

• Runs the test cases within the selected test groups. To do so, the state machine does not 
explicitly specify any test groups or test cases in the RunTask state.

• Generates a report after running all tests and exits.

• If test groups are not selected:

• Runs tests in test group GroupA.

• Generates reports and exits.

Tutorial: Develop a simple IDT test suite 212



FreeRTOS User Guide

{ 
    "Comment": "Runs specific groups if the test runner chose to do that, otherwise 
 runs GroupA.", 
    "StartAt": "SpecificGroupsCheck", 
    "States": { 
        "SpecificGroupsCheck": { 
            "Type": "Choice", 
            "Default": "RunGroupA", 
            "FallthroughOnError": true, 
            "Choices": [ 
                { 
                    "Expression": "{{$.specificTestGroups[0]}} != ''", 
                    "Next": "RunSpecificGroups" 
                } 
            ] 
        }, 
        "RunSpecificGroups": { 
            "Type": "RunTask", 
            "Next": "Report", 
            "Catch": [ 
                { 
                    "ErrorEquals": [ 
                        "RunTaskError" 
                    ], 
                    "Next": "Fail" 
                } 
            ] 
        }, 
        "RunGroupA": { 
            "Type": "RunTask", 
            "Next": "Report", 
            "TestGroup": "GroupA", 
            "Catch": [ 
                { 
                    "ErrorEquals": [ 
                        "RunTaskError" 
                    ], 
                    "Next": "Fail" 
                } 
            ] 
        }, 
        "Report": { 
            "Type": "Report", 

Tutorial: Develop a simple IDT test suite 213



FreeRTOS User Guide

            "Next": "Succeed", 
            "Catch": [ 
                { 
                    "ErrorEquals": [ 
                        "ReportError" 
                    ], 
                    "Next": "Fail" 
                } 
            ] 
        }, 
        "Succeed": { 
            "Type": "Succeed" 
        }, 
        "Fail": { 
            "Type": "Fail" 
        } 
    }
}

Example state machine: Run a single test group with product features

This state machine:

• Runs the test group GroupA.

• Checks for execution errors and transitions to Fail if any are found.

• Adds the FeatureThatDependsOnGroupA feature to the
awsiotdevicetester_report.xml file:

• If GroupA passes, the feature is set to supported.

• The feature is not marked optional in the report.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise

{ 
    "Comment": "Runs GroupA and adds product features based on GroupA", 
    "StartAt": "RunGroupA", 
    "States": { 
        "RunGroupA": { 
            "Type": "RunTask", 
            "Next": "AddProductFeatures", 
            "TestGroup": "GroupA", 
            "ResultVar": "GroupA_passed", 

Tutorial: Develop a simple IDT test suite 214



FreeRTOS User Guide

            "Catch": [ 
                { 
                    "ErrorEquals": [ 
                        "RunTaskError" 
                    ], 
                    "Next": "Fail" 
                } 
            ] 
        }, 
        "AddProductFeatures": { 
            "Type": "AddProductFeatures", 
            "Next": "Report", 
            "Features": [ 
                { 
                    "Feature": "FeatureThatDependsOnGroupA", 
                    "Groups": [ 
                        "GroupA" 
                    ], 
                    "IsRequired": true 
                } 
            ] 
        }, 
        "Report": { 
            "Type": "Report", 
            "Next": "Succeed", 
            "Catch": [ 
                { 
                    "ErrorEquals": [ 
                        "ReportError" 
                    ], 
                    "Next": "Fail" 
                } 
            ] 
        }, 
        "Succeed": { 
            "Type": "Succeed" 
        }, 
        "Fail": { 
            "Type": "Fail" 
        } 
    }
}

Tutorial: Develop a simple IDT test suite 215



FreeRTOS User Guide

Example state machine: Run two test groups in parallel

This state machine:

• Runs the GroupA and GroupB test groups in parallel. The ResultVar variables stored in 
the context by the RunTask states in the branch state machines by are available to the
AddProductFeatures state.

• Checks for execution errors and transitions to Fail if any are found. This state machine does 
not use a Catch block because that method does not detect execution errors in branch state 
machines.

• Adds features to the awsiotdevicetester_report.xml file based on the groups that pass

• If GroupA passes, the feature is set to supported.

• The feature is not marked optional in the report.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise

If two devices are configured in the device pool, both GroupA and GroupB can run at the same 
time. However, if either GroupA or GroupB has multiple tests in it, then both devices may be 
allocated to those tests. If only one device is configured, the test groups will run sequentially.

{ 
    "Comment": "Runs GroupA and GroupB in parallel", 
    "StartAt": "RunGroupAAndB", 
    "States": { 
        "RunGroupAAndB": { 
            "Type": "Parallel", 
            "Next": "CheckForErrors", 
            "Branches": [ 
                { 
                    "Comment": "Run GroupA state machine", 
                    "StartAt": "RunGroupA", 
                    "States": { 
                        "RunGroupA": { 
                            "Type": "RunTask", 
                            "Next": "Succeed", 
                            "TestGroup": "GroupA", 
                            "ResultVar": "GroupA_passed", 
                            "Catch": [ 
                                { 
                                    "ErrorEquals": [ 

Tutorial: Develop a simple IDT test suite 216



FreeRTOS User Guide

                                        "RunTaskError" 
                                    ], 
                                    "Next": "Fail" 
                                } 
                            ] 
                        }, 
                        "Succeed": { 
                            "Type": "Succeed" 
                        }, 
                        "Fail": { 
                            "Type": "Fail" 
                        } 
                    } 
                }, 
                { 
                    "Comment": "Run GroupB state machine", 
                    "StartAt": "RunGroupB", 
                    "States": { 
                        "RunGroupA": { 
                            "Type": "RunTask", 
                            "Next": "Succeed", 
                            "TestGroup": "GroupB", 
                            "ResultVar": "GroupB_passed", 
                            "Catch": [ 
                                { 
                                    "ErrorEquals": [ 
                                        "RunTaskError" 
                                    ], 
                                    "Next": "Fail" 
                                } 
                            ] 
                        }, 
                        "Succeed": { 
                            "Type": "Succeed" 
                        }, 
                        "Fail": { 
                            "Type": "Fail" 
                        } 
                    } 
                } 
            ] 
        }, 
        "CheckForErrors": { 
            "Type": "Choice", 

Tutorial: Develop a simple IDT test suite 217



FreeRTOS User Guide

            "Default": "AddProductFeatures", 
            "FallthroughOnError": true, 
            "Choices": [ 
                { 
                    "Expression": "{{$.hasExecutionErrors}} == true", 
                    "Next": "Fail" 
                } 
            ] 
        }, 
        "AddProductFeatures": { 
            "Type": "AddProductFeatures", 
            "Next": "Report", 
            "Features": [ 
                { 
                    "Feature": "FeatureThatDependsOnGroupA", 
                    "Groups": [ 
                        "GroupA" 
                    ], 
                    "IsRequired": true 
                }, 
                { 
                    "Feature": "FeatureThatDependsOnGroupB", 
                    "Groups": [ 
                        "GroupB" 
                    ], 
                    "IsRequired": true 
                } 
            ] 
        }, 
        "Report": { 
            "Type": "Report", 
            "Next": "Succeed", 
            "Catch": [ 
                { 
                    "ErrorEquals": [ 
                        "ReportError" 
                    ], 
                    "Next": "Fail" 
                } 
            ] 
        }, 
        "Succeed": { 
            "Type": "Succeed" 
        }, 

Tutorial: Develop a simple IDT test suite 218



FreeRTOS User Guide

        "Fail": { 
            "Type": "Fail" 
        } 
    }
}

Create IDT test case executable

You can create and place test case executable in a test suite folder in the following ways:

• For test suites that use arguments or environment variables from the test.json files to 
determine which tests to run, you can create a single test case executable for the entire test 
suite, or a test executable for each test group in the test suite.

• For a test suite where you want to run specific tests based on specified commands, you create 
one test case executable for each test case in the test suite.

As a test writer, you can determine which approach is appropriate for your use case and structure 
your test case executable accordingly. Make sure that your provide the correct test case executable 
path in each test.json file, and that the specified executable runs correctly.

When all devices are ready for a test case to run, IDT reads the following files:

• The test.json for the selected test case determines the processes to start and the 
environment variables to set.

• The suite.json for the test suite determines the environment variables to set.

IDT starts the required test executable process based on the commands and arguments specified in 
the test.json file, and passes the required environment variables to the process.

Use the IDT Client SDK

The IDT Client SDKs let you simplify how you write test logic in your test executable with API 
commands that you can use interact with IDT and your devices under test. IDT currently provides 
the following SDKs:

• IDT Client SDK for Python

• IDT Client SDK for Go

• IDT Client SDK for Java

Tutorial: Develop a simple IDT test suite 219



FreeRTOS User Guide

These SDKs are located in the <device-tester-extract-location>/sdks folder. When you 
create a new test case executable, you must copy the SDK that you want to use to the folder that 
contains your test case executable and reference the SDK in your code. This section provides a brief 
description of the available API commands that you can use in your test case executables.

In this section

• Device interaction

• IDT interaction

• Host interaction

Device interaction

The following commands enable you to communicate with the device under test without having to 
implement any additional device interaction and connectivity management functions.

ExecuteOnDevice

Allows test suites to run shell commands on a device that support SSH or Docker shell 
connections.

CopyToDevice

Allows test suites to copy a local file from the host machine that runs IDT to a specified location 
on a device that supports SSH or Docker shell connections.

ReadFromDevice

Allows test suites to read from the serial port of devices that support UART connections.

Note

Because IDT does not manage direct connections to devices that are made using device 
access information from the context, we recommend using these device interaction API 
commands in your test case executables. However, if these commands do not meet your 
test case requirements, then you can retrieve device access information from the IDT 
context and use it to make a direct connection to the device from the test suite.
To make a direct connection, retrieve the information in the device.connectivity and 
the resource.devices.connectivity fields for your device under test and for resource 

Tutorial: Develop a simple IDT test suite 220



FreeRTOS User Guide

devices, respectively. For more information about using the IDT context, see Use the IDT 
context.

IDT interaction

The following commands enable your test suites to communicate with IDT.

PollForNotifications

Allows test suites to check for notifications from IDT.

GetContextValue  and GetContextString

Allows test suites to retrieve values from the IDT context. For more information, see Use the IDT 
context.

SendResult

Allows test suites to report test case results to IDT. This command must be called at the end of 
each test case in a test suite.

Host interaction

The following command enable your test suites to communicate with the host machine.

PollForNotifications

Allows test suites to check for notifications from IDT.

GetContextValue  and GetContextString

Allows test suites to retrieve values from the IDT context. For more information, see Use the IDT 
context.

ExecuteOnHost

Allows test suites to run commands on the local machine and lets IDT manage the test case 
executable lifecycle.

Enable IDT CLI commands

The run-suite command IDT CLI provides several options that let test runner customize test 
execution. To allow test runners to use these options to run your custom test suite, you implement 

Tutorial: Develop a simple IDT test suite 221



FreeRTOS User Guide

support for the IDT CLI. If you do not implement support, test runners will still be able to run 
tests, but some CLI options will not function correctly. To provide an ideal customer experience, 
we recommend that you implement support for the following arguments for the run-suite
command in the IDT CLI:

timeout-multiplier

Specifies a value greater than 1.0 that will be applied to all timeouts while running tests.

Test runners can use this argument to increase the timeout for the test cases that they 
want to run. When a test runner specifies this argument in their run-suite command, IDT 
uses it to calculate the value of the IDT_TEST_TIMEOUT environment variable and sets the
config.timeoutMultiplier field in the IDT context. To support this argument, you must do 
the following:

• Instead of directly using the timeout value from the test.json file, read the 
IDT_TEST_TIMEOUT environment variable to obtain the correctly calculated timeout value.

• Retrieve the config.timeoutMultiplier value from the IDT context and apply it to long 
running timeouts.

For more information about exiting early because of timeout events, see Specify exit behavior.

stop-on-first-failure

Specifies that IDT should stop running all tests if it encounters a failure.

When a test runner specifies this argument in their run-suite command, IDT will stop running 
tests as soon as it encounters a failure. However, if test cases are running in parallel, then this 
can lead to unexpected results. To implement support, make sure that if IDT encounters this 
event, your test logic instructs all running test cases to stop, clean up temporary resources, and 
report a test result to IDT. For more information about exiting early on failures, see Specify exit 
behavior.

group-id and test-id

Specifies that IDT should run only the selected test groups or test cases.

Test runners can use these arguments with their run-suite command to specify the following 
test execution behavior:

• Run all tests inside the specified test groups.

• Run a selection of tests from within a specified test group.

Tutorial: Develop a simple IDT test suite 222



FreeRTOS User Guide

To support these arguments, the state machine for your test suite must include a specific set of
RunTask and Choice states in your state machine. If you are not using a custom state machine, 
then the default IDT state machine includes the required states for you and you do not need 
to take additional action. However, if you are using a custom state machine, then use Example 
state machine: Run user-selected test groups as a sample to add the required states in your 
state machine.

For more information about IDT CLI commands, see Debug and run custom test suites.

Write event logs

While the test is running, you send data to stdout and stderr to write event logs and error 
messages to the console. For information about the format of console messages, see Console 
message format.

When the IDT finishes running the test suite, this information is also available in the
test_manager.log file located in the <devicetester-extract-location>/
results/<execution-id>/logs folder.

You can configure each test case to write the logs from its test run, including logs from the device 
under test, to the <group-id>_<test-id> file located in the <device-tester-extract-
location>/results/execution-id/logs folder. To do this, retrieve the path to the log file 
from the IDT context with the testData.logFilePath query, create a file at that path, and write 
the content that you want to it. IDT automatically updates the path based on the test case that is 
running. If you choose not to create the log file for a test case, then no file is generated for that 
test case.

You can also set up your text executable to create additional log files as needed in the <device-
tester-extract-location>/logs folder. We recommend that you specify unique prefixes for 
log file names so your files don't get overwritten.

Report results to IDT

IDT writes test results to the awsiotdevicetester_report.xml and the suite-
name_report.xml files. These report files are located in <device-tester-extract-
location>/results/<execution-id>/. Both reports capture the results from the test suite 
execution. For more information about the schemas that IDT uses for these reports, see Review IDT 
test results and logs

Tutorial: Develop a simple IDT test suite 223



FreeRTOS User Guide

To populate the contents of the suite-name_report.xml file, you must use the SendResult
command to report test results to IDT before the test execution finishes. If IDT cannot locate 
the results of a test, it issues an error for the test case. The following Python excerpt shows the 
commands to send a test result to IDT:

request-variable = SendResultRequest(TestResult(result))
client.send_result(request-variable)

If you do not report results through the API, IDT looks for test results in the test artifacts folder. 
The path to this folder is stored in the testData.testArtifactsPath filed in the IDT context. In 
this folder, IDT uses the first alphabetically sorted XML file it locates as the test result.

If your test logic produces JUnit XML results, you can write the test results to an XML file in the 
artifacts folder to directly provide the results to IDT instead of parsing the results and then using 
the API to submit them to IDT.

If you use this method, make sure that your test logic accurately summarizes the test results and 
format your result file in the same format as the suite-name_report.xml file. IDT does not 
perform any validation of the data that you provide, with the following exceptions:

• IDT ignores all properties of the testsuites tag. Instead, it calculates the tag properties from 
other reported test group results.

• At least one testsuite tag must exist within testsuites.

Because IDT uses the same artifacts folder for all test cases and does not delete result files 
between test runs, this method might also lead to erroneous reporting if IDT reads the incorrect 
file. We recommend that you use the same name for the generated XML results file across all test 
cases to overwrite the results for each test case and make sure that the correct results are available 
for IDT to use. Although you can use a mixed approach to reporting in your test suite, that is, use 
an XML result file for some test cases and submit results through the API for others, we do not 
recommend this approach.

Specify exit behavior

Configure your text executable to always exit with an exit code of 0, even if a test case reports a 
failure or an error result. Use non-zero exit codes only to indicate that a test case did not run or if 
the test case executable could not communicate any results to IDT. When IDT receives a non-zero 
exit code, it marks the test case has having encountered an error that prevented it from running.

Tutorial: Develop a simple IDT test suite 224



FreeRTOS User Guide

IDT might request or expect a test case to stop running before it has finished in the following 
events. Use this information to configure your test case executable to detect each of these events 
from the test case:

Timeout

Occurs when a test case runs for longer than the timeout value specified in the test.json file. 
If the test runner used the timeout-multiplier argument to specify a timeout multiplier, 
then IDT calculates the timeout value with the multiplier.

To detect this event, use the IDT_TEST_TIMEOUT environment variable. When a test runner 
launches a test, IDT sets the value of the IDT_TEST_TIMEOUT environment variable to the 
calculated timeout value (in seconds) and passes the variable to the test case executable. You 
can read the variable value to set an appropriate timer.

Interrupt

Occurs when the test runner interrupts IDT. For example, by pressing Ctrl+C.

Because terminals propagate signals to all child processes, you can simply configure a signal 
handler in your test cases to detect interrupt signals.

Alternatively, you can periodically poll the API to check the value of the
CancellationRequested boolean in the PollForNotifications API response. When 
IDT receives an interrupt signal, it sets the value of the CancellationRequested boolean to
true.

Stop on first failure

Occurs when a test case that is running in parallel with the current test case fails and the test 
runner used the stop-on-first-failure argument to specify that IDT should stop when it 
encounters any failure.

To detect this event, you can periodically poll the API to check the value of the
CancellationRequested boolean in the PollForNotifications API response. When 
IDT encounters a failure and is configured to stop on first failure, it sets the value of the
CancellationRequested boolean to true.

When any of these events occur, IDT waits for 5 minutes for any currently running test cases 
to finish running. If all running test cases do not exit within 5 minutes, IDT forces each of their 
processes to stop. If IDT has not received test results before the processes end, it will mark the test 

Tutorial: Develop a simple IDT test suite 225



FreeRTOS User Guide

cases as having timed out. As a best practice, you should ensure that your test cases perform the 
following actions when they encounter one of the events:

1. Stop running normal test logic.

2. Clean up any temporary resources, such as test artifacts on the device under test.

3. Report a test result to IDT, such as a test failure or an error.

4. Exit.

Use the IDT context

When IDT runs a test suite, the test suite can access a set of data that can be used to determine 
how each test runs. This data is called the IDT context. For example, user data configuration 
provided by test runners in a userdata.json file is made available to test suites in the IDT 
context.

The IDT context can be considered a read-only JSON document. Test suites can retrieve data from 
and write data to the context using standard JSON data types like objects, arrays, numbers and so 
on.

Context schema

The IDT context uses the following format:

{ 
    "config": { 
        <config-json-content> 
        "timeoutMultiplier": timeout-multiplier, 
        "idtRootPath": <path/to/IDT/root> 
    }, 
    "device": { 
        <device-json-device-element> 
    }, 
    "devicePool": { 
        <device-json-pool-element> 
    }, 
    "resource": { 
        "devices": [ 
            { 
                <resource-json-device-element> 
                "name": "<resource-name>" 

Tutorial: Develop a simple IDT test suite 226



FreeRTOS User Guide

            } 
        ] 
    }, 
    "testData": { 
        "awsCredentials": { 
            "awsAccessKeyId": "<access-key-id>", 
            "awsSecretAccessKey": "<secret-access-key>", 
            "awsSessionToken": "<session-token>" 
        }, 
        "logFilePath": "/path/to/log/file" 
    }, 
    "userData": { 
        <userdata-json-content> 
    }
}

config

Information from the config.json file. The config field also contains the following 
additional fields:

config.timeoutMultiplier

The multiplier for the any timeout value used by the test suite. This value is specified by the 
test runner from the IDT CLI. The default value is 1.

config.idRootPath

This value is a placeholder for the absolute path value of IDT while configuring the
userdata.json file. This is used by the build and flash commands.

device

Information about the device selected for the test run. This information is equivalent to the
devices array element in the device.json file for the selected device.

devicePool

Information about the device pool selected for the test run. This information is equivalent to 
the top-level device pool array element defined in the device.json file for the selected device 
pool.

resource

Information about resource devices from the resource.json file.

Tutorial: Develop a simple IDT test suite 227



FreeRTOS User Guide

resource.devices

This information is equivalent to the devices array defined in the resource.json file. 
Each devices element includes the following additional field:

resource.device.name

The name of the resource device. This value is set to the requiredResource.name
value in the test.json file.

testData.awsCredentials

The AWS credentials used by the test to connect to the AWS cloud. This information is obtained 
from the config.json file.

testData.logFilePath

The path to the log file to which the test case writes log messages. The test suite creates this 
file if it doesn't exist.

userData

Information provided by the test runner in the userdata.json file.

Access data in the context

You can query the context using JSONPath notation from your configuration files and from your 
text executable with the GetContextValue and GetContextString APIs. The syntax for 
JSONPath strings to access the IDT context varies as follows:

• In suite.json and test.json, you use {{query}}. That is, do not use the root element $. to 
start your expression.

• In statemachine.json, you use {{$.query}}.

• In API commands, you use query or {{$.query}}, depending on the command. For more 
information, see the inline documentation in the SDKs.

The following table describes the operators in a typical foobar JSONPath expression:

Tutorial: Develop a simple IDT test suite 228



FreeRTOS User Guide

Operator Description

$ The root element. Because the top-level 
context value for IDT is an object, you will 
typically use $. to start your queries.

.childName Accesses the child element with name
childName  from an object. If applied to an 
array, yields a new array with this operator 
applied to each element. The element name 
is case sensitive. For example, the query to 
access the awsRegion  value in the config
object is $.config.awsRegion .

[start:end] Filters elements from an array, retrieving items 
beginning from the start index and going up 
to the end index, both inclusive.

[index1, index2, ... , indexN] Filters elements from an array, retrieving items 
from only the specified indices.

[?(expr)] Filters elements from an array using the expr
expression. This expression must evaluate to a 
boolean value.

To create filter expressions, use the following syntax:

<jsonpath> | <value> operator <jsonpath> | <value> 

In this syntax:

• jsonpath is a JSONPath that uses standard JSON syntax.

• value is any custom value that uses standard JSON syntax.

• operator is one of the following operators:

• < (Less than)

• <= (Less than or equal to)

Tutorial: Develop a simple IDT test suite 229



FreeRTOS User Guide

• == (Equal to)

If the JSONPath or value in your expression is an array, boolean, or object value, then this is 
the only supported binary operator that you can use.

• >= (Greater than or equal to)

• > (Greater than)

• =~ (Regular expression match). To use this operator in a filter expression, the JSONPath or 
value on the left side of your expression must evaluate to a string and the right side must be a 
pattern value that follows the RE2 syntax.

You can use JSONPath queries in the form {{query}} as placeholder strings within the args and
environmentVariables fields in test.json files and within the environmentVariables
fields in suite.json files. IDT performs a context lookup and populates the fields with the 
evaluated value of the query. For example, in the suite.json file, you can use placeholder strings 
to specify environment variable values that change with each test case and IDT will populate 
the environment variables with the correct value for each test case. However, when you use 
placeholder strings in test.json and suite.json files, the following considerations apply for 
your queries:

• You must each occurrence of the devicePool key in your query in all lower case. That is, use
devicepool instead.

• For arrays, you can use only arrays of strings. In addition, arrays use a non-standard item1, 
item2,...,itemN format. If the array contains only one element, then it is serialized as item, 
making it indistinguishable from a string field.

• You cannot use placeholders to retrieve objects from the context.

Because of these considerations, we recommend that whenever possible, you use the API to access 
the context in your test logic instead of placeholder strings in test.json and suite.json files. 
However, in some cases it might be more convenient to use JSONPath placeholders to retrieve 
single strings to set as environment variables.

Configure settings for test runners

To run custom test suites, test runners must configure their settings based on the test suite that 
they want to run. Settings are specified based on configuration file templates located in the

Tutorial: Develop a simple IDT test suite 230

https://github.com/google/re2/wiki/Syntax


FreeRTOS User Guide

<device-tester-extract-location>/configs/ folder. If required, test runners must also set 
up AWS credentials that IDT will use to connect to the AWS cloud.

As a test writer, you will need to configure these files to debug your test suite. You must provide 
instructions to test runners so that they can configure the following settings as needed to run your 
test suites.

Configure device.json

The device.json file contains information about the devices that tests are run on (for example, 
IP address, login information, operating system, and CPU architecture).

Test runners can provide this information using the following template device.json file located 
in the <device-tester-extract-location>/configs/ folder.

[ 
    { 
        "id": "<pool-id>", 
        "sku": "<pool-sku>", 
        "features": [ 
            { 
                "name": "<feature-name>",              
                "value": "<feature-value>",                 
                "configs": [ 
                    { 
                        "name": "<config-name>",                     
                        "value": "<config-value>" 
                    } 
                ], 
            } 
        ],      
        "devices": [ 
            { 
                "id": "<device-id>",     
                "pairedResource": "<device-id>", //used for no-op protocol 
                "connectivity": { 
                    "protocol": "ssh | uart | docker | no-op",                    
                    // ssh 
                    "ip": "<ip-address>", 
                    "port": <port-number>, 
                    "publicKeyPath": "<public-key-path>", 
                    "auth": { 
                        "method": "pki | password", 

Tutorial: Develop a simple IDT test suite 231



FreeRTOS User Guide

                        "credentials": { 
                            "user": "<user-name>",  
                            // pki 
                            "privKeyPath": "/path/to/private/key", 
                                          
                            // password 
                            "password": "<password>", 
                        } 
                    }, 
                     
                    // uart 
                    "serialPort": "<serial-port>", 
                     
                    // docker 
                    "containerId": "<container-id>", 
                    "containerUser": "<container-user-name>", 
                } 
            } 
        ] 
    }
]

All fields that contain values are required as described here:

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device 
pool. Devices that belong to a pool must have identical hardware. When you run a suite of 
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run 
different tests.

sku

An alphanumeric value that uniquely identifies the device under test. The SKU is used to track 
qualified devices.

Note

If you want to list your board in the AWS Partner Device Catalog, the SKU you specify 
here must match the SKU that you use in the listing process.

Tutorial: Develop a simple IDT test suite 232



FreeRTOS User Guide

features

Optional. An array that contains the device's supported features. Device features are user-
defined values that you configure in your test suite. You must provide your test runners with 
information about the feature names and values to include in the device.json file. For 
example, if you want to test a device that functions as an MQTT server for other devices, 
then you can configure your test logic to validate specific supported levels for a feature 
named MQTT_QoS. Test runners provide this feature name and set the feature value to the 
QoS levels supported by their device. You can retrieve the provided information from the IDT 
context with the devicePool.features query, or from the state machine context with the
pool.features query.

features.name

The name of the feature.

features.value

The supported feature values.

features.configs

Configuration settings, if needed, for the feature.

features.config.name

The name of the configuration setting.

features.config.value

The supported setting values.

devices

An array of devices in the pool to be tested. At least one device is required.

devices.id

A user-defined unique identifier for the device being tested.

devices.pairedResource

A user-defined unique identifier for a resource device. This value is required when you test 
devices using the no-op connectivity protocol.

Tutorial: Develop a simple IDT test suite 233



FreeRTOS User Guide

connectivity.protocol

The communication protocol used to communicate with this device. Each device in a pool 
must use the same protocol.

Currently, the only supported values are ssh and uart for physical devices, docker for 
Docker containers, and no-op for devices who don't have a direct connection with the IDT 
host machine but require a resource device as physical middleware to communicate with the 
host machine.

For no-op devices, you configure the resource device ID in devices.pairedResource. You 
must also specify this ID in the resource.json file. The paired device must be a device 
that is physically paired with the device under test. After IDT identifies and connects to 
the paired resource device, IDT will not connect to other resource devices according to the 
features described in the test.json file.

connectivity.ip

The IP address of the device being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.port

Optional. The port number to use for SSH connections.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.publicKeyPath

Optional. The full path to the public key used to authenticate connections to the device 
under test. When you specify the publicKeyPath, IDT validates the device’s public key 
when it establishes an SSH connection to the device under test. If this value is not specified, 
IDT creates an SSH connection, but doesn’t validate the device’s public key.

We strongly recommend that you specify the path to the public key, and that you use a 
secure method to fetch this public key. For standard command line-based SSH clients, the 
public key is provided in the known_hosts file. If you specify a separate public key file, this 
file must use the same format as the known_hosts file, that is, ip-address key-type 
public-key.

Tutorial: Develop a simple IDT test suite 234



FreeRTOS User Guide

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.serialPort

Optional. The serial port to which the device is connected.

This property applies only if connectivity.protocol is set to uart.

connectivity.containerId

The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to docker.

Tutorial: Develop a simple IDT test suite 235



FreeRTOS User Guide

connectivity.containerUser

Optional. The name of the user to user inside the container. The default value is the user 
provided in the Dockerfile.

The default value is 22.

This property applies only if connectivity.protocol is set to docker.

Note

To check if test runners configure the incorrect device connection for a test, you can 
retrieve pool.Devices[0].Connectivity.Protocol from the state machine 
context and compare it to the expected value in a Choice state. If an incorrect protocol 
is used, then print a message using the LogMessage state and transition to the Fail
state.
Alternatively, you can use error handling code to report a test failure for incorrect device 
types.

(Optional) Configure userdata.json

The userdata.json file contains any additional information that is required by a test 
suite but is not specified in the device.json file. The format of this file depends on the
userdata_scheme.json file that is defined in the test suite. If you are a test writer, make sure 
you provide this information to users who will run the test suites that you write.

(Optional) Configure resource.json

The resource.json file contains information about any devices that will be used as resource 
devices. Resource devices are devices that are required to test certain capabilities of a device under 
test. For example, to test a device's Bluetooth capability, you might use a resource device to test 
that your device can connect to it successfully. Resource devices are optional, and you can require 
as many resources devices as you need. As a test writer, you use the test.json file to define the 
resource device features that are required for a test. Test runners then use the resource.json file 
to provide a pool of resource devices that have the required features. Make sure you provide this 
information to users who will run the test suites that you write.

Test runners can provide this information using the following template resource.json file 
located in the <device-tester-extract-location>/configs/ folder.

Tutorial: Develop a simple IDT test suite 236



FreeRTOS User Guide

[ 
    { 
        "id": "<pool-id>", 
        "features": [ 
            { 
                "name": "<feature-name>",              
                "version": "<feature-value>",                 
                "jobSlots": <job-slots>
            } 
        ],      
        "devices": [ 
            { 
                "id": "<device-id>",               
                "connectivity": { 
                    "protocol": "ssh | uart | docker",                    
                    // ssh 
                    "ip": "<ip-address>", 
                    "port": <port-number>, 
                    "publicKeyPath": "<public-key-path>", 
                    "auth": { 
                        "method": "pki | password", 
                        "credentials": { 
                            "user": "<user-name>",  
                            // pki 
                            "privKeyPath": "/path/to/private/key", 
                                          
                            // password 
                            "password": "<password>", 
                        } 
                    }, 
                     
                    // uart 
                    "serialPort": "<serial-port>", 
                     
                    // docker 
                    "containerId": "<container-id>", 
                    "containerUser": "<container-user-name>", 
                } 
            } 
        ] 
    }
]

Tutorial: Develop a simple IDT test suite 237



FreeRTOS User Guide

All fields that contain values are required as described here:

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device 
pool. Devices that belong to a pool must have identical hardware. When you run a suite of 
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run 
different tests.

features

Optional. An array that contains the device's supported features. The information required 
in this field is defined in the test.json files in the test suite and determines which tests to run 
and how to run those tests. If the test suite does not require any features, then this field is not 
required.

features.name

The name of the feature.

features.version

The feature version.

features.jobSlots

Setting to indicate how many tests can concurrently use the device. The default value is 1.

devices

An array of devices in the pool to be tested. At least one device is required.

devices.id

A user-defined unique identifier for the device being tested.

connectivity.protocol

The communication protocol used to communicate with this device. Each device in a pool 
must use the same protocol.

Currently, the only supported values are ssh and uart for physical devices, and docker for 
Docker containers.

connectivity.ip

The IP address of the device being tested.

Tutorial: Develop a simple IDT test suite 238



FreeRTOS User Guide

This property applies only if connectivity.protocol is set to ssh.

connectivity.port

Optional. The port number to use for SSH connections.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.publicKeyPath

Optional. The full path to the public key used to authenticate connections to the device 
under test. When you specify the publicKeyPath, IDT validates the device’s public key 
when it establishes an SSH connection to the device under test. If this value is not specified, 
IDT creates an SSH connection, but doesn’t validate the device’s public key.

We strongly recommend that you specify the path to the public key, and that you use a 
secure method to fetch this public key. For standard command line-based SSH clients, the 
public key is provided in the known_hosts file. If you specify a separate public key file, this 
file must use the same format as the known_hosts file, that is, ip-address key-type 
public-key.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

Tutorial: Develop a simple IDT test suite 239



FreeRTOS User Guide

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.serialPort

Optional. The serial port to which the device is connected.

This property applies only if connectivity.protocol is set to uart.

connectivity.containerId

The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to docker.

connectivity.containerUser

Optional. The name of the user to user inside the container. The default value is the user 
provided in the Dockerfile.

The default value is 22.

This property applies only if connectivity.protocol is set to docker.

(Optional) Configure config.json

The config.json file contains configuration information for IDT. Typically, test runners will not 
need to modify this file except to provide their AWS user credentials for IDT, and optionally, an 
AWS region. If AWS credentials with required permissions are provided AWS IoT Device Tester 
collects and submits usage metrics to AWS. This is an opt-in feature and is used to improve IDT 
functionality. For more information, see IDT usage metrics.

Test runners can configure their AWS credentials in one of the following ways:

• Credentials file

Tutorial: Develop a simple IDT test suite 240



FreeRTOS User Guide

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and 
credential files.

The location of the credentials file varies, depending on the operating system you are using:

• macOS, Linux: ~/.aws/credentials

• Windows: C:\Users\UserName\.aws\credentials

• Environment variables

Environment variables are variables maintained by the operating system and used by system 
commands. Variables defined during an SSH session are not available after that session is closed. 
IDT can use the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to 
store AWS credentials

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=<your_access_key_id>
export AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=<your_access_key_id>
set AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To configure AWS credentials for IDT, test runners edit the auth section in the config.json file 
located in the <device-tester-extract-location>/configs/ folder.

{ 
    "log": { 
        "location": "logs" 
    }, 
    "configFiles": { 
        "root": "configs", 
        "device": "configs/device.json" 
    }, 
    "testPath": "tests", 
    "reportPath": "results", 
    "awsRegion": "<region>", 
    "auth": { 

Tutorial: Develop a simple IDT test suite 241

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html


FreeRTOS User Guide

        "method": "file | environment", 
        "credentials": { 
            "profile": "<profile-name>" 
        } 
    }
}
]

All fields that contain values are required as described here:

Note

All paths in this file are defined relative to the <device-tester-extract-location>.

log.location

The path to the logs folder in the <device-tester-extract-location>.

configFiles.root

The path to the folder that contains the configuration files.

configFiles.device

The path to the device.json file.

testPath

The path to the folder that contains test suites.

reportPath

The path to the folder that will contain test results after IDT runs a test suite.

awsRegion

Optional. The AWS region that test suites will use. If not set, then test suites will use the default 
region specified in each test suite.

auth.method

The method IDT uses to retrieve AWS credentials. Supported values are file to retrieve 
credentials from a credentials file, and environment to retrieve credentials using environment 
variables.

Tutorial: Develop a simple IDT test suite 242



FreeRTOS User Guide

auth.credentials.profile

The credentials profile to use from the credentials file. This property applies only if
auth.method is set to file.

Debug and run custom test suites

After the required configuration is set, IDT can run your test suite. The runtime of the full test 
suite depends on the hardware and the composition of the test suite. For reference, it takes 
approximately 30 minutes to complete the full FreeRTOS qualification test suite on a Raspberry Pi 
3B.

As you write your test suite, you can use IDT to run the test suite in debug mode to check your code 
before you run it or provide it to test runners.

Run IDT in debug mode

Because test suites depend on IDT to interact with devices, provide the context, and receive results, 
you cannot simply debug your test suites in an IDE without any IDT interaction. To do so, the IDT 
CLI provides the debug-test-suite command that lets you run IDT in debug mode. Run the 
following command to view the available options for debug-test-suite:

devicetester_[linux | mac | win_x86-64] debug-test-suite -h

When you run IDT in debug mode, IDT does not actually launch the test suite or run the test 
orchestrator; instead, it interacts with your IDE to responds to requests made from the test suite 
running in the IDE and prints the logs to the console. IDT does not time out and waits to exit 
until manually interrupted. In debug mode, IDT also does not run the test orchestrator and will 
not generate any report files. To debug your test suite, you must use your IDE to provide some 
information that IDT usually obtains from the configuration files. Make sure you provide the 
following information:

• Environment variables and arguments for each test. IDT will not read this information from
test.json or suite.json.

• Arguments to select resource devices. IDT will not read this information from test.json.

To debug your test suites, complete the following steps:

Tutorial: Develop a simple IDT test suite 243



FreeRTOS User Guide

1. Create the setting configuration files that are required to run the test suite. For example, if 
your test suite requires the device.json, resource.json, and user data.json, make 
sure you configure all of them as needed.

2. Run the following command to place IDT in debug mode and select any devices that are 
required to run the test.

devicetester_[linux | mac | win_x86-64] debug-test-suite [options]

After you run this command, IDT waits for requests from the test suite and then responds to 
them. IDT also generates the environment variables that are required for the case process for 
the IDT Client SDK.

3. In your IDE, use the run or debug configuration to do the following:

a. Set the values of the IDT-generated environment variables.

b. Set the value of any environment variables or arguments that you specified in your
test.json and suite.json file.

c. Set breakpoints as needed.

4. Run the test suite in your IDE.

You can debug and re-run the test suite as many times as needed. IDT does not time out in 
debug mode.

5. After you complete debugging, interrupt IDT to exit debug mode.

IDT CLI commands to run tests

The following section describes the IDT CLI commands:

IDT v4.0.0

help

Lists information about the specified command.

list-groups

Lists the groups in a given test suite.

list-suites

Lists the available test suites.

Tutorial: Develop a simple IDT test suite 244



FreeRTOS User Guide

list-supported-products

Lists the supported products for your version of IDT, in this case FreeRTOS versions, and 
FreeRTOS qualification test suite versions available for the current IDT version.

list-test-cases

Lists the test cases in a given test group. The following option is supported:

• group-id. The test group to search for. This option is required and must specify a single 
group.

run-suite

Runs a suite of tests on a pool of devices. The following are some commonly used options:

• suite-id. The test suite version to run. If not specified, IDT uses the latest version in the
tests folder.

• group-id. The test groups to run, as a comma-separated list. If not specified, IDT runs all 
test groups in the test suite.

• test-id. The test cases to run, as a comma-separated list. When specified, group-id
must specify a single group.

• pool-id. The device pool to test. Test runners must specify a pool if they have multiple 
device pools defined in your device.json file.

• timeout-multiplier. Configures IDT to modify the test execution timeout specified in 
the test.json file for a test with a user-defined multiplier.

• stop-on-first-failure. Configures IDT to stop execution on the first failure. This 
option should be used with group-id to debug the specified test groups.

• userdata. Sets the file that contains user data information required to run the test suite. 
This is required only if userdataRequired is set to true in the suite.json file for the 
test suite.

For more information about run-suite options, use the help option:

devicetester_[linux | mac | win_x86-64] run-suite -h

debug-test-suite

Run the test suite in debug mode. For more information, see Run IDT in debug mode.

Tutorial: Develop a simple IDT test suite 245



FreeRTOS User Guide

Review IDT test results and logs

This section describes the format in which IDT generates console logs and test reports.

Console message format

AWS IoT Device Tester uses a standard format for printing messages to the console when it starts a 
test suite. The following excerpt shows an example of a console message generated by IDT.

[INFO] [2000-01-02 03:04:05]: Using suite: MyTestSuite_1.0.0 
 executionId=9a52f362-1227-11eb-86c9-8c8590419f30

Most console messages consist of the following fields:

time

A full ISO 8601 timestamp for the logged event.

level

The message level for the logged event. Typically, the logged message level is one of info,
warn, or error. IDT issues a fatal or panic message if it encounters an expected event that 
causes it to exit early.

msg

The logged message.

executionId

A unique ID string for the current IDT process. This ID is used to differentiate between individual 
IDT runs.

Console messages generated from a test suite provide additional information about the device 
under test and the test suite, test group, and test cases that IDT runs. The following excerpt shows 
an example of a console message generated from a test suite.

[INFO] [2000-01-02 03:04:05]: Hello world! suiteId=MyTestSuitegroupId=myTestGroup 
 testCaseId=myTestCase deviceId=my-
deviceexecutionId=9a52f362-1227-11eb-86c9-8c8590419f30

The test-suite specific part of the console message contains the following fields:

Tutorial: Develop a simple IDT test suite 246



FreeRTOS User Guide

suiteId

The name of the test suite currently running.

groupId

The ID of the test group currently running.

testCaseId

The ID of the test case current running.

deviceId

A ID of the device under test that the current test case is using.

The test summary contains information about the test suite, the test results for each group that 
was run, and the locations of the generated logs and report files. The following example shows a 
test summary message.

========== Test Summary ==========
Execution Time:     5m00s
Tests Completed:    4
Tests Passed:       3
Tests Failed:       1
Tests Skipped:      0
----------------------------------
Test Groups: 
    GroupA:         PASSED 
    GroupB:         FAILED
----------------------------------
Failed Tests: 
    Group Name: GroupB 
        Test Name: TestB1 
            Reason: Something bad happened
----------------------------------
Path to AWS IoT Device Tester Report: /path/to/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/logs
Path to Aggregated JUnit Report: /path/to/MyTestSuite_Report.xml

AWS IoT Device Tester report schema

awsiotdevicetester_report.xml is a signed report that contains the following information:

Tutorial: Develop a simple IDT test suite 247



FreeRTOS User Guide

• The IDT version.

• The test suite version.

• The report signature and key used to sign the report.

• The device SKU and the device pool name specified in the device.json file.

• The product version and the device features that were tested.

• The aggregate summary of test results. This information is the same as that contained in the
suite-name_report.xml file.

<apnreport> 
    <awsiotdevicetesterversion>idt-version</awsiotdevicetesterversion> 
    <testsuiteversion>test-suite-version</testsuiteversion> 
    <signature>signature</signature> 
    <keyname>keyname</keyname> 
    <session> 
        <testsession>execution-id</testsession> 
        <starttime>start-time</starttime> 
        <endtime>end-time</endtime> 
    </session> 
    <awsproduct> 
        <name>product-name</name> 
        <version>product-version</version> 
        <features> 
            <feature name="<feature-name>" value="supported | not-supported | <feature-
value>" type="optional | required"/> 
        </features> 
    </awsproduct> 
    <device> 
        <sku>device-sku</sku> 
        <name>device-name</name> 
        <features> 
            <feature name="<feature-name>" value="<feature-value>"/> 
        </features> 
        <executionMethod>ssh | uart | docker</executionMethod> 
    </device> 
    <devenvironment> 
        <os name="<os-name>"/> 
    </devenvironment> 
    <report> 
         <suite-name-report-contents>
    </report>

Tutorial: Develop a simple IDT test suite 248



FreeRTOS User Guide

</apnreport>

The awsiotdevicetester_report.xml file contains an <awsproduct> tag that contains 
information about the product being tested and the product features that were validated after 
running a suite of tests.

Attributes used in the <awsproduct> tag

name

The name of the product being tested.

version

The version of the product being tested.

features

The features validated. Features marked as required are required for the test suite to 
validate the device. The following snippet shows how this information appears in the
awsiotdevicetester_report.xml file.

<feature name="ssh" value="supported" type="required"></feature>

Features marked as optional are not required for validation. The following snippets show 
optional features.

<feature name="hsi" value="supported" type="optional"></feature>
<feature name="mqtt" value="not-supported" type="optional"></feature>

Test suite report schema

The suite-name_Result.xml report is in JUnit XML format. You can integrate it into continuous 
integration and deployment platforms like Jenkins, Bamboo, and so on. The report contains an 
aggregate summary of test results.

<testsuites name="<suite-name> results" time="<run-duration>" tests="<number-of-test>" 
 failures="<number-of-tests>" skipped="<number-of-tests>" errors="<number-of-tests>" 
 disabled="0"> 
    <testsuite name="<test-group-id>" package="" tests="<number-of-tests>" 
 failures="<number-of-tests>" skipped="<number-of-tests>" errors="<number-of-tests>" 
 disabled="0"> 

Tutorial: Develop a simple IDT test suite 249

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo


FreeRTOS User Guide

        <!--success--> 
        <testcase classname="<classname>" name="<name>" time="<run-duration>"/> 
        <!--failure--> 
        <testcase classname="<classname>" name="<name>" time="<run-duration>"> 
            <failure type="<failure-type>"> 
                 reason
            </failure> 
        </testcase> 
        <!--skipped--> 
        <testcase classname="<classname>" name="<name>" time="<run-duration>"> 
            <skipped> 
                 reason
            </skipped> 
        </testcase> 
        <!--error--> 
        <testcase classname="<classname>" name="<name>" time="<run-duration>"> 
            <error> 
                 reason
            </error> 
        </testcase> 
    </testsuite>
</testsuites>

The report section in both the awsiotdevicetester_report.xml or suite-
name_report.xml lists the tests that were run and the results.

The first XML tag <testsuites> contains the summary of the test execution. For example:

<testsuites name="MyTestSuite results" time="2299" tests="28" failures="0" errors="0" 
 disabled="0">

Attributes used in the <testsuites> tag

name

The name of the test suite.

time

The time, in seconds, it took to run the test suite.

tests

The number of tests executed.

Tutorial: Develop a simple IDT test suite 250



FreeRTOS User Guide

failures

The number of tests that were run, but did not pass.

errors

The number of tests that IDT couldn't execute.

disabled

This attribute is not used and can be ignored.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the 
test result summary for a test group. For example:

<testsuite name="combination" package="" tests="1" failures="0" time="161" disabled="0" 
 errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with a skipped attribute that is not used and 
can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each executed 
test for a test group. For example:

<testcase classname="Security Test" name="IP Change Tests" attempts="1"></testcase>

Attributes used in the <testcase> tag

name

The name of the test.

attempts

The number of times IDT executed the test case.

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="mcu.Full_MQTT" name="MQTT_TestCase" attempts="1"> 
 <failure type="Failure">Reason for the test failure</failure> 
 <error>Reason for the test execution error</error>
</testcase>

Tutorial: Develop a simple IDT test suite 251



FreeRTOS User Guide

IDT usage metrics

If you provide AWS credentials with required permissions, AWS IoT Device Tester collects and 
submits usage metrics to AWS. This is an opt-in feature and is used to improve IDT functionality. 
IDT collects information such as the following:

• The AWS account ID used to run IDT

• The IDT CLI commands used to run tests

• The test suite that are run

• The test suites in the <device-tester-extract-location> folder

• The number of devices configured in the device pool

• Test case names and run times

• Test result information, such as whether tests passed, failed, encountered errors, or were skipped

• Product features tested

• IDT exit behavior, such as unexpected or early exits

All of the information that IDT sends is also logged to a metrics.log file in the <device-
tester-extract-location>/results/<execution-id>/ folder. You can view the log file to 
see the information that was collected during a test run. This file is generated only if you choose to 
collect usage metrics.

To disable metrics collection, you do not need to take additional action. Simply do not store your 
AWS credentials, and if you do have stored AWS credentials, do not configure the config.json
file to access them.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

Tutorial: Develop a simple IDT test suite 252

https://portal.aws.amazon.com/billing/signup


FreeRTOS User Guide

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Tutorial: Develop a simple IDT test suite 253

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html


FreeRTOS User Guide

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM 
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party 
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM 
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the 
instructions in Adding permissions to a user (console) in the IAM User Guide.

Provide AWS credentials to IDT

To allow IDT to access your AWS credentials and submit metrics to AWS, do the following:

Tutorial: Develop a simple IDT test suite 254

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


FreeRTOS User Guide

1. Store the AWS credentials for your IAM user as environment variables or in a credentials file:

a. To use environment variables, run the following command:

AWS_ACCESS_KEY_ID=access-key
AWS_SECRET_ACCESS_KEY=secret-access-key

b. To use the credentials file, add the following information to the .aws/credentials 
file:

[profile-name]
aws_access_key_id=access-key
aws_secret_access_key=secret-access-key

2. Configure the auth section of the config.json file. For more information, see (Optional) 
Configure config.json.

AWS IoT Device Tester for FreeRTOS test suite versions

IDT for FreeRTOS organizes test resources into test suites and test groups:

• A test suite is the set of test groups used to verify that a device works with particular versions of 
FreeRTOS.

• A test group is the set of individual tests related to a particular feature, such as BLE and MQTT 
messaging.

Starting in IDT v3.0.0, test suites are versioned using a major.minor.patch format starting from 
1.0.0. When you download IDT, the package includes the latest test suite version.

When you start IDT in the command line interface, IDT checks whether a newer test suite version is 
available. If so, it prompts you to update to the new version. You can choose to update or continue 
with your current tests.

Note

IDT supports the three latest test suite versions for qualification. For more information, see
Support policy for AWS IoT Device Tester for FreeRTOS.

Test suite versions 255



FreeRTOS User Guide

You can download test suites by using the upgrade-test-suite command. Or, you can use the 
optional parameter -upgrade-test-suite flag when you start IDT where flag can be 'y' to 
always download the latest version, or 'n' to use the existing version.

You can also run the list-supported-versions command to list the FreeRTOS and test suite 
versions that are supported by the current version of IDT.

New tests might introduce new IDT configuration settings. If the settings are optional, IDT notifies 
you and continues running the tests. If the settings are required, IDT notifies you and stops 
running. After you configure the settings, you can continue to run the tests.

Troubleshooting

Each test suite execution has a unique execution ID that is used to create a folder named
results/execution-id in the results directory. Individual test group logs are 
under the results/execution-id/logs directory. Use the IDT for FreeRTOS console 
output to find the execution id, test case id, and test group id of the test case that 
failed and then open the log file for that test case named results/execution-id/
logs/test_group_id__test_case_id.log. The information in this file includes:

• Full build and flash command output.

• Test execution output.

• More verbose IDT for FreeRTOS console output.

We recommend the following workflow for troubleshooting:

1. If you see the error "user/role is not authorized to access this resource", make sure that you 
configure permissions as specified in Create and configure an AWS account.

2. Read the console output to find information, such as execution UUID and currently executing 
tasks.

3. Look in the FRQ_Report.xml file for error statements from each test. This directory contains 
execution logs of each test group.

4. Look in the log files under /results/execution-id/logs.

5. Investigate one of the following problem areas:

• Device configuration, such as JSON configuration files in the /configs/ folder.

• Device interface. Check the logs to determine which interface is failing.

Troubleshooting 256



FreeRTOS User Guide

• Device tooling. Make sure that the toolchains for building and flashing the device are 
installed and configured correctly.

• For FRQ 1.x.x make sure that a clean, cloned version of the FreeRTOS source code is 
available. FreeRTOS releases are tagged according to the FreeRTOS version. To clone a 
specific version of the code, use the following commands:

git clone --branch version-number https://github.com/aws/amazon-freertos.git
cd amazon-freertos
git submodule update --checkout --init --recursive

Troubleshooting device configuration

When you use IDT for FreeRTOS, you must get the correct configuration files in place before you 
execute the binary. If you're getting parsing and configuration errors, your first step should be to 
locate and use a configuration template appropriate for your environment. These templates are 
located in the IDT_ROOT/configs directory.

If you are still having issues, see the following debugging process.

Where do I look?

Start by reading the console output to find information, such as the execution UUID, which is 
referenced as execution-id in this documentation.

Next, look in the FRQ_Report.xml file in the /results/execution-id directory. 
This file contains all of the test cases that were run and error snippets for each 
failure. To get all of the execution logs, look for the file /results/execution-id/
logs/test_group_id__test_case_id.log for each test case.

IDT error codes

The following table explains the error codes generated by IDT for FreeRTOS:

Error Code Error Code Name Possible Root Cause Troubleshooting

201 InvalidInputError Fields in device.js 
on , config.json , 

Make sure required 
fields are not missing 

Troubleshooting device configuration 257



FreeRTOS User Guide

Error Code Error Code Name Possible Root Cause Troubleshooting

or userdata.json
are either missing 
or in an incorrect 
 format.

and are in required 
format in listed files. 
For more informati 
on, see Preparing to 
test your microcont 
roller board for the 
first time.

Troubleshooting device configuration 258



FreeRTOS User Guide

Error Code Error Code Name Possible Root Cause Troubleshooting

202 ValidationError Fields in device.js 
on , config.js 
on , or userdata. 
json  contain invalid 
values.

Check the error 
message on the right 
hand side of the error 
code in the report:

• Invalid AWS Region 
- Specify a valid 
AWS region in 
your config.js 
on  file. For more 
information about 
AWS regions, 
see Regions and 
Endpoints.

• Invalid AWS 
credentials - 
Set valid AWS 
credentials 
on your test 
machine (through 
environment 
variables or the 
credentials file). 
Verify that the 
authentication 
field is configure 
d correctly. For 
more informati 
on, see Create and 
configure an AWS 
account.

Troubleshooting device configuration 259

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


FreeRTOS User Guide

Error Code Error Code Name Possible Root Cause Troubleshooting

203 CopySourceCodeError Unable to copy 
FreeRTOS source 
code to specified 
directory.

Verify the following 
items:

• Check a valid
sourcePath  is 
specified in your
userdata.json
file.

• Delete the build
folder under 
FreeRTOS source 
code directory, if 
it exists. For more 
information, see
Configure build, 
flash, and test 
settings.

• Windows has a 
character limit for 
file path names. A 
long file path name 
will cause an error.

Troubleshooting device configuration 260



FreeRTOS User Guide

Error Code Error Code Name Possible Root Cause Troubleshooting

204 BuildSourceError Unable to compile 
the FreeRTOS source 
code.

Verify the following 
items:

• Check that the 
information under
buildTool  in 
your userdata. 
json  file is 
correct.

• If you are using
cmake as a build 
tool, make sure 
the {{enableT 
ests}}  is 
specified in the
buildTool
command. For 
more informati 
on, see Configure 
build, flash, and 
test settings.

• If you have 
extracted IDT 
for FreeRTOS 
to a file path on 
your system that 
contains spaces, 
for example C:
\Users\My 
Name\Desktop
\, you may need 
additional quotes 
inside of your build 
commands to make 

Troubleshooting device configuration 261



FreeRTOS User Guide

Error Code Error Code Name Possible Root Cause Troubleshooting

sure the paths are 
parsed properly. 
The same thing 
may be needed 
for your flash 
commands.

205 FlashOrRunTestError IDT FreeRTOS is 
unable to flash or run 
FreeRTOS on your 
DUT.

Verify the informati 
on under flashTool

 in your userdata. 
json  file is correct. 
For more informati 
on, see Configure 
build, flash, and test 
settings.

206 StartEchoServerError IDT FreeRTOS is 
unable to start echo 
server for the WiFi or 
secure sockets tests.

Verify the ports 
configured under
echoServe 
rConfiguration
in your userdata. 
json  file are not 
in use or blocked by 
firewall or network 
settings.

Debugging config file parsing errors

Occasionally, a typo in a JSON configuration can lead to parsing errors. Most of the time, the 
issue is a result of omitting a bracket, comma, or quote from your JSON file. IDT for FreeRTOS 
performs JSON validation and prints debugging information. It prints the line where the error 
occurred, the line number, and the column number of the syntax error. This information should 
be enough to help you fix the error, but if you are still having issues locating the error, you can 
perform validation manually in your IDE, a text editor such as Atom or Sublime, or through an 
online tool like JSONLint.

Troubleshooting device configuration 262



FreeRTOS User Guide

Debugging test results parsing errors

While running a test group from  FreeRTOS-Libraries-Integration-Tests, such 
as FullTransportInterfaceTLS, FullPKCS11_Core, FullPKCS11_Onboard_ECC, 
FullPKCS11_Onboard_RSA, FullPKCS11_PreProvisioned_ECC, FullPKCS11_PreProvisioned_RSA, 
or OTACore, IDT for FreeRTOS parses the test results from the test device with the serial 
connection. Sometimes, extra serial outputs on the device may interfere with the parsing of the 
test results.

In the above mentioned case, strange test case failure reasons like strings originating from 
unrelated device outputs are output. The IDT for FreeRTOS test case log file (which includes all the 
serial output IDT for FreeRTOS has received during the test) may show the following:

<unrelated device output>
TEST(Full_PKCS11_Capabilities, PKCS11_Capabilities)<unrelated device output>
<unrelated device output> 
 PASS  
         

In the above example, the unrelated device output prevents IDT for FreeRTOS from detecting the 
test result which is PASS.

Check the following to ensure optimal testing.

• Make sure the logging macros used on the device are thread safe. See Implementing the library 
logging macros for more information.

• Make sure there are minimal outputs to the serial connection during the tests. Other device 
outputs can be a problem even if your logging macros are properly thread safe, because the test 
results will output in separate calls during testing.

An IDT for FreeRTOS test case log would ideally show an uninterrupted test results output like 
below:

---------STARTING TESTS---------
TEST(Full_OTA_PAL, otaPal_CloseFile_ValidSignature) PASS
TEST(Full_OTA_PAL, otaPal_CloseFile_InvalidSignatureBlockWritten) PASS
-----------------------

Troubleshooting device configuration 263

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-library-logging-macros.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-library-logging-macros.html


FreeRTOS User Guide

2 Tests 0 Failures 0 Ignored         
       

Debugging integrity check failures

If using FRQ 1.x.x version of FreeRTOS the following integrity checks apply.

When you run the FreeRTOSIntegrity test group and you encounter failures, first make sure that 
you haven't modified any of the freertos directory files. If you haven’t, and are still seeing 
issues, make sure you are using the correct branch. If you run IDT's list-supported-products
command, you can find which tagged branch of the freertos repo you should be using.

If you cloned the correct tagged branch of the freertos repo and still have issues, make sure you 
have also run the submodule update command. The clone workflow for the freertos repo is as 
follows.

git clone --branch version-number https://github.com/aws/amazon-freertos.git
cd amazon-freertos
git submodule update --checkout —init —recursive

The list of files the integrity checker looks for are in the checksums.json file in your freertos
directory. To qualify a FreeRTOS port without any modifications to files and the folder structure, 
make sure that none of the files listed in the 'exhaustive' and 'minimal' sections of the
checksums.json file have been modified. To run with an SDK configured, verify that none of the 
files under the 'minimal' section have been modified.

If you run IDT with an SDK and have modified some files in your freertos directory, then make 
sure you correctly configure your SDK in your userdata file. Otherwise, the Integrity checker will 
verify all files in the freertos directory.

Debugging FullWiFi test group failures

If you are using FRQ 1.x.x and encounter failures in the FullWiFi test group, and the 
"AFQP_WiFiConnectMultipleAP" test fails, this could be because both access points aren't in the 
same subnet as the host computer running IDT. Make sure that both access points are in the same 
subnet as the host computer running IDT.

Troubleshooting device configuration 264



FreeRTOS User Guide

Debugging a "required parameter missing" error

Because new features are being added to IDT for FreeRTOS, changes to the configuration files 
might be introduced. Using an old configuration file might break your configuration. If this 
happens, the test_group_id__test_case_id.log file under the results/execution-
id/logs directory explicitly lists all missing parameters. IDT for FreeRTOS validates your JSON 
configuration file schemas to ensure that the latest supported version has been used.

Debugging a "test could not start" error

You might see errors that point to failures during test start. Because there are several possible 
causes, check the following areas for correctness:

• Make sure that the pool name you've included in your execution command actually exists. This is 
referenced directly from your device.json file.

• Make sure that the device or devices in your pool have correct configuration parameters.

Debugging an "unable to find start of test results" error

You might see errors when IDT attempts to parse the results output by the device under test. There 
are several possible causes, so check the following areas for correctness:

• Make sure that the device under test has a stable connection to your host machine. You can 
check the log file for a test that shows these errors to see what IDT is receiving.

• If using FRQ 1.x.x, and the device under test is connected via a slow network or other 
interface, or you do not see the "---------STARTING TESTS---------" flag in a FreeRTOS test 
group log along with other FreeRTOS test group outputs, you can try increasing the value of
testStartDelayms in your userdata configuration. For more information, see Configure build, 
flash, and test settings.

Debugging a "Test failure:expected __ results but saw ___" error

You might see errors that point to a test failure during testing. The test expects a certain number 
of results, and does not see it during testing. Some FreeRTOS tests run before IDT sees the output 
from the device. If you see this error, you can try increasing the value of testStartDelayms in 
your userdata configuration. For more information, see Configure build, flash, and test settings.

Troubleshooting device configuration 265



FreeRTOS User Guide

Debugging a "________ was unselected due to ConditionalTests constraints" error

This means that you are running a test on a device pool that is incompatible with the test. This may 
happen with the OTA E2E tests. For example, while running the OTADataplaneMQTT test group 
and in your device.json config file, you have chosen OTA as No or OTADataPlaneProtocol as
HTTP. The test group chosen to run must match your device.json capability selections.

Debugging an IDT timeout during device output monitoring

IDT can timeout due to a number of reasons. If a timeout happens during the device output 
monitoring phase of a test, and you can see the results inside of the IDT test case log, it means that 
the results were incorrectly parsed by IDT. One reason could be the interleaved log messages in the 
middle of the test results. If this is the case, please refer to the FreeRTOS Porting Guide for further 
details on how the UNITY logs should be setup.

Another reason for a timeout during device output monitoring could be a device rebooting after 
a single TLS test case failure. The device then runs the flashed image and causes an infinite loop 
which is seen in the logs. If this happens, make sure your device does not reboot after a test failure.

Debugging a "not authorized to access resource" error

You might see the error "user/role is not authorized to access this resource" in the terminal 
output or in the test_manager.log file under /results/execution-id/logs. To resolve this 
issue, attach the AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy to your test 
user. For more information, see Create and configure an AWS account.

Debugging network test errors

For network-based tests, IDT starts an echo server that binds to a non-reserved port on the host 
machine. If you are running into errors due to timeouts or unavailable connections in the WiFi or 
secure sockets tests, make sure that your network is configured to allow traffic to configured ports 
in the 1024 - 49151 range.

The secure sockets test uses ports 33333 and 33334 by default. The WiFi tests uses port 33335 
by default. If these three ports are in use or blocked by firewall or network, you can choose to use 
different ports in userdata.json for testing. For more information, see Configure build, flash, and 
test settings. You can use the following commands to check whether a specific port is in use:

• Windows: netsh advfirewall firewall show rule name=all | grep port

Troubleshooting device configuration 266

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ota.html


FreeRTOS User Guide

• Linux: sudo netstat -pan | grep port

• macOS: netstat -nat | grep port

OTA Update failures due to same version payload

If OTA test cases are failing due to the same version being on the device after an OTA was 
performed, it may be due to your build system (e.g. cmake) not noticing IDT's changes to the 
FreeRTOS source code and not building an updated binary. This causes OTA to be performed with 
the same binary that is currently on the device, and the test to fail. To troubleshoot OTA update 
failures, start by making sure that you are using the latest supported version of your build system.

OTA test failure on PresignedUrlExpired test case

One prerequisite of this test is that the OTA update time should be more than 60 seconds, 
otherwise the test would fail. If this occurs, the following error message is found in the log: "Test 
takes less than 60 seconds (url expired time) to finish. Please reach out to us."

Debugging device interface and port errors

This section contains information about the device interfaces IDT uses to connect to your devices.

Supported platforms

IDT supports Linux, macOS, and Windows. All three platforms have different naming schemes for 
serial devices that are attached to them:

• Linux: /dev/tty*

• macOS: /dev/tty.* or /dev/cu.*

• Windows: COM*

To check your device port:

• For Linux/macOS, open a terminal and run ls /dev/tty*.

• For macOS, open a terminal and run ls /dev/tty.* or ls /dev/cu.*.

• For Windows, open Device Manager and expand the serial devices group.

To verify which device is connected to a port:

Troubleshooting device configuration 267



FreeRTOS User Guide

• For Linux, make sure that the udev package is installed, and then run udevadm info –
name=PORT. This utility prints the device driver information that helps you verify you are using 
the correct port.

• For macOS, open Launchpad and search for System Information.

• For Windows, open Device Manager and expand the serial devices group.

Device interfaces

Each embedded device is different, which means that they can have one or more serial ports. It is 
common for devices to have two ports when connected to a machine:

• A data port for flashing the device.

• A read port to read output.

You must set the correct read port in your device.json file. Otherwise, reading output from 
the device might fail.

In the case of multiple ports, make sure to use the read port of the device in your device.json
file. For example, if you plug in an Espressif WRover device and the two ports assigned to it are /
dev/ttyUSB0 and /dev/ttyUSB1, use /dev/ttyUSB1 in your device.json file.

For Windows, follow the same logic.

Reading device data

IDT for FreeRTOS uses individual device build and flash tooling to specify port configuration. If you 
are testing your device and don't get output, try the following default settings:

• Baud rate: 115200

• Data bits: 8

• Parity: None

• Stop bits: 1

• Flow control: None

These settings are handled by IDT for FreeRTOS. You do not have to set them. However, you can 
use the same method to manually read device output. On Linux or macOS, you can do this with the
screen command. On Windows, you can use a program such as TeraTerm.

Troubleshooting device configuration 268



FreeRTOS User Guide

Screen: screen /dev/cu.usbserial 115200

TeraTerm: Use the above-provided settings to set the fields explicitly in 
the GUI.

Development toolchain problems

This section discusses problems that can occur with your toolchain.

Code Composer Studio on Ubuntu

Newer versions of Ubuntu (17.10 and 18.04) have a version of the glibc package that is not 
compatible with Code Composer Studio 7.x versions. We recommended that you install Code 
Composer Studio version 8.2 or later.

Symptoms of incompatibility might include:

• FreeRTOS failing to build or flash to your device.

• The Code Composer Studio installer might freeze.

• No log output is displayed in the console during the build or flash process.

• Build command attempts to launch in GUI mode even when invoked as headless.

Logging

IDT for FreeRTOS logs are placed in a single location. From the root IDT directory, these files are 
available under results/execution-id/:

• FRQ_Report.xml

• awsiotdevicetester_report.xml

• logs/test_group_id__test_case_id.log

FRQ_Report.xml and logs/test_group_id__test_case_id.log are the most important 
logs to examine. FRQ_Report.xml contains information about which test cases failed with a 
specific error message. You can then use logs/test_group_id__test_case_id.log to dig 
further into the problem to get better context.

Troubleshooting device configuration 269



FreeRTOS User Guide

Console errors

When AWS IoT Device Tester is run, failures are reported to the console with brief messages. Look 
in results/execution-id/logs/test_group_id__test_case_id.log to learn more about 
the error.

Log errors

Each test suite execution has a unique execution ID that is used to create a folder named
results/execution-id. Individual test case logs are under the results/execution-id/logs
directory. Use the output of the IDT for FreeRTOS console to find the execution id, test case id, and 
test group id of the test case that failed. Then use this information to find and open the log file for 
that test case named results/execution-id/logs/test_group_id__test_case_id.log
The information in this file includes the full build and flash command output, test execution 
output, and more verbose AWS IoT Device Tester console output.

S3 bucket issues

If you press CTRL+C while running IDT, IDT will start a clean up process. Part of that clean up is to 
remove Amazon S3 resources that have been created as a part of the IDT tests. If the clean up can't 
finish, you might run into an issue where you have too many Amazon S3 buckets that have been 
created. This means the next time that you run IDT the tests will start to fail.

If you press CTRL+C to stop IDT, you must let it finish the clean up process to avoid this issue. You 
can also delete the Amazon S3 buckets from your account that were created manually.

Troubleshooting timeout errors

If you see timeout errors while running a test suite, increase the timeout by specifying a timeout 
multiplier factor. This factor is applied to the default timeout value. Any value configured for this 
flag must be greater than or equal to 1.0. To use the timeout multiplier, use the flag --timeout-
multiplier when running the test suite.

Example

IDT v3.0.0 and later

./devicetester_linux run-suite --suite-id FRQ_1.0.1 --pool-id DevicePool1 --timeout-
multiplier 2.5

Troubleshooting timeout errors 270



FreeRTOS User Guide

IDT v1.7.0 and earlier

./devicetester_linux run-suite --suite-id FRQ_1 --pool-id DevicePool1 --timeout-
multiplier 2.5

Cellular feature and AWS charges

When the Cellular feature is set to Yes in your device.JSON file, FullSecureSockets will use 
t.micro EC2 instances for running tests and this may incur additional costs to your AWS account. 
For more information, see Amazon EC2 pricing.

Qualification report generation policy

Qualification reports are only generated by AWS IoT Device Tester (IDT) versions that support 
FreeRTOS versions released within the last two years. If you have questions about the support 
policy, please contact AWS Support.

AWS Managed policy for AWS IoT Device Tester

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS 
managed policies are designed to provide permissions for many common use cases so that you can 
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your 
specific use cases because they're available for all AWS customers to use. We recommend that you 
reduce permissions further by defining  customer managed policies that are specific to your use 
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the 
permissions defined in an AWS managed policy, the update affects all principal identities (users, 
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed 
policy when a new AWS service is launched or new API operations become available for existing 
services.

For more information, see AWS managed policies in the IAM User Guide.

Topics

• AWS managed policy: AWSIoTDeviceTesterForFreeRTOSFullAccess

Cellular feature and AWS charges 271

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies


FreeRTOS User Guide

• AWS IoT Device Tester updates to AWS managed policies

AWS managed policy: AWSIoTDeviceTesterForFreeRTOSFullAccess

The AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following 
AWS IoT Device Tester permissions for version checking, auto update features, and collection of 
metrics.

Permission details

This policy includes the following permissions:

• iot-device-tester:SupportedVersion

Grants AWS IoT Device Tester permission to fetch the list of supported products, test suites and 
IDT versions.

• iot-device-tester:LatestIdt

Grants AWS IoT Device Tester permission to fetch the latest IDT version available for download.

• iot-device-tester:CheckVersion

Grants AWS IoT Device Tester permission to check version compatibility for IDT, test suites and 
products.

• iot-device-tester:DownloadTestSuite

Grants AWS IoT Device Tester permission to download test suite updates.

• iot-device-tester:SendMetrics

Grants AWS permission to collect metrics about AWS IoT Device Tester internal usage.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "VisualEditor0", 
            "Effect": "Allow", 
            "Action": "iam:PassRole", 
            "Resource": "arn:aws:iam::*:role/idt-*", 

Managed policy 272



FreeRTOS User Guide

            "Condition": { 
                "StringEquals": { 
                    "iam:PassedToService": "iot.amazonaws.com" 
                } 
            } 
        }, 
        { 
            "Sid": "VisualEditor1", 
            "Effect": "Allow", 
            "Action": [ 
                "iot:DeleteThing", 
                "iot:AttachThingPrincipal", 
                "iot:DeleteCertificate", 
                "iot:GetRegistrationCode", 
                "iot:CreatePolicy", 
                "iot:UpdateCACertificate", 
                "s3:ListBucket", 
                "iot:DescribeEndpoint", 
                "iot:CreateOTAUpdate", 
                "iot:CreateStream", 
                "signer:ListSigningJobs", 
                "acm:ListCertificates", 
                "iot:CreateKeysAndCertificate", 
                "iot:UpdateCertificate", 
                "iot:CreateCertificateFromCsr", 
                "iot:DetachThingPrincipal", 
                "iot:RegisterCACertificate", 
                "iot:CreateThing", 
                "iam:ListRoles", 
                "iot:RegisterCertificate", 
                "iot:DeleteCACertificate", 
                "signer:PutSigningProfile", 
                "s3:ListAllMyBuckets", 
                "signer:ListSigningPlatforms", 
                "iot-device-tester:SendMetrics", 
                "iot-device-tester:SupportedVersion", 
                "iot-device-tester:LatestIdt", 
                "iot-device-tester:CheckVersion", 
                "iot-device-tester:DownloadTestSuite" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Sid": "VisualEditor2", 

Managed policy 273



FreeRTOS User Guide

            "Effect": "Allow", 
            "Action": [ 
                "iam:GetRole", 
                "signer:StartSigningJob", 
                "acm:GetCertificate", 
                "signer:DescribeSigningJob", 
                "s3:CreateBucket", 
                "execute-api:Invoke", 
                "s3:DeleteBucket", 
                "s3:PutBucketVersioning", 
                "signer:CancelSigningProfile" 
            ], 
            "Resource": [ 
                "arn:aws:execute-api:us-east-1:098862408343:9xpmnvs5h4/prod/POST/
metrics", 
                "arn:aws:signer:*:*:/signing-profiles/*", 
                "arn:aws:signer:*:*:/signing-jobs/*", 
                "arn:aws:iam::*:role/idt-*", 
                "arn:aws:acm:*:*:certificate/*", 
                "arn:aws:s3:::idt-*", 
                "arn:aws:s3:::afr-ota*" 
            ] 
        }, 
        { 
            "Sid": "VisualEditor3", 
            "Effect": "Allow", 
            "Action": [ 
                "iot:DeleteStream", 
                "iot:DeleteCertificate", 
                "iot:AttachPolicy", 
                "iot:DetachPolicy", 
                "iot:DeletePolicy", 
                "s3:ListBucketVersions", 
                "iot:UpdateCertificate", 
                "iot:GetOTAUpdate", 
                "iot:DeleteOTAUpdate", 
                "iot:DescribeJobExecution" 
            ], 
            "Resource": [ 
                "arn:aws:s3:::afr-ota*", 
                "arn:aws:iot:*:*:thinggroup/idt*", 
                "arn:aws:iam::*:role/idt-*" 
            ] 
        }, 

Managed policy 274



FreeRTOS User Guide

        { 
            "Sid": "VisualEditor4", 
            "Effect": "Allow", 
            "Action": [ 
                "iot:DeleteCertificate", 
                "iot:AttachPolicy", 
                "iot:DetachPolicy", 
                "s3:DeleteObjectVersion", 
                "iot:DeleteOTAUpdate", 
                "s3:PutObject", 
                "s3:GetObject", 
                "iot:DeleteStream", 
                "iot:DeletePolicy", 
                "s3:DeleteObject", 
                "iot:UpdateCertificate", 
                "iot:GetOTAUpdate", 
                "s3:GetObjectVersion", 
                "iot:DescribeJobExecution" 
            ], 
            "Resource": [ 
                "arn:aws:s3:::afr-ota*/*", 
                "arn:aws:s3:::idt-*/*", 
                "arn:aws:iot:*:*:policy/idt*", 
                "arn:aws:iam::*:role/idt-*", 
                "arn:aws:iot:*:*:otaupdate/idt*", 
                "arn:aws:iot:*:*:thing/idt*", 
                "arn:aws:iot:*:*:cert/*", 
                "arn:aws:iot:*:*:job/*", 
                "arn:aws:iot:*:*:stream/*" 
            ] 
        }, 
        { 
            "Sid": "VisualEditor5", 
            "Effect": "Allow", 
            "Action": [ 
                "s3:PutObject", 
                "s3:GetObject" 
            ], 
            "Resource": [ 
                "arn:aws:s3:::afr-ota*/*", 
                "arn:aws:s3:::idt-*/*" 
            ] 
        }, 
        { 

Managed policy 275



FreeRTOS User Guide

            "Sid": "VisualEditor6", 
            "Effect": "Allow", 
            "Action": [ 
                "iot:CancelJobExecution" 
            ], 
            "Resource": [ 
                "arn:aws:iot:*:*:job/*", 
                "arn:aws:iot:*:*:thing/idt*" 
            ] 
        }, 
        { 
            "Sid": "VisualEditor7", 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:TerminateInstances" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:instance/*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "ec2:ResourceTag/Owner": "IoTDeviceTester" 
                } 
            } 
        }, 
        { 
            "Sid": "VisualEditor8", 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:AuthorizeSecurityGroupIngress", 
                "ec2:DeleteSecurityGroup" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:security-group/*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "ec2:ResourceTag/Owner": "IoTDeviceTester" 
                } 
            } 
        }, 
        { 
            "Sid": "VisualEditor9", 
            "Effect": "Allow", 

Managed policy 276



FreeRTOS User Guide

            "Action": [ 
                "ec2:RunInstances" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:instance/*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "aws:RequestTag/Owner": "IoTDeviceTester" 
                } 
            } 
        }, 
        { 
            "Sid": "VisualEditor10", 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:RunInstances" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:image/*", 
                "arn:aws:ec2:*:*:security-group/*", 
                "arn:aws:ec2:*:*:volume/*", 
                "arn:aws:ec2:*:*:key-pair/*", 
                "arn:aws:ec2:*:*:placement-group/*", 
                "arn:aws:ec2:*:*:snapshot/*", 
                "arn:aws:ec2:*:*:network-interface/*", 
                "arn:aws:ec2:*:*:subnet/*" 
            ] 
        }, 
        { 
            "Sid": "VisualEditor11", 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:CreateSecurityGroup" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:security-group/*" 
            ], 
            "Condition": { 
                "StringEquals": { 
                    "aws:RequestTag/Owner": "IoTDeviceTester" 
                } 
            } 
        }, 

Managed policy 277



FreeRTOS User Guide

        { 
            "Sid": "VisualEditor12", 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:DescribeInstances", 
                "ec2:DescribeSecurityGroups", 
                "ssm:DescribeParameters", 
                "ssm:GetParameters" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Sid": "VisualEditor13", 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:CreateTags" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:security-group/*", 
                "arn:aws:ec2:*:*:instance/*" 
            ], 
            "Condition": { 
                "ForAnyValue:StringEquals": { 
                    "aws:TagKeys": [ 
                        "Owner" 
                    ] 
                }, 
                "StringEquals": { 
                    "ec2:CreateAction": [ 
                        "RunInstances", 
                        "CreateSecurityGroup" 
                    ] 
                } 
            } 
        } 
    ]
}     

AWS IoT Device Tester updates to AWS managed policies

You can view details about updates to AWS managed policies for AWS IoT Device Tester from the 
time this service began tracking these changes.

Policy updates 278



FreeRTOS User Guide

Version Change Description Date

7 (Latest) Restructured the
ec2:CreateTags
conditions.

Removing usage of
ForAnyValues .

6/14/2023

6 Removed freertos: 
ListHardw 
arePlatforms
from the policy.

Removing permissio 
ns as this action is 
deprecated as of 
March 1st, 2023.

6/2/2023

5 Added permissions to 
run echo server tests 
using EC2.

This is for starting 
and stopping an EC2 
instance in customers 
' AWS accounts.

12/15/2020

4 Added iot:Cance 
lJobExecution .

This permission 
cancels OTA jobs.

7/17/2020

3 Added the following 
permissions:

• iot-devic 
e-tester: 
DownloadT 
estSuite ,

• iot-devic 
e-tester: 
CheckVersion ,

• iot-devic 
e-tester: 
LatestIdt ,

• iot-devic 
e-tester: 
Supported 
Version .

• iot-devic 
e-tester: 
DownloadT 
estSuite  — 
Grants AWS IoT 
Device Tester 
permission to 
download test suite 
updates,

• iot-devic 
e-tester: 
CheckVers 
ion  — Grants 
AWS IoT Device 
Tester permissio 
n to check version 
compatibility for 

3/23/2020

Policy updates 279



FreeRTOS User Guide

Version Change Description Date

IDT, test suites and 
products,

• iot-devic 
e-tester: 
LatestIdt
— Grants AWS 
IoT Device Tester 
permission to 
fetch the latest IDT 
version available 
for download,

• iot-devic 
e-tester: 
Supported 
Version  — 
Grants AWS IoT 
Device Tester 
permission to 
fetch the list 
of supported 
products, test 
suites and IDT 
versions.

2 Added iot-devic 
e-tester: 
SendMetrics
permissions.

Grants AWS permissio 
n to collect metrics 
about AWS IoT Device 
Tester internal usage.

2/18/2020

1 Initial version. 2/12/2020

Policy updates 280



FreeRTOS User Guide

Support policy for AWS IoT Device Tester for FreeRTOS

Important

As of October 2022, AWS IoT Device Tester for AWS IoT FreeRTOS Qualification (FRQ) 1.0 
does not generate signed qualification reports. You cannot qualify new AWS IoT FreeRTOS 
devices to list in the AWS Partner Device Catalog through the AWS Device Qualification 
Program using IDT FRQ 1.0 versions. While you can't qualify FreeRTOS devices using IDT 
FRQ 1.0, you can continue to test your FreeRTOS devices with FRQ 1.0. We recommend 
that you use IDT FRQ 2.0 to qualify and list FreeRTOS devices in the AWS Partner Device 
Catalog.

AWS IoT Device Tester for FreeRTOS is a test automation tool to validate FreeRTOS port to 
devices. Additionally you can qualify your FreeRTOS devices and list them on the AWS Partner 
Device Catalog . The AWS IoT Device Tester for FreeRTOS supports validation and qualification of 
FreeRTOS Long Term Supported (LTS) libraries available on GitHub at FreeRTOS/FreeRTOS-LTS , 
and FreeRTOS mainline available at FreeRTOS/FreeRTOS. We recommend that you use the most 
recent versions of both the FreeRTOS and AWS IoT Device Tester for FreeRTOS to validate and 
qualify your devices.

For FreeRTOS-LTS, IDT supports the validation and qualification of FreeRTOS 202210 LTS version. 
See here for more information on FreeRTOS LTS releases and their maintenance time line. Once 
the support period of these LTS releases ends, you can still continue validation, but IDT will not 
generate a report, that will allow you to submit your device for qualification.

For the mainline FreeRTOS available at FreeRTOS/FreeRTOS , we support the validation and 
qualification of all the versions released in the past six months, or the previous two versions of 
FreeRTOS if released more than six months apart. See here for currently supported versions. For 
unsupported versions of FreeRTOS, you can still continue validation, but IDT will not generate a 
report, that will allow you to submit your device for qualification.

See Supported versions of AWS IoT Device Tester for FreeRTOS for the latest supported IDT and 
FreeRTOS versions. You can use any of the supported versions of AWS IoT Device Tester with 
the corresponding version of FreeRTOS to test or qualify your device. If you continue to use the
Unsupported IDT versions for FreeRTOS, you will not receive the latest bug fixes or updates.

For questions about the support policy, contact AWS Customer Support.

Support policy 281

https://devices.amazonaws.com/
http://aws.amazon.com/partners/programs/dqp/
http://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/freertos/latest/userguide/lts-idt-freertos-qualification.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/
https://aws.amazon.com/partners/dqp/
https://devices.amazonaws.com/
https://devices.amazonaws.com/
https://github.com/FreeRTOS/FreeRTOS-LTS
https://github.com/FreeRTOS/FreeRTOS
https://www.freertos.org/lts-libraries.html
https://github.com/FreeRTOS/FreeRTOS
https://docs.aws.amazon.com//freertos/latest/userguide/dev-test-versions-afr.html
https://aws.amazon.com/contact-us/


FreeRTOS User Guide

Security in AWS

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center 
and network architecture that is built to meet the requirements of the most security-sensitive 
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes 
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. AWS also provides you with services that you can use securely. The 
effectiveness of our security is regularly tested and verified by third-party auditors as part of 
the AWS compliance programs. To learn about the compliance programs that apply to an AWS 
service, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You 
are also responsible for other factors including the sensitivity of your data, your organization’s 
requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when 
using AWS. The following topics show you how to configure AWS to meet your security and 
compliance objectives. You'll also learn how to use AWS services that can help you to monitor and 
secure your AWS resources.

For more in-depth information about AWS IoT security see Security and Identity for AWS IoT.

Topics

• Identity and Access Management for FreeRTOS

• Compliance validation

• Resilience in AWS

• Infrastructure security in FreeRTOS

Identity and Access Management for FreeRTOS

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) 

Identity and Access Management 282

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html


FreeRTOS User Guide

and authorized (have permissions) to use FreeRTOS resources. IAM is an AWS service that you can 
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How FreeRTOS works with IAM

• Identity-based policy examples for FreeRTOS

• Troubleshooting FreeRTOS identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you 
do in FreeRTOS.

Service user – If you use the FreeRTOS service to do your job, then your administrator provides you 
with the credentials and permissions that you need. As you use more FreeRTOS features to do your 
work, you might need additional permissions. Understanding how access is managed can help you 
request the right permissions from your administrator. If you cannot access a feature in FreeRTOS, 
see Troubleshooting FreeRTOS identity and access.

Service administrator – If you're in charge of FreeRTOS resources at your company, you probably 
have full access to FreeRTOS. It's your job to determine which FreeRTOS features and resources 
your service users should access. You must then submit requests to your IAM administrator to 
change the permissions of your service users. Review the information on this page to understand 
the basic concepts of IAM. To learn more about how your company can use IAM with FreeRTOS, see
How FreeRTOS works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how 
you can write policies to manage access to FreeRTOS. To view example FreeRTOS identity-based 
policies that you can use in IAM, see Identity-based policy examples for FreeRTOS.

Audience 283



FreeRTOS User Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an 
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity 
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on 
authentication, and your Google or Facebook credentials are examples of federated identities. 
When you sign in as a federated identity, your administrator previously set up identity federation 
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the 
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS 
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a 
command line interface (CLI) to cryptographically sign your requests by using your credentials. If 
you don't use AWS tools, you must sign requests yourself. For more information about using the 
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User 
Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication 
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM 
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and 
is accessed by signing in with the email address and password that you used to create the account. 
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your 
root user credentials and use them to perform the tasks that only the root user can perform. For 
the complete list of tasks that require you to sign in as the root user, see Tasks that require root 
user credentials in the IAM User Guide.

Authenticating with identities 284

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks


FreeRTOS User Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use 
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS 
Directory Service, the Identity Center directory, or any user that accesses AWS services by using 
credentials provided through an identity source. When federated identities access AWS accounts, 
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can 
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users 
and groups in your own identity source for use across all your AWS accounts and applications. For 
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity 
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person 
or application. Where possible, we recommend relying on temporary credentials instead of creating 
IAM users who have long-term credentials such as passwords and access keys. However, if you have 
specific use cases that require long-term credentials with IAM users, we recommend that you rotate 
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier 
to manage for large sets of users. For example, you could have a group named IAMAdmins and give 
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but 
a role is intended to be assumable by anyone who needs it. Users have permanent long-term 
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user 
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an 
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in 
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or 

Authenticating with identities 285

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html


FreeRTOS User Guide

AWS API operation or by using a custom URL. For more information about methods for using roles, 
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role 
and define permissions for the role. When a federated identity authenticates, the identity 
is associated with the role and is granted the permissions that are defined by the role. For 
information about roles for federation, see  Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control 
what your identities can access after they authenticate, IAM Identity Center correlates the 
permission set to a role in IAM. For information about permissions sets, see  Permission sets in 
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily 
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a 
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource 
(instead of using a role as a proxy). To learn the difference between roles and resource-based 
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when 
you make a call in a service, it's common for that service to run applications in Amazon EC2 or 
store objects in Amazon S3. A service might do this using the calling principal's permissions, 
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in 
AWS, you are considered a principal. When you use some services, you might perform an 
action that then initiates another action in a different service. FAS uses the permissions of the 
principal calling an AWS service, combined with the requesting AWS service to make requests 
to downstream services. FAS requests are only made when a service receives a request that 
requires interactions with other AWS services or resources to complete. In this case, you must 
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your 
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For 
more information, see Creating a role to delegate permissions to an AWS service in the IAM 
User Guide.

Authenticating with identities 286

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


FreeRTOS User Guide

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS 
service. The service can assume the role to perform an action on your behalf. Service-linked 
roles appear in your AWS account and are owned by the service. An IAM administrator can 
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary 
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API 
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role 
to an EC2 instance and make it available to all of its applications, you create an instance profile 
that is attached to the instance. An instance profile contains the role and enables programs that 
are running on the EC2 instance to get temporary credentials. For more information, see Using 
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM 
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. 
A policy is an object in AWS that, when associated with an identity or resource, defines their 
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes 
a request. Permissions in the policies determine whether the request is allowed or denied. Most 
policies are stored in AWS as JSON documents. For more information about the structure and 
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on 
the resources that they need, an IAM administrator can create IAM policies. The administrator can 
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A 
user with that policy can get role information from the AWS Management Console, the AWS CLI, or 
the AWS API.

Managing access using policies 287

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json


FreeRTOS User Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline 
policies are embedded directly into a single user, group, or role. Managed policies are standalone 
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed 
policies include AWS managed policies and customer managed policies. To learn how to choose 
between a managed policy or an inline policy, see Choosing between managed policies and inline 
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS 
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more 
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer 
Guide.

Managing access using policies 288

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html


FreeRTOS User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set 
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user 
or role). You can set a permissions boundary for an entity. The resulting permissions are the 
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based 
policies that specify the user or role in the Principal field are not limited by the permissions 
boundary. An explicit deny in any of these policies overrides the allow. For more information 
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions 
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a 
service for grouping and centrally managing multiple AWS accounts that your business owns. If 
you enable all features in an organization, then you can apply service control policies (SCPs) to 
any or all of your accounts. The SCP limits permissions for entities in member accounts, including 
each AWS account root user. For more information about Organizations and SCPs, see Service 
control policies in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session 
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these 
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how AWS determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

How FreeRTOS works with IAM

Before you use IAM to manage access to FreeRTOS, learn what IAM features are available to use 
with FreeRTOS.

How FreeRTOS works with IAM 289

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html


FreeRTOS User Guide

IAM features you can use with FreeRTOS

IAM feature FreeRTOS support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how FreeRTOS and other AWS services work with most IAM features, see
AWS services that work with IAM in the IAM User Guide.

Identity-based policies for FreeRTOS

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well 
as the conditions under which actions are allowed or denied. You can't specify the principal in an 
identity-based policy because it applies to the user or role to which it is attached. To learn about all 

How FreeRTOS works with IAM 290

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html


FreeRTOS User Guide

of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for FreeRTOS

To view examples of FreeRTOS identity-based policies, see Identity-based policy examples for 
FreeRTOS.

Resource-based policies within FreeRTOS

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

To enable cross-account access, you can specify an entire account or IAM entities in another 
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource 
are in different AWS accounts, an IAM administrator in the trusted account must also grant 
the principal entity (user or role) permission to access the resource. They grant permission by 
attaching an identity-based policy to the entity. However, if a resource-based policy grants access 
to a principal in the same account, no additional identity-based policy is required. For more 
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for FreeRTOS

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny 
access in a policy. Policy actions usually have the same name as the associated AWS API operation. 

How FreeRTOS works with IAM 291

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html


FreeRTOS User Guide

There are some exceptions, such as permission-only actions that don't have a matching API 
operation. There are also some operations that require multiple actions in a policy. These 
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of FreeRTOS actions, see Actions defined by FreeRTOS in the Service Authorization 
Reference.

Policy actions in FreeRTOS use the following prefix before the action:

awes

To specify multiple actions in a single statement, separate them with commas.

"Action": [ 
      "awes:action1", 
      "awes:action2" 
         ]

To view examples of FreeRTOS identity-based policies, see Identity-based policy examples for 
FreeRTOS.

Policy resources for FreeRTOS

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. 
Statements must include either a Resource or a NotResource element. As a best practice, 
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support 
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard 
(*) to indicate that the statement applies to all resources.

How FreeRTOS works with IAM 292

https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html


FreeRTOS User Guide

"Resource": "*"

To see a list of FreeRTOS resource types and their ARNs, see Resources defined by FreeRTOS in 
the Service Authorization Reference. To learn with which actions you can specify the ARN of each 
resource, see Actions defined by FreeRTOS.

To view examples of FreeRTOS identity-based policies, see Identity-based policy examples for 
FreeRTOS.

Policy condition keys for FreeRTOS

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement 
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in 
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple 
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of 
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant 
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more 
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global 
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of FreeRTOS condition keys, see Condition keys for FreeRTOS in the Service 
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by FreeRTOS.

To view examples of FreeRTOS identity-based policies, see Identity-based policy examples for 
FreeRTOS.

How FreeRTOS works with IAM 293

https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions


FreeRTOS User Guide

ACLs in FreeRTOS

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

ABAC with FreeRTOS

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based 
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or 
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then 
you design ABAC policies to allow operations when the principal's tag matches the tag on the 
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy 
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy 
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the 
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with 
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with FreeRTOS

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional 
information, including which AWS services work with temporary credentials, see AWS services that 
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using 
any method except a user name and password. For example, when you access AWS using your 

How FreeRTOS works with IAM 294

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


FreeRTOS User Guide

company's single sign-on (SSO) link, that process automatically creates temporary credentials. You 
also automatically create temporary credentials when you sign in to the console as a user and then 
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use 
those temporary credentials to access AWS. AWS recommends that you dynamically generate 
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for FreeRTOS

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal. 
When you use some services, you might perform an action that then initiates another action in a 
different service. FAS uses the permissions of the principal calling an AWS service, combined with 
the requesting AWS service to make requests to downstream services. FAS requests are only made 
when a service receives a request that requires interactions with other AWS services or resources to 
complete. In this case, you must have permissions to perform both actions. For policy details when 
making FAS requests, see Forward access sessions.

Service roles for FreeRTOS

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM 
administrator can create, modify, and delete a service role from within IAM. For more information, 
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break FreeRTOS functionality. Edit 
service roles only when FreeRTOS provides guidance to do so.

Service-linked roles for FreeRTOS

Supports service-linked roles: No

How FreeRTOS works with IAM 295

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


FreeRTOS User Guide

A service-linked role is a type of service role that is linked to an AWS service. The service can 
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS 
account and are owned by the service. An IAM administrator can view, but not edit the permissions 
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM. 
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for FreeRTOS

By default, users and roles don't have permission to create or modify FreeRTOS resources. They 
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface 
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they 
need, an IAM administrator can create IAM policies. The administrator can then add the IAM 
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy 
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by FreeRTOS, including the format of the 
ARNs for each of the resource types, see Actions, resources, and condition keys for FreeRTOS in the
Service Authorization Reference.

Topics

• Policy best practices

• Using the FreeRTOS console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete FreeRTOS 
resources in your account. These actions can incur costs for your AWS account. When you create or 
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To 
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We 

Identity-based policy examples 296

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html


FreeRTOS User Guide

recommend that you reduce permissions further by defining AWS customer managed policies 
that are specific to your use cases. For more information, see AWS managed policies or AWS 
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 
specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your 
policies to limit access to actions and resources. For example, you can write a policy condition to 
specify that all requests must be sent using SSL. You can also use conditions to grant access to 
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For 
more information, see  IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional 
permissions – IAM Access Analyzer validates new and existing policies so that the policies 
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides 
more than 100 policy checks and actionable recommendations to help you author secure and 
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM 
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users 
or a root user in your AWS account, turn on MFA for additional security. To require MFA when 
API operations are called, add MFA conditions to your policies. For more information, see 
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Using the FreeRTOS console

To access the FreeRTOS console, you must have a minimum set of permissions. These permissions 
must allow you to list and view details about the FreeRTOS resources in your AWS account. If you 
create an identity-based policy that is more restrictive than the minimum required permissions, the 
console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the 
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation 
that they're trying to perform.

Identity-based policy examples 297

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html


FreeRTOS User Guide

To ensure that users and roles can still use the FreeRTOS console, also attach the FreeRTOS
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and 
managed policies that are attached to their user identity. This policy includes permissions to 
complete this action on the console or programmatically using the AWS CLI or AWS API.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "ViewOwnUserInfo", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetUserPolicy", 
                "iam:ListGroupsForUser", 
                "iam:ListAttachedUserPolicies", 
                "iam:ListUserPolicies", 
                "iam:GetUser" 
            ], 
            "Resource": ["arn:aws:iam::*:user/${aws:username}"] 
        }, 
        { 
            "Sid": "NavigateInConsole", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetGroupPolicy", 
                "iam:GetPolicyVersion", 
                "iam:GetPolicy", 
                "iam:ListAttachedGroupPolicies", 
                "iam:ListGroupPolicies", 
                "iam:ListPolicyVersions", 
                "iam:ListPolicies", 
                "iam:ListUsers" 
            ], 
            "Resource": "*" 
        } 
    ]
}

Identity-based policy examples 298

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


FreeRTOS User Guide

Troubleshooting FreeRTOS identity and access

Use the following information to help you diagnose and fix common issues that you might 
encounter when working with FreeRTOS and IAM.

Topics

• I am not authorized to perform an action in FreeRTOS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my FreeRTOS resources

I am not authorized to perform an action in FreeRTOS

If you receive an error that you're not authorized to perform an action, your policies must be 
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console 
to view details about a fictional my-example-widget resource but doesn't have the fictional
awes:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: 
 awes:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the awes:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to FreeRTOS.

Some AWS services allow you to pass an existing role to that service instead of creating a new 
service role or service-linked role. To do this, you must have permissions to pass the role to the 
service.

Troubleshooting 299



FreeRTOS User Guide

The following example error occurs when an IAM user named marymajor tries to use the console 
to perform an action in FreeRTOS. However, the action requires the service to have permissions 
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my FreeRTOS 
resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 
resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

To learn more, consult the following:

• To learn whether FreeRTOS supports these features, see How FreeRTOS works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing 
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation

To learn whether an AWS service is within the scope of specific compliance programs, see AWS 
services in Scope by Compliance Program and choose the compliance program that you are 
interested in. For general information, see AWS Compliance Programs.

Compliance validation 300

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/


FreeRTOS User Guide

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your 
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the 
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural 
considerations and provide steps for deploying baseline environments on AWS that are security 
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper 
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible 
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your 
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the 
lens of compliance. The guides summarize the best practices for securing AWS services and map 
the guidance to security controls across multiple frameworks (including National Institute of 
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and 
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service 
assesses how well your resource configurations comply with internal practices, industry 
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within 
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your 
compliance against security industry standards and best practices. For a list of supported services 
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts, 
workloads, containers, and data by monitoring your environment for suspicious and malicious 
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by 
meeting intrusion detection requirements mandated by certain compliance frameworks.

Compliance validation 301

https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html


FreeRTOS User Guide

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify 
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions 
provide multiple physically separated and isolated Availability Zones, which are connected with 
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can 
design and operate applications and databases that automatically fail over between Availability 
Zones without interruption. Availability Zones are more highly available, fault tolerant, and 
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in FreeRTOS

AWS managed services are protected by the AWS global network security procedures that are 
described in the  Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access AWS services through the network. Clients must support 
Transport Layer Security (TLS) 1.2 or later. We recommend TLS 1.3 or later. Clients must also 
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) 
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later 
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is 
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to 
generate temporary security credentials to sign requests.

Resilience 302

https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html


FreeRTOS User Guide

Amazon-FreeRTOS Github Repository Migration Guide

If you have an existing FreeRTOS project based on the now deprecated amazon-freertos repository, 
follow these steps:

1. Stay up to date with the latest, publicly available security fixes. Check the FreeRTOS LTS 
libraries page for updates, or subscribe to the FreeRTOS-LTS GitHub repository to receive the 
latest LTS patches with critical and security bug fixes. You can download or clone the latest 
FreeRTOS LTS patches required directly from the individual GitHub repositories.

2. Consider refactoring the network transport interface implementation to optimize your 
hardware platform. The abstract APIs like secure sockets and Wifi APIs are not required by the 
latest coreMQTT  library. See Transport Interface for further details.

Appendix

The following table provides recommendations for all demo projects, legacy libraries, and abstract 
APIs within the Amazon-FreeRTOS repository.

Migrated libraries and demos

Name Type Recommendations

coreHTTP demos and 
library

Clone or download the coreHTTP 
library directly from the coreHTTP
repository (sub-module if using git) 
in the FreeRTOS Github organizat 
ion. The coreHTTP demos are in the 
primary FreeRTOS distribution. For 
more details, refer to the coreHTTP 
page.

coreMQTT demos and 
library

Clone or download the coreMQTT 
library directly from the coreMQTT
repository (sub-module if using git) 
in the FreeRTOS Github organizat 
ion. The coreMQTT demos are in the 
primary FreeRTOS distribution. For 

Appendix 303

https://www.freertos.org/lts-libraries.html
https://www.freertos.org/lts-libraries.html
https://github.com/FreeRTOS/FreeRTOS-LTS
https://docs.aws.amazon.com/freertos/latest/userguide/secure-sockets.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-wifi.html
https://www.freertos.org/mqtt/index.html
https://www.freertos.org/network-interface.html
https://github.com/FreeRTOS/coreHTTP
https://github.com/FreeRTOS
https://github.com/FreeRTOS
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator
https://www.freertos.org/http/index.html
https://www.freertos.org/http/index.html
https://github.com/FreeRTOS/coreMQTT
https://github.com/FreeRTOS
https://github.com/FreeRTOS
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator


FreeRTOS User Guide

Name Type Recommendations

more details, refer to the coreMQTT 
page.

coreMQTT- 
Agent

demos and 
library

Clone or download the coreMQTT- 
Agent library directly from the
coreMQTT-Agent repository (sub-
module if using git) in the FreeRTOS 
Github organization. The coreMQTT- 
Agent demos are in the coreMQTT- 
Agent-Demos repository. For more 
details, refer to the coreMQTT-Agent 
page.

device_de 
fender_for_aws

demos and 
library

The AWS IoT Device Defender library 
is in its repository in the AWS GitHub 
organisation. Clone or download it 
(sub-module if using git) directly 
from the AWS IoT Device Defender
repository. The AWS IoT Device 
Defender demos are in the  primary 
FreeRTOS distribution. For more 
details, refer to the AWS IoT Device 
Defender page.

device_sh 
adow_for_aws

demos and 
library

The AWS IoT Device Shadow library 
is in its repository in the AWS GitHub 
organisation. Clone or download it 
(sub-module if using git) directly 
from the AWS IoT Device Shadow) 
repository. The AWS IoT Device 
Shadow demos are in the  primary 
FreeRTOS distribution. For more 
details, refer to the AWS IoT Device 
Shadow page.

Appendix 304

https://www.freertos.org/mqtt/index.html
https://www.freertos.org/mqtt/index.html
https://github.com/FreeRTOS/coreMQTT-Agent
https://github.com/FreeRTOS
https://github.com/FreeRTOS
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://www.freertos.org/mqtt-agent/index.html
https://www.freertos.org/mqtt-agent/index.html
https://github.com/AWS
https://github.com/AWS
https://github.com/aws/Device-Defender-for-AWS-IoT-embedded-sdk
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Defender_Windows_Simulator/Device_Defender_Demo
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Defender_Windows_Simulator/Device_Defender_Demo
https://www.freertos.org/iot-device-defender/index.html
https://www.freertos.org/iot-device-defender/index.html
https://github.com/AWS
https://github.com/AWS
https://github.com/aws/Device-Shadow-for-AWS-IoT-embedded-sdk
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Shadow_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Shadow_Windows_Simulator
https://www.freertos.org/iot-device-shadow/index.html
https://www.freertos.org/iot-device-shadow/index.html


FreeRTOS User Guide

Name Type Recommendations

jobs_for_aws demos and 
library

The AWS IoT Jobs library is in 
its repository in the AWS GitHub 
organization. Clone or download 
it (sub-module if using git) directly 
from the AWS IoT Jobs repository. 
The AWS IoT Jobs demos are in the 
primary FreeRTOS distribution. For 
more details, refer to the AWS IoT 
Jobs page.

OTA demos and 
library

The AWS IoT Over-The-Air (OTA) 
Update library is in its repository 
in the AWS GitHub organization. 
Clone or download it (sub-module if 
using git) directly from the AWS IoT 
OTA repository. The AWS IoT OTA 
demos are in the  primary FreeRTOS 
distribution. For more details, refer 
to the AWS IoT OTA page.

CLI and 
FreeRTOS_ 
Plus_CLI

demos and 
library

There is a CLI example running on 
WinSim. Refer to the  FreeRTOS 
Plus Command Line Interface page 
for more details. The Featured 
FreeRTOS IoT reference integrati 
ons on the  NXP i.MX RT1060 and 
STM32U5 platforms, also provide 
CLI examples on actual hardware.

Appendix 305

https://github.com/AWS
https://github.com/AWS
https://github.com/aws/Jobs-for-AWS-IoT-embedded-sdk
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Jobs_Windows_Simulator/Jobs_Demo
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Jobs_Windows_Simulator/Jobs_Demo
https://www.freertos.org/iot-jobs/index.html
https://www.freertos.org/iot-jobs/index.html
https://github.com/AWS
https://github.com/aws/ota-for-aws-iot-embedded-sdk
https://github.com/aws/ota-for-aws-iot-embedded-sdk
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator
https://www.freertos.org/ota/index.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_CLI/FreeRTOS_Plus_Command_Line_Interface.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_CLI/FreeRTOS_Plus_Command_Line_Interface.html
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/tree/main/examples/common/cli
https://github.com/FreeRTOS/iot-reference-stm32u5/tree/main/Common/cli
https://github.com/FreeRTOS/iot-reference-stm32u5/tree/main/Common/cli


FreeRTOS User Guide

Name Type Recommendations

logging macro There are implementations of the 
logging macro for specific hardware 
platforms used by some of the 
FreeRTOS libraries. Refer to the
logging page for how to implement 
the logging macro. Refer to  one of 
the FreeRTOS featured IoT reference 
s for an example running on actual 
hardware.

greengras 
s_connectivity

demo [Migration in progress] This 
demo project assumed that cloud 
connectivity was available before 
connecting to an AWS IoT Greengras 
s device. A new project that 
demonstrates local authentication 
and discovery capability is under 
development. Expect the new demo 
project to be published shortly in 
the FreeRTOS Github organization.

Deprecated libraries and demos

Name Type Recommendations

BLE demos and 
libraries

The FreeRTOS BLE library 
implements the proprietary MQTT 
protocol and supports publishing 
and subscribing to MQTT topics over 
Bluetooth Low Energy (BLE) through 
a proxy device such as a mobile 
phone. This is no longer mandated. 
Use either your own BLE stack or a 

Appendix 306

https://www.freertos.org/logging.html
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/tree/main/examples/common/logging
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/tree/main/examples/common/logging
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/tree/main/examples/common/logging
https://github.com/FreeRTOS


FreeRTOS User Guide

Name Type Recommendations

third-party option such as NimBLE
to best optimize your project.

dev_mode_ 
key_provisioning

demos The Featured FreeRTOS IoT 
reference integrations on the  NXP 
i.MX RT1060,  STM32U5, or  ESP32-
C3 platforms provide examples of 
crucial provisioning using a CLI.

posix abstraction and 
demo

Not recommended for use.

wifi_prov 
isioning

example This example demonstrated how 
to provision WiFi credentials on a 
device using the Amazon-FreeRTOS 
BLE library. Refer to the FreeRTOS 
Featured IoT reference on the
ESP32C3 platform for an example of 
WiFi provisioning via BLE.

Legacy abstract 
APIs

code These are APIs that were created 
to provide an abstract interface for 
various third-party software stacks, 
connectivity modules, and MCU 
platforms from a variety of vendors. 
For example, there are interfaces 
for WiFi abstraction, secure sockets, 
and so on. They are supported in 
the Amazon-FreeRTOS repository 
and are in the folder /librarie 
s/abstractions/ . These APIs 
are not required when using the 
FreeRTOS LTS libraries.

The libraries and demos in the table above will not get security patches or bug fixes.

Appendix 307

https://mynewt.apache.org/latest/network/
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/blob/main/examples/common/cli/cli.c
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/blob/main/examples/common/cli/cli.c
https://github.com/FreeRTOS/iot-reference-stm32u5/blob/main/Common/cli/cli_pki.c
https://github.com/FreeRTOS/iot-reference-esp32c3/blob/main/GettingStartedGuide.md
https://github.com/FreeRTOS/iot-reference-esp32c3/blob/main/GettingStartedGuide.md
https://github.com/FreeRTOS/iot-reference-esp32c3
https://www.freertos.org/lts-libraries.html
https://www.freertos.org/lts-libraries.html


FreeRTOS User Guide

Third-party libraries

When demos in Amazon-FreeRTOS use third-party libraries, we recommend that you sub-module 
them directly from their third-party repositories.

• CMock: clone it (submodule if you use git) directly from the Cmock repository.

• jsmn: not recommended and no longer supported.

• lwip: clone it (submodule if you use git) directly from the lwip-tcpip repository.

• lwip_osal: refer to the FreeRTOS Featured Reference Integrations on i.MX RT1060 or STM32U5
for how to implement lwip_osal on your hardware platform/board.

• mbedtls: clone it (submodule if you use git) directly from the Mbed-TLS repository. The mbedtls 
config and utilities can be reused; make a local copy in this case.

• pkcs11: clone it (submodule if you use git) directly from either the corePKCS11 library or the
OASIS PKCS 11 repository.

• tinycbor: clone it (submodule if you use git) directly from thetinycbor repository.

• tinycrypt: we recommend that you use crypto accelerators from your MCU platform, if available. 
If you want to continue to use tinycrypt, clone it (submodule if you use git) directly from the 
tinycrypt repository.

• tracealyzer_recorder: clone it (submodule if you use git) directly from Percepio's trace recorder
repository.

• unity: clone it (submodule if you use git) directly from the ThrowTheSwitch/Unity repository.

• win_pcap: win_pcap is no longer maintained. We recommend that you use libslirp, libpcap 
(posix), or npcap instead.

Porting tests and integration tests

All tests under the /tests folder that are required to validate integration of FreeRTOS libraries 
were migrated to the  FreeRTOS-Libraries-Integration-Tests repository. These can be used to test 
PAL implementation and library integration. The same tests are used by AWS IoT Device Tester 
(IDT) for the AWS Device Qualification Program for FreeRTOS.

Appendix 308

https://github.com/ThrowTheSwitch/CMock
https://github.com/lwip-tcpip/lwip
https://github.com/FreeRTOS/iot-reference-nxp-rt1060
https://github.com/FreeRTOS/iot-reference-stm32u5
https://github.com/Mbed-TLS/mbedtls
https://github.com/FreeRTOS/corePKCS11
https://github.com/oasis-tcs/pkcs11
https://github.com/intel/tinycbor
https://github.com/intel/tinycrypt
https://github.com/intel/tinycrypt
https://github.com/percepio/TraceRecorderSource
https://github.com/ThrowTheSwitch/Unity
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://docs.aws.amazon.com/freertos/latest/qualificationguide/afr-qualification.html


FreeRTOS User Guide

FreeRTOS Archived documentation

FreeRTOS User Guide Archive

These previous versions of the FreeRTOS User Guide are available for use with FreeRTOS LTS (long 
term support) releases.

• FreeRTOS User Guide for FreeRTOS version 202210.00

• FreeRTOS User Guide for FreeRTOS version 202012.00

Previous FreeRTOS User Guide contents

This content is obsolete but provided here for reference.

See Getting Started with FreeRTOS for links to recent content.

Getting Started with FreeRTOS

Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend 
that you start here when you create a new project. If you already have an existing FreeRTOS 
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

This Getting Started with FreeRTOS tutorial shows you how to download and configure 
FreeRTOS on a host machine, and then compile and run a simple demo application on a  qualified 
microcontroller board.

Throughout this tutorial, we assume that you are familiar with AWS IoT and the AWS IoT console. If 
not, we recommend that you complete the AWS IoT Getting Started tutorial before you continue.

Topics:

• FreeRTOS demo application

• First steps

FreeRTOS User Guide Archive 309

../../archive/202210.00/userguide/index.html
../../archive/202012.00/userguide/index.html
https://devices.amazonaws.com/search?page=1&sv=freertos
https://devices.amazonaws.com/search?page=1&sv=freertos
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html


FreeRTOS User Guide

• Troubleshooting getting started

• Using CMake with FreeRTOS

• Developer-mode key provisioning

• Board-specific getting started guides

• Next steps with FreeRTOS

FreeRTOS demo application

Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend 
that you start here when you create a new project. If you already have an existing FreeRTOS 
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

The demo application in this tutorial is the coreMQTT Agent demo defined in the freertos/
demos/coreMQTT_Agent/mqtt_agent_task.c file. It uses the coreMQTT library to connect to 
the AWS Cloud and then periodically publish messages to an MQTT topic hosted by the AWS IoT 
MQTT broker.

Only a single FreeRTOS demo application can run at a time. When you build a FreeRTOS 
demo project, the first demo enabled in the freertos/vendors/vendor/boards/board/
aws_demos/config_files/aws_demo_config.h header file is the application that runs. 
For this tutorial, you do not need to enable or disable any demos. The coreMQTT Agent demo is 
enabled by default.

For more information about the demo applications included with FreeRTOS, see FreeRTOS demos.

First steps

Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend 
that you start here when you create a new project. If you already have an existing FreeRTOS 
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

Getting Started with FreeRTOS 310

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html


FreeRTOS User Guide

To get started using FreeRTOS with AWS IoT, you must have an AWS account, a user with 
permissions to access AWS IoT and FreeRTOS cloud services. You also must download FreeRTOS 
and configure your board's FreeRTOS demo project to work with AWS IoT. The following sections 
walk you through these requirements.

Note

• If you're using the Espressif ESP32-DevKitC, ESP-WROVER-KIT, or the ESP32-
WROOM-32SE, skip these steps and go to Getting started with the Espressif ESP32-
DevKitC and the ESP-WROVER-KIT.

• If you're using the Nordic nRF52840-DK, skip these steps and go to Getting started with 
the Nordic nRF52840-DK.

1. Setting up your AWS account and permissions

2. Registering your MCU board with AWS IoT

3. Downloading FreeRTOS

4. Configuring the FreeRTOS demos

Setting up your AWS account and permissions

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

Getting Started with FreeRTOS 311

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks


FreeRTOS User Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

Getting Started with FreeRTOS 312

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html


FreeRTOS User Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM 
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party 
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM 
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the 
instructions in Adding permissions to a user (console) in the IAM User Guide.

Registering your MCU board with AWS IoT

Your board must be registered with AWS IoT to communicate with the AWS Cloud. To register your 
board with AWS IoT, you must have:

Getting Started with FreeRTOS 313

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


FreeRTOS User Guide

An AWS IoT policy

The AWS IoT policy grants your device permissions to access AWS IoT resources. It is stored on 
the AWS Cloud.

An AWS IoT thing

An AWS IoT thing allows you to manage your devices in AWS IoT. It is stored on the AWS Cloud.

A private key and X.509 certificate

The private key and certificate allow your device to authenticate with AWS IoT.

To register your board, follow the procedures below.

To create an AWS IoT policy

1. To create an IAM policy, you must know your AWS Region and AWS account number.

To find your AWS account number, open the AWS Management Console, locate and expand 
the menu beneath your account name in the upper-right corner, and choose My Account. Your 
account ID is displayed under Account Settings.

To find the AWS region for your AWS account, use the AWS Command Line Interface. To install 
the AWS CLI, follow the instructions in the AWS Command Line Interface User Guide. After you 
install the AWS CLI, open a command prompt window and enter the following command:

aws iot describe-endpoint --endpoint-type=iot:Data-ATS

The output should look like this:

{ 
    "endpointAddress": "xxxxxxxxxxxxxx-ats.iot.us-west-2.amazonaws.com"
}

In this example, the region is us-west-2.

Note

We recommend using ATS endpoints as seen in the example.

Getting Started with FreeRTOS 314

https://console.aws.amazon.com/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html


FreeRTOS User Guide

2. Browse to the AWS IoT console.

3. In the navigation pane, choose Secure, choose Policies, and then choose Create.

4. Enter a name to identify your policy.

5. In the Add statements section, choose Advanced mode. Copy and paste the following JSON 
into the policy editor window. Replace aws-region and aws-account with your AWS Region 
and account ID.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
    { 
        "Effect": "Allow", 
        "Action": "iot:Connect", 
        "Resource":"arn:aws:iot:aws-region:aws-account-id:*" 
    },  
    { 
        "Effect": "Allow", 
        "Action": "iot:Publish", 
        "Resource": "arn:aws:iot:aws-region:aws-account-id:*" 
    }, 
    { 
         "Effect": "Allow", 
         "Action": "iot:Subscribe", 
         "Resource": "arn:aws:iot:aws-region:aws-account-id:*" 
    }, 
    { 
         "Effect": "Allow", 
         "Action": "iot:Receive", 
         "Resource": "arn:aws:iot:aws-region:aws-account-id:*" 
    } 
    ]
}

This policy grants the following permissions:

iot:Connect

Grants your device the permission to connect to the AWS IoT message broker with any 
client ID.

Getting Started with FreeRTOS 315

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

iot:Publish

Grants your device the permission to publish an MQTT message on any MQTT topic.

iot:Subscribe

Grants your device the permission to subscribe to any MQTT topic filter.

iot:Receive

Grants your device the permission to receive messages from the AWS IoT message broker 
on any MQTT topic.

6. Choose Create.

To create an IoT thing, private key, and certificate for your device

1. Browse to the AWS IoT console.

2. In the navigation pane, choose Manage, and then choose Things.

3. If you do not have any IoT things registered in your account, the You don't have any things yet
page is displayed. If you see this page, choose Register a thing. Otherwise, choose Create.

4. On the Creating AWS IoT things page, choose Create a single thing.

5. On the Add your device to the thing registry page, enter a name for your thing, and then 
choose Next.

6. On the Add a certificate for your thing page, under One-click certificate creation, choose
Create certificate.

7. Download your private key and certificate by choosing the Download links for each.

8. Choose Activate to activate your certificate. Certificates must be activated prior to use.

9. Choose Attach a policy to attach a policy to your certificate that grants your device access to 
AWS IoT operations.

10. Choose the policy you just created and choose Register thing.

After your board is registered with AWS IoT, you can continue to Downloading FreeRTOS.

Downloading FreeRTOS

You can download FreeRTOS from the FreeRTOS GitHub repository.

After you download FreeRTOS, you can continue to Configuring the FreeRTOS demos.

Getting Started with FreeRTOS 316

https://console.aws.amazon.com/iotv2/
https://github.com/freertos/freertos


FreeRTOS User Guide

Configuring the FreeRTOS demos

You must edit some configuration files in your FreeRTOS directory before you can compile and run 
any demos on your board.

To configure your AWS IoT endpoint

You must provide FreeRTOS with your AWS IoT endpoint so the application running on your board 
can send requests to the correct endpoint.

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Settings.

Your AWS IoT endpoint is displayed in Device data endpoint. It should look like
1234567890123-ats.iot.us-east-1.amazonaws.com. Make a note of this endpoint.

3. In the navigation pane, choose Manage, and then choose Things.

Your device should have an AWS IoT thing name. Make a note of this name.

4. Open demos/include/aws_clientcredential.h.

5. Specify values for the following constants:

• #define clientcredentialMQTT_BROKER_ENDPOINT "Your AWS IoT endpoint";

• #define clientcredentialIOT_THING_NAME "The AWS IoT thing name of your 
board"

To configure your Wi-Fi

If your board is connecting to the internet across a Wi-Fi connection, you must provide FreeRTOS 
with Wi-Fi credentials to connect to the network. If your board does not support Wi-Fi, you can skip 
these steps.

1. demos/include/aws_clientcredential.h.

2. Specify values for the following #define constants:

• #define clientcredentialWIFI_SSID "The SSID for your Wi-Fi network"

• #define clientcredentialWIFI_PASSWORD "The password for your Wi-Fi 
network"

Getting Started with FreeRTOS 317

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

• #define clientcredentialWIFI_SECURITY The security type of your Wi-Fi 
network

Valid security types are:

• eWiFiSecurityOpen (Open, no security)

• eWiFiSecurityWEP (WEP security)

• eWiFiSecurityWPA (WPA security)

• eWiFiSecurityWPA2 (WPA2 security)

To format your AWS IoT credentials

FreeRTOS must have the AWS IoT certificate and private keys associated with your registered thing 
and its permissions policies to successfully communicate with AWS IoT on behalf of your device.

Note

To configure your AWS IoT credentials, you must have the private key and certificate that 
you downloaded from the AWS IoT console when you registered your device. After you 
have registered your device as an AWS IoT thing, you can retrieve device certificates from 
the AWS IoT console, but you cannot retrieve private keys.

FreeRTOS is a C language project, and the certificate and private key must be specially formatted 
to be added to the project.

1. In a browser window, open tools/certificate_configuration/
CertificateConfigurator.html.

2. Under Certificate PEM file, choose the ID-certificate.pem.crt that you downloaded 
from the AWS IoT console.

3. Under Private Key PEM file, choose the ID-private.pem.key that you downloaded from 
the AWS IoT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in demos/
include. This overwrites the existing file in the directory.

Getting Started with FreeRTOS 318



FreeRTOS User Guide

Note

The certificate and private key are hard-coded for demonstration purposes only. 
Production-level applications should store these files in a secure location.

After you configure FreeRTOS, you can continue to the Getting Started guide for your board to set 
up your platform's hardware and its software development environment, and then compile and 
run the demo on your board. For board-specific instructions, see the Board-specific getting started 
guides. The demo application that is used in the Getting Started tutorial is the coreMQTT Mutual 
Authentication demo, which is located at demos/coreMQTT/mqtt_demo_mutual_auth.c.

Troubleshooting getting started

Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend 
that you start here when you create a new project. If you already have an existing FreeRTOS 
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

The following topics can help you troubleshoot issues that you encounter while getting started 
with FreeRTOS:

Topics

• General getting started troubleshooting tips

• Installing a terminal emulator

For board-specific troubleshooting, see the Getting Started with FreeRTOS guide for your board.

General getting started troubleshooting tips

No messages appear in the AWS IoT console after I run the Hello World demo project. What do I 
do?

Try the following:

Getting Started with FreeRTOS 319



FreeRTOS User Guide

1. Open a terminal window to view the logging output of the sample. This can help you 
determine what is going wrong.

2. Check that your network credentials are valid.

The logs shown in my terminal when running a demo are truncated. How can I increase their 
length?

Increase the value of configLOGGING_MAX_MESSAGE_LENGTH to 255 in the
FreeRTOSconfig.h file for the demo you are running:

#define configLOGGING_MAX_MESSAGE_LENGTH    255

Installing a terminal emulator

A terminal emulator can help you diagnose problems or verify that your device code is running 
properly. There are a variety of terminal emulators available for Windows, macOS, and Linux.

You must connect your board to your computer before you attempt to establish a serial connection 
to your board with a terminal emulator.

Use the following settings to configure your terminal emulator:

Terminal Setting Value

BAUD rate 115200

Data 8 bit

Parity none

Stop 1 bit

Flow control none

Getting Started with FreeRTOS 320



FreeRTOS User Guide

Finding your board's serial port

If you do not know your board's serial port, you can issue one of the following commands from 
the command line or terminal to return the serial ports for all devices connected to your host 
computer:

Windows

chgport

Linux

ls /dev/tty*

macOS

ls /dev/cu.*

Using CMake with FreeRTOS

Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend 
that you start here when you create a new project. If you already have an existing FreeRTOS 
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

You can use CMake to generate project build files from FreeRTOS application source code, and to 
build and run the source code.

You can also use an IDE to edit, debug, compile, flash, and run code on FreeRTOS-qualified 
devices. Each board-specific Getting Started guide includes instructions for setting up the IDE for 
a particular platform. If you prefer working without an IDE, you can use other third-party code 
editing and debugging tools for developing and debugging your code, and then use CMake to build 
and run the applications.

The following boards support CMake:

Getting Started with FreeRTOS 321



FreeRTOS User Guide

• Espressif ESP32-DevKitC

• Espressif ESP-WROVER-KIT

• Infineon XMC4800 IoT Connectivity Kit

• Marvell MW320 AWS IoT Starter Kit

• Marvell MW322 AWS IoT Starter Kit

• Microchip Curiosity PIC32MZEF Bundle

• Nordic nRF52840 DK Development kit

• STMicroelectronicsSTM32L4 Discovery Kit IoT Node

• Texas Instruments CC3220SF-LAUNCHXL

• Microsoft Windows Simulator

See the topics below for more information about using CMake with FreeRTOS.

Topics

• Prerequisites

• Developing FreeRTOS applications with third-party code editors and debugging tools

• Building FreeRTOS with CMake

Prerequisites

Make sure that your host machine meets the following prerequisites before continuing:

• Your device's compilation toolchain must support the machine's operating system. CMake 
supports all versions of Windows, macOS, and Linux

Windows subsystem for Linux (WSL) is not supported. Use native CMake on Windows machines.

• You must have CMake version 3.13 or higher installed.

You can download the binary distribution of CMake from CMake.org.

Note

If you download the binary distribution of CMake, make sure that you add the CMake 
executable to the PATH environment variable before you using CMake from command 
line.

Getting Started with FreeRTOS 322

https://cmake.org/download/


FreeRTOS User Guide

You can also download and install CMake using a package manager, like homebrew on macOS, 
and scoop or chocolatey on Windows.

Note

The CMake package versions provided in the package managers for many Linux 
distributions are out-of-date. If your distribution's package manager does not provide the 
latest version of CMake, you can try alternative package managers, like linuxbrew or
nix.

• You must have a compatible native build system.

CMake can target many native build systems, including GNU Make or Ninja. Both Make and Ninja 
can be installed with package managers on Linux, macOS and Windows. If you are using Make on 
Windows, you can install a standalone version from Equation, or you can install MinGW, which 
bundles make.

Note

The Make executable in MinGW is called mingw32-make.exe, instead of make.exe.

We recommend that you use Ninja, as it is faster than Make and also provides native support to 
all desktop operating systems.

Developing FreeRTOS applications with third-party code editors and debugging tools

You can use a code editor and a debugging extension or a third-party debugging tool to develop 
applications for FreeRTOS.

If, for example, you use Visual Studio Code as your code editor, you can install the Cortex-Debug
VS Code extension as a debugger. When you finish developing your application, you can invoke the 
CMake command-line tool to build your project from within VS Code. For more information about 
using CMake to build FreeRTOS applications, see Building FreeRTOS with CMake.

For debugging, you can provide a VS Code with debug configuration similar to the following:

"configurations": [ 

Getting Started with FreeRTOS 323

https://brew.sh/
https://scoop.sh/
https://chocolatey.org/
https://www.gnu.org/software/make/
https://github.com/ninja-build/ninja/releases
http://www.equation.com/servlet/equation.cmd?fa=make
https://sourceforge.net/projects/mingw-w64/files/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug


FreeRTOS User Guide

    { 
        "name": "Cortex Debug", 
        "cwd": "${workspaceRoot}", 
        "executable": "./build/st/stm32l475_discovery/aws_demos.elf", 
        "request": "launch", 
        "type": "cortex-debug", 
        "servertype": "stutil" 
    }
]

Building FreeRTOS with CMake

CMake targets your host operating system as the target system by default. To use it for cross 
compiling, CMake requires a toolchain file, which specifies the compiler that you want to use. In 
FreeRTOS, we provide default toolchain files in freertos/tools/cmake/toolchains. The way 
to provide this file to CMake depends on whether you’re using the CMake command line interface 
or GUI. For more details, follow the Generating build files (CMake command-line tool) instructions 
below. For more information about cross-compiling in CMake, see CrossCompiling in the official 
CMake wiki.

To build a CMake-based project

1. Run CMake to generate the build files for a native build system, like Make or Ninja.

You can use either the CMake command-line tool or the CMake GUI to generate the build files 
for your native build system.

For information about generating FreeRTOS build files, see Generating build files (CMake 
command-line tool) and Generating build files (CMake GUI).

2. Invoke the native build system to make the project into an executable.

For information about making FreeRTOS build files, see Building FreeRTOS from generated 
build files.

Generating build files (CMake command-line tool)

You can use the CMake command-line tool (cmake) to generate build files for FreeRTOS. To 
generate the build files, you need to specify a target board, a compiler, and the location of the 
source code and build directory.

Getting Started with FreeRTOS 324

https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/CrossCompiling
https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/manual/cmake-gui.1.html


FreeRTOS User Guide

You can use the following options for cmake:

• -DVENDOR – Specifies the target board.

• -DCOMPILER – Specifies the compiler.

• -S – Specifies the location of the source code.

• -B – Specifies the location of generated build files.

Note

The compiler must be in the system's PATH variable, or you must specify the location of the 
compiler.

For example, if the vendor is Texas Instruments, and the board is the CC3220 Launchpad, and the 
compiler is GCC for ARM, you can issue the following command to build the source files from the 
current directory to a directory named build-directory:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-directory

Note

If you are using Windows, you must specify the native build system because CMake uses 
Visual Studio by default. For example:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-
directory -G Ninja

Or:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-
directory -G "MinGW Makefiles"

The regular expressions ${VENDOR}.* and ${BOARD}.* are used to search for a matching 
board, so you don't have to use the full names of the vendor and board for the VENDOR and

Getting Started with FreeRTOS 325



FreeRTOS User Guide

BOARD options. Partial names work, provided there is a single match. For example, the following 
commands generate the same build files from the same source:

cmake -DVENDOR=ti -DCOMPILER=arm-ti -S . -B build-directory

cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -S . -B build-directory

cmake -DVENDOR=t -DBOARD=cc -DCOMPILER=arm-ti -S . -B build-directory

You can use the CMAKE_TOOLCHAIN_FILE option if you want to use a toolchain file that is not 
located in the default directory cmake/toolchains. For example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN_FILE='/path/to/toolchain_file.cmake' -S . -
B build-directory

If the toolchain file does not use absolute paths for your compiler, and you didn't add your 
compiler to the PATH environment variable, CMake might not be able to find it. To make sure 
that CMake finds your toolchain file, you can use the AFR_TOOLCHAIN_PATH option. This option 
searches the specified toolchain directory path and the toolchain's subfolder under bin. For 
example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN_FILE='/path/to/toolchain_file.cmake' -
DAFR_TOOLCHAIN_PATH='/path/to/toolchain/' -S . -B build-directory

To enable debugging, set the CMAKE_BUILD_TYPE to debug. With this option enabled, CMake 
adds debug flags to the compile options, and builds FreeRTOS with debug symbols.

# Build with debug symbols
cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -DCMAKE_BUILD_TYPE=debug -S . -B build-directory

You can also set the CMAKE_BUILD_TYPE to release to add optimization flags to the compile 
options.

Generating build files (CMake GUI)

You can use the CMake GUI to generate FreeRTOS build files.

Getting Started with FreeRTOS 326



FreeRTOS User Guide

To generate build files with the CMake GUI

1. From the command line, issue cmake-gui to start the GUI.

2. Choose Browse Source and specify the source input, and then choose Browse Build and 
specify the build output.

3. Choose Configure, and under Specify the build generator for this project, find and choose 
the build system that you want to use to build the generated build files. if you do not see the 
pop up window, you might be reusing an existing build directory. In this case, delete the CMake 
cache by choosing Delete Cache from the File menu.

Getting Started with FreeRTOS 327



FreeRTOS User Guide

4. Choose Specify toolchain file for cross-compiling, and then choose Next.

5. Choose the toolchain file (for example, freertos/tools/cmake/toolchains/arm-
ti.cmake), and then choose Finish.

The default configuration for FreeRTOS is the template board, which does not provide any 
portable layer targets. As a result, a window appears with the message Error in configuration 
process.

Note

If you are seeing the following error:

CMake Error at tools/cmake/toolchains/find_compiler.cmake:23 (message):
Compiler not found, you can specify search path with AFR_TOOLCHAIN_PATH.

Getting Started with FreeRTOS 328



FreeRTOS User Guide

It means the compiler is not in your PATH environment variable. You can set the
AFR_TOOLCHAIN_PATH variable in the GUI to tell CMake where you installed your compiler. 
If you do not see the AFR_TOOLCHAIN_PATH variable, choose Add Entry. In the pop up 
window, under Name, type AFR_TOOLCHAIN_PATH. Under Compiler Path type the path to 
your compiler. for example, C:/toolchains/arm-none-eabi-gcc.

6. The GUI should now look like this:

Getting Started with FreeRTOS 329



FreeRTOS User Guide

Choose AFR_BOARD, choose your board, and then choose Configure again.

7. Choose Generate. CMake generates the build system files (for example, makefiles or ninja 
files), and these files appear in the build directory you specified in the first step. Follow the 
instructions in the next section to generate the binary image.

Building FreeRTOS from generated build files

Building with native build system

You can build FreeRTOS with a native build system by calling the build system command from the 
output binaries directory.

For example, if your build file output directory is <build_dir>, and you are using Make as your 
native build system, run the following commands:

cd <build_dir>
make -j4

Building with CMake

You can also use the CMake command-line tool to build FreeRTOS. CMake provides an abstraction 
layer for calling native build systems. For example:

cmake --build build_dir

Here are some other common uses of the CMake command-line tool's build mode:

# Take advantage of CPU cores.
cmake --build build_dir --parallel 8

# Build specific targets.
cmake --build build_dir --target afr_kernel

# Clean first, then build.
cmake --build build_dir --clean-first

For more information about the CMake build mode, see the CMake documentation.

Getting Started with FreeRTOS 330

https://cmake.org/cmake/help/latest/manual/cmake.1.html#build-tool-mode


FreeRTOS User Guide

Developer-mode key provisioning

Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend 
that you start here when you create a new project. If you already have an existing FreeRTOS 
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

Introduction

This section discusses two options to get a trusted X.509 client certificate onto an IoT device for 
lab testing. Depending on the capabilities of the device, various provisioning-related operations 
may or may not be supported, including onboard ECDSA key generation, private key import, 
and X.509 certificate enrollment. In addition, different use cases call for different levels of key 
protection, ranging from onboard flash storage to the use of dedicated crypto hardware. This 
section provides logic for working within the cryptographic capabilities of your device.

Option #1: private key import from AWS IoT

For lab testing purposes, if your device allows the import of private keys, follow the instructions in
Configuring the FreeRTOS demos.

Option #2: onboard private key generation

If your device has a secure element, or if you prefer to generate your own device key pair and 
certificate, follow the instructions here.

Initial Configuration

First, perform the steps in Configuring the FreeRTOS demos, but skip the last step (that is, don't 
do To format your AWS IoT credentials). The net result should be that the demos/include/
aws_clientcredential.h file has been updated with your settings, but the demos/
include/aws_clientcredential_keys.h file has not.

Demo Project Configuration

Open the coreMQTT Mutual Authentication demo as described in the guide 
for your board in Board-specific getting started guides . In the project, open 

Getting Started with FreeRTOS 331



FreeRTOS User Guide

the file aws_dev_mode_key_provisioning.c and change the definition of
keyprovisioningFORCE_GENERATE_NEW_KEY_PAIR, which is set to zero by default, to one:

#define keyprovisioningFORCE_GENERATE_NEW_KEY_PAIR 1

Then build and run the demo project and continue to the next step.

Public Key Extraction

Because the device hasn't been provisioned with a private key and client certificate, the demo 
will fail to authenticate to AWS IoT. However, the coreMQTT Mutual Authentication demo starts 
by running developer-mode key provisioning, resulting in the creation of a private key if one 
was not already present. You should see something like the following near the beginning of the 
serial console output.

7 910 [IP-task] Device public key, 91 bytes:
3059 3013 0607 2a86 48ce 3d02 0106 082a
8648 ce3d 0301 0703 4200 04cd 6569 ceb8
1bb9 1e72 339f e8cf 60ef 0f9f b473 33ac
6f19 1813 6999 3fa0 c293 5fae 08f1 1ad0
41b7 345c e746 1046 228e 5a5f d787 d571
dcb2 4e8d 75b3 2586 e2cc 0c 

Copy the six lines of key bytes into a file called DevicePublicKeyAsciiHex.txt. Then use 
the command-line tool "xxd" to parse the hex bytes into binary:

xxd -r -ps DevicePublicKeyAsciiHex.txt DevicePublicKeyDer.bin

Use "openssl" to format the binary encoded (DER) device public key as PEM:

openssl ec -inform der -in DevicePublicKeyDer.bin -pubin -pubout -outform pem -out 
 DevicePublicKey.pem

Don't forget to disable the temporary key generation setting you enabled above. Otherwise, the 
device will create yet another key pair, and you will have to repeat the previous steps:

#define keyprovisioningFORCE_GENERATE_NEW_KEY_PAIR 0

Getting Started with FreeRTOS 332



FreeRTOS User Guide

Public Key Infrastructure Setup

Follow the instructions in  Registering Your CA Certificate to create a certificate hierarchy for 
your device lab certificate. Stop before executing the sequence described in the section Creating 
a Device Certificate Using Your CA Certificate.

In this case, the device will not be signing the certificate request (that is, the Certificate Service 
Request or CSR) because the X.509 encoding logic required for creating and signing a CSR has 
been excluded from the FreeRTOS demo projects to reduce ROM size. Instead, for lab testing 
purposes, create a private key on your workstation and use it to sign the CSR.

openssl genrsa -out tempCsrSigner.key 2048
openssl req -new -key tempCsrSigner.key -out deviceCert.csr 

Once your Certificate Authority has been created and registered with AWS IoT, use the following 
command to issue a client certificate based on the device CSR that was signed in the previous 
step:

openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key 
 -CAcreateserial -out deviceCert.pem -days 500 -sha256 -force_pubkey 
 DevicePublicKey.pem 

Even though the CSR was signed with a temporary private key, the issued certificate can only be 
used with the actual device private key. The same mechanism can be used in production if you 
store the CSR signer key in separate hardware, and configure your certificate authority so that it 
only issues certificates for requests that have been signed by that specific key. That key should 
also remain under the control of a designated administrator.

Certificate Import

With the certificate issued, the next step is to import it into your device. You 
will also need to import your Certificate Authority (CA) certificate, since it is 
required in order for first-time authentication to AWS IoT to succeed when 
using JITP. In the aws_clientcredential_keys.h file in your project, set the
keyCLIENT_CERTIFICATE_PEM macro to be the contents of deviceCert.pem and set the
keyJITR_DEVICE_CERTIFICATE_AUTHORITY_PEM macro to be the contents of rootCA.pem.

Device Authorization

Import deviceCert.pem into the AWS IoT registry as described in  Use Your Own Certificate. 
You must create a new AWS IoT thing, attach the PENDING certificate and a policy to your 

Getting Started with FreeRTOS 333

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html#register-CA-cert
https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html#manual-cert-registration


FreeRTOS User Guide

thing, then mark the certificate as ACTIVE. All of these steps can be performed manually in the 
AWS IoT console.

Once the new client certificate is ACTIVE and associated with a thing and a policy, run the 
coreMQTT Mutual Authentication demo again. This time, the connection to the AWS IoT MQTT 
broker will succeed.

Board-specific getting started guides

Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend 
that you start here when you create a new project. If you already have an existing FreeRTOS 
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

After you complete the First steps, see your board's guide for board-specific instructions on getting 
started with FreeRTOS:

• Getting started with the Cypress CYW943907AEVAL1F Development Kit

• Getting started with the Cypress CYW954907AEVAL1F Development Kit

• Getting started with the Cypress CY8CKIT-064S0S2-4343W kit

• Getting started with the Infineon XMC4800 IoT Connectivity Kit

• Getting started with the MW32x AWS IoT Starter Kit

• Getting started with the MediaTek MT7697Hx development kit

• Getting started with the Microchip Curiosity PIC32MZ EF

• Getting started with the Nuvoton NuMaker-IoT-M487

• Getting started with the NXP LPC54018 IoT Module

• Getting started with the Renesas Starter Kit+ for RX65N-2MB

• Getting started with the STMicroelectronics STM32L4 Discovery Kit IoT Node

• Getting started with the Texas Instruments CC3220SF-LAUNCHXL

• Getting started with the Windows Device Simulator

• Getting started with the Xilinx Avnet MicroZed Industrial IoT Kit

Getting Started with FreeRTOS 334



FreeRTOS User Guide

Note

You do not need to complete the First steps for the following self-contained Getting 
Started with FreeRTOS guides:

• Getting started with the Microchip ATECC608A Secure Element with Windows simulator

• Getting started with the Espressif ESP32-DevKitC and the ESP-WROVER-KIT

• Getting started with the Espressif ESP32-WROOM-32SE

• Getting started with the Espressif ESP32-S2

• Getting started with the Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit

• Getting started with the Nordic nRF52840-DK

Getting started with the Cypress CYW943907AEVAL1F Development Kit

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the Cypress CYW943907AEVAL1F 
Development Kit. If you do not have the Cypress CYW943907AEVAL1F Development Kit, visit the 
AWS Partner Device Catalog to purchase one from our partner.

Note

This tutorial walks you through setting up and running the coreMQTT Mutual 
Authentication demo. The FreeRTOS port for this board currently does not support the TCP 
server and client demos.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions.

Getting Started with FreeRTOS 335

https://devices.amazonaws.com/detail/a3G0L00000AAPg0UAH/CYW943907AEVAL1F


FreeRTOS User Guide

Important

• In this topic, the path to the FreeRTOS download directory is referred to as freertos.

• Space characters in the freertos path can cause build failures. When you clone or copy 
the repository, make sure the path that you create doesn't contain space characters.

• The maximum length of a file path on Microsoft Windows is 260 characters. Long 
FreeRTOS download directory paths can cause build failures.

• Because the source code may contain symbolic links, if you're using Windows to extract 
the archive, you may have to:

• Enable  Developer Mode or,

• Use a console that is elevated as administrator.

In this way, Windows can properly create symbolic links when it extracts the archive. 
Otherwise, symbolic links will be written as normal files that contain the paths of the 
symbolic links as text or are empty. For more information, see the blog entry Symlinks in 
Windows 10!.

If you use Git under Windows, you must enable Developer Mode or you must:

• Set core.symlinks to true with the following command:

git config --global core.symlinks true

• Use a console that is elevated as administrator whenever you use a git command that 
writes to the system (for example, git pull, git clone, and git submodule update --init 
--recursive).

• As noted in Downloading FreeRTOS, FreeRTOS ports for Cypress are currently only 
available on  GitHub.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.
Getting Started with FreeRTOS 336

https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://github.com/aws/amazon-freertos


FreeRTOS User Guide

3. Loading the application binary image to your board, and then running the application.

4. Interacting with the application running on your board across a serial connection, for monitoring 
and debugging purposes.

Setting up your development environment

Download and install the WICED Studio SDK

In this Getting Started guide, you use the Cypress WICED Studio SDK to program your board with 
the FreeRTOS demo. Visit the WICED Software website to download the WICED Studio SDK from 
Cypress. You must register for a free Cypress account to download the software. The WICED Studio 
SDK is compatible with Windows, macOS, and Linux operating systems.

Note

Some operating systems require additional installation steps. Make sure that you read and 
follow all installation instructions for the operating system and version of WICED Studio 
that you are installing.

Set environment variables

Before you use WICED Studio to program your board, you must create an environment variable 
for the WICED Studio SDK installation directory. If WICED Studio is running while you create your 
variables, you need to restart the application after you set your variables.

Note

The WICED Studio installer creates two separate folders named WICED-Studio-m.n on 
your machine where m and n are the major and minor version numbers respectively. This 
document assumes a folder name of WICED-Studio-6.2 but be sure to use the correct 
name for the version that you install. When you define the WICED_STUDIO_SDK_PATH
environment variable, be sure to specify the full installation path of the WICED Studio SDK, 
and not the installation path of the WICED Studio IDE. In Windows and macOS, the WICED-
Studio-m.n folder for the SDK is created in the Documents folder by default.

Getting Started with FreeRTOS 337

https://www.cypress.com/products/wiced-software


FreeRTOS User Guide

To create the environment variable on Windows

1. Open Control Panel, choose System, and then choose Advanced System Settings.

2. On the Advanced tab, choose Environment Variables.

3. Under User variables, choose New.

4. For Variable name, enter WICED_STUDIO_SDK_PATH. For Variable value, enter the WICED 
Studio SDK installation directory.

To create the environment variable on Linux or macOS

1. Open the /etc/profile file on your machine, and add the following to the last line of the 
file:

export WICED_STUDIO_SDK_PATH=installation-path/WICED-Studio-6.2

2. Restart your machine.

3. Open a terminal and run the following commands:

cd freertos/vendors/cypress/WICED_SDK

perl platform_adjust_make.pl

chmod +x make

Establishing a serial connection

To establish a serial connection between your host machine and your board

1. Connect the board to your host computer with a USB Standard-A to Micro-B cable.

2. Identify the USB serial port number for the connection to the board on your host computer.

3. Start a serial terminal and open a connection with the following settings:

• Baud rate: 115200

• Data: 8 bit

• Parity: None

Getting Started with FreeRTOS 338



FreeRTOS User Guide

• Stop bits: 1

• Flow control: None

For more information about installing a terminal and setting up a serial connection, see Installing a 
terminal emulator.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

Build and run the FreeRTOS demo project

After you set up a serial connection to your board, you can build the FreeRTOS demo project, flash 
the demo to your board, and then run the demo.

To build and run the FreeRTOS demo project in WICED Studio

1. Launch WICED Studio.

2. From the File menu, choose Import. Expand the General folder, choose Existing Projects 
into Workspace, and then choose Next.

3. In Select root directory, select Browse..., navigate to the path freertos/projects/
cypress/CYW943907AEVAL1F/wicedstudio, and then select OK.

4. Under Projects, check the box for just the aws_demo project. Choose Finish to import the 
project. The target project aws_demo should appear in the Make Target window.

5. Expand the WICED Platform menu and choose WICED Filters off.

6. In the Make Target window, expand aws_demo, right-click the demo.aws_demo file, and then 
choose Build Target to build and download the demo to your board. The demo should run 
automatically after it is built and downloaded to your board.

Getting Started with FreeRTOS 339

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

Troubleshooting

• If you are using Windows, you might receive the following error when you build and run the 
demo project:

: recipe for target 'download_dct' failed
make.exe[1]: *** [download_dct] Error 1

To troubleshoot this error, do the following:

1. Browse to WICED-Studio-SDK-PATH\WICED-Studio-6.2\43xxx_Wi-Fi\tools
\OpenOCD\Win32 and double-click on openocd-all-brcm-libftdi.exe.

2. Browse to WICED-Studio-SDK-PATH\WICED-Studio-6.2\43xxx_Wi-Fi\tools
\drivers\CYW9WCD1EVAL1 and double-click on InstallDriver.exe.

• If you are using Linux or macOS, you might receive the following error when you build and run 
the demo project:

make[1]: *** [download_dct] Error 127

To troubleshoot this error, use the following command to update the libusb-dev package:

sudo apt-get install libusb-dev

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting started with the Cypress CYW954907AEVAL1F Development Kit

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Getting Started with FreeRTOS 340



FreeRTOS User Guide

This tutorial provides instructions for getting started with the Cypress CYW954907AEVAL1F 
Development Kit. If you don't have the Cypress CYW954907AEVAL1F Development Kit, visit the 
AWS Partner Device Catalog to purchase one from our partner.

Note

This tutorial walks you through setting up and running the coreMQTT Mutual 
Authentication demo. The FreeRTOS port for this board currently doesn't support the TCP 
server and client demos.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

Important

• In this topic, the path to the FreeRTOS download directory is referred to as freertos.

• Space characters in the freertos path can cause build failures. When you clone or copy 
the repository, make sure the path that you create doesn't contain space characters.

• The maximum length of a file path on Microsoft Windows is 260 characters. Long 
FreeRTOS download directory paths can cause build failures.

• Because the source code may contain symbolic links, if you're using Windows to extract 
the archive, you may have to:

• Enable  Developer Mode or,

• Use a console that is elevated as administrator.

In this way, Windows can properly create symbolic links when it extracts the archive. 
Otherwise, symbolic links will be written as normal files that contain the paths of the 
symbolic links as text or are empty. For more information, see the blog entry Symlinks in 
Windows 10!.

If you use Git under Windows, you must enable Developer Mode or you must:

• Set core.symlinks to true with the following command:

git config --global core.symlinks true

Getting Started with FreeRTOS 341

https://devices.amazonaws.com/detail/a3G0L00000AAPg5UAH/CYW954907AEVAL1F
https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/


FreeRTOS User Guide

• Use a console that is elevated as administrator whenever you use a git command that 
writes to the system (for example, git pull, git clone, and git submodule update --init 
--recursive).

• As noted in Downloading FreeRTOS, FreeRTOS ports for Cypress are currently only 
available on  GitHub.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.

3. Loading the application binary image to your board, and then running the application.

4. Interacting with the application running on your board across a serial connection, for monitoring 
and debugging purposes.

Setting up your development environment

Download and install the WICED Studio SDK

In this Getting Started guide, you use the Cypress WICED Studio SDK to program your board with 
the FreeRTOS demo. Visit the WICED Software website to download the WICED Studio SDK from 
Cypress. You must register for a free Cypress account to download the software. The WICED Studio 
SDK is compatible with Windows, macOS, and Linux operating systems.

Note

Some operating systems require additional installation steps. Make sure that you read and 
follow all installation instructions for the operating system and version of WICED Studio 
that you are installing.

Getting Started with FreeRTOS 342

https://github.com/aws/amazon-freertos
https://www.cypress.com/products/wiced-software


FreeRTOS User Guide

Set environment variables

Before you use WICED Studio to program your board, you must create an environment variable 
for the WICED Studio SDK installation directory. If WICED Studio is running while you create your 
variables, you need to restart the application after you set your variables.

Note

The WICED Studio installer creates two separate folders named WICED-Studio-m.n on 
your machine where m and n are the major and minor version numbers respectively. This 
document assumes a folder name of WICED-Studio-6.2 but be sure to use the correct 
name for the version that you install. When you define the WICED_STUDIO_SDK_PATH
environment variable, be sure to specify the full installation path of the WICED Studio SDK, 
and not the installation path of the WICED Studio IDE. In Windows and macOS, the WICED-
Studio-m.n folder for the SDK is created in the Documents folder by default.

To create the environment variable on Windows

1. Open Control Panel, choose System, and then choose Advanced System Settings.

2. On the Advanced tab, choose Environment Variables.

3. Under User variables, choose New.

4. For Variable name, enter WICED_STUDIO_SDK_PATH. For Variable value, enter the WICED 
Studio SDK installation directory.

To create the environment variable on Linux or macOS

1. Open the /etc/profile file on your machine, and add the following to the last line of the 
file:

export WICED_STUDIO_SDK_PATH=installation-path/WICED-Studio-6.2

2. Restart your machine.

3. Open a terminal and run the following commands:

cd freertos/vendors/cypress/WICED_SDK

Getting Started with FreeRTOS 343



FreeRTOS User Guide

perl platform_adjust_make.pl

chmod +x make

Establishing a serial connection

To establish a serial connection between your host machine and your board

1. Connect the board to your host computer with a USB Standard-A to Micro-B cable.

2. Identify the USB serial port number for the connection to the board on your host computer.

3. Start a serial terminal and open a connection with the following settings:

• Baud rate: 115200

• Data: 8 bit

• Parity: None

• Stop bits: 1

• Flow control: None

For more information about installing a terminal and setting up a serial connection, see Installing a 
terminal emulator.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

Getting Started with FreeRTOS 344

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

Build and run the FreeRTOS demo project

After you set up a serial connection to your board, you can build the FreeRTOS demo project, flash 
the demo to your board, and then run the demo.

To build and run the FreeRTOS demo project in WICED Studio

1. Launch WICED Studio.

2. From the File menu, choose Import. Expand the General folder, choose Existing Projects 
into Workspace, and then choose Next.

3. In Select root directory, select Browse..., navigate to the path freertos/projects/
cypress/CYW954907AEVAL1F/wicedstudio, and then select OK.

4. Under Projects, check the box for just the aws_demo project. Choose Finish to import the 
project. The target project aws_demo should appear in the Make Target window.

5. Expand the WICED Platform menu and choose WICED Filters off.

6. In the Make Target window, expand aws_demo, right-click the demo.aws_demo file, and then 
choose Build Target to build and download the demo to your board. The demo should run 
automatically after it is built and downloaded to your board.

Troubleshooting

• If you are using Windows, you might receive the following error when you build and run the 
demo project:

: recipe for target 'download_dct' failed
make.exe[1]: *** [download_dct] Error 1

To troubleshoot this error, do the following:

1. Browse to WICED-Studio-SDK-PATH\WICED-Studio-6.2\43xxx_Wi-Fi\tools
\OpenOCD\Win32 and double-click on openocd-all-brcm-libftdi.exe.

2. Browse to WICED-Studio-SDK-PATH\WICED-Studio-6.2\43xxx_Wi-Fi\tools
\drivers\CYW9WCD1EVAL1 and double-click on InstallDriver.exe.

• If you are using Linux or macOS, you might receive the following error when you build and run 
the demo project:

Getting Started with FreeRTOS 345



FreeRTOS User Guide

make[1]: *** [download_dct] Error 127

To troubleshoot this error, use the following command to update the libusb-dev package:

sudo apt-get install libusb-dev

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting started with the Cypress CY8CKIT-064S0S2-4343W kit

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the CY8CKIT-064S0S2-4343W kit. If you 
don't already have one, you can use that link to purchase a kit. You can also use that link to access 
the kit user guide.

Getting started

Before you begin, you must configure AWS IoT and FreeRTOS to connect your device to the AWS 
Cloud. For instructions, see First steps. After you complete the prerequisites, you will have a 
FreeRTOS package with AWS IoT Core credentials.

Note

In this tutorial, the path to the FreeRTOS download directory created in the "First steps" 
section is referred to as freertos.

Getting Started with FreeRTOS 346

https://www.cypress.com/CY8CKIT-064S0S2-4343W


FreeRTOS User Guide

Setting up the development environment

FreeRTOS works with either a CMake or Make build flow. You can use ModusToolbox for your 
Make build flow. You can use the Eclipse IDE delivered with ModusToolbox or a partner IDE such 
as IAR EW-Arm, Arm MDK, or Microsoft Visual Studio Code. The Eclipse IDE is compatible with the 
Windows, macOS, and Linux operating systems.

Before you begin, download and install the latest ModusToolbox software. For more information, 
see the ModusToolbox Installation Guide.

Updating tools for ModusToolbox 2.1 or older

If you're using the ModusToolbox 2.1 Eclipse IDE to program this kit, you'll need to update the 
OpenOCD and Firmware-loader tools.

In the following steps, by default the ModusToolbox path for:

• Windows is C:\Users\user_name\ModusToolbox.

• Linux is user_home/ModusToolbox or where you choose to extract the archive file.

• MacOS is under the Applications folder in the volume you select in the wizard.

Updating OpenOCD

This kit requires Cypress OpenOCD 4.0.0 or later to successfully erase and program the chip.

To update Cypress OpenOCD

1. Go to the Cypress OpenOCD release page.

2. Download the archive file for your OS (Windows/Mac/Linux).

3. Delete the existing files in ModusToolbox/tools_2.x/openocd.

4. Replace the files in ModusToolbox/tools_2.x/openocd with the extracted contents of the 
archive that you downloaded in a previous step.

Updating Firmware-loader

This kit requires Cypress Firmware-loader 3.0.0 or later.

To update Cypress Firmware-loader

1. Go to the Cypress Firmware-loader release page.

Getting Started with FreeRTOS 347

https://www.cypress.com/products/modustoolbox-software-environment
https://www.cypress.com/ModusToolboxInstallGuide
https://github.com/Infineon/openocd/releases
https://github.com/cypresssemiconductorco/Firmware-loader/releases


FreeRTOS User Guide

2. Download the archive file for your OS (Windows/Mac/Linux).

3. Delete the existing files in ModusToolbox/tools_2.x/fw-loader.

4. Replace the files in ModusToolbox/tools_2.x/fw-loader with the extracted contents of 
the archive that you downloaded in a previous step.

Alternatively, you can use CMake to generate project build files from FreeRTOS application source 
code, build the project using your preferred build tool, and then program the kit using OpenOCD. 
If you prefer to use a GUI tool for programming with the CMake flow, download and install Cypress 
Programmer from the Cypress Programming Solutions webpage. For more information, see Using 
CMake with FreeRTOS.

Setting up your hardware

Follow these steps to set up the kit's hardware.

1. Provision your kit

Follow the Provisioning Guide for CY8CKIT-064S0S2-4343W Kit instructions to securely 
provision your kit for AWS IoT.

This kit requires CySecureTools 3.1.0 or later.

2. Set up a serial connection

a. Connect the kit to your host computer.

b. The USB Serial port for the kit is automatically enumerated on the host computer. Identify 
the port number. In Windows, you can identify it using the Device Manager under Ports
(COM & LPT).

c. Start a serial terminal and open a connection with the following settings:

• Baud rate: 115200

• Data: 8 bit

• Parity: None

• Stop bits: 1

• Flow control: None

Getting Started with FreeRTOS 348

https://www.cypress.com/products/psoc-programming-solutions
https://community.cypress.com/docs/DOC-20043


FreeRTOS User Guide

Build and run the FreeRTOS Demo project

In this section you build and run the demo.

1. Make sure to follow the steps in Provisioning Guide for CY8CKIT-064S0S2-4343W Kit.

2. Build the FreeRTOS Demo.

a. Open the Eclipse IDE for ModusToolbox and choose, or create, a workspace.

b. From the File menu, choose Import.

Expand General, choose Existing Project Into Workspace, and then choose Next.

c. In Root Directory, enter freertos/projects/cypress/CY8CKIT-064S0S2-4343W/
mtb/aws_demos and then select the project name aws_demos. It should be selected by 
default.

d. Choose Finish to import the project into your workspace.

e. Build the application by doing one of the following:

• From the Quick Panel, select Build aws_demos Application.

• Choose Project and choose Build All.

Make sure the project compiles without errors.

3. Monitoring MQTT Messages on the Cloud

Before you run the demo, you can set up the MQTT client in the AWS IoT console to monitor 
the messages that your device sends to the AWS Cloud. To subscribe to the MQTT topic with 
the AWS IoT MQTT client, follow these steps.

a. Sign in to the AWS IoT console.

b. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT 
client.

c. For Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

4. Run the FreeRTOS demo project

a. Select the project aws_demos in the workspace.

b. From the Quick Panel, select aws_demos Program (KitProg3). This programs the board 
and the demo application starts running after the programming is finished.

Getting Started with FreeRTOS 349

https://community.cypress.com/docs/DOC-20043
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

c. You can view the status of the running application in the serial terminal. The following 
figure shows a part of the terminal output.

The MQTT demo publishes messages on four different topics (iotdemo/topic/n, where 
n=1 to 4) and subscribes to all those topics to receive the same messages back. When 
a message is received, the demo publishes an acknowledgement message on the topic
iotdemo/acknowledgements. The following list describes the debug messages that 
appear in the terminal output, with references to the serial numbers of the messages. In 
the output, the WICED Host Driver (WHD) driver details are printed first without serial 
numbering.

1. 1 to 4 – Device connects to the configured Access Point (AP) and is provisioned by 
connecting to the AWS server using the configured endpoint and certificates.

2. 5 to 13 – coreMQTT library is initialized and device establishes MQTT connection.

3. 14 to 17 – Device subscribes to all the topics to receive the published messages back.

4. 18 to 30 – Device publishes two messages and waits to receive them back. When each 
message is received, the device sends an acknowledgement message.

Getting Started with FreeRTOS 350



FreeRTOS User Guide

The same cycle of publish, receive, and acknowledge continues until all the messages are 
published. Two messages are published per cycle until the number of cycles configured are 
completed.

5. Using CMake with FreeRTOS

You can also use CMake to build and run the demo application. To set up CMake and a native 
build system, see Prerequisites.

a. Use the following command to generate build files. Specify the target board with the -
DBOARD option.

cmake -DVENDOR=cypress -DBOARD=CY8CKIT_064S0S2_4343W -DCOMPILER=arm-gcc -
S freertos -B build_dir

If you're using Windows, you must specify the native build system using the -G option 
because CMake uses Visual Studio by default.

Example

cmake -DVENDOR=cypress -DBOARD=CY8CKIT_064S0S2_4343W -DCOMPILER=arm-gcc -
S freertos -B build_dir -G Ninja

If arm-none-eabi-gcc is not in your shell path, you also need to set the
AFR_TOOLCHAIN_PATH CMake variable.

Example

 -DAFR_TOOLCHAIN_PATH=/home/user/opt/gcc-arm-none-eabi/bin

b. Use the following command to build the project using CMake.

cmake --build build_dir

c. Finally, program the cm0.hex and cm4.hex files generated under build_dir by using 
Cypress Programmer.

Getting Started with FreeRTOS 351



FreeRTOS User Guide

Running other demos

The following demo applications have been tested and verified to work with the current release. 
You can find these demos under the freertos/demos directory. For information on how to run 
these demos, see FreeRTOS demos.

• Bluetooth Low Energy demo

• Over-the-Air Updates demo

• Secure Sockets Echo Client demo

• AWS IoT Device Shadow demo

Debugging

The KitProg3 on the kit supports debugging over the SWD protocol.

• To debug the FreeRTOS application, select the aws_demos project in the workspace and then 
select aws_demos Debug (KitProg3) from the Quick Panel.

OTA updates

PSoC 64 MCUs have passed all of the required FreeRTOS qualification tests. However, the optional 
over-the-air (OTA) feature implemented in the PSoC 64 Standard Secure AWS firmware library 
is still pending evaluation. The OTA feature as-implemented currently passes all of the OTA 
qualification tests except  aws_ota_test_case_rollback_if_unable_to_connect_after_update.py.

When a successfully validated OTA image is applied to a device using the PSoC64 Standard Secure 
– AWS MCU and the device can't communicate with AWS IoT Core, the device can't automatically 
rollback to the original known good image. This might result in the device being unreachable from 
AWS IoT Core for further updates. This functionality is still under development by the Cypress 
team.

For more information, see OTA Updates with AWS and the CY8CKIT-064S0S2-4343W Kit. If you 
have further questions or need technical support, contact the Cypress Developer Community.

Getting Started with FreeRTOS 352

https://github.com/aws/amazon-freertos/blob/202012.00/tools/ota_e2e_tests/aws_ota_test/aws_ota_test_case_rollback_if_unable_to_connect_after_update.py
https://community.cypress.com/docs/DOC-20063
https://community.cypress.com


FreeRTOS User Guide

Getting started with the Microchip ATECC608A Secure Element with Windows simulator

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the Microchip ATECC608A Secure 
Element with Windows Simulator.

You need the following hardware:

• Microchip ATECC608A secure element clickboard

• SAMD21 XPlained Pro

• mikroBUS Xplained Pro adapter

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

Overview

This tutorial contains the following steps:

1. Connect your board to a host machine.

2. Install software on the host machine for developing and debugging embedded applications for 
your microcontroller board.

3. Cross-compile an FreeRTOS demo application to a binary image.

4. Load the application binary image to your board, and then run the application.

Set up the Microchip ATECC608A hardware

Before you can interact with your Microchip ATECC608A device, you must first program the 
SAMD21.

Getting Started with FreeRTOS 353

https://www.mikroe.com/secure-4-click
https://www.microchipdirect.com/product/ATSAMD21-XPRO?dfw_tracker=64197-ATSAMD21-XPRO&gclid=EAIaIQobChMIn5jIuM3C5QIVk_5kCh1m1Ag4EAQYASABEgLKtfD_BwE
https://www.microchip.com/Developmenttools/ProductDetails/ATMBUSADAPTER-XPRO


FreeRTOS User Guide

To set up the SAMD21 XPlained Pro board

1. Follow the CryptoAuthSSH-XSTK (DM320109) - Latest Firmware link to download a .zip file 
containing instructions (PDF) and a binary which can be programmed onto the D21.

2. Download and install the Atmel Studio 7 IDP. Make sure that you select the SMART ARM MCU
driver architecture during installation.

3. Use a USB 2.0 Micro B cable to attach the "Debug USB" connector to your computer, and 
follow the instructions in the PDF. (The "Debug USB" connector is the USB port closest to the 
POWER led and pins.)

To connect the hardware

1. Unplug the micro USB cable from Debug USB.

2. Plug the mikroBUS XPlained Pro adapter into the SAMD21 board in the EXT1 location.

3. Plug the ATECC608A Secure 4 Click board into the mikroBUSX XPlained Pro adapter. Make 
sure that the notched corner of the click board matches with the notched icon on the adapter 
board.

4. Plug the micro USB cable into Target USB.

Your setup should look like the following.

Getting Started with FreeRTOS 354

http://ww1.microchip.com/downloads/en/DeviceDoc/ATCRYPTOAUTHSSH-XSTK_v1.0.1.zip
https://microchipdeveloper.com/atstudio:studio7intro


FreeRTOS User Guide

Set up your development environment

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 

Getting Started with FreeRTOS 355

https://portal.aws.amazon.com/billing/signup


FreeRTOS User Guide

administrative access to a user, and use only the root user to perform tasks that require root 
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Getting Started with FreeRTOS 356

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html


FreeRTOS User Guide

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM 
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party 
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM 
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the 
instructions in Adding permissions to a user (console) in the IAM User Guide.

Setting up

1. Download the FreeRTOS repo from the FreeRTOS GitHub repository.

Getting Started with FreeRTOS 357

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://github.com/aws/amazon-freertos


FreeRTOS User Guide

To download FreeRTOS from GitHub:

1. Browse to the FreeRTOS GitHub repository.

2. Choose Clone or download.

3. From the command line on your computer, clone the repository to a directory on your host 
machine.

git clone https://github.com/aws/amazon-freertos.git -\-recurse-submodules

Important

• In this topic, the path to the FreeRTOS download directory is referred to as
freertos.

• Space characters in the freertos path can cause build failures. When you clone 
or copy the repository, make sure the path that you create doesn't contain space 
characters.

• The maximum length of a file path on Microsoft Windows is 260 characters. Long 
FreeRTOS download directory paths can cause build failures.

• Because the source code may contain symbolic links, if you're using Windows to 
extract the archive, you may have to:

• Enable  Developer Mode or,

• Use a console that is elevated as administrator.

In this way, Windows can properly create symbolic links when it extracts the 
archive. Otherwise, symbolic links will be written as normal files that contain the 
paths of the symbolic links as text or are empty. For more information, see the 
blog entry Symlinks in Windows 10!.

If you use Git under Windows, you must enable Developer Mode or you must:

• Set core.symlinks to true with the following command:

git config -\-global core.symlinks true

Getting Started with FreeRTOS 358

https://github.com/aws/amazon-freertos
https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/


FreeRTOS User Guide

• Use a console that is elevated as administrator whenever you use a git 
command that writes to the system (for example, git pull, git clone, and git 
submodule update -\-init -\-recursive).

4. From the freertos directory, check out the branch to use.

2. Set up your development environment.

a. Install the latest version of WinPCap.

b. Install Microsoft Visual Studio.

Visual Studio versions 2017 and 2019 are known to work. All editions of these Visual 
Studio versions are supported (Community, Professional, or Enterprise).

In addition to the IDE, install the Desktop development with C++ component. Then, under
Optional, install the latest Windows 10 SDK.

c. Make sure that you have an active hard-wired Ethernet connection.

Build and run the FreeRTOS demo project

Important

The Microchip ATECC608A device has a one time initialization that is locked onto the device 
the first time a project is run (during the call to C_InitToken). However, the FreeRTOS 
demo project and test project have different configurations. If the device is locked during 
the demo project configurations, it will not be possible for all tests in the test project to 
succeed.

To build and run the FreeRTOS demo project with the Visual Studio IDE

1. Load the project into Visual Studio.

From the File menu, choose Open. Choose File/Solution, navigate to the
freertos\projects\microchip\ecc608a_plus_winsim\visual_studio\aws_demos
\aws_demos.sln file, and then choose Open.

2. Retarget the demo project.

Getting Started with FreeRTOS 359

https://www.winpcap.org


FreeRTOS User Guide

The demo project depends on the Windows SDK, but it does not have a Windows SDK version 
specified. By default, the IDE might attempt to build the demo with an SDK version not 
present on your machine. To set the Windows SDK version, right-click aws_demos, and 
then choose Retarget Projects. This opens the Review Solution Actions window. Choose a 
Windows SDK version that is present on your machine (use the initial value in the drop-down 
list), and then choose OK.

3. Build and run the project.

From the Build menu, choose Build Solution, and make sure the solution builds without 
errors. Choose Debug, Start Debugging to run the project. On the first run, you need to 
configure your device interface and recompile. For more information, see Configure your 
network interface.

4. Provision the Microchip ATECC608A.

Microchip has provided several scripting tools to help with the setup of the ATECC608A 
parts. Navigate to freertos\vendors\microchip\secure_elements\app
\example_trust_chain_tool, and open the README.md file.

Follow the instructions in the README.md file to provision your device. The steps include the 
following:

1. Create and register a certificate authority with AWS.

2. Generate your keys on the Microchip ATECC608A and export the public key and device serial 
number.

3. Generate a certificate for the device and registering that certificate with AWS.

4. Load the CA certificate and device certificate onto the device.

5. Build and run FreeRTOS samples.

Re-run the demo project again. This time you should connect!

Troubleshooting

For general troubleshooting information, see Troubleshooting getting started.

Getting Started with FreeRTOS 360



FreeRTOS User Guide

Getting started with the Espressif ESP32-DevKitC and the ESP-WROVER-KIT

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Note

To explore how to integrate FreeRTOS modular libraries and demos within your own 
Espressif IDF project, see our  featured reference integration for ESP32-C3 platform.

Follow this tutorial to get started with the Espressif ESP32-DevKitC equipped with ESP32-
WROOM-32, ESP32-SOLO-1, or ESP-WROVER modules and the ESP-WROVER-KIT-VB. To purchase 
one from our partner on the AWS Partner Device catalog, use the following links:

• ESP32-WROOM-32 DevKitC

• ESP32-SOLO-1

• ESP32-WROVER-KIT

These versions of development boards are supported on FreeRTOS.

For more information about the latest versions of these boards, see  ESP32-DevKitC V4 or  ESP-
WROVER-KIT v4.1 on the Espressif website.

Note

Currently, the FreeRTOS port for ESP32-WROVER-KIT and ESP DevKitC doesn't support the 
Symmetric multiprocessing (SMP) feature.

Overview

This tutorial guides you through the following steps:

Getting Started with FreeRTOS 361

https://www.freertos.org/featured-freertos-iot-integration-targeting-an-espressif-esp32-c3-risc-v-mcu/
https://devices.amazonaws.com/detail/a3G0L00000AANtjUAH/ESP32-DevKitC
https://devices.amazonaws.com/detail/a3G0h0000076lSMEAY
https://devices.amazonaws.com/detail/a3G0L00000AANtlUAH/ESP-WROVER-KIT
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/hw-reference/modules-and-boards.html#esp32-devkitc-v4
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/hw-reference/modules-and-boards.html#esp-wrover-kit-v4-1
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/hw-reference/modules-and-boards.html#esp-wrover-kit-v4-1


FreeRTOS User Guide

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.

4. Loading the application binary image to your board, and then running the application.

5. Interacting with the application running on your board across a serial connection, for monitoring 
and debugging purposes.

Prerequisites

Before you get started with FreeRTOS on your Espressif board, you must set up your AWS account 
and permissions.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Getting Started with FreeRTOS 362

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/


FreeRTOS User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

Getting Started with FreeRTOS 363

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html


FreeRTOS User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM 
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party 
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM 
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the 
instructions in Adding permissions to a user (console) in the IAM User Guide.

Get started

Note

The Linux commands in this tutorial require that you use the Bash shell.

1. Set up the Espressif hardware.

• For information about setting up the ESP32-DevKitC development board hardware, see the 
ESP32-DevKitC V4 Getting Started Guide.

• For information about setting up the ESP-WROVER-KIT development board hardware, see 
the  ESP-WROVER-KIT V4.1 Getting Started Guide.

Getting Started with FreeRTOS 364

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/hw-reference/esp32/get-started-wrover-kit.html


FreeRTOS User Guide

Important

When you reach the Get Started section of the Espressif guides, stop, and then return 
to the instructions on this page.

2. Download Amazon FreeRTOS from GitHub. (For instructions, see the README.md file.)

3. Set up your development environment.

To communicate with your board, you must install a toolchain. Espressif provides the ESP-IDF 
to develop software for their boards. Since the ESP-IDF has its own version of the FreeRTOS 
Kernel integrated as a component, Amazon FreeRTOS includes a custom version of the ESP-
IDF v4.2 that has the FreeRTOS Kernel removed. This fixes problems with duplicate files when 
you compile. To use the custom version of the ESP-IDF v4.2 included with Amazon FreeRTOS, 
follow the instructions below for your host machine's operating system.

Windows

1. Download ESP-IDF's  Universal Online Installer for Windows.

2. Run the Universal Online Installer.

3. When you get to the step Download or use ESP-IDF, select Use an existing ESP-IDF 
directory and set Choose existing ESP-IDF directory to freertos/vendors/espressif/
esp-idf.

4. Complete the installation.

macOS

1. Follow the instructions in the  Standard Setup of Toolchain prerequisites (ESP-IDF v4.2) for 
macOS.

Important

When you reach the "Get ESP-IDF" instructions under Next Steps, stop, and then 
return to the instructions on this page.

2. Open a command line window.

Getting Started with FreeRTOS 365

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/main/README.md
https://dl.espressif.com/dl/esp-idf/?idf=4.2
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/macos-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/macos-setup.html


FreeRTOS User Guide

3. Navigate to the FreeRTOS download directory, and then run the following script to 
download and install the espressif toolchain for your platform.

vendors/espressif/esp-idf/install.sh

4. Add the ESP-IDF toolchain tools to your terminal's path with the following command.

source vendors/espressif/esp-idf/export.sh

Linux

1. Follow the instructions in the  Standard Setup of Toolchain prerequisites (ESP-IDF v4.2) for 
Linux.

Important

When you reach the "Get ESP-IDF" instructions under Next Steps, stop, and then 
return to the instructions on this page.

2. Open a command line window.

3. Navigate to the FreeRTOS download directory, and then run the following script to 
download and install the Espressif toolchain for your platform.

vendors/espressif/esp-idf/install.sh

4. Add the ESP-IDF toolchain tools to your terminal's path with the following command.

source vendors/espressif/esp-idf/export.sh

4. Establish a serial connection.

a. To establish a serial connection between your host machine and the ESP32-DevKitC, you 
must install the CP210x USB to UART Bridge VCP drivers. You can download these drivers 
from  Silicon Labs.

To establish a serial connection between your host machine and the ESP32-WROVER-KIT, 
you must install the FTDI virtual COM port driver. You can download this driver from FTDI.

b. Follow the steps to  Establish Serial Connection with ESP32.

Getting Started with FreeRTOS 366

https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/linux-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/linux-setup.html
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.ftdichip.com/Drivers/VCP.htm
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/establish-serial-connection.html


FreeRTOS User Guide

c. After you establish a serial connection, make a note of the serial port for your board's 
connection. You need it to flash the demo.

Configure the FreeRTOS demo applications

For this tutorial, the FreeRTOS configuration file is located at freertos/vendors/espressif/
boards/board-name/aws_demos/config_files/FreeRTOSConfig.h. (For example, 
if AFR_BOARD espressif.esp32_devkitc is chosen, the configuration file is located 
at freertos/vendors/espressif/boards/esp32/aws_demos/config_files/
FreeRTOSConfig.h.)

1. If you're running macOS or Linux, open a terminal prompt. If you're running Windows, open 
the "ESP-IDF 4.x CMD" app (if you included this option when you installed the ESP-IDF 
toolchain), or the "Command Prompt" app otherwise.

2. To verify that you have Python3 installed, run

python --version

The version installed is displayed. If you don't have Python 3.0.1 or later installed, you can 
install it from the Python website.

3. You need the AWS Command Line Interface (CLI) to run AWS IoT commands. If you're running 
Windows, use the easy_install awscli command to install the AWS CLI in the "Command" 
or "ESP-IDF 4.x CMD" app.

If you're running macOS or Linux, see Installing the AWS CLI.

4. Run

aws configure

and configure the AWS CLI with your AWS access key ID, secret access key, and default AWS 
Region. For more information, see Configuring the AWS CLI.

5. Use the following command to install the AWS SDK for Python (boto3):

• On Windows, in the "Command" or "ESP-IDF 4.x CMD" app, run

pip install boto3 --user

Getting Started with FreeRTOS 367

https://www.python.org/downloads/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html


FreeRTOS User Guide

Note

See Boto3 documentation for details.

• On macOS or Linux, run

pip install tornado nose --user

and then run

pip install boto3 --user

FreeRTOS includes the SetupAWS.py script to make it easier to set up your Espressif 
board to connect to AWS IoT. To configure the script, open freertos/tools/
aws_config_quick_start/configure.json and set the following attributes:

afr_source_dir

The complete path to the freertos directory on your computer. Make sure that you use 
forward slashes to specify this path.

thing_name

The name that you want to assign to the AWS IoT thing that represents your board.

wifi_ssid

The SSID of your Wi-Fi network.

wifi_password

The password for your Wi-Fi network.

wifi_security

The security type for your Wi-Fi network.

The following are valid security types:

• eWiFiSecurityOpen (Open, no security)

• eWiFiSecurityWEP (WEP security)

Getting Started with FreeRTOS 368

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html


FreeRTOS User Guide

• eWiFiSecurityWPA (WPA security)

• eWiFiSecurityWPA2 (WPA2 security)

6. Run the configuration script.

a. If you're running macOS or Linux, open a terminal prompt. If you're running Windows, 
open the "ESP-IDF 4.x CMD" or "Command" app.

b. Navigate to the freertos/tools/aws_config_quick_start directory and run

python SetupAWS.py setup

The script does the following:

• Creates an IoT thing, certificate, and policy.

• Attaches the IoT policy to the certificate and the certificate to the AWS IoT thing.

• Populates the aws_clientcredential.h file with your AWS IoT endpoint, Wi-Fi SSID, 
and credentials.

• Formats your certificate and private key and writes them to the
aws_clientcredential_keys.h header file.

Note

The certificate is hardcoded for demonstration purposes only. Production-level 
applications should store these files in a secure location.

For more information about SetupAWS.py, see the README.md in the freertos/
tools/aws_config_quick_start directory.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Navigate to the AWS IoT console.

Getting Started with FreeRTOS 369

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

2. In the navigation pane, choose Test, then choose MQTT Test Client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Build, flash, and run the FreeRTOS demo project using the idf.py script

You can use Espressif's IDF utility (idf.py) to build the project and flash the binaries onto your 
device.

Note

Some setups might require that you use the port option "-p port-name" with idf.py to 
specify the correct port, as in the following example.

idf.py -p /dev/cu.usbserial-00101301B flash

Build and flash FreeRTOS on Windows, Linux, and macOS (ESP-IDF v4.2)

1. Navigate to the root of your FreeRTOS download directory.

2. In a command line window, enter the following command to add the ESP-IDF tools to your 
terminal's PATH.

Windows ("Command" app)

vendors\espressif\esp-idf\export.bat

Windows ("ESP-IDF 4.x CMD" app)

(This has already been done when you opened the app.)

Linux / macOS

source vendors/espressif/esp-idf/export.sh

Getting Started with FreeRTOS 370



FreeRTOS User Guide

3. Configure cmake in the build directory and build the firmware image with the following 
command.

idf.py -DVENDOR=espressif -DBOARD=esp32_wrover_kit -DCOMPILER=xtensa-esp32 build

You should see output like the following.

   Running cmake in directory /path/to/hello_world/build 
   Executing "cmake -G Ninja --warn-uninitialized /path/to/hello_world"... 
   Warn about uninitialized values. 
   -- Found Git: /usr/bin/git (found version "2.17.0") 
   -- Building empty aws_iot component due to configuration 
   -- Component names: ... 
   -- Component paths: ... 

   ... (more lines of build system output) 

   [527/527] Generating hello-world.bin 
   esptool.py v2.3.1 

   Project build complete. To flash, run this command: 
   ../../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 
 write_flash --flash_mode dio --flash_size detect --flash_freq 40m 0x10000 build/
hello-world.bin  build 0x1000 build/bootloader/bootloader.bin 0x8000 build/
partition_table/partition-table.bin 
   or run 'idf.py -p PORT flash' 

If there are no errors, the build will generate the firmware binary .bin files.

4. Erase your development board's flash memory with the following command.

idf.py erase_flash

5. Use the idf.py script to flash the application binary to your board.

idf.py flash

6. Monitor the output from your board's serial port with the following command.

idf.py monitor

Getting Started with FreeRTOS 371



FreeRTOS User Guide

Note

You can combine these commands such as in the following example.

idf.py erase_flash flash monitor

For certain host machine setups, you must specify the port when you flash the board such as in 
the following example.

idf.py erase_flash flash monitor -p /dev/ttyUSB1

Build and Flash FreeRTOS with CMake

In addition to the idf.py script provided by the IDF SDK to build and run your code, you can also 
build the project with CMake. Currently, it supports either Unix Makefiles or the Ninja build system.

To build and flash the project

1. In a command line window, navigate to the root of your FreeRTOS download directory.

2. Run the following script to add the ESP-IDF tools to your shell's PATH.

Windows

vendors\espressif\esp-idf\export.bat

Linux / macOS

source vendors/espressif/esp-idf/export.sh

3. Enter the following command to generate the build files.

With Unix Makefiles

cmake -DVENDOR=espressif -DBOARD=esp32_wrover_kit -DCOMPILER=xtensa-esp32 -S . -
B ./YOUR_BUILD_DIRECTORY -DAFR_ENABLE_ALL_MODULES=1 -DAFR_ENABLE_TESTS=0

Getting Started with FreeRTOS 372



FreeRTOS User Guide

With Ninja

cmake -DVENDOR=espressif -DBOARD=esp32_wrover_kit -DCOMPILER=xtensa-esp32 -S . -
B ./YOUR_BUILD_DIRECTORY -DAFR_ENABLE_ALL_MODULES=1 -DAFR_ENABLE_TESTS=0 -GNinja

4. Build the project.

With Unix Makefiles

make -C ./YOUR_BUILD_DIRECTORY -j8 

With Ninja

ninja -C ./YOUR_BUILD_DIRECTORY -j8

5. Erase the flash and then flash the board.

With Unix Makefiles

make -C ./YOUR_BUILD_DIRECTORY erase_flash

make -C ./YOUR_BUILD_DIRECTORY flash

With Ninja

ninja -C ./YOUR_BUILD_DIRECTORY erase_flash

ninja -C ./YOUR_BUILD_DIRECTORY flash

Run the Bluetooth Low Energy demos

FreeRTOS supports Bluetooth Low Energy library connectivity.

To run the FreeRTOS demo project across Bluetooth Low Energy, you must run the FreeRTOS 
Bluetooth Low Energy Mobile SDK Demo Application on an iOS or Android mobile device.

Getting Started with FreeRTOS 373



FreeRTOS User Guide

To set up the FreeRTOS Bluetooth Low Energy mobile SDK demo application

1. Follow the instructions in Mobile SDKs for FreeRTOS Bluetooth devices to download and install 
the SDK for your mobile platform on your host computer.

2. Follow the instructions in FreeRTOS Bluetooth Low Energy Mobile SDK demo application to set 
up the demo mobile application on your mobile device.

For instructions about how to run the MQTT over Bluetooth Low Energy demo on your board, see
MQTT over Bluetooth Low Energy.

For instructions about how to run the Wi-Fi provisioning demo on your board, see Wi-Fi 
provisioning.

Using FreeRTOS in your own CMake project for ESP32

If you want to consume FreeRTOS in your own CMake project, you can set it up as a subdirectory 
and build it together with your application. First, get a copy of FreeRTOS from GitHub. You can also 
set it up as a Git submodule with the following command so it's easier to update in the future.

git submodule add -b release https://github.com/aws/amazon-freertos.git freertos

If a later version is released, you can update your local copy with these commands.

# Pull the latest changes from the remote tracking branch.
git submodule update --remote -- freertos 

# Commit the submodule change because it is pointing to a different revision now.
git add freertos 

git commit -m "Update FreeRTOS to a new release"

If your project has the following directory structure:

- freertos (the copy that you obtained from GitHub or the AWS IoT console)
- src 
  - main.c (your application code)
- CMakeLists.txt 

Getting Started with FreeRTOS 374

https://github.com/aws/amazon-freertos


FreeRTOS User Guide

Then the following is an example of the top-level CMakeLists.txt file that can be used to build 
your application together with FreeRTOS.

cmake_minimum_required(VERSION 3.13)

project(freertos_examples)

# Tell IDF build to link against this target.
set(IDF_EXECUTABLE_SRCS "<complete_path>/src/main.c")
set(IDF_PROJECT_EXECUTABLE my_app)

# Add FreeRTOS as a subdirectory. AFR_BOARD tells which board to target.
set(AFR_BOARD espressif.esp32_devkitc CACHE INTERNAL "")
add_subdirectory(freertos)

# Link against the mqtt library so that we can use it. Dependencies are transitively
# linked.
target_link_libraries(my_app PRIVATE AFR::core_mqtt)   

To build the project, run the following CMake commands. Make sure the ESP32 compiler is in the 
PATH environment variable.

cmake -S . -B build-directory -DCMAKE_TOOLCHAIN_FILE=freertos/tools/cmake/toolchains/
xtensa-esp32.cmake -GNinja 

cmake --build build-directory 

To flash the application to your board, run the following command.

cmake --build build-directory --target flash 

Using components from FreeRTOS

After running CMake, you can find all available components in the summary output. It should look 
something like the following example.

====================Configuration for FreeRTOS==================== 
  Version:                 202107.00 
  Git version:             202107.00-g79ad6defb

Target microcontroller: 

Getting Started with FreeRTOS 375



FreeRTOS User Guide

  vendor:                  Espressif 
  board:                   ESP32-DevKitC 
  description:             Development board produced by Espressif that comes in two 
                           variants either with ESP-WROOM-32 or ESP32-WROVER module 
  family:                  ESP32 
  data ram size:           520KB 
  program memory size:     4MB

Host platform: 
  OS:                      Linux-4.15.0-66-generic 
  Toolchain:               xtensa-esp32 
  Toolchain path:          /opt/xtensa-esp32-elf 
  CMake generator:         Ninja

FreeRTOS modules: 
  Modules to build:        backoff_algorithm, common, common_io, core_http, 
                           core_http_demo_dependencies, core_json, core_mqtt, 
                           core_mqtt_agent, core_mqtt_agent_demo_dependencies, 
                           core_mqtt_demo_dependencies, crypto, defender, dev_mode_key_ 
                           provisioning, device_defender, device_defender_demo_ 
                           dependencies, device_shadow, 
 device_shadow_demo_dependencies, 
                           freertos_cli_plus_uart, freertos_plus_cli, greengrass, 
                           http_demo_helpers, https, jobs, jobs_demo_dependencies, 
                           kernel, logging, mqtt, mqtt_agent_interface, mqtt_demo_ 
                           helpers, mqtt_subscription_manager, ota, ota_demo_ 
                           dependencies, ota_demo_version, pkcs11, pkcs11_helpers, 
                           pkcs11_implementation, pkcs11_utils, platform, 
 secure_sockets, 
                           serializer, shadow, tls, transport_interface_secure_sockets, 
                           wifi 
  Enabled by user:         common_io, core_http_demo_dependencies, core_json, 
                           core_mqtt_agent_demo_dependencies, core_mqtt_demo_ 
                           dependencies, defender, device_defender, 
 device_defender_demo_ 
                           dependencies, device_shadow, 
 device_shadow_demo_dependencies, 
                           freertos_cli_plus_uart, freertos_plus_cli, greengrass, 
 https, 
                           jobs, jobs_demo_dependencies, logging, 
 ota_demo_dependencies, 
                           pkcs11, pkcs11_helpers, pkcs11_implementation, pkcs11_utils, 
                           platform, secure_sockets, shadow, wifi 
  Enabled by dependency:   backoff_algorithm, common, core_http, core_mqtt, 

Getting Started with FreeRTOS 376



FreeRTOS User Guide

                           core_mqtt_agent, crypto, demo_base, 
 dev_mode_key_provisioning, 
                           freertos, http_demo_helpers, kernel, mqtt, mqtt_agent_ 
                           interface, mqtt_demo_helpers, mqtt_subscription_manager, 
 ota, 
                           ota_demo_version, pkcs11_mbedtls, serializer, tls, 
                           transport_interface_secure_sockets, utils 
  3rdparty dependencies:   jsmn, mbedtls, pkcs11, tinycbor 
  Available demos:         demo_cli_uart, demo_core_http, demo_core_mqtt, 
 demo_core_mqtt_ 
                           agent, demo_device_defender, demo_device_shadow, 
                           demo_greengrass_connectivity, demo_jobs, demo_ota_core_http, 
                           demo_ota_core_mqtt, demo_tcp 
  Available tests:
========================================================================= 

You can reference any components from the Modules to build list. To link them into your 
application, put the AFR:: namespace in front of the name, for example, AFR::core_mqtt,
AFR::ota, and so on.

Add custom components using ESP-IDF

You can add more components while using ESP-IDF. For example, assuming you want to add a 
component called example_component, and your project looks like this:

- freertos
- components 
  - example_component 
    - include 
      - example_component.h 
    - src 
      - example_component.c 
    - CMakeLists.txt
- src 
  - main.c
- CMakeLists.txt 

The following is an example of the CMakeLists.txt file for your component.

add_library(example_component src/example_component.c)
target_include_directories(example_component PUBLIC include) 

Getting Started with FreeRTOS 377



FreeRTOS User Guide

Then, in the top level CMakeLists.txt file, add the component by inserting the following line 
just after add_subdirectory(freertos).

add_subdirectory(component/example_component) 

Then, modify target_link_libraries to include your component.

target_link_libraries(my_app PRIVATE AFR::core_mqtt PRIVATE example_component) 

This component is now automatically linked to your application code by default. You can now 
include its header files and call the functions it defines.

Override the configurations for FreeRTOS

There's currently no well-defined approach to redefining the configs outside of the FreeRTOS 
source tree. By default, CMake will look for the freertos/vendors/espressif/boards/
esp32/aws_demos/config_files/ and freertos/demos/include/ directories. However, 
you can use a workaround to tell the compiler to search other directories first. For example, you 
can add another folder for FreeRTOS configurations.

- freertos
- freertos-configs 
  - aws_clientcredential.h 
  - aws_clientcredential_keys.h 
  - iot_mqtt_agent_config.h 
  - iot_config.h
- components
- src
- CMakeLists.txt 

The files under freertos-configs are copied from the freertos/vendors/
espressif/boards/esp32/aws_demos/config_files/ and freertos/demos/
include/ directories. Then, in your top level CMakeLists.txt file, add this line before
add_subdirectory(freertos) so that the compiler will search this directory first.

include_directories(BEFORE freertos-configs)

Getting Started with FreeRTOS 378



FreeRTOS User Guide

Providing your own sdkconfig for ESP-IDF

In case you want to provide your own sdkconfig.default, you can set the CMake variable
IDF_SDKCONFIG_DEFAULTS, from the command line:

cmake -S . -B build-directory -DIDF_SDKCONFIG_DEFAULTS=path_to_your_sdkconfig_defaults 
 -DCMAKE_TOOLCHAIN_FILE=freertos/tools/cmake/toolchains/xtensa-esp32.cmake -GNinja 

If you don't specify a location for your own sdkconfig.default file, FreeRTOS uses the 
default file located at freertos/vendors/espressif/boards/esp32/aws_demos/
sdkconfig.defaults.

For more information, see Project Configuration in the Espressif API Reference and, if you 
encounter issues after you have successfully compiled, see the section on  Deprecated options and 
their replacements on that page.

Summary

If you have a project with a component called example_component, and you want to override 
some configurations, here's a complete example of the top level CMakeLists.txt file.

cmake_minimum_required(VERSION 3.13)

project(freertos_examples)

set(IDF_PROJECT_EXECUTABLE my_app)
set(IDF_EXECUTABLE_SRCS "src/main.c")

# Tell IDF build to link against this target.
set(IDF_PROJECT_EXECUTABLE my_app)

# Add some extra components. IDF_EXTRA_COMPONENT_DIRS is a variable used by ESP-IDF
# to collect extra components.
get_filename_component( 
    EXTRA_COMPONENT_DIRS 
    "components/example_component" ABSOLUTE
)
list(APPEND IDF_EXTRA_COMPONENT_DIRS ${EXTRA_COMPONENT_DIRS})

# Override the configurations for FreeRTOS.
include_directories(BEFORE freertos-configs)

Getting Started with FreeRTOS 379

https://docs.espressif.com/projects/esp-idf/en/v4.2-beta1/esp32s2/api-reference/kconfig.html
https://docs.espressif.com/projects/esp-idf/en/v4.2-beta1/esp32s2/api-reference/kconfig.html#deprecated-options-and-their-replacements
https://docs.espressif.com/projects/esp-idf/en/v4.2-beta1/esp32s2/api-reference/kconfig.html#deprecated-options-and-their-replacements


FreeRTOS User Guide

# Add FreeRTOS as a subdirectory. AFR_BOARD tells which board to target.
set(AFR_BOARD espressif.esp32_devkitc CACHE INTERNAL "")
add_subdirectory(freertos)

# Link against the mqtt library so that we can use it. Dependencies are transitively
# linked.
target_link_libraries(my_app PRIVATE AFR::core_mqtt) 

Troubleshooting

• If you're running macOS and the operating system doesn't recognize your ESP-WROVER-KIT, 
make sure you don't have the D2XX drivers installed. To uninstall them, follow the instructions in 
the  FTDI Drivers Installation Guide for macOS X.

• The monitor utility provided by ESP-IDF (and invoked using make monitor) helps you decode 
addresses. For this reason, it can help you get some meaningful backtraces in the event the 
application stops working. For more information, see  Automatic Address Decoding on the 
Espressif website.

• It's also possible to enable GDBstub for communication with gdb without requiring any special 
JTAG hardware. For more information, see  Launching GDB with GDBStub on the Espressif 
website.

• For information about setting up an OpenOCD-based environment if JTAG hardware-based 
debugging is required, see  JTAG Debugging on the Espressif website.

• If pyserial can't be installed using pip on macOS, download it from the pyserial website.

• If the board resets continuously, try erasing the flash by entering the following command on the 
terminal.

make erase_flash

• If you see errors when you run idf_monitor.py, use Python 2.7.

• Required libraries from ESP-IDF are included in FreeRTOS, so there is no need to download them 
externally. If the IDF_PATH environment variable is set, we recommend that you clear it before 
you build FreeRTOS.

• On Windows, it can take 3-4 minutes for the project to build. To reduce the build time, you can 
use the -j4 switch on the make command.

make flash monitor -j4

Getting Started with FreeRTOS 380

http://www.ftdichip.com/Support/Documents/AppNotes/AN_134_FTDI_Drivers_Installation_Guide_for_MAC_OSX.pdf
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/api-guides/tools/idf-monitor.html#automatic-address-decoding
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/api-guides/tools/idf-monitor.html#launching-gdb-with-gdbstub
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/jtag-debugging/index.html
https://pypi.org/simple/pyserial


FreeRTOS User Guide

• If your device has trouble connecting to AWS IoT, open the aws_clientcredential.h
file, and verify that the configuration variables are properly defined in the file.
clientcredentialMQTT_BROKER_ENDPOINT[] should look like 1234567890123-
ats.iot.us-east-1.amazonaws.com.

• If you're following the steps in Using FreeRTOS in your own CMake project for ESP32 and you 
see undefined reference errors from the linker, it's usually because of missing dependent libraries 
or demos. To add them, update the CMakeLists.txt file (under the root directory) using the 
standard CMake function target_link_libraries.

• ESP-IDF v4.2 supports the use of the xtensa\-esp32\-elf\-gcc 8\.2\.0\. toolchain. If you're using 
an earlier version of the Xtensa toolchain, download the required version.

• If you see an error log like the following about python dependencies that are not being met for 
ESP-IDF v4.2:

The following Python requirements are not satisfied: 
  click>=5.0 
  pyserial>=3.0 
  future>=0.15.2 
  pyparsing>=2.0.3,<2.4.0 
  pyelftools>=0.22 
  gdbgui==0.13.2.0 
  pygdbmi<=0.9.0.2 
  reedsolo>=1.5.3,<=1.5.4 
  bitstring>=3.1.6 
  ecdsa>=0.16.0 
  Please follow the instructions found in the "Set up the tools" section of ESP-IDF 
 Getting Started Guide 

Install the python dependencies on your platform using the following Python command:

root/vendors/espressif/esp-idf/requirements.txt

For more troubleshooting information, see Troubleshooting getting started.

Debugging

Debugging code on Espressif ESP32-DevKitC and ESP-WROVER-KIT (ESP-IDF v4.2)

This section shows you how to debug Espressif hardware using ESP-IDF v4.2. You need a JTAG to 
USB cable. We use a USB to MPSSE cable (for example, the  FTDI C232HM-DDHSL-0).

Getting Started with FreeRTOS 381

http://www.ftdichip.com/Products/Cables/USBMPSSE.htm


FreeRTOS User Guide

ESP-DevKitC JTAG setup

For the FTDI C232HM-DDHSL-0 cable, these are the connections to the ESP32 DevkitC.

| C232HM-DDHSL-0 Wire Color | ESP32 GPIO Pin | JTAG Signal Name |
| ------------------------- | -------------- | ---------------- |
|  Brown (pin 5)            |  IO14          |  TMS             |
|  Yellow (pin 3)           |  IO12          |  TDI             |
|  Black (pin 10)           |  GND           |  GND             |
|  Orange (pin 2)           |  IO13          |  TCK             |
|  Green (pin 4)            |  IO15          |  TDO             | 

ESP-WROVER-KIT JTAG setup

For the FTDI C232HM-DDHSL-0 cable, these are the connections to the ESP32-WROVER-KIT.

| C232HM-DDHSL-0 Wire Color | ESP32 GPIO Pin | JTAG Signal Name |
| ------------------------- | -------------- | ---------------- |
|  Brown (pin 5)            |  IO14          |  TMS             |
|  Yellow (pin 3)           |  IO12          |  TDI             |
|  Orange (pin 2)           |  IO13          |  TCK             |
|  Green (pin 4)            |  IO15          |  TDO             |

These tables were developed from the  FTDI C232HM-DDHSL-0 datasheet. For more 
information, see the section "C232HM MPSSE Cable Connection and Mechanical Details in the 
data sheet.

To enable JTAG on the ESP-WROVER-KIT, place jumpers on the TMS, TDO, TDI, TCK, and S_TDI 
pins as shown here.

Getting Started with FreeRTOS 382

https://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_C232HM_MPSSE_CABLE.pdf


FreeRTOS User Guide

Debugging on Windows (ESP-IDF v4.2)

To set up for debugging on Windows

1. Connect the USB side of the FTDI C232HM-DDHSL-0 to your computer and the other side 
as described in Debugging code on Espressif ESP32-DevKitC and ESP-WROVER-KIT (ESP-
IDF v4.2). The FTDI C232HM-DDHSL-0 device should appear in Device Manager under
Universal Serial Bus Controllers.

2. Under the list of universal serial bus devices, right-click the C232HM-DDHSL-0 device, and 
then choose Properties.

Note

The device might be listed as USB Serial Port.

To see the properties of the device, in the properties window, choose the Details tab. If the 
device isn't listed, install the Windows driver for FTDI C232HM-DDHSL-0.

3. On the Details tab, choose Property, and then choose Hardware IDs. You should see 
something like this in the Value field.

FTDIBUS\COMPORT&VID_0403&PID_6014

In this example, the vendor ID is 0403 and the product ID is 6014.

Verify these IDs match the IDs in projects/espressif/esp32/make/aws_demos/
esp32_devkitj_v1.cfg. The IDs are specified in a line that begins with ftdi_vid_pid
followed by a vendor ID and a product ID.

ftdi_vid_pid 0x0403 0x6014

4. Download OpenOCD for Windows.

5. Unzip the file to C:\ and add C:\openocd-esp32\bin to your system path.

6. OpenOCD requires libusb, which is not installed by default on Windows. To install libusb:

a. Download zadig.exe.

b. Run zadig.exe. From the Options menu, choose List All Devices.

Getting Started with FreeRTOS 383

http://www.ftdichip.com/Drivers/D2XX.htm
https://github.com/espressif/openocd-esp32/releases
https://zadig.akeo.ie


FreeRTOS User Guide

c. From the dropdown menu, choose C232HM-DDHSL-0.

d. In the target driver field, to the right of the green arrow, choose WinUSB.

e. For the list under the target driver field, choose the arrow, and then choose Install 
Driver. Choose Replace Driver.

7. Open a command prompt, navigate to the root of your FreeRTOS download directory, and 
run the following command.

idf.py openocd

Leave this command prompt open.

8. Open a new command prompt, navigate to the root of your FreeRTOS download directory, 
and run

idf.py flash monitor

9. Open another command prompt, navigate to the root of your FreeRTOS download 
directory, and wait until the demo starts running on your board. When it does, run

idf.py gdb

The program should stop in the main function.

Note

The ESP32 supports a maximum of two break points.

Debugging on macOS (ESP-IDF v4.2)

1. Download the FTDI driver for macOS.

2. Download OpenOCD.

3. Extract the downloaded .tar file and set the path in .bash_profile to
OCD_INSTALL_DIR/openocd-esp32/bin.

4. Use the following command to install libusb on macOS.

brew install libusb

Getting Started with FreeRTOS 384

http://www.ftdichip.com/Drivers/VCP.htm
https://github.com/espressif/openocd-esp32/releases


FreeRTOS User Guide

5. Use the following command to unload the serial port driver.

sudo kextunload -b com.FTDI.driver.FTDIUSBSerialDriver

6. Use the following command to unload the serial port driver.

sudo kextunload -b com.FTDI.driver.FTDIUSBSerialDriver

7. If you're running a macOS version later than 10.9, use the following command to unload 
the Apple FTDI driver.

sudo kextunload -b com.apple.driver.AppleUSBFTDI

8. Use the following command to get the product ID and vendor ID of the FTDI cable. It lists 
the attached USB devices.

system_profiler SPUSBDataType

The output from system_profiler should look like the following.

   DEVICE: 

   Product ID: product-ID 
   Vendor ID: vendor-ID (Future Technology Devices International Limited) 

9. Open the projects/espressif/esp32/make/aws_demos/esp32_devkitj_v1.cfg
file. The vendor ID and product ID for your device are specified in a line that begins with
ftdi_vid_pid. Change the IDs to match the IDs from the system_profiler output in 
the previous step.

10. Open a terminal window, navigate to the root of your FreeRTOS download directory, and 
use the following command to run OpenOCD.

idf.py openocd

Leave this terminal window open.

11. Open a new terminal, and use the following command to load the FTDI serial port driver.

sudo kextload -b com.FTDI.driver.FTDIUSBSerialDriver

Getting Started with FreeRTOS 385



FreeRTOS User Guide

12. Navigate to the root of your FreeRTOS download directory, and run

idf.py flash monitor

13. Open another new terminal, navigate to the root of your FreeRTOS download directory, 
and run

idf.py gdb

The program should stop at main.

Debugging on Linux (ESP-IDF v4.2)

1. Download OpenOCD. Extract the tarball and follow the installation instructions in the 
readme file.

2. Use the following command to install libusb on Linux.

sudo apt-get install libusb-1.0

3. Open a terminal and enter ls -l /dev/ttyUSB* to list all USB devices connected to your 
computer. This helps you check if the board's USB ports are recognized by the operating 
system. You should see output like the following.

   $ls -l /dev/ttyUSB* 
   crw-rw----    1    root    dialout    188,    0    Jul    10    19:04    /
dev/ttyUSB0 
   crw-rw----    1    root    dialout    188,    1    Jul    10    19:04    /
dev/ttyUSB1 

4. Sign off and then sign in and cycle the power to the board to make the changes take effect. 
In a terminal prompt, list the USB devices. Make sure the group owner has changed from
dialout to plugdev.

   $ls -l /dev/ttyUSB* 
   crw-rw----    1    root    plugdev    188,    0    Jul    10    19:04    /
dev/ttyUSB0 
   crw-rw----    1    root    plugdev    188,    1    Jul    10    19:04    /
dev/ttyUSB1 

Getting Started with FreeRTOS 386

https://github.com/espressif/openocd-esp32/releases


FreeRTOS User Guide

The /dev/ttyUSBn interface with the lower number is used for JTAG communication. The 
other interface is routed to the ESP32's serial port (UART) and is used for uploading code to 
the ESP32's flash memory.

5. In a terminal window, navigate to the root of your FreeRTOS download directory, and use 
the following command to run OpenOCD.

idf.py openocd 

6. Open another terminal, navigate to the root of your FreeRTOS download directory, and run 
the following command.

idf.py flash monitor 

7. Open another terminal, navigate the root of your FreeRTOS download directory, and run 
the following command:

idf.py gdb

The program should stop in main().

Getting started with the Espressif ESP32-WROOM-32SE

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Note

• To explore how to integrate FreeRTOS modular libraries and demos within your own 
Espressif IDF project, see our  featured reference integration for ESP32-C3 platform.

• Currently, the FreeRTOS port for ESP32-WROOM-32SE doesn't support the symmetric 
multiprocessing (SMP) feature.

Getting Started with FreeRTOS 387

https://www.freertos.org/featured-freertos-iot-integration-targeting-an-espressif-esp32-c3-risc-v-mcu/


FreeRTOS User Guide

This tutorial shows you how to get started with the Espressif ESP32-WROOM-32SE. To purchase 
one from our partner on the AWS Partner Device catalog, see ESP32-WROOM-32SE.

Overview

This tutorial guides you through the following steps:

1. Connect your board to a host machine.

2. Install software on your host machine to develop and debug embedded applications for your 
microcontroller board.

3. Cross compile a FreeRTOS demo application to a binary image.

4. Load the application binary image to your board, and then run the application.

5. Monitor and debug the running application by using a serial connection.

Prerequisites

Before you get started with FreeRTOS on your Espressif board, you must set up your AWS account 
and permissions.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Getting Started with FreeRTOS 388

https://devices.amazonaws.com/detail/a3G0h0000077nRtEAI/ESP32-WROOM-32SE
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/


FreeRTOS User Guide

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Getting Started with FreeRTOS 389

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html


FreeRTOS User Guide

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM 
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party 
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM 
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the 
instructions in Adding permissions to a user (console) in the IAM User Guide.

Get started

Note

The Linux commands in this tutorial require that you use the Bash shell.

1. Set up the Espressif hardware.

For information about setting up the ESP32-WROOM-32SE development board hardware, see 
the  ESP32-DevKitC V4 Getting Started Guide.

Getting Started with FreeRTOS 390

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/index.html#installation-step-by-step


FreeRTOS User Guide

Important

When you reach the Installation Step by Step section of the guide, follow till you 
complete Step 4 (Set up the environment variables). Stop after you complete Step 4 
and follow the remaining steps here.

2. Download Amazon FreeRTOS from GitHub. (For instructions, see the README.md file.)

3. Set up your development environment.

To communicate with your board, you must install a toolchain. Espressif provides the ESP-IDF 
to develop software for their boards. Since the ESP-IDF has its own version of the FreeRTOS 
Kernel integrated as a component, Amazon FreeRTOS includes a custom version of the ESP-
IDF v4.2 that has the FreeRTOS Kernel removed. This fixes problems with duplicate files when 
you compile. To use the custom version of the ESP-IDF v4.2 included with Amazon FreeRTOS, 
follow the instructions below for your host machine's operating system.

Windows

1. Download ESP-IDF's  Universal Online Installer for Windows.

2. Run the Universal Online Installer.

3. When you get to the step Download or use ESP-IDF, select Use an existing ESP-IDF 
directory and set Choose existing ESP-IDF directory to freertos/vendors/espressif/
esp-idf.

4. Complete the installation.

macOS

1. Follow the instructions in the  Standard Setup of Toolchain prerequisites (ESP-IDF v4.2) for 
macOS.

Important

When you reach the "Get ESP-IDF" instructions under Next Steps, stop, and then 
return to the instructions on this page.

2. Open a command line window.

Getting Started with FreeRTOS 391

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/main/README.md
https://dl.espressif.com/dl/esp-idf/?idf=4.2
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/macos-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/macos-setup.html


FreeRTOS User Guide

3. Navigate to the FreeRTOS download directory, and then run the following script to 
download and install the espressif toolchain for your platform.

vendors/espressif/esp-idf/install.sh

4. Add the ESP-IDF toolchain tools to your terminal's path with the following command.

source vendors/espressif/esp-idf/export.sh

Linux

1. Follow the instructions in the  Standard Setup of Toolchain prerequisites (ESP-IDF v4.2) for 
Linux.

Important

When you reach the "Get ESP-IDF" instructions under Next Steps, stop, and then 
return to the instructions on this page.

2. Open a command line window.

3. Navigate to the FreeRTOS download directory, and then run the following script to 
download and install the Espressif toolchain for your platform.

vendors/espressif/esp-idf/install.sh

4. Add the ESP-IDF toolchain tools to your terminal's path with the following command.

source vendors/espressif/esp-idf/export.sh

4. Establish a serial connection.

a. To establish a serial connection between your host machine and the ESP32-
WROOM-32SE, install the CP210x USB to UART Bridge VCP drivers. You can download 
these drivers from  Silicon Labs.

b. Follow the steps to  Establish a Serial Connection with ESP32.

c. After you establish a serial connection, make a note of the serial port for your board's 
connection. You need it to flash the demo.

Getting Started with FreeRTOS 392

https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/linux-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/linux-setup.html
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/establish-serial-connection.html


FreeRTOS User Guide

Configure the FreeRTOS demo applications

For this tutorial, the FreeRTOS configuration file is located at freertos/vendors/espressif/
boards/board-name/aws_demos/config_files/FreeRTOSConfig.h. (For example, 
if AFR_BOARD espressif.esp32_devkitc is chosen, the configuration file is located 
at freertos/vendors/espressif/boards/esp32/aws_demos/config_files/
FreeRTOSConfig.h.)

Important

The ATECC608A device has a one-time initialization that is locked onto the device the 
first time a project is run (during the call to C_InitToken). However, the FreeRTOS demo 
project and test project have different configurations. If the device is locked during the 
demo project configurations, not all tests in the test project will succeed.

1. Configure the FreeRTOS Demo Project by following the steps in Configuring the FreeRTOS 
demos. When you get to the last step To format your AWS IoT credentials, stop, and perform 
the following steps.

2. Microchip has provided several scripting tools to help with the setup of the ATECC608A parts. 
Navigate to the freertos/vendors/microchip/example_trust_chain_tool directory, 
and open the README.md file.

3. To provision your device, follow the instructions in the README.md file. The steps include the 
following:

1. Create and register a certificate authority with AWS.

2. Generate your keys on the ATECC608A and export the public key and device serial number.

3. Generate a certificate for the device and register that certificate with AWS.

4. Load the CA certificate and device certificate onto the device by following the instructions for
Developer-mode key provisioning.

Monitoring MQTT messages on the AWS Cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

Getting Started with FreeRTOS 393



FreeRTOS User Guide

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT Test Client.

3. In Subscription topic, enter your-thing-name/example/topic and then choose Subscribe 
to topic.

Build, flash, and run the FreeRTOS demo project using the idf.py script

You can use Espressif's IDF utility (idf.py) to generate the build files, build the application binary, 
and flash the binaries onto your device.

Note

Some setups might require that you use the port option "-p port-name" with idf.py to 
specify the correct port, as in the following example.

idf.py -p /dev/cu.usbserial-00101301B flash

Build and flash FreeRTOS on Windows, Linux, and macOS (ESP-IDF v4.2)

1. Navigate to the root of your FreeRTOS download directory.

2. In a command line window, enter the following command to add the ESP-IDF tools to your 
terminal's PATH:

Windows ("Command" app)

vendors\espressif\esp-idf\export.bat

Windows ("ESP-IDF 4.x CMD" app)

(This has already been done when you opened the app.)

Linux / macOS

source vendors/espressif/esp-idf/export.sh

Getting Started with FreeRTOS 394

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

3. Configure cmake in the build directory and build the firmware image with the following 
command.

idf.py -DVENDOR=espressif -DBOARD=esp32_ecc608a_devkitc -DCOMPILER=xtensa-esp32 
 build

You should see output like this following example.

   Running cmake in directory /path/to/hello_world/build 
   Executing "cmake -G Ninja --warn-uninitialized /path/to/hello_world"... 
   Warn about uninitialized values. 
   -- Found Git: /usr/bin/git (found version "2.17.0") 
   -- Building empty aws_iot component due to configuration 
   -- Component names: ... 
   -- Component paths: ... 

   ... (more lines of build system output) 

   [527/527] Generating hello-world.bin 
   esptool.py v2.3.1 

   Project build complete. To flash, run this command: 
   ../../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 
 write_flash --flash_mode dio --flash_size detect --flash_freq 40m 0x10000 build/
hello-world.bin  build 0x1000 build/bootloader/bootloader.bin 0x8000 build/
partition_table/partition-table.bin 
   or run 'idf.py -p PORT flash' 

If there are no errors, the build will generate the firmware binary .bin files.

4. Erase your development board's flash memory with the following command.

idf.py erase_flash

5. Use the idf.py script to flash the application binary to your board.

idf.py flash

6. Monitor the output from your board's serial port with the following command.

idf.py monitor

Getting Started with FreeRTOS 395



FreeRTOS User Guide

Note

• You can combine these commands as in the following example.

idf.py erase_flash flash monitor

• For certain host machine setups, you must specify the port when you flash the board 
as in the following example.

idf.py erase_flash flash monitor -p /dev/ttyUSB1

Build and Flash FreeRTOS with CMake

Besides using the idf.py script provided by the IDF SDK to build and run your code, you can also 
build the project with CMake. Currently it supports Unix Makefile and the Ninja build system.

To build and flash the project

1. In a command line window, navigate to the root of your FreeRTOS download directory.

2. Run the following script to add the ESP-IDF tools to your shell's PATH.

Windows

vendors\espressif\esp-idf\export.bat

Linux / macOS

source vendors/espressif/esp-idf/export.sh

3. Enter the following command to generate the build files.

With Unix Makefiles

cmake -DVENDOR=espressif -DBOARD=esp32_plus_ecc608a_devkitc -DCOMPILER=xtensa-
esp32 -S . -B ./YOUR_BUILD_DIRECTORY -DAFR_ENABLE_ALL_MODULES=1 -
DAFR_ENABLE_TESTS=0

Getting Started with FreeRTOS 396



FreeRTOS User Guide

With Ninja

cmake -DVENDOR=espressif -DBOARD=esp32_plus_ecc608a_devkitc -DCOMPILER=xtensa-
esp32 -S . -B ./YOUR_BUILD_DIRECTORY -DAFR_ENABLE_ALL_MODULES=1 -
DAFR_ENABLE_TESTS=0 -GNinja

4. Erase the flash and then flash the board.

With Unix Makefiles

make -C ./YOUR_BUILD_DIRECTORY erase_flash

make -C ./YOUR_BUILD_DIRECTORY flash

With Ninja

ninja -C ./YOUR_BUILD_DIRECTORY erase_flash

ninja -C ./YOUR_BUILD_DIRECTORY flash

Additional information

For more information about using and troubleshooting Espressif ESP32 boards, see the following 
topics:

• Using FreeRTOS in your own CMake project for ESP32

• Troubleshooting

• Debugging

Getting started with the Espressif ESP32-S2

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 

Getting Started with FreeRTOS 397



FreeRTOS User Guide

already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Note

To explore how to integrate FreeRTOS modular libraries and demos within your own 
Espressif IDF project, see our  featured reference integration for ESP32-C3 platform.

This tutorial shows you how to get started with the Espressif ESP32-S2 SoC and ESP32-S2-Saola-1
development boards.

Overview

This tutorial guides you through the following steps:

1. Connect your board to a host machine.

2. Install software on your host machine to develop and debug embedded applications for your 
microcontroller board.

3. Cross-compile a FreeRTOS demo application to a binary image.

4. Load the application binary image to your board, and then run the application.

5. Monitor and debug the running application using a serial connection.

Prerequisites

Before you get started with FreeRTOS on your Espressif board, you must set up your AWS account 
and permissions.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Getting Started with FreeRTOS 398

https://www.freertos.org/featured-freertos-iot-integration-targeting-an-espressif-esp32-c3-risc-v-mcu/
https://devices.amazonaws.com/detail/a3G0h00000AkFngEAF/ESP32-S2-Saola-1
https://portal.aws.amazon.com/billing/signup


FreeRTOS User Guide

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

Getting Started with FreeRTOS 399

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html


FreeRTOS User Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM 
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party 
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM 
user in the IAM User Guide.

Getting Started with FreeRTOS 400

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html


FreeRTOS User Guide

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the 
instructions in Adding permissions to a user (console) in the IAM User Guide.

Get started

Note

The Linux commands in this tutorial require that you use the Bash shell.

1. Set up the Espressif hardware.

For information about setting up the ESP32-S2 development board hardware, see the  ESP32-
S2-Saola-1 Getting Started Guide.

Important

When you reach the Get Started section of the Espressif guides, stop, and then return 
to the instructions on this page.

2. Download Amazon FreeRTOS from GitHub. (For instructions, see the README.md file.)

3. Set up your development environment.

To communicate with your board, you must install a toolchain. Espressif provides the ESP-IDF 
to develop software for their boards. Since the ESP-IDF has its own version of the FreeRTOS 
Kernel integrated as a component, Amazon FreeRTOS includes a custom version of the ESP-
IDF v4.2 that has the FreeRTOS Kernel removed. This fixes problems with duplicate files when 
you compile. To use the custom version of the ESP-IDF v4.2 included with Amazon FreeRTOS, 
follow the instructions below for your host machine's operating system.

Windows

1. Download ESP-IDF's  Universal Online Installer for Windows.

2. Run the Universal Online Installer.

3. When you get to the step Download or use ESP-IDF, select Use an existing ESP-IDF 
directory and set Choose existing ESP-IDF directory to freertos/vendors/espressif/
esp-idf.

4. Complete the installation.

Getting Started with FreeRTOS 401

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32s2/hw-reference/esp32s2/user-guide-saola-1-v1.2.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32s2/hw-reference/esp32s2/user-guide-saola-1-v1.2.html
https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/main/README.md
https://dl.espressif.com/dl/esp-idf/?idf=4.2


FreeRTOS User Guide

macOS

1. Follow the instructions in the  Standard Setup of Toolchain prerequisites (ESP-IDF v4.2) for 
macOS.

Important

When you reach the "Get ESP-IDF" instructions under Next Steps, stop, and then 
return to the instructions on this page.

2. Open a command line window.

3. Navigate to the FreeRTOS download directory, and then run the following script to 
download and install the espressif toolchain for your platform.

vendors/espressif/esp-idf/install.sh

4. Add the ESP-IDF toolchain tools to your terminal's path with the following command.

source vendors/espressif/esp-idf/export.sh

Linux

1. Follow the instructions in the  Standard Setup of Toolchain prerequisites (ESP-IDF v4.2) for 
Linux.

Important

When you reach the "Get ESP-IDF" instructions under Next Steps, stop, and then 
return to the instructions on this page.

2. Open a command line window.

3. Navigate to the FreeRTOS download directory, and then run the following script to 
download and install the Espressif toolchain for your platform.

vendors/espressif/esp-idf/install.sh

4. Add the ESP-IDF toolchain tools to your terminal's path with the following command.

Getting Started with FreeRTOS 402

https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32s2/get-started/macos-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32s2/get-started/macos-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32s2/get-started/linux-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32s2/get-started/linux-setup.html


FreeRTOS User Guide

source vendors/espressif/esp-idf/export.sh

4. Establish a serial connection.

a. To establish a serial connection between your host machine and the ESP32-DevKitC, 
install the CP210x USB to UART Bridge VCP drivers. You can download these drivers from 
Silicon Labs.

b. Follow the steps to  Establish a Serial Connection with ESP32.

c. After you establish a serial connection, make a note of the serial port for your board's 
connection. You need it to flash the demo.

Configure the FreeRTOS demo applications

For this tutorial, the FreeRTOS configuration file is located at freertos/vendors/espressif/
boards/board-name/aws_demos/config_files/FreeRTOSConfig.h. (For example, 
if AFR_BOARD espressif.esp32_devkitc is chosen, the configuration file is located 
at freertos/vendors/espressif/boards/esp32/aws_demos/config_files/
FreeRTOSConfig.h.)

1. If you're running macOS or Linux, open a terminal prompt. If you're running Windows, open 
the "ESP-IDF 4.x CMD" app (if you included this option when you installed the ESP-IDF 
toolchain), or the "Command Prompt" app otherwise.

2. To verify that you have Python3 installed, run the following:

python --version

The version installed is displayed. If you don't have Python 3.0.1 or later installed, you can 
install it from the Python website.

3. You need the AWS Command Line Interface (CLI) to run AWS IoT commands. If you're running 
Windows, use the easy_install awscli command to install the AWS CLI in the "Command" 
or "ESP-IDF 4.x CMD" app.

If you're running macOS or Linux, see Installing the AWS CLI.

4. Run

aws configure

Getting Started with FreeRTOS 403

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://docs.espressif.com/projects/esp-idf/en/release-v4.2/esp32/get-started/establish-serial-connection.html
https://www.python.org/downloads/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html


FreeRTOS User Guide

and configure the AWS CLI with your AWS access key ID, secret access key, and default AWS 
Region. For more information, see Configuring the AWS CLI.

5. Use the following command to install the AWS SDK for Python (boto3):

• On Windows, in the "Command" or "ESP-IDF 4.x CMD" app, run

easy_install boto3

• On macOS or Linux, run

pip install tornado nose --user

and then run

pip install boto3 --user

FreeRTOS includes the SetupAWS.py script to make it easier to set up your Espressif board to 
connect to AWS IoT.

To run the configuration script

1. To configure the script, open freertos/tools/aws_config_quick_start/
configure.json and set the following attributes:

afr_source_dir

The complete path to the freertos directory on your computer. Make sure that you use 
forward slashes to specify this path.

thing_name

The name that you want to assign to the AWS IoT thing that represents your board.

wifi_ssid

The SSID of your Wi-Fi network.

wifi_password

The password for your Wi-Fi network.

Getting Started with FreeRTOS 404

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html


FreeRTOS User Guide

wifi_security

The security type for your Wi-Fi network. The following are valid security types:

• eWiFiSecurityOpen (Open, no security)

• eWiFiSecurityWEP (WEP security)

• eWiFiSecurityWPA (WPA security)

• eWiFiSecurityWPA2 (WPA2 security)

2. If you're running macOS or Linux, open a terminal prompt. If you're running Windows, open 
the "ESP-IDF 4.x CMD" or "Command" app.

3. Navigate to the freertos/tools/aws_config_quick_start directory and run

python SetupAWS.py setup

The script does the following:

• Creates an AWS IoT thing, certificate, and policy.

• Attaches the AWS IoT policy to the certificate and the certificate to the AWS IoT thing.

• Populates the aws_clientcredential.h file with your AWS IoT endpoint, Wi-Fi SSID, and 
credentials.

• Formats your certificate and private key and writes them to the
aws_clientcredential_keys.h header file.

Note

The certificate is hardcoded for demonstration purposes only. Production-level 
applications should store these files in a secure location.

For more information about SetupAWS.py, see the README.md in the freertos/tools/
aws_config_quick_start directory.

Monitoring MQTT messages on the AWS Cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

Getting Started with FreeRTOS 405



FreeRTOS User Guide

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT Test Client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Build, flash, and run the FreeRTOS demo project using the idf.py script

You can use Espressif's IDF utility to generate the build files, build the application binary, and flash 
your board.

Build and flash FreeRTOS on Windows, Linux, and macOS (ESP-IDF v4.2)

Use the idf.py script to build the project and flash the binaries onto your device.

Note

Some setups might require that you use the port option -p port-name with idf.py to 
specify the correct port, as in the following example.

idf.py -p /dev/cu.usbserial-00101301B flash

To build and flash the project

1. Navigate to the root of your FreeRTOS download directory.

2. In a command line window, enter the following command to add the ESP-IDF tools to your 
terminal's PATH:

Windows ("Command" app)

vendors\espressif\esp-idf\export.bat

Getting Started with FreeRTOS 406

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

Windows ("ESP-IDF 4.x CMD" app)

(This has already been done when you opened the app.)

Linux / macOS

source vendors/espressif/esp-idf/export.sh

3. Configure cmake in the build directory and build the firmware image with the following 
command.

idf.py -DVENDOR=espressif -DBOARD=esp32s2_saola_1 -DCOMPILER=xtensa-esp32s2 build

You should see output like this following example.

Executing action: all (aliases: build) 
   Running cmake in directory /path/to/hello_world/build 
   Executing "cmake -G Ninja -DPYTHON_DEPS_CHECKED=1 -DESP_PLATFORM=1 
 -DVENDOR=espressif -DBOARD=esp32s2_saola_1 -DCOMPILER=xtensa-esp32s2 -
DCCACHE_ENABLE=0 /path/to/hello_world"... 
   -- The C compiler identification is GNU 8.4.0 
   -- The CXX compiler identification is GNU 8.4.0 
   -- The ASM compiler identification is GNU 

   ... (more lines of build system output) 

   [1628/1628] Generating binary image from built executable 
   esptool.py v3.0 
   Generated /path/to/hello_world/build/aws_demos.bin 

   Project build complete. To flash, run this command: 
   esptool.py -p (PORT) -b 460800 --before default_reset --after hard_reset --chip 
 esp32s2  write_flash --flash_mode dio --flash_size detect --flash_freq 80m 0x1000 
 build/bootloader/bootloader.bin 0x8000 build/partition_table/partition-table.bin 
 0x16000 build/ota_data_initial.bin 0x20000 build/aws_demos.bin 
   or run 'idf.py -p (PORT) flash' 

If there are no errors, the build generates the firmware binary .bin files.

4. Erase your development board's flash memory with the following command.

Getting Started with FreeRTOS 407



FreeRTOS User Guide

idf.py erase_flash

5. Use the idf.py script to flash the application binary to your board.

idf.py flash

6. Monitor the output from your board's serial port with the following command.

idf.py monitor

Note

• You can combine these commands as in the following example.

idf.py erase_flash flash monitor

• For certain host machine setups, you must specify the port when you flash the board 
as in the following example.

idf.py erase_flash flash monitor -p /dev/ttyUSB1

Build and Flash FreeRTOS with CMake

Besides using the idf.py script provided by the IDF SDK to build and run your code, you can also 
build the project with CMake. Currently it supports Unix Makefile and the Ninja build system.

To build and flash the project

1. In a command line window, navigate to the root of your FreeRTOS download directory.

2. Run the following script to add the ESP-IDF tools to your shell's PATH.

• Windows

vendors\espressif\esp-idf\export.bat

• Linux / macOS

Getting Started with FreeRTOS 408



FreeRTOS User Guide

source vendors/espressif/esp-idf/export.sh

3. Enter the following command to generate the build files.

• With Unix Makefiles

cmake -DVENDOR=espressif -DBOARD=esp32s2_saola_1 -DCOMPILER=xtensa-esp32s2 -S . -
B ./YOUR_BUILD_DIRECTORY -DAFR_ENABLE_ALL_MODULES=1 -DAFR_ENABLE_TESTS=0

• With Ninja

cmake -DVENDOR=espressif -DBOARD=esp32s2_saola_1 -DCOMPILER=xtensa-esp32s2 -S . -
B ./YOUR_BUILD_DIRECTORY -DAFR_ENABLE_ALL_MODULES=1 -DAFR_ENABLE_TESTS=0 -GNinja

4. Build the project.

• With Unix Makefiles

make -C ./YOUR_BUILD_DIRECTORY -j8

• With Ninja

ninja -C ./YOUR_BUILD_DIRECTORY -j8

5. Erase the flash and then flash the board.

• With Unix Makefiles

make -C ./YOUR_BUILD_DIRECTORY erase_flash

make -C ./YOUR_BUILD_DIRECTORY flash

• With Ninja

ninja -C ./YOUR_BUILD_DIRECTORY erase_flash

ninja -C ./YOUR_BUILD_DIRECTORY flash

Getting Started with FreeRTOS 409



FreeRTOS User Guide

Additional information

For more information about using and troubleshooting Espressif ESP32 boards, see the following 
topics:

• Using FreeRTOS in your own CMake project for ESP32

• Troubleshooting

• Debugging

Getting started with the Infineon XMC4800 IoT Connectivity Kit

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the Infineon XMC4800 IoT Connectivity 
Kit. If you do not have the Infineon XMC4800 IoT Connectivity Kit, visit the AWS Partner Device 
Catalog to purchase one from our  partner.

If you want to open a serial connection with the board to view logging and debugging information, 
you need a 3.3V USB/Serial converter, in addition to the XMC4800 IoT Connectivity Kit. The 
CP2104 is a common USB/Serial converter that is widely available in boards such as Adafruit's
CP2104 Friend.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

Getting Started with FreeRTOS 410

https://devices.amazonaws.com/detail/a3G0L00000AANsbUAH/XMC4800-IoT-Amazon-FreeRTOS-Connectivity-Kit-WiFi
https://www.adafruit.com/product/3309


FreeRTOS User Guide

2. Cross compiling a FreeRTOS demo application to a binary image.

3. Loading the application binary image to your board, and then running the application.

4. Interacting with the application running on your board across a serial connection, for monitoring 
and debugging purposes.

Set up your development environment

FreeRTOS uses Infineon's DAVE development environment to program the XMC4800. Before you 
begin, you need to download and install DAVE and some J-Link drivers to communicate with the 
on-board debugger.

Install DAVE

1. Go to Infineon's DAVE software download page.

2. Choose the DAVE package for your operating system and submit your registration information. 
After registering with Infineon, you should receive a confirmation email with a link to 
download a .zip file.

3. Download the DAVE package .zip file (DAVE_version_os_date.zip), and unzip it to the 
location where you want to install DAVE (for example, C:\DAVE4).

Note

Some Windows users have reported problems using Windows Explorer to unzip the 
file. We recommend that you use a third-party program such as 7-Zip.

4. To launch DAVE, run the executable file found in the unzipped DAVE_version_os_date.zip
folder.

For more information, see the DAVE Quick Start Guide.

Install Segger J-Link drivers

To communicate with the XMC4800 Relax EtherCAT board's on-board debugging probe, you need 
the drivers included in the J-Link Software and Documentation pack. You can download the J-Link 
Software and Documentation pack from Segger's J-Link software download page.

Getting Started with FreeRTOS 411

https://infineoncommunity.com/dave-download_ID645
https://www.infineon.com/dgdl/Infineon-DAVE_Quick_Start-GS-v02_00-EN.pdf?fileId=5546d4624cb7f111014d059f7b8c712d
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack


FreeRTOS User Guide

Establish a serial connection

Setting up a serial connection is optional, but recommended. A serial connection allows your board 
to send logging and debugging information in a form that you can view on your development 
machine.

The XMC4800 demo application uses a UART serial connection on pins P0.0 and P0.1, which are 
labeled on the XMC4800 Relax EtherCAT board's silkscreen. To set up a serial connection:

1. Connect the pin labeled “RX<P0.0” to your USB/Serial converter's “TX” pin.

2. Connect the pin labeled “TX>P0.1” to your USB/Serial converter's “RX” pin.

3. Connect your serial converter's Ground pin to one of the pins labeled “GND” on your board. 
The devices must share a common ground.

Power is supplied from the USB debugging port, so do not connect your serial adapter's positive 
voltage pin to the board.

Note

Some serial cables use a 5V signaling level. The XMC4800 board and the Wi-Fi Click module 
require a 3.3V. Do not use the board's IOREF jumper to change the board's signals to 5V.

With the cable connected, you can open a serial connection on a terminal emulator such as GNU 
Screen. The baud rate is set to 115200 by default with 8 data bits, no parity, and 1 stop bit.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo, you can set up the MQTT client in the AWS IoT console to 
monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

Getting Started with FreeRTOS 412

https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Build and run the FreeRTOS demo project

Import the FreeRTOS demo into DAVE

1. Start DAVE.

2. In DAVE, choose File, Import. In the Import window, expand the Infineon folder, choose DAVE 
Project, and then choose Next.

3. In the Import DAVE Projects window, choose Select Root Directory, choose Browse, and then 
choose the XMC4800 demo project.

In the directory where you unzipped your FreeRTOS download, the demo project is located in
projects/infineon/xmc4800_iotkit/dave4/aws_demos.

Make sure that Copy Projects Into Workspace is unchecked.

4. Choose Finish.

The aws_demos project should be imported into your workspace and activated.

5. From the Project menu, choose Build Active Project.

Make sure that the project builds without errors.

Run the FreeRTOS demo project

1. Use a USB cable to connect your XMC4800 IoT Connectivity Kit to your computer. The board 
has two microUSB connectors. Use the one labeled “X101”, where Debug appears next to it on 
the board's silkscreen.

2. From the Project menu, choose Rebuild Active Project to rebuild aws_demos and ensure that 
your configuration changes are picked up.

3. From Project Explorer, right-click aws_demos, choose Debug As, and then choose DAVE C/C+
+ Application.

4. Double-click GDB SEGGER J-Link Debugging to create a debug confirmation. Choose Debug.

5. When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

Getting Started with FreeRTOS 413



FreeRTOS User Guide

In the AWS IoT console, the MQTT client from steps 4-5 should display the MQTT messages sent by 
your device. If you use the serial connection, you see something like this on the UART output:

0 0 [Tmr Svc] Starting key provisioning...
1 1 [Tmr Svc] Write root certificate...
2 4 [Tmr Svc] Write device private key...
3 82 [Tmr Svc] Write device certificate...
4 86 [Tmr Svc] Key provisioning done...
5 291 [Tmr Svc] Wi-Fi module initialized. Connecting to AP...
.6 8046 [Tmr Svc] Wi-Fi Connected to AP. Creating tasks which use network...
7 8058 [Tmr Svc] IP Address acquired [IP Address]
8 8058 [Tmr Svc] Creating MQTT Echo Task...
9 8059 [MQTTEcho] MQTT echo attempting to connect to [MQTT Broker].
...10 23010 [MQTTEcho] MQTT echo connected.
11 23010 [MQTTEcho] MQTT echo test echoing task created.
.12 26011 [MQTTEcho] MQTT Echo demo subscribed to iotdemo/#
13 29012 [MQTTEcho] Echo successfully published 'Hello World 0'
.14 32096 [Echoing] Message returned with ACK: 'Hello World 0 ACK'
.15 37013 [MQTTEcho] Echo successfully published 'Hello World 1'
16 40080 [Echoing] Message returned with ACK: 'Hello World 1 ACK'
.17 45014 [MQTTEcho] Echo successfully published 'Hello World 2'
.18 48091 [Echoing] Message returned with ACK: 'Hello World 2 ACK'
.19 53015 [MQTTEcho] Echo successfully published 'Hello World 3'
.20 56087 [Echoing] Message returned with ACK: 'Hello World 3 ACK'
.21 61016 [MQTTEcho] Echo successfully published 'Hello World 4'
22 64083 [Echoing] Message returned with ACK: 'Hello World 4 ACK'
.23 69017 [MQTTEcho] Echo successfully published 'Hello World 5'
.24 72091 [Echoing] Message returned with ACK: 'Hello World 5 ACK'
.25 77018 [MQTTEcho] Echo successfully published 'Hello World 6'
26 80085 [Echoing] Message returned with ACK: 'Hello World 6 ACK'
.27 85019 [MQTTEcho] Echo successfully published 'Hello World 7'
.28 88086 [Echoing] Message returned with ACK: 'Hello World 7 ACK'
.29 93020 [MQTTEcho] Echo successfully published 'Hello World 8'
.30 96088 [Echoing] Message returned with ACK: 'Hello World 8 ACK'
.31 101021 [MQTTEcho] Echo successfully published 'Hello World 9'
32 104102 [Echoing] Message returned with ACK: 'Hello World 9 ACK'
.33 109022 [MQTTEcho] Echo successfully published 'Hello World 10'
.34 112047 [Echoing] Message returned with ACK: 'Hello World 10 ACK'
.35 117023 [MQTTEcho] Echo successfully published 'Hello World 11'
36 120089 [Echoing] Message returned with ACK: 'Hello World 11 ACK'
.37 122068 [MQTTEcho] MQTT echo demo finished.
38 122068 [MQTTEcho] ----Demo finished----

Getting Started with FreeRTOS 414



FreeRTOS User Guide

Build the FreeRTOS demo with CMake

If you prefer not to use an IDE for FreeRTOS development, you can alternatively use CMake to build 
and run the demo applications or applications that you have developed using third-party code 
editors and debugging tools.

Note

This section covers using CMake on Windows with MingW as the native build system. 
For more information about using CMake with other operating systems and options, see
Using CMake with FreeRTOS. (MinGW  is a minimalist development environment for native 
Microsoft Windows applications.)

To build the FreeRTOS demo with CMake

1. Set up the GNU Arm Embedded Toolchain.

a. Download a Windows version of the toolchain from the Arm Embedded Toolchain 
download page.

Note

We recommend that you download a version other than "8-2018-q4-major", due 
to a bug reported with the “objcopy” utility in that version.

b. Open the downloaded toolchain installer, and follow the installation wizard's instructions 
to install the toolchain.

Important

On the final page of the installation wizard, select Add path to environment 
variable to add the toolchain path to the system path environment variable.

2. Install CMake and MingW.

For instructions, see CMake Prerequisites.

3. Create a folder to contain the generated build files (build-folder).

Getting Started with FreeRTOS 415

https://sourceforge.net/projects/mingw-w64/files/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://bugs.launchpad.net/gcc-arm-embedded/+bug/1810274


FreeRTOS User Guide

4. Change directories to your FreeRTOS download directory (freertos), and use the following 
command to generate the build files:

cmake -DVENDOR=infineon -DBOARD=xmc4800_iotkit -DCOMPILER=arm-gcc -S . -B build-
folder -G "MinGW Makefiles" -DAFR_ENABLE_TESTS=0

5. Change directories to the build directory (build-folder), and use the following command to 
build the binary:

cmake --build . --parallel 8

This command builds the output binary aws_demos.hex to the build directory.

6. Flash and run the image with JLINK.

a. From the build directory (build-folder), use the following commands to create a flash 
script:

echo loadfile aws_demos.hex > flash.jlink

echo r >> flash.jlink

echo g >> flash.jlink

echo q >> flash.jlink

b. Flash the image using the JLNIK executable.

JLINK_PATH\JLink.exe  -device XMC4800-2048 -if SWD -speed auto -CommanderScript 
 flash.jlink

The application logs should be visible through the serial connection that you established 
with the board.

Troubleshooting

If you haven't already, be sure to configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions.
Getting Started with FreeRTOS 416



FreeRTOS User Guide

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting started with the Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the Infineon OPTIGA Trust X Secure 
Element and XMC4800 IoT Connectivity Kit. In comparison to the Getting started with the Infineon 
XMC4800 IoT Connectivity Kit tutorial, this guide shows you how to provide secure credentials 
using an Infineon OPTIGA Trust X Secure Element.

You need the following hardware:

1. Host MCU - Infineon XMC4800 IoT Connectivity Kit, visit the AWS Partner Device Catalog to 
purchase one from our  partner.

2. Security Extension Pack:

• Secure Element - Infineon OPTIGA Trust X.

Visit the AWS Partner Device Catalog to purchase them from our  partner.

• Personalization Board - Infineon OPTIGA Personalisation Board.

• Adapter Board - Infineon MyIoT Adapter.

To follow the steps here, you must open a serial connection with the board to view logging 
and debugging information. (One of the steps requires you to copy a public key from the serial 
debugging output from the board and paste it to a file.) To do this, you need a 3.3V USB/Serial 
converter in addition to the XMC4800 IoT Connectivity Kit. The  JBtek EL-PN-47310126 USB/Serial 
converter is known to work for this demo. You also need three male-to-male jumper wires (for 
receive (RX), transmit (TX), and ground (GND)) to connect the serial cable to the Infineon MyIoT 
Adapter board.

Getting Started with FreeRTOS 417

https://devices.amazonaws.com/detail/a3G0L00000AANsbUAH/XMC4800-IoT-Amazon-FreeRTOS-Connectivity-Kit-WiFi
https://devices.amazonaws.com/detail/a3G0h000000TePnEAK/OPTIGA%E2%84%A2-Trust-X-Security-Solution
https://www.amazon.com/gp/product/B00QT7LQ88
https://www.amazon.com/gp/product/B077N6HFCX/


FreeRTOS User Guide

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. For instructions, see Option #2: onboard private key generation. In this 
tutorial, the path to the FreeRTOS download directory is referred to as freertos.

Overview

This tutorial contains the following steps:

1. Install software on the host machine to develop and debug embedded applications for your 
microcontroller board.

2. Cross-compile a FreeRTOS demo application to a binary image.

3. Load the application binary image to your board, and then run the application.

4. For monitoring and debugging purposes, interact with the application running on your board 
across a serial connection.

Set up your development environment

FreeRTOS uses Infineon's DAVE development environment to program the XMC4800. Before you 
begin, download and install DAVE and some J-Link drivers to communicate with the on-board 
debugger.

Install DAVE

1. Go to Infineon's DAVE software download page.

2. Choose the DAVE package for your operating system and submit your registration information. 
After you register, you should receive a confirmation email with a link to download a .zip file.

3. Download the DAVE package .zip file (DAVE_version_os_date.zip), and unzip it to the 
location where you want to install DAVE (for example, C:\DAVE4).

Note

Some Windows users have reported problems using Windows Explorer to unzip the 
file. We recommend that you use a third-party program such as 7-Zip.

4. To launch DAVE, run the executable file found in the unzipped DAVE_version_os_date.zip
folder.

For more information, see the DAVE Quick Start Guide.

Getting Started with FreeRTOS 418

https://infineoncommunity.com/dave-download_ID645
https://www.infineon.com/dgdl/Infineon-DAVE_Quick_Start-GS-v02_00-EN.pdf?fileId=5546d4624cb7f111014d059f7b8c712d


FreeRTOS User Guide

Install Segger J-Link drivers

To communicate with the XMC4800 IoT Connectivity kit's on-board debugging probe, you need 
the drivers included in the J-Link Software and Documentation pack. You can download the J-Link 
Software and Documentation pack from Segger's J-Link software download page.

Establish a serial connection

Connect the USB/Serial converter cable to the Infineon Shield2Go Adapter. This allows your board 
to send logging and debugging information in a form that you can view on your development 
machine. To set up a serial connection:

1. Connect the RX pin to your USB/Serial converter's TX pin.

2. Connect the TX pin to your USB/Serial converter's RX pin.

3. Connect your serial converter's ground pin to one of the GND pins on your board. The devices 
must share a common ground.

Power is supplied from the USB debugging port, so do not connect your serial adapter's positive 
voltage pin to the board.

Note

Some serial cables use a 5V signaling level. The XMC4800 board and the Wi-Fi Click module 
require a 3.3V. Do not use the board's IOREF jumper to change the board's signals to 5V.

With the cable connected, you can open a serial connection on a terminal emulator such as GNU 
Screen. The baud rate is set to 115200 by default with 8 data bits, no parity, and 1 stop bit.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

Getting Started with FreeRTOS 419

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Build and run the FreeRTOS demo project

Import the FreeRTOS demo into DAVE

1. Start DAVE.

2. In DAVE, choose File, and then choose Import. Expand the Infineon folder, choose DAVE 
Project, and then choose Next.

3. In the Import DAVE Projects window, choose Select Root Directory, choose Browse, and then 
choose the XMC4800 demo project.

In the directory where you unzipped your FreeRTOS download, the demo project is located in
projects/infineon/xmc4800_plus_optiga_trust_x/dave4/aws_demos/dave4.

Make sure that Copy Projects Into Workspace is cleared.

4. Choose Finish.

The aws_demos project should be imported into your workspace and activated.

5. From the Project menu, choose Build Active Project.

Make sure that the project builds without errors.

Run the FreeRTOS demo project

1. From the Project menu, choose Rebuild Active Project to rebuild aws_demos and confirm 
that your configuration changes are picked up.

2. From Project Explorer, right-click aws_demos, choose Debug As, and then choose DAVE C/C+
+ Application.

3. Double-click GDB SEGGER J-Link Debugging to create a debug confirmation. Choose Debug.

4. When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

Getting Started with FreeRTOS 420



FreeRTOS User Guide

At this point, continue with the public key extraction step in Option #2: onboard private key 
generation. After all steps are complete, go to the AWS IoT console. The MQTT client you set up 
previously should display the MQTT messages sent by your device. Through the device's serial 
connection, you should see something like this on the UART output:

0 0 [Tmr Svc] Starting key provisioning...
1 1 [Tmr Svc] Write root certificate...
2 4 [Tmr Svc] Write device private key...
3 82 [Tmr Svc] Write device certificate...
4 86 [Tmr Svc] Key provisioning done...
5 291 [Tmr Svc] Wi-Fi module initialized. Connecting to AP...
.6 8046 [Tmr Svc] Wi-Fi Connected to AP. Creating tasks which use network...
7 8058 [Tmr Svc] IP Address acquired [IP Address]
8 8058 [Tmr Svc] Creating MQTT Echo Task...
9 8059 [MQTTEcho] MQTT echo attempting to connect to [MQTT Broker].
...10 23010 [MQTTEcho] MQTT echo connected.
11 23010 [MQTTEcho] MQTT echo test echoing task created.
.12 26011 [MQTTEcho] MQTT Echo demo subscribed to iotdemo/#
13 29012 [MQTTEcho] Echo successfully published 'Hello World 0'
.14 32096 [Echoing] Message returned with ACK: 'Hello World 0 ACK'
.15 37013 [MQTTEcho] Echo successfully published 'Hello World 1'
16 40080 [Echoing] Message returned with ACK: 'Hello World 1 ACK'
.17 45014 [MQTTEcho] Echo successfully published 'Hello World 2'
.18 48091 [Echoing] Message returned with ACK: 'Hello World 2 ACK'
.19 53015 [MQTTEcho] Echo successfully published 'Hello World 3'
.20 56087 [Echoing] Message returned with ACK: 'Hello World 3 ACK'
.21 61016 [MQTTEcho] Echo successfully published 'Hello World 4'
22 64083 [Echoing] Message returned with ACK: 'Hello World 4 ACK'
.23 69017 [MQTTEcho] Echo successfully published 'Hello World 5'
.24 72091 [Echoing] Message returned with ACK: 'Hello World 5 ACK'
.25 77018 [MQTTEcho] Echo successfully published 'Hello World 6'
26 80085 [Echoing] Message returned with ACK: 'Hello World 6 ACK'
.27 85019 [MQTTEcho] Echo successfully published 'Hello World 7'
.28 88086 [Echoing] Message returned with ACK: 'Hello World 7 ACK'
.29 93020 [MQTTEcho] Echo successfully published 'Hello World 8'
.30 96088 [Echoing] Message returned with ACK: 'Hello World 8 ACK'
.31 101021 [MQTTEcho] Echo successfully published 'Hello World 9'
32 104102 [Echoing] Message returned with ACK: 'Hello World 9 ACK'
.33 109022 [MQTTEcho] Echo successfully published 'Hello World 10'
.34 112047 [Echoing] Message returned with ACK: 'Hello World 10 ACK'
.35 117023 [MQTTEcho] Echo successfully published 'Hello World 11'
36 120089 [Echoing] Message returned with ACK: 'Hello World 11 ACK'
.37 122068 [MQTTEcho] MQTT echo demo finished.

Getting Started with FreeRTOS 421



FreeRTOS User Guide

38 122068 [MQTTEcho] ----Demo finished----

Build the FreeRTOS demo with CMake

This section covers using CMake on Windows with MingW as the native build system. For more 
information about using CMake with other operating systems and options, see Using CMake 
with FreeRTOS. (MinGW  is a minimalist development environment for native Microsoft Windows 
applications.)

If you prefer not to use an IDE for FreeRTOS development, you can use CMake to build and run 
the demo applications or applications that you have developed using third-party code editors and 
debugging tools.

To build the FreeRTOS demo with CMake

1. Set up the GNU Arm Embedded Toolchain.

a. Download a Windows version of the toolchain from the  Arm Embedded Toolchain 
download page.

Note

Due to a bug reported in the objcopy utility, we recommend that you download a 
version other than "8-2018-q4-major."

b. Open the downloaded toolchain installer, and follow the instructions in the wizard.

c. On the final page of the installation wizard, select Add path to environment variable to 
add the toolchain path to the system path environment variable.

2. Install CMake and MingW.

For instructions, see CMake Prerequisites.

3. Create a folder to contain the generated build files (build-folder).

4. Change directories to your FreeRTOS download directory (freertos), and use the following 
command to generate the build files:

cmake -DVENDOR=infineon -DBOARD=xmc4800_plus_optiga_trust_x -DCOMPILER=arm-gcc -S . 
 -B build-folder -G "MinGW Makefiles" -DAFR_ENABLE_TESTS=0

Getting Started with FreeRTOS 422

https://sourceforge.net/projects/mingw-w64/files/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://bugs.launchpad.net/gcc-arm-embedded/+bug/1810274


FreeRTOS User Guide

5. Change directories to the build directory (build-folder), and use the following command to 
build the binary:

cmake --build . --parallel 8

This command builds the output binary aws_demos.hex to the build directory.

6. Flash and run the image with JLINK.

a. From the build directory (build-folder), use the following commands to create a flash 
script:

echo loadfile aws_demos.hex > flash.jlink
echo r >> flash.jlink
echo g >> flash.jlink
echo q >> flash.jlink

b. Flash the image using the JLNIK executable.

JLINK_PATH\JLink.exe  -device XMC4800-2048 -if SWD -speed auto -CommanderScript 
 flash.jlink

The application logs should be visible through the serial connection that you established 
with the board. Continue to the public key extraction step in Option #2: onboard private 
key generation. After all the steps are complete, go to the AWS IoT console. The MQTT 
client you set up previously should display the MQTT messages sent by your device.

Troubleshooting

For general troubleshooting information, see Troubleshooting getting started.

Getting started with the MW32x AWS IoT Starter Kit

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Getting Started with FreeRTOS 423



FreeRTOS User Guide

The AWS IoT Starter Kit is a development kit based on the 88MW320/88MW322, the latest 
integrated Cortex M4 Microcontroller from NXP, that integrates 802.11b/g/n Wi-Fi on a single 
microcontroller chip. The development kit is FCC certified. For more information, see the AWS 
Partner Device Catalog to purchase one from our partner. The 88MW320/88MW322 modules are 
also FCC certified and available for customization and volume sale.

This getting started guide shows you how to cross compile your application together with the SDK 
on a host computer, then load the generated binary file onto the board using the tools provided 
with the SDK. When the application starts running on the board, you can debug or interact with it 
from the Serial console on your host computer.

Ubuntu 16.04 is the host platform supported for development and debugging. You might be able 
to use other platforms, but these are not officially supported. You must have permissions to install 
software on the host platform. The following external tools required to build the SDK:

• Ubuntu 16.04 host platform

• ARM toolchain version 4_9_2015q3

• Eclipse 4.9.0 IDE

The ARM toolchain is required to cross compile your application and the SDK. The SDK takes 
advantage of the latest versions of the toolchain to optimize the image footprint and fit more 
functionality into less space. This guide assumes that you're using version 4_9_2015q3 of the 
toolchain. Using older versions of the toolchain isn't recommended. The development kit is pre-
flashed with Wireless Microcontroller Demo project firmware.

Topics

• Setting up your hardware

• Setting up the development environment

• Build and run the FreeRTOS demo project

• Debugging

• Troubleshooting

Setting up your hardware

Connect the MW32x board to your laptop by using a mini-USB to USB cable. Connect the mini-USB 
cable to the only mini-USB connector present on the board. You don't need a jumper change.

Getting Started with FreeRTOS 424

https://devices.amazonaws.com/detail/a3G0h000000OaRnEAK/MW320-AWS-IoT-Starter-Kit
https://devices.amazonaws.com/detail/a3G0h000000OaRnEAK/MW320-AWS-IoT-Starter-Kit


FreeRTOS User Guide

If the board is connected to a laptop or desktop computer, you don't need an external power 
supply.

This USB connection provides the following:

• Console access to the board. A virtual tty/com port is registered with the development host that 
can be used to access the console.

• JTAG access to the board. This can be used to load or unload firmware images into the RAM or 
flash of the board, or for debugging purposes.

Setting up the development environment

For development purposes, the minimum requirement is the ARM toolchain and the tools bundled 
with the SDK. The following sections provide details on the ARM toolchain setup.

GNU Toolchain

The SDK officially supports the GCC Compiler toolchain. The cross-compiler toolchain for GNU ARM 
is available at GNU Arm Embedded Toolchain 4.9-2015-q3-update.

The build system is configured to use the GNU toolchain by default. The Makefiles assume that 
the GNU compiler toolchain binaries are available on the user's PATH and can be invoked from the 
Makefiles. The Makefiles also assume that the file names of the GNU toolchain binaries are prefixed 
with arm-none-eabi-.

The GCC toolchain can be used with GDB to debug with OpenOCD (bundled with the SDK). This 
provides the software that interfaces with JTAG.

We recommend version 4_9_2015q3 of the gcc-arm-embedded toolchain.

Linux Toolchain Setup Procedure

Follow these steps to set up the GCC toolchain in Linux.

1. Download the toolchain tarball available at GNU Arm Embedded Toolchain 4.9-2015-q3-
update. The file is gcc-arm-none-eabi-4_9-2015q3-20150921-linux.tar.bz2.

2. Copy the file to a directory of your choice. Make sure there are no spaces in the directory 
name.

3. Use the following command to untar the file.

Getting Started with FreeRTOS 425

https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-update
https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-update
https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-update


FreeRTOS User Guide

tar –vxf filename

4. Add the path of the installed toolchain to the system PATH. For example, append the following 
line at the end of the .profile file located in /home/user-name directory.

PATH=$PATH:path to gcc-arm-none-eabit-4_9_2015_q3/bin

Note

Newer distributions of Ubuntu might come with a Debian version of the GCC Cross 
Compiler. If so, you must remove the native Cross Compiler and follow the above setup 
procedure.

Working with a Linux development host

Any modern Linux desktop distribution such as Ubuntu or Fedora can be used. However, we 
recommend that you upgrade to the most recent release. The following steps have been verified to 
work on Ubuntu 16.04 and assume that you're using that version.

Installing Packages

The SDK includes a script to enable quick setup of your development environment on a newly 
setup Linux machine. The script attempts to auto detect the machine type and install the 
appropriate software, including C libraries, USB library, FTDI library, ncurses, python, and latex. 
In this section, the generic directory name amzsdk_bundle-x.y.z indicates the AWS SDK root 
directory. The actual directory name might be different. You must have root privileges.

• Navigate to the amzsdk_bundle-x.y.z/ directory and run this command.

./lib/third_party/mcu_vendor/marvell/WMSDK/mw320/sdk/tools/bin/installpkgs.sh

Avoiding sudo

In this guide, the flashprog operation uses the flashprog.py script to flash the NAND of the 
board, as explained below. Similarly, the ramload operation uses the ramload.py script to copy 

Getting Started with FreeRTOS 426



FreeRTOS User Guide

the firmware image from the host directly to the RAM of the microcontroller, without flashing the 
NAND.

You can configure your Linux development host to perform the flashprog and ramload
operations without requiring the sudo command each time. To do this, run the following 
command.

./lib/third_party/mcu_vendor/marvell/WMSDK/mw320/sdk/tools/bin/perm_fix.sh

Note

You must configure your Linux development host permissions in this way to ensure a 
smooth Eclipse IDE experience.

Setting up the Serial Console

Insert the USB cable into the Linux host USB slot. This triggers the detection of the device. You 
should see messages like the following in the /var/log/messages file, or after executing the
dmesg command.

Jan 6 20:00:51 localhost kernel: usb 4-2: new full speed USB device using uhci_hcd and 
 address 127
Jan 6 20:00:51 localhost kernel: usb 4-2: configuration #1 chosen from 1 choice
Jan 6 20:00:51 localhost kernel: ftdi_sio 4-2:1.0: FTDI USB Serial Device converter 
 detected
Jan 6 20:00:51 localhost kernel: ftdi_sio: Detected FT2232C
Jan 6 20:00:51 localhost kernel: usb 4-2: FTDI USB Serial Device converter now attached 
 to ttyUSB0
Jan 6 20:00:51 localhost kernel: ftdi_sio 4-2:1.1: FTDI USB Serial Device converter 
 detected
Jan 6 20:00:51 localhost kernel: ftdi_sio: Detected FT2232C
Jan 6 20:00:51 localhost kernel: usb 4-2: FTDI USB Serial Device converter now attached 
 to ttyUSB1

Verify that two ttyUSB devices have been created. The second ttyUSB is the serial console. In the 
example above, this is named "ttyUSB1".

In this guide, we use minicom to see the serial console output. You might also use other serial 
programs such as putty. Run the following command to execute minicom in setup mode.

Getting Started with FreeRTOS 427



FreeRTOS User Guide

minicom –s

In minicom, navigate to Serial Port Setup and capture the following settings.

| A - Serial Device : /dev/ttyUSB1
| B – Lockfile Location : /var/lock
| C - Callin Program :
| D - Callout Program :
| E - Bps/Par/Bits : 115200 8N1
| F – Hardware Flow Control : No
| G – Software Flow Control : No

You can save these settings in minicom for future use. The minicom window now shows messages 
from the serial console.

Choose the serial console window and press the Enter key. This displays a hash (#) on the screen.

Note

The development boards include an FTDI silicon device. The FTDI device exposes two USB 
interfaces for the host. The first interface is associated with the JTAG functionality of the 
MCU and the second interface is associated with the physical UARTx port of the MCU.

Installing OpenOCD

OpenOCD is software that provides debugging, in-system programming, and boundary-scan 
testing for embedded target devices.

OpenOCD version 0.9 is required. It's also required for Eclipse functionality. If an earlier version, 
such as version 0.7, was installed on your Linux host, remove that repository with the appropriate 
command for the Linux distribution that you're currently using.

Run the standard Linux command to install OpenOCD,

apt-get install openocd

If the above command doesn't install version 0.9 or later, use the following procedure to download 
and compile the openocd source code.

Getting Started with FreeRTOS 428



FreeRTOS User Guide

To install OpenOCD

1. Run the following command to install libusb-1.0.

sudo apt-get install libusb-1.0 

2. Download the openocd 0.9.0 source code from http://openocd.org/.

3. Extract openocd and navigate to the directory where you extracted it.

4. Configure openocd with the following command.

./configure --enable-ftdi --enable-jlink

5. Run the make utility to compile opencd.

make install

Setting up Eclipse

Note

This section assumes that you have completed the steps in Avoiding sudo

Eclipse is the preferred IDE for application development and debugging. It provides a rich, user-
friendly IDE with integrated debugging support, including thread aware debugging. This section 
describes the common Eclipse setup for all the development hosts that are supported.

To set up Eclipse

1. Download and install the Java Run Time Environment (JRE).

Eclipse requires that you install the JRE. We recommend that you install this first, although it 
can be installed after you install Eclipse. The JRE version (32/64 bit) must match the version 
of Eclipse (32/64 bit). You can download the JRE from Java SE Runtime Environment 8 
Downloads on the Oracle website.

2. Download and install the "Eclipse IDE for C/C++ Developers" from http://www.eclipse.org. 
Eclipse version 4.9.0 or later is supported. The installation only requires you to extract the 
downloaded archive. You run the platform-specific Eclipse executable to start the application.

Getting Started with FreeRTOS 429

http://openocd.org/
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.eclipse.org


FreeRTOS User Guide

Build and run the FreeRTOS demo project

There are two ways to run the FreeRTOS demo project:

• Use the command line.

• Use the Eclipse IDE.

This topic covers both options.

Provisioning

• Depending on whether you use the test or demo application, set the provisioning data in one 
of the following files:

• ./tests/common/include/aws_clientcredential.h

• ./demos/common/include/aws_clientcredential.h

For example:

#define clientcredentialWIFI_SSID "Wi-Fi SSID"
#define clientcredentialWIFI_PASSWORD "Wi-Fi password"
#define clientcredentialWIFI_SECURITY "Wi-Fi security"

Note

You can enter the following Wi-Fi security values:

• eWiFiSecurityOpen

• eWiFiSecurityWEP

• eWiFiSecurityWPA

• eWiFiSecurityWPA2

The SSID and password should be enclosed in double quotes.

Getting Started with FreeRTOS 430



FreeRTOS User Guide

Build and run the FreeRTOS demo using the command line

1. Use the following command to start building the demo application.

cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S .  -Bbuild -
DAFR_ENABLE_TESTS=0

Make sure you get the same output as shown in the following example.

2. Navigate to the build directory.

cd build

3. Run the make utility to build the application.

make all -j4

Getting Started with FreeRTOS 431



FreeRTOS User Guide

Make sure you get the same output as shown in the following figure:

4. Use the following commands to build a test application.

cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S .  -Bbuild -
DAFR_ENABLE_TESTS=1
cd build
make all -j4

Run the cmake command every time you switch between the aws_demos project and the
aws_tests project.

5. Write the firmware image to the flash of the development board. The firmware will execute 
after the development board is reset. You must build the SDK before you flash the image to 
the microcontroller.

a. Before you flash the firmware image, prepare the development board's flash with the 
common components Layout and Boot2. Use the following commands.

cd amzsdk_bundle-x.y.z
./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py -l ./vendors/
marvell/WMSDK/mw320/sdk/tools/OpenOCD/mw300/layout.txt --boot2 ./vendors/
marvell/WMSDK/mw320/boot2/bin/boot2.bin

The flashprog command initiates the following:

Getting Started with FreeRTOS 432



FreeRTOS User Guide

• Layout – The flashprog utility is first instructed to write a layout to the flash. The layout 
is similar to partition information for the flash. The default layout is located at /lib/
third_party/mcu_vendor/marvell/WMSDK/mw320/sdk/tools/OpenOCD/
mw300/layout.txt.

• Boot2 – This is the boot-loader used by the WMSDK. The flashprog command also 
writes a bootloader to the flash. It's the bootloader's job to load the microcontroller's 
firmware image after it's flashed. Make sure you get the same output as shown in the 
figure below.

b. The firmware uses the Wi-Fi chipset for its functionality, and the Wi-Fi chipset has its own 
firmware that must also be present in the flash. You use the flashprog.py utility to 
flash the Wi-Fi firmware in the same way that you did to flash the Boot2 boot-loader and 
the MCU firmware. Use the following commands to flash the Wi-Fi firmware.

cd amzsdk_bundle-x.y.z
./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --wififw ./
vendors/marvell/WMSDK/mw320/wifi-firmware/mw30x/mw30x_uapsta_W14.88.36.p135.bin

Make sure the output of the command is similar to the figure below.

Getting Started with FreeRTOS 433



FreeRTOS User Guide

c. Use the following commands to flash the MCU firmware.

cd amzsdk_bundle-x.y.z  
./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --mcufw build/
cmake/vendors/marvell/mw300_rd/aws_demos.bin -r

d. Reset the board. You should see the logs for the demo app.

e. To run the test app, flash the aws_tests.bin binary located at the same directory.

cd amzsdk_bundle-x.y.z
./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --mcufw build/
cmake/vendors/marvell/mw300_rd/aws_tests.bin -r

Your command output should be similar to the one shown in the figure below.

Getting Started with FreeRTOS 434



FreeRTOS User Guide

6. After you flash the firmware and reset the board, the demo app should start as shown in the 
figure below.

Getting Started with FreeRTOS 435



FreeRTOS User Guide

7. (Optional) As an alternative method to test your image, use the flashprog utility to copy the 
microcontroller image from the host directly into the microcontroller RAM. The image isn't 
copied in the flash, so it will be lost after you reboot the microcontroller.

Loading the firmware image into the SRAM is a faster operation because it launches the 
execution file immediately. This method is used primarily for iterative development.

Use the following commands to load the firmware into the SRAM.

cd amzsdk_bundle-x.y.z
./lib/third_party/mcu_vendor/marvell/WMSDK/mw320/sdk/tools/OpenOCD/ramload.py 
 build/cmake/vendors/marvell/mw300_rd/aws_demos.axf

The command output is shown in the figure below.

Getting Started with FreeRTOS 436



FreeRTOS User Guide

When the command execution is complete, you should see the logs of the demo app.

Build and run the FreeRTOS demo using the Eclipse IDE

1. Before you set up an Eclipse workspace, you must run the cmake command.

Run the following command to work with the aws_demos Eclipse project.

cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S .  -Bbuild -
DAFR_ENABLE_TESTS=0

Run the following command to work with the aws_tests Eclipse project.

cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S .  -Bbuild -
DAFR_ENABLE_TESTS=1

Getting Started with FreeRTOS 437



FreeRTOS User Guide

Tip

Run the cmake command every time you switch between the aws_demos project and 
the aws_tests project.

2. Open Eclipse and, when prompted, choose your Eclipse workspace as shown in the figure 
below.

3. Choose the option to create a Makefile Project: with Existing Code as shown in the figure 
below.

Getting Started with FreeRTOS 438



FreeRTOS User Guide

4. Choose Browse, specify the directory of the existing code, and then choose Finish.

5. In the navigation pane, choose aws_demos in the project explorer. Right-click aws_demos to 
open the menu, then choose Build.

Getting Started with FreeRTOS 439



FreeRTOS User Guide

If the build succeeds, it generates the build/cmake/vendors/marvell/mw300_rd/
aws_demos.bin file.

6. Use the command line tools to flash the Layout file (layout.txt), the Boot2 binary 
(boot2.bin), the MCU firmware binary (aws_demos.bin), and the Wi-Fi firmware.

a. Before you flash the firmware image, prepare the development board's flash with the 
common components, Layout and Boot2. Use the following commands.

cd amzsdk_bundle-x.y.z
./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py -l ./vendors/
marvell/WMSDK/mw320/sdk/tools/OpenOCD/mw300/layout.txt --boot2 ./vendors/
marvell/WMSDK/mw320/boot2/bin/boot2.bin

The flashprog command initiates the following:

• Layout – The flashprog utility is first instructed to write a layout to the flash. The layout 
is similar to partition information for the flash. The default layout is located at /lib/
third_party/mcu_vendor/marvell/WMSDK/mw320/sdk/tools/OpenOCD/
mw300/layout.txt.

Getting Started with FreeRTOS 440



FreeRTOS User Guide

• Boot2 – This is the boot-loader used by the WMSDK. The flashprog command also 
writes a bootloader to the flash. It is the bootloader's job to load the microcontroller's 
firmware image after it is flashed. Make sure you get the same output as shown in the 
figure below.

b. The firmware uses the Wi-Fi chipset for its functionality, and the Wi-Fi chipset has its own 
firmware that must also be present in the flash. You use the flashprog.py utility to 
flash the Wi-Fi firmware in the same way that you did to flash the boot2 boot-loader and 
the MCU firmware. Use the following commands to flash the Wi-Fi firmware.

cd amzsdk_bundle-x.y.z
./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --wififw ./
vendors/marvell/WMSDK/mw320/wifi-firmware/mw30x/mw30x_uapsta_W14.88.36.p135.bin

Make sure the output of the command is similar to the figure below.

Getting Started with FreeRTOS 441



FreeRTOS User Guide

c. Use the following commands to flash the MCU firmware.

cd amzsdk_bundle-x.y.z
./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --mcufw build/
cmake/vendors/marvell/mw300_rd/aws_demos.bin -r

d. Reset the board. You should see the logs for the demo app.

e. To run the test app, flash the aws_tests.bin binary located at the same directory.

cd amzsdk_bundle-x.y.z
./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --mcufw build/
cmake/vendors/marvell/mw300_rd/aws_tests.bin -r

Your command output should be similar to the one shown in the figure below.

Getting Started with FreeRTOS 442



FreeRTOS User Guide

Debugging

• Start Eclipse and choose Help and then choose Install new software. In the Work with
menu, choose All Available Sites. Enter the filter text GDB Hardware. Select the C/C++ GDB 
Hardware Debugging option and install the plugin.

Getting Started with FreeRTOS 443



FreeRTOS User Guide

Troubleshooting

Network issues

Check your network credentials. See "Provisioning" in Build and run the FreeRTOS demo project.

Enabling additional logs

• Enable board specific logs.

Enable calls to wmstdio_init(UART0_ID, 0) in the function prvMiscInitialization
in the main.c file for tests or demos.

• Enabling Wi-Fi logs

Enable the macro CONFIG_WLCMGR_DEBUG in the freertos/vendors/marvell/WMSDK/
mw320/sdk/src/incl/autoconf.h file.

Using GDB

We recommend that you use the arm-none-eabi-gdb and gdb command files packaged 
along with the SDK. Navigate to the directory.

cd freertos/lib/third_party/mcu_vendor/marvell/WMSDK/mw320

Run the following command (on a single line) to connect to GDB.

arm-none-eabi-gdb -x ./sdk/tools/OpenOCD/gdbinit ../../../../../../build/cmake/
vendors/marvell/mw300 _rd/aws_demos.axf

Getting Started with FreeRTOS 444



FreeRTOS User Guide

Getting started with the MediaTek MT7697Hx development kit

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the MediaTek MT7697Hx Development 
Kit. If you do not have the MediaTek MT7697Hx Development Kit, visit the AWS Partner Device 
Catalog to purchase one from our  partner.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.

3. Loading the application binary image to your board, and then running the application.

4. Interacting with the application running on your board across a serial connection, for monitoring 
and debugging purposes.

Set up your development environment

Before you set up your environment, connect your computer to the USB port on the MediaTek 
MT7697Hx Development Kit.

Download and install Keil MDK

You can use the GUI-based Keil Microcontroller Development Kit (MDK) to configure, build, and run 
FreeRTOS projects on your board. Keil MDK includes the μVision IDE and the μVision Debugger.

Getting Started with FreeRTOS 445

https://devices.amazonaws.com/detail/a3G0L00000AAOmPUAX/MT7697Hx-Development-Kit


FreeRTOS User Guide

Note

Keil MDK is supported on Windows 7, Windows 8, and Windows 10 64-bit machines only.

To download and install Keil MDK

1. Go to the Keil MDK Getting Started page, and choose Download MDK-Core.

2. Enter and submit your information to register with Keil.

3. Right-click the MDK executable and save the Keil MDK installer to your computer.

4. Open the Keil MDK installer and follow the steps to completion. Make sure that you install the 
MediaTek device pack (MT76x7 Series).

Establish a serial connection

Connect the board to your host computer with a USB cable. A COM port appears in the Windows 
Device Manager. For debugging, you can open a session to the port with a terminal utility tool such 
as HyperTerminal or TeraTerm.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-nameexample/topic, and then choose Subscribe 
to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Getting Started with FreeRTOS 446

http://www2.keil.com/mdk5/install/
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

Build and run the FreeRTOS demo project with Keil MDK

To build the FreeRTOS demo project in Keil μVision

1. From the Start menu, open Keil μVision 5.

2. Open the projects/mediatek/mt7697hx-dev-kit/uvision/aws_demos/
aws_demos.uvprojx project file.

3. From the menu, choose Project, and then choose Build target.

After the code is built, you see the demo executable file at projects/mediatek/mt7697hx-
dev-kit/uvision/aws_demos/out/Objects/aws_demo.axf.

To run the FreeRTOS demo project

1. Set the MediaTek MT7697Hx Development Kit to PROGRAM mode.

To set the kit to PROGRAM mode, press and hold the PROG button. With the PROG button still 
pressed, press and release the RESET button, and then release the PROG button.

2. From the menu, choose Flash, and then choose Configure Flash Tools.

3. In Options for Target 'aws_demo', choose the Debug tab. Select Use, set the debugger to
CMSIS-DAP Debugger, and then choose OK.

4. From the menu, choose Flash, and then choose Download.

μVision notifies you when the download is complete.

5. Use a terminal utility to open the serial console window. Set the serial port to 115200 bps, 
none-parity, 8-bits, and 1 stop-bit.

6. Choose the RESET button on your MediaTek MT7697Hx Development Kit.

Troubleshooting

Debugging FreeRTOS projects in Keil μVision

Currently, you must edit the MediaTek package that is included with Keil μVision before you can 
debug the FreeRTOS demo project for MediaTek with Keil μVision.

Getting Started with FreeRTOS 447



FreeRTOS User Guide

To edit the MediaTek package for debugging FreeRTOS projects

1. Find and open the Keil_v5\ARM\PACK\.Web\MediaTek.MTx.pdsc file in your Keil MDK 
installation folder.

2. Replace all instances of flag = Read32(0x20000000); with flag = 
Read32(0x0010FBFC);.

3. Replace all instances of Write32(0x20000000, 0x76877697); with
Write32(0x0010FBFC, 0x76877697);.

To start debugging the project

1. From the menu, choose Flash, and then choose Configure Flash Tools.

2. Choose the Target tab, and then choose Read/Write Memory Areas. Confirm that IRAM1 and 
IRAM2 are both selected.

3. Choose the Debug tab, and then choose CMSIS-DAP Debugger.

4. Open vendors/mediatek/boards/mt7697hx-dev-kit/aws_demos/
application_code/main.c, and set the macro MTK_DEBUGGER to 1.

5. Rebuild the demo project in μVision.

6. Set the MediaTek MT7697Hx Development Kit to PROGRAM mode.

To set the kit to PROGRAM mode, press and hold the PROG button. With the PROG button still 
pressed, press and release the RESET button, and then release the PROG button.

7. From the menu, choose Flash, and then choose Download.

μVision notifies you when the download is complete.

8. Press the RESET button on your MediaTek MT7697Hx Development Kit.

9. From the μVision menu, choose Debug, and then choose Start/Stop Debug Session. The Call 
Stack + Locals window opens when you start the debug session.

10. From the menu, choose Debug, and then choose Stop to pause the code execution. The 
program counter stops at the following line:

{ volatile int wait_ice = 1 ; while ( wait_ice ) ; }

11. In the Call Stack + Locals window, change the value for wait_ice to 0.

12. Set breakpoints in your project's source code, and run the code.

Getting Started with FreeRTOS 448



FreeRTOS User Guide

Troubleshooting the IDE debugger settings

If you are having trouble debugging an application, your debugger settings might be incorrect.

To verify that your debugger settings are correct

1. Open Keil μVision.

2. Right-click the aws_demos project, choose Options, and under the Utilities tab, choose
Settings, next to “-- Use Debug Driver --”.

3. Verify that the settings under the Debug tab appear as follows:

4. Verify that the settings under the Flash Download tab appear as follows:

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting Started with FreeRTOS 449



FreeRTOS User Guide

Getting started with the Microchip Curiosity PIC32MZ EF

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Note

In agreement with Microchip, we are removing the Curiosity PIC32MZEF (DM320104) from 
the FreeRTOS Reference Integration repository main branch and will no longer carry it in 
new releases. Microchip has issued an official notice that the PIC32MZEF (DM320104) is 
no longer recommended for new designs. The PIC32MZEF projects and source code can 
still be accessed through the previous release tags. Microchip recommends that customers 
use the Curiosity  PIC32MZ-EF-2.0 Development board (DM320209) for new designs. 
The PIC32MZv1 platform can still be found in v202012.00 of the FreeRTOS Reference 
Integration repository. However, the platform is no longer supported by v202107.00 of the 
FreeRTOS Reference.

This tutorial provides instructions for getting started with the Microchip Curiosity PIC32MZ EF. If 
you do not have the Microchip Curiosity PIC32MZ EF bundle, visit the AWS Partner Device Catalog 
to purchase one from our  partner.

The bundle includes the following items:

• Curiosity PIC32MZ EF Development Board

• MikroElectronika USB UART click Board

• MikroElectronika WiFi 7 click Board

• PIC32 LAN8720 PHY daughter board

You also need the following items for debugging:

• MPLAB Snap In-Circuit Debugger

Getting Started with FreeRTOS 450

https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DM320104
https://devices.amazonaws.com/detail/a3G0h0000077I69EAE/Curiosity-PIC32MZ-EF-2-0-Development-Board
https://github.com/aws/amazon-freertos/tree/202012.00
https://github.com/aws/amazon-freertos/tree/202107.00
https://devices.amazonaws.com/detail/a3G0L00000AANscUAH/Curiosity-PIC32MZ-EF-Amazon-FreeRTOS-Bundle
https://www.microchip.com/Developmenttools/ProductDetails/DM320104
https://www.mikroe.com/usb-uart-click
https://www.mikroe.com/wifi-7-click
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac320004-3
https://www.microchip.com/Developmenttools/ProductDetails/PG164100


FreeRTOS User Guide

• (Optional) PICkit 3 Programming Cable Kit

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions.

Important

• In this topic, the path to the FreeRTOS download directory is referred to as freertos.

• Space characters in the freertos path can cause build failures. When you clone or copy 
the repository, make sure the path that you create doesn't contain space characters.

• The maximum length of a file path on Microsoft Windows is 260 characters. Long 
FreeRTOS download directory paths can cause build failures.

• Because the source code may contain symbolic links, if you're using Windows to extract 
the archive, you may have to:

• Enable  Developer Mode or,

• Use a console that is elevated as administrator.

In this way, Windows can properly create symbolic links when it extracts the archive. 
Otherwise, symbolic links will be written as normal files that contain the paths of the 
symbolic links as text or are empty. For more information, see the blog entry  Symlinks in 
Windows 10!.

If you use Git under Windows, you must enable Developer Mode or you must:

• Set core.symlinks to true with the following command:

git config --global core.symlinks true

• Use a console that is elevated as administrator whenever you use a git command that 
writes to the system (for example, git pull, git clone, and git submodule update --init 
--recursive).

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

Getting Started with FreeRTOS 451

https://www.microchip.com/TPROG001
https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/


FreeRTOS User Guide

2. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.

4. Loading the application binary image to your board, and then running the application.

5. Interacting with the application running on your board across a serial connection, for monitoring 
and debugging purposes.

Set up the Microchip Curiosity PIC32MZ EF hardware

1. Connect the MikroElectronika USB UART click Board to the microBUS 1 connector on the 
Microchip Curiosity PIC32MZ EF.

2. Connect the PIC32 LAN8720 PHY daughter board to the J18 header on the Microchip Curiosity 
PIC32MZ EF.

3. Connect the MikroElectronika USB UART click Board to your computer using a USB A to USB 
mini-B cable.

4. To connect your board to the internet, use one of the following options:

• To use Wi-Fi, connect the MikroElectronika Wi-Fi 7 click Board to the microBUS 2 connector 
on the Microchip Curiosity PIC32MZ EF. See Configuring the FreeRTOS demos.

• To use Ethernet to connect the Microchip Curiosity PIC32MZ EF Board to the internet, 
connect the PIC32 LAN8720 PHY daughter board to the J18 header on the Microchip 
Curiosity PIC32MZ EF. Connect one end of an Ethernet cable to the LAN8720 PHY daughter 
board. Connect the other end to your router or other internet port. You must also define the 
preprocessor macro PIC32_USE_ETHERNET.

5. If not done already, solder the angle connector to the ICSP header on the Microchip Curiosity 
PIC32MZ EF.

6. Connect one end of the ICSP cable from the PICkit 3 Programming Cable Kit to the Microchip 
Curiosity PIC32MZ EF.

If you don't have the PICkit 3 Programming Cable Kit, you can use M-F Dupont wire jumpers to 
wire the connection instead. Note that the white circle signifies the position of Pin 1.

7. Connect the other end of the ICSP cable (or jumpers) to the MPLAB Snap Debugger. Pin 1 of 
the 8-pin SIL Programming Connector is marked by the black triangle on the bottom right of 
the board.

Getting Started with FreeRTOS 452



FreeRTOS User Guide

Make sure that any cabling to Pin 1 on the Microchip Curiosity PIC32MZ EF, signified by the 
white circle, aligns with Pin 1 on the MPLAB Snap Debugger.

For more information about the MPLAB Snap Debugger, see the  MPLAB Snap In-Circuit 
Debugger Information Sheet.

Set up the Microchip Curiosity PIC32MZ EF hardware using PICkit On Board (PKOB)

We recommend that you follow the setup procedure in the previous section. However, you can 
evaluate and run FreeRTOS demos with basic debugging using the integrated PICkit On Board 
(PKOB) programmer/debugger by following these steps.

1. Connect the MikroElectronika USB UART click Board to the microBUS 1 connector on the 
Microchip Curiosity PIC32MZ EF.

2. To connect your board to the internet, do one of the following:

• To use Wi-Fi, connect the MikroElectronika Wi-Fi 7 click Board to the microBUS 2 connector 
on the Microchip Curiosity PIC32MZ EF. (Follow the steps "To configure your Wi-Fi" in
Configuring the FreeRTOS demos.

• To use Ethernet to connect the Microchip Curiosity PIC32MZ EF Board to the internet, 
connect the PIC32 LAN8720 PHY daughter board to the J18 header on the Microchip 
Curiosity PIC32MZ EF. Connect one end of an Ethernet cable to the LAN8720 PHY daughter 
board. Connect the other end to your router or other internet port. You must also define the 
preprocessor macro PIC32_USE_ETHERNET.

3. Connect the USB micro-B port named "USB DEBUG" on the Microchip Curiosity PIC32MZ EF 
Board to your computer using a USB type A to USB micro-B cable.

4. Connect the MikroElectronika USB UART click Board to your computer using a USB A to USB 
mini-B cable.

Set up your development environment

Note

The FreeRTOS project for this device is based on MPLAB Harmony v2. To build the project, 
you need to use versions of the MPLAB tools that are compatible with Harmony v2, like 

Getting Started with FreeRTOS 453

http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20Snap%20In-Circuit%20Debugger%20IS%20DS50002787A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20Snap%20In-Circuit%20Debugger%20IS%20DS50002787A.pdf


FreeRTOS User Guide

v2.10 of the MPLAB XC32 Compiler and versions 2.X.X of the MPLAB Harmony Configurator 
(MHC).

1. Install Python version 3.x or later.

2. Install the MPLAB X IDE:

Note

FreeRTOS AWS Reference Integrations v202007.00 is currently supported on 
MPLabv5.35 only. Prior versions of FreeRTOS AWS Reference Integrations are 
supported on MPLabv5.40.

MPLabv5.35 downloads

• MPLAB X Integrated Development Environment for Windows

• MPLAB X Integrated Development Environment for macOS

• MPLAB X Integrated Development Environment for Linux

Latest MPLab downloads (MPLabv5.40)

• MPLAB X Integrated Development Environment for Windows

• MPLAB X Integrated Development Environment for macOS

• MPLAB X Integrated Development Environment for Linux

3. Install the MPLAB XC32 Compiler:

• MPLAB XC32/32++ Compiler for Windows

• MPLAB XC32/32++ Compiler for macOS

• MPLAB XC32/32++ Compiler for Linux

4. Start up a UART terminal emulator and open a connection with the following settings:

• Baud rate: 115200

• Data: 8 bit

• Parity: None
Getting Started with FreeRTOS 454

https://www.python.org/downloads/
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLABX-v5.35-windows-installer.exe
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLABX-v5.35-osx-installer.dmg
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLABX-v5.35-linux-installer.tar
http://www.microchip.com/mplabx-ide-windows-installer
http://www.microchip.com/mplabx-ide-osx-installer
http://www.microchip.com/mplabx-ide-linux-installer
http://www.microchip.com/mplabxc32windows
http://www.microchip.com/mplabxc32osx
http://www.microchip.com/mplabxc32linux


FreeRTOS User Guide

• Stop bits: 1

• Flow control: None

Monitoring MQTT messages in the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Build and run the FreeRTOS demo project

Open the FreeRTOS demo in the MPLAB IDE

1. Open MPLAB IDE. If you have more than one version of the compiler installed, you need to 
select the compiler that you want to use from within the IDE.

2. From the File menu, choose Open Project.

3. Browse to and open projects/microchip/curiosity_pic32mzef/mplab/aws_demos.

4. Choose Open project.

Note

When you open the project for the first time, you might get an error message about the 
compiler. In the IDE, navigate to Tools, Options, Embedded, and then select the compiler 
that you are using for your project.

To use Ethernet to connect, you must define the preprocessor macro PIC32_USE_ETHERNET.

Getting Started with FreeRTOS 455

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

To use Ethernet to connect using the MPLAB IDE

1. In the MPLAB IDE, right-click the project and choose Properties.

2. In the Project Properties dialog box, choose compiler-name (Global Options) to expand it, 
and then select compiler-name-gcc.

3. For Options categories, choose Preprocessing and messages, and then add the
PIC32_USE_ETHERNET string to Preprocessor macros.

Run the FreeRTOS demo project

1. Rebuild your project.

2. On the Projects tab, right-click the aws_demos top-level folder, and then choose Debug.

3. When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

Build the FreeRTOS demo with CMake

If you prefer not to use an IDE for FreeRTOS development, you can alternatively use CMake to build 
and run the demo applications or applications that you have developed using third-party code 
editors and debugging tools.

To build the FreeRTOS demo with CMake

1. Create a directory to contain the generated build files, such as build-directory.

2. Use the following command to generate build files from source code.

cmake -DVENDOR=microchip -DBOARD=curiosity_pic32mzef -DCOMPILER=xc32 -
DMCHP_HEXMATE_PATH=path/microchip/mplabx/version/mplab_platform/bin  -
DAFR_TOOLCHAIN_PATH=path/microchip/xc32/version/bin -S freertos -B build-folder

Note

You must specify the correct paths to the Hexmate and toolchain binaries, such as the
C:\Program Files (x86)\Microchip\MPLABX\v5.35\mplab_platform\bin
and C:\Program Files\Microchip\xc32\v2.40\bin paths.

3. Change directories to the build directory (build-directory), and then run make from that 
directory.

Getting Started with FreeRTOS 456



FreeRTOS User Guide

For more information, see Using CMake with FreeRTOS.

To use Ethernet to connect, you must define the preprocessor macro PIC32_USE_ETHERNET.

Troubleshooting

For troubleshooting information, see Troubleshooting getting started.

Getting started with the Nordic nRF52840-DK

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the Nordic nRF52840-DK. If you do not 
have the Nordic nRF52840-DK, visit the AWS Partner Device Catalog to purchase one from our
partner.

Before you begin, you need to Set up AWS IoT and Amazon Cognito for FreeRTOS Bluetooth Low 
Energy.

To run the FreeRTOS Bluetooth Low Energy demo, you also need an iOS or Android mobile device 
with Bluetooth and Wi-Fi capabilities.

Note

If you are using an iOS device, you need Xcode to build the demo mobile application. If 
you are using an Android device, you can use Android Studio to build the demo mobile 
application.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

Getting Started with FreeRTOS 457

https://devices.amazonaws.com/detail/a3G0L00000AANtrUAH/nRF52840-Development-Kit


FreeRTOS User Guide

2. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.

4. Loading the application binary image to your board, and then running the application.

5. Interacting with the application running on your board across a serial connection, for monitoring 
and debugging purposes.

Set up the Nordic hardware

Connect your host computer to the USB port labeled J2, located directly above the coin cell battery 
holder on your Nordic nRF52840 board.

For more information about setting up the Nordic nRF52840-DK, see the nRF52840 Development 
Kit User Guide.

Set up your development environment

Download and install Segger Embedded Studio

FreeRTOS supports Segger Embedded Studio as a development environment for the Nordic 
nRF52840-DK.

To set up your environment, you need to download and install Segger Embedded Studio on your 
host computer.

To download and install Segger Embedded Studio

1. Go to the Segger Embedded Studio Downloads page, and choose the Embedded Studio for 
ARM option for your operating system.

2. Run the installer and follow the prompts to completion.

Set up the FreeRTOS Bluetooth Low Energy Mobile SDK demo application

To run the FreeRTOS demo project across Bluetooth Low Energy, you need to run the FreeRTOS 
Bluetooth Low Energy Mobile SDK demo application on your mobile device.

To set up the FreeRTOS Bluetooth Low Energy Mobile SDK Demo application

1. Follow the instructions in Mobile SDKs for FreeRTOS Bluetooth devices to download and install 
the SDK for your mobile platform on your host computer.

Getting Started with FreeRTOS 458

http://infocenter.nordicsemi.com/pdf/nRF52840_DK_User_Guide_v1.2.pdf
http://infocenter.nordicsemi.com/pdf/nRF52840_DK_User_Guide_v1.2.pdf
https://www.segger.com/downloads/embedded-studio/


FreeRTOS User Guide

2. Follow the instructions in FreeRTOS Bluetooth Low Energy Mobile SDK demo application to set 
up the demo mobile application on your mobile device.

Establish a serial connection

Segger Embedded Studio includes a terminal emulator that you can use to receive log messages 
across a serial connection to your board.

To establish a serial connection with Segger Embedded Studio

1. Open Segger Embedded Studio.

2. From the top menu, choose Target, Connect J-Link.

3. From the top menu, choose Tools, Terminal Emulator, Properties, and set the properties as 
instructed in Installing a terminal emulator.

4. From the top menu, choose Tools, Terminal Emulator, Connect port (115200,N,8,1).

Note

The Segger embedded studio terminal emulator does not support an input capability. For 
this, use a terminal emulator like PuTTy, Tera Term, or GNU Screen. Configure the terminal 
to connect to your board by a serial connection as instructed in Installing a terminal 
emulator.

Download and configure FreeRTOS

After you set up your hardware and environment, you can download FreeRTOS.

Download FreeRTOS

To download FreeRTOS for the Nordic nRF52840-DK, go to the FreeRTOS GitHub page and clone 
the repository. See the  README.md file for instructions.

Important

• In this topic, the path to the FreeRTOS download directory is referred to as freertos.

• Space characters in the freertos path can cause build failures. When cloning or copying 
the repository, make sure the path you create does not contain space characters.

Getting Started with FreeRTOS 459

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/main/README.md


FreeRTOS User Guide

• The maximum length of a file path on Microsoft Windows is 260 characters. Long 
FreeRTOS download directory paths can cause build failures.

• Because the source code may contain symbolic links, if you're using Windows to extract 
the archive, you may have to:

• Enable  Developer Mode or,

• Use a console that is elevated as administrator.

In this way, Windows can properly create symbolic links when it extracts the archive. 
Otherwise, symbolic links will be written as normal files that contain the paths of the 
symbolic links as text or are empty. For more information, see the blog entry  Symlinks in 
Windows 10!.

If you use Git under Windows, you must enable Developer Mode or you must:

• Set core.symlinks to true with the following command:

git config --global core.symlinks true

• Use a console that is elevated as administrator whenever you use a git command that 
writes to the system (for example, git pull, git clone, and git submodule update --init 
--recursive).

Configure your project

To enable the demo, you need to configure your project to work with AWS IoT. To configure your 
project to work with AWS IoT, your device must be registered as an AWS IoT thing. You should have 
registered your device when you Set up AWS IoT and Amazon Cognito for FreeRTOS Bluetooth Low 
Energy.

To configure your AWS IoT endpoint

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Settings.

Your AWS IoT endpoint appears in the Device data endpoint text box. It should look like
1234567890123-ats.iot.us-east-1.amazonaws.com. Make a note of this endpoint.

3. In the navigation pane, choose Manage, and then choose Things. Make a note of the AWS IoT 
thing name for your device.

Getting Started with FreeRTOS 460

https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

4. With your AWS IoT endpoint and your AWS IoT thing name on hand, open freertos/demos/
include/aws_clientcredential.h in your IDE, and specify values for the following
#define constants:

• clientcredentialMQTT_BROKER_ENDPOINT Your AWS IoT endpoint

• clientcredentialIOT_THING_NAME Your board's AWS IoT thing name

To enable the demo

1. Check that the Bluetooth Low Energy GATT Demo is enabled. Go to vendors/nordic/
boards/nrf52840-dk/aws_demos/config_files/iot_ble_config.h, and add
#define IOT_BLE_ADD_CUSTOM_SERVICES ( 1 ) to the list of define statements.

2. Open vendors/nordic/boards/nrf52840-dk/aws_demos/config_files/
aws_demo_config.h, and define either
CONFIG_OTA_MQTT_BLE_TRANSPORT_DEMO_ENABLED or
CONFIG_OTA_HTTP_BLE_TRANSPORT_DEMO_ENABLED as in this example.

/* To run a particular demo you need to define one of these. 
 * Only one demo can be configured at a time 
 * 
 *          CONFIG_BLE_GATT_SERVER_DEMO_ENABLED 
 *          CONFIG_MQTT_BLE_TRANSPORT_DEMO_ENABLED 
 *          CONFIG_SHADOW_BLE_TRANSPORT_DEMO_ENABLED 
 *          CONFIG_OTA_MQTT_BLE_TRANSPORT_DEMO_ENABLED 
 *          CONFIG_OTA_HTTP_BLE_TRANSPORT_DEMO_ENABLED 
 *          CONFIG_POSIX_DEMO_ENABLED 
 * 
 *  These defines are used in iot_demo_runner.h for demo selection */

#define CONFIG_OTA_MQTT_BLE_TRANSPORT_DEMO_ENABLED 

3. Since the Nordic chip comes with very little RAM (250KB), the BLE configuration might need 
to be changed to allow for larger GATT table entries compared to the size of each attribute. 
In this way you can adjust the amount of memory the application gets. To do this, override 
the definitions of the following attributes in the file freertos/vendors/nordic/boards/
nrf52840-dk/aws_demos/config_files/sdk_config.h:

• NRF_SDH_BLE_VS_UUID_COUNT

Getting Started with FreeRTOS 461



FreeRTOS User Guide

The number of vendor-specific UUIDs. Increase this count by 1 when you add a new vendor-
specific UUID.

• NRF_SDH_BLE_GATTS_ATTR_TAB_SIZE

Attribute Table size in bytes. The size must be a multiple of 4. This value indicates the set 
amount of memory dedicated for the attribute table (including the characteristic size), so 
this will vary from project to project. If you exceed the size of the attribute table you will 
get a NRF_ERROR_NO_MEM error. If you modify the NRF_SDH_BLE_GATTS_ATTR_TAB_SIZE 
usually you must also reconfigure the RAM settings.

(For tests, the location of the file is freertos/vendors/nordic/boards/nrf52840-dk/
aws_tests/config_files/sdk_config.h.)

Build and run the FreeRTOS demo project

After you download FreeRTOS and configure your demo project, you are ready to build and run the 
demo project on your board.

Important

If this is the first time that you are running the demo on this board, you need to flash a 
bootloader to the board before the demo can run.
To build and flash the bootloader, follow the steps below, but instead of using the
projects/nordic/nrf52840-dk/ses/aws_demos/aws_demos.emProject
project file, use projects/nordic/nrf52840-dk/ses/aws_demos/bootloader/
bootloader.emProject.

To build and run the FreeRTOS Bluetooth Low Energy demo from Segger Embedded Studio

1. Open Segger Embedded Studio. From the top menu, choose File, choose Open Solution, 
and then navigate to the project file projects/nordic/nrf52840-dk/ses/aws_demos/
aws_demos.emProject

2. If you are using the Segger Embedded Studio terminal emulator, choose Tools from the top 
menu, and then choose Terminal Emulator, Terminal Emulator to display information from 
your serial connection.

Getting Started with FreeRTOS 462



FreeRTOS User Guide

If you are using another terminal tool, you can monitor that tool for output from your serial 
connection.

3. Right-click the aws_demos demo project in the Project Explorer, and choose Build.

Note

If this is your first time using Segger Embedded Studio, you might see you a warning 
"No license for commercial use". Segger Embedded Studio can be used free of charge 
for Nordic Semiconductor devices. Request a free license then, during setup choose
Activate Your Free License, and follow the instructions.

4. Choose Debug, and then choose Go.

After the demo starts, it waits to pair with a mobile device across Bluetooth Low Energy.

5. Follow the instructions for the MQTT over Bluetooth Low Energy Demo Application to 
complete the demo with the FreeRTOS Bluetooth Low Energy Mobile SDK demo application as 
the mobile MQTT proxy.

Troubleshooting

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting started with the Nuvoton NuMaker-IoT-M487

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the Nuvoton NuMaker-IoT-M487 
development board. The series microcontroller, and includes built-in RJ45 Ethernet and Wi-Fi 
modules. If you don't have the Nuvoton NuMaker-IoT-M487, visit the AWS Partner Device Catalog
to purchase one from our partner.

Getting Started with FreeRTOS 463

http://license.segger.com/Nordic.cgi
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html#ble-demo-mqtt
https://devices.amazonaws.com/detail/a3G0h000000Tg9cEAC/NuMaker-IoT-M487


FreeRTOS User Guide

Before you begin, you must configure AWS IoT and your FreeRTOS software to connect your 
development board to the AWS Cloud. For instructions, see First steps. In this tutorial, the path to 
the FreeRTOS download directory is referred to as freertos.

Overview

This tutorial guides you through the following steps:

1. Install software on your host machine for developing and debugging embedded applications for 
your microcontroller board.

2. Cross-compile a FreeRTOS demo application to a binary image.

3. Load the application binary image to your board, and then run the application.

Set up your development environment

The Keil MDK Nuvoton edition is designed for developing and debugging applications for Nuvoton 
M487 boards. The Keil MDK v5 Essential, Plus, or Pro version should also work for the Nuvoton 
M487 (Cortex-M4 core) MCU. You can download the Keil MDK Nuvoton edition with a price 
discount for the Nuvoton Cortex-M4 series MCUs. The Keil MDK is only supported on Windows.

To install the development tool for the NuMaker-IoT-M487

1. Download the  Keil MDK Nuvoton Edition from the Keil MDK website.

2. Install the Keil MDK on your host machine using your license. The Keil MDK includes the Keil 
µVision IDE, a C/C++ compilation toolchain, and the µVision debugger.

If you experience issues during installation, contact Nuvoton for assistance.

3. Install the Nu-Link_Keil_Driver_V3.06.7215r (or latest version), which is on the  Nuvoton 
Development Tool page.

Build and run the FreeRTOS demo project

To build the FreeRTOS demo project

1. Open the Keil µVision IDE.

2. On the File menu, choose Open. In the Open file dialog box, make sure the file type selector is 
set to Project Files.

3. Choose either the Wi-Fi or Ethernet demo project to build.

Getting Started with FreeRTOS 464

https://store.developer.arm.com/store/embedded-iot-software-tools/keil-mdk-nuvoton-edition?edition=1164
https://www.nuvoton.com/contact-us
https://www.nuvoton.com/tool-and-software/ide-and-compiler/
https://www.nuvoton.com/tool-and-software/ide-and-compiler/


FreeRTOS User Guide

• To open the Wi-Fi demo project, choose the target project aws_demos.uvproj in the
freertos\projects\nuvoton\numaker_iot_m487_wifi\uvision\aws_demos
directory.

• To open the Ethernet demo project, choose the target project aws_demos_eth.uvproj
in the freertos\projects\nuvoton\numaker_iot_m487_wifi\uvision
\aws_demos_eth directory.

4. To make sure your settings are correct to flash the board, right-click the aws_demo project in 
the IDE, and then choose Options. (See Troubleshooting for more details.)

5. On the Utilities tab, verify that Use Target Driver for Flash Programming is selected, and that
Nuvoton Nu-Link Debugger is set as the target driver.

6. On the Debug tab, next to Nuvoton Nu-Link Debugger, choose Settings.

7. Verify that the Chip Type is set to M480.

8. In the Keil µVision IDE Project navigation pane, choose the aws_demos project. On the Project
menu, choose Build Target.

You can use the MQTT client in the AWS IoT console to monitor the messages that your device 
sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

To run the FreeRTOS demo project

1. Connect your Numaker-IoT-M487 board to your host machine (computer).

2. Rebuild the project.

3. In the Keil µVision IDE, on the Flash menu, choose Download.

4. On the Debug menu, choose Start/Stop Debug Session.

5. When the debugger stops at the breakpoint in main(), open the Run menu, and then choose
Run (F5).

Getting Started with FreeRTOS 465

https://console.aws.amazon.com/iotv2


FreeRTOS User Guide

You should see MQTT messages sent by your device in the MQTT client in the AWS IoT console.

Using CMake with FreeRTOS

You can also use CMake to build and run the FreeRTOS demo applications or applications you have 
developed using third-party code editors and debugging tools.

Make sure you have installed the CMake build system. Follow the instructions in Using CMake with 
FreeRTOS, and then follow the steps in this section.

Note

Be sure the path to the location of the compiler (Keil) is in your Path system variable, for 
example, C:\Keil_v5\ARM\ARMCC\bin.

You can also use the MQTT client in the AWS IoT console to monitor the messages that your device 
sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

To generate build files from source files and run the demo project

1. On your host machine, open the command prompt and navigate to the freertos folder.

2. Create a folder to contain the generated build file. We will refer to this folder as the
BUILD_FOLDER.

3. Generate the build files for either the Wi-Fi or Ethernet demo.

• For Wi-Fi:

Navigate to the directory that contains the source files for the FreeRTOS demo project. Then, 
generate the build files by running the following command.

Getting Started with FreeRTOS 466

https://console.aws.amazon.com/iotv2


FreeRTOS User Guide

cmake -DVENDOR=nuvoton -DBOARD=numaker_iot_m487_wifi -DCOMPILER=arm-keil -S . -
B BUILD_FOLDER -G Ninja 

• For Ethernet:

Navigate to the directory that contains the source files for the FreeRTOS demo project. Then, 
generate the build files by running the following command.

cmake -DVENDOR=nuvoton -DBOARD=numaker_iot_m487_wifi -DCOMPILER=arm-keil -
DAFR_ENABLE_ETH=1 -S . -B BUILD_FOLDER -G Ninja 

4. Generate the binary to flash onto the M487 by running the following command.

cmake --build BUILD_FOLDER 

At this point, the binary file aws_demos.bin should be in the BUILD_FOLDER/vendors/
Nuvoton/boards/numaker_iot_m487_wifi folder.

5. To configure the board for flashing mode, make sure the MSG switch (No.4 of ISW1 on ICE) 
is switched ON. When you plug in the board, a window (and drive) will be assigned. (See
Troubleshooting.)

6. Open a terminal emulator to view the messages over UART. Follow the instructions at
Installing a terminal emulator.

7. Run the demo project by copying the generated binary onto the device.

If you subscribed to the MQTT topic with the AWS IoT MQTT client, you should see MQTT 
messages sent by your device in the AWS IoT console.

Troubleshooting

• If your windows can’t recognize the device VCOM, install the NuMaker windows serial port driver 
from the link Nu-Link USB Driver v1.6.

• If you connect your device to the Keil MDK (IDE) through Nu-Link, make sure the MSG switch 
(No.4 of ISW1 on ICE) is OFF, as shown.

Getting Started with FreeRTOS 467

https://www.nuvoton.com/export/resource-files/Nu-Link_USB_Driver_V1.6.zip


FreeRTOS User Guide

If you experience issues setting up your development environment or connecting to your board, 
contact Nuvoton.

Debugging FreeRTOS projects in Keil μVision

To start a debug session in Keil μVision

1. Open Keil μVision.

2. Follow the steps to build the FreeRTOS demo project in Build and run the FreeRTOS demo 
project.

3. On the Debug menu, choose Start/Stop Debug Session.

The Call Stack + Locals window appears when you start a debug session. μVision flashes the 
demo to the board, runs the demo, and stops at the beginning of the main() function.

Getting Started with FreeRTOS 468

http://www.nuvoton.com/contact-us/


FreeRTOS User Guide

4. Set breakpoints in your project's source code, and then run the code. The project should look 
something like the following.

Troubleshooting μVision debug settings

If you encounter problems while debugging an application, check that your debug settings are set 
correctly in Keil μVision.

To verify that the μVision debug settings are correct

1. Open Keil μVision.

2. Right-click the aws_demo project in the IDE, and then choose Options.

3. On the Utilities tab, verify that Use Target Driver for Flash Programming is selected, and that
Nuvoton Nu-Link Debugger is set as the target driver.

Getting Started with FreeRTOS 469



FreeRTOS User Guide

4. On the Debug tab, next to Nuvoton Nu-Link Debugger, choose Settings.

Getting Started with FreeRTOS 470



FreeRTOS User Guide

5. Verify that the Chip Type is set to M480.

Getting started with the NXP LPC54018 IoT Module

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Getting Started with FreeRTOS 471



FreeRTOS User Guide

This tutorial provides instructions for getting started with the NXP LPC54018 IoT Module. If you do 
not have an NXP LPC54018 IoT Module, visit the AWS Partner Device Catalog to purchase one from 
our partner. Use a USB cable to connect your NXP LPC54018 IoT Module to your computer.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.

4. Loading the application binary image to your board, and then running the application.

Set up the NXP hardware

To set up the NXP LPC54018

• Connect your computer to the USB port on the NXP LPC54018.

To set up the JTAG debugger

You need a JTAG debugger to launch and debug your code running on the NXP LPC54018 board. 
FreeRTOS was tested using an OM40006 IoT Module. For more information about supported 
debuggers, see the User Manual for NXP LPC54018 IoT Module that is available from the  OM40007 
LPC54018 IoT Module product page.

1. If you're using an OM40006 IoT Module debugger, use a converter cable to connect the 20-pin 
connector from the debugger to the 10-pin connector on the NXP IoT module.

2. Connect the NXP LPC54018 and the OM40006 IoT Module Debugger to the USB ports on your 
computer using mini-USB to USB cables.

Getting Started with FreeRTOS 472

https://devices.amazonaws.com/detail/a3G0L00000AANtAUAX/LPC54018-IoT-Solution
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007


FreeRTOS User Guide

Set up your development environment

FreeRTOS supports two IDEs for the NXP LPC54018 IoT Module: IAR Embedded Workbench and 
MCUXpresso.

Before you begin, install one of these IDEs.

To install IAR Embedded Workbench for ARM

1. Browse to  IAR Embedded Workbench for ARM and download the software.

Note

IAR Embedded Workbench for ARM requires Microsoft Windows.

2. Run the installer and follow the prompts.

3. In the License Wizard, choose Register with IAR Systems to get an evaluation license.

4. Put the bootloader on the device before attempting to run any demos.

To install MCUXpresso from NXP

1. Download and run the MCUXpresso installer from NXP.

Note

Versions 10.3.x and later are supported.

2. Browse to MCUXpresso SDK and choose Build your SDK.

Note

Versions 2.5 and later are supported.

3. Choose Select Development Board.

4. Under Select Development Board, in Search by Name, enter LPC54018-IoT-Module.

5. Under Boards, choose LPC54018-IoT-Module.

6. Verify the hardware details, and then choose Build MCUXepresso SDK.

Getting Started with FreeRTOS 473

https://www.iar.com/iar-embedded-workbench/#!?architecture=Arm
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK


FreeRTOS User Guide

7. The SDK for Windows using the MCUXpresso IDE is already built. Choose Download SDK. If 
you are using another operating system, under Host OS, choose your operating system, and 
then choose Download SDK.

8. Start the MCUXpresso IDE, and choose the Installed SDKs tab.

9. Drag and drop the downloaded SDK archive file into the Installed SDKs window.

If you experience issues during installation, see NXP Support or NXP Developer Resources.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Build and run the FreeRTOS Demo project

Import the FreeRTOS demo into your IDE

To import the FreeRTOS sample code into the IAR Embedded Workbench IDE

1. Open IAR Embedded Workbench, and from the File menu, choose Open Workspace.

2. In the search-directory text box, enter projects/nxp/lpc54018iotmodule/iar/
aws_demos, and choose aws_demos.eww.

3. From the Project menu, choose Rebuild All.

To import the FreeRTOS sample code into the MCUXpresso IDE

1. Open MCUXpresso, and from the File menu, choose Open Projects From File System.

Getting Started with FreeRTOS 474

https://www.nxp.com/support/support:SUPPORTHOME?tid=sbmenu
https://www.nxp.com/support/developer-resources:DEVELOPER_HOME
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

2. In the Directory text box, enter projects/nxp/lpc54018iotmodule/mcuxpresso/
aws_demos, and choose Finish

3. From the Project menu, choose Build All.

Run the FreeRTOS demo project

To run the FreeRTOS demo project with the IAR Embedded Workbench IDE

1. In your IDE, from the Project menu, choose Make.

2. From the Project menu, choose Download and Debug.

3. From the Debug menu, choose Start Debugging.

4. When the debugger stops at the breakpoint in main, from the Debug menu, choose Go.

Note

If a J-Link Device Selection dialog box opens, choose OK to continue. In the Target 
Device Settings dialog box, choose Unspecified, choose Cortex-M4, and then choose
OK. You only need to be do this once.

To run the FreeRTOS demo project with the MCUxpresso IDE

1. In your IDE, from the Project menu, choose Build.

2. If this is your first time debugging, choose the aws_demos project and from the Debug
toolbar, choose the blue debug button.

3. Any detected debug probes are displayed. Choose the probe you want to use, and then choose
OK to start debugging.

Note

When the debugger stops at the breakpoint in main(), press the debug restart button

once to reset the debugging session. (This is required due to a bug with MCUXpresso 
debugger for NXP54018-IoT-Module).

4. When the debugger stops at the breakpoint in main(), from the Debug menu, choose Go.

Getting Started with FreeRTOS 475



FreeRTOS User Guide

Troubleshooting

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting started with the Renesas Starter Kit+ for RX65N-2MB

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the Renesas Starter Kit+ for RX65N-2MB. 
If you do not have the Renesas RSK+ for RX65N-2MB, visit the AWS Partner Device Catalog, and 
purchase one from our  partners.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.

4. Loading the application binary image to your board, and then running the application.

Set up the Renesas hardware

To set up the RSK+ for RX65N-2MB

1. Connect the positive +5V power adapter to the PWR connector on the RSK+ for RX65N-2MB.

Getting Started with FreeRTOS 476

https://devices.amazonaws.com/detail/a3G0L00000AAOkeUAH/Renesas-Starter-Kit+-for-RX65N-2MB


FreeRTOS User Guide

2. Connect your computer to the USB2.0 FS port on the RSK+ for RX65N-2MB.

3. Connect your computer to the USB-to-serial port on the RSK+ for RX65N-2MB.

4. Connect a router or internet-connected Ethernet port to the Ethernet port on the RSK+ for 
RX65N-2MB.

To set up the E2 Lite Debugger module

1. Use the 14-pin ribbon cable to connect the E2 Lite Debugger module to the ‘E1/E2 Lite’ port 
on the RSK+ for RX65N-2MB.

2. Use a USB cable to connect the E2 Lite debugger module to your host machine. When the E2 
Lite debugger is connected to both the board and your computer, a green ‘ACT’ LED on the 
debugger flashes.

3. After the debugger is connected to your host machine and RSK+ for RX65N-2MB, the E2 Lite 
debugger drivers begin installing.

Note that administrator privileges are required to install the drivers.

Getting Started with FreeRTOS 477



FreeRTOS User Guide

Set up your development environment

To set up FreeRTOS configurations for the RSK+ for RX65N-2MB, use the Renesas e2studio IDE and 
CC-RX compiler.

Note

The Renesas e2studio IDE and CC-RX compiler are only supported on Windows 7, 8, and 10 
operating systems.

To download and install e2studio

1. Go to the  Renesas e2studio installer download page, and download the offline installer.

Getting Started with FreeRTOS 478

https://www.renesas.com/us/en/document/uid/e-studio-2020-10-installer-offline-installer


FreeRTOS User Guide

2. You are directed to a Renesas Login page.

If you have an account with Renesas, enter your sign-in credentials and then choose Login.

If you do not have an account, choose Register now, and follow the first registration steps. 
You should receive an email with a link to activate your Renesas account. Follow this link to 
complete your registration with Renesas, and then log in to Renesas.

3. After you log in, download the e2studio installer to your computer.

4. Open the installer and follow the steps to completion.

For more information, see the  e2studio on the Renesas website.

To download and install the RX Family C/C++ Compiler Package

1. Go to the  RX Family C/C++ Compiler Package download page, and download the V3.00.00 
package.

2. Open the executable and install the compiler.

For more information, see the C/C++ Compiler Package for RX Family on the Renesas website.

Note

The compiler is available free for evaluation version only and valid for 60 days. On the 61st 
day, you need to get a License Key. For more information, see Evaluation Software Tools.

Build and run FreeRTOS samples

Now that you have configured the demo project, you are ready to build and run the project on your 
board.

Build the FreeRTOS Demo in e2studio

To import and build the demo in e2studio

1. Launch e2studio from the Start menu.

2. On the Select a directory as a workspace window, browse to the folder that you want to work 
in, and choose Launch.

Getting Started with FreeRTOS 479

https://www.renesas.com/us/en/products/software-tools/tools/ide/e2studio.html#productInfo
https://www.renesas.com/us/en/document/esw/rx-family-cc-compiler-package-v3-without-ide-v30000
https://www.renesas.com/us/en/products/software-tools/tools/compiler-assembler/compiler-package-for-rx-family.html#productInfo
https://www.renesas.com/us/en/products/software-tools/evaluation-software-tools.html


FreeRTOS User Guide

3. The first time you open e2studio, the Toolchain Registry window opens. Choose Renesas 
Toolchains, and confirm that CC-RX v3.00.00 is selected. Choose Register, and then choose
OK.

4. If you are opening e2studio for the first time, the Code Generator Registration window 
appears. Choose OK.

5. The Code Generator COM component register window appears. Under Please restart 
e2studio to use Code Generator, choose OK.

6. The Restart e2studio window appears. Choose OK.

7. e2studio restarts. On the Select a directory as a workspace window, choose Launch.

8. On the e2studio welcome screen, choose the Go to the e2studio workbench arrow icon.

9. Right-click the Project Explorer window, and choose Import.

10. In the import wizard, choose General, Existing Projects into Workspace, and then choose
Next.

11. Choose Browse, locate the directory projects/renesas/rx65n-rsk/e2studio/
aws_demos, and then choose Finish.

12. From Project menu, choose Project, Build All.

The build console issues a warning message that the License Manager is not installed. You can 
ignore this message unless you have a license key for the CC-RX compiler. To install the License 
Manager, see the License Manager download page.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Getting Started with FreeRTOS 480

https://www.renesas.com/us/en/document/swr/license-manager-v20301
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

Run the FreeRTOS project

To run the project in e2studio

1. Confirm that you have connected the E2 Lite Debugger module to your RSK+ for RX65N-2MB

2. From the top menu, choose Run, Debug Configuration.

3. Expand Renesas GDB Hardware Debugging, and choose aws_demos HardwareDebug.

4. Choose the Debugger tab, and then choose the Connection Settings tab. Confirm that your 
connection settings are correct.

5. Choose Debug to download the code to your board and begin debugging.

You might be prompted by a firewall warning for e2-server-gdb.exe. Check Private 
networks, such as my home or work network, and then choose Allow access.

6. e2studio might ask to change to Renesas Debug Perspective. Choose Yes.

The green 'ACT' LED on the E2 Lite Debugger illuminates.

7. After the code is downloaded to the board, choose Resume to run the code up to the first line 
of the main function. Choose Resume again to run the rest of the code.

For the latest projects released by Renesas, see the renesas-rx fork of the amazon-freertos
repository on GitHub.

Troubleshooting

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting started with the STMicroelectronics STM32L4 Discovery Kit IoT Node

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Getting Started with FreeRTOS 481

https://github.com/renesas-rx/amazon-freertos


FreeRTOS User Guide

This tutorial provides instructions for getting started with the STMicroelectronics STM32L4 
Discovery Kit IoT Node. If you do not already have the STMicroelectronics STM32L4 Discovery Kit 
IoT Node, visit the AWS Partner Device Catalog to purchase one from our partner.

Make sure you have installed the latest Wi-Fi firmware. To download the latest Wi-Fi firmware, see
STM32L4 Discovery kit IoT node, low-power wireless, Bluetooth Low Energy, NFC, SubGHz, Wi-Fi. 
Under Binary Resources, choose Inventek ISM 43362 Wi-Fi module firmware update (read the 
readme file for instructions) .

Before you begin, you must configure AWS IoT, your FreeRTOS download, and Wi-Fi to connect 
your device to the AWS Cloud. See First steps for instructions . In this tutorial, the path to the 
FreeRTOS download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.

3. Loading the application binary image to your board, and then running the application.

Set up your development environment

Install System Workbench for STM32

1. Browse to OpenSTM32.org.

2. Register on the OpenSTM32 webpage. You need to sign in to download System Workbench.

3. Browse to the System Workbench for STM32 installer to download and install System 
Workbench.

If you experience issues during installation, see the FAQs on the System Workbench website.

Build and run the FreeRTOS demo project

Import the FreeRTOS demo into the STM32 System Workbench

1. Open the STM32 System Workbench and enter a name for a new workspace.

Getting Started with FreeRTOS 482

https://devices.amazonaws.com/detail/a3G0L00000AANsWUAX/STM32L4-Discovery-Kit-IoT-Node
https://www.st.com/resource/en/utilities/inventek_fw_updater.zip
http://www.openstm32.org/HomePage
http://www.openstm32.org/System%2BWorkbench%2Bfor%2BSTM32
http://www.openstm32.org/HomePage


FreeRTOS User Guide

2. From the File menu, choose Import. Expand General, choose Existing Projects into 
Workspace, and then choose Next.

3. In Select Root Directory, enter projects/st/stm32l475_discovery/ac6/aws_demos.

4. The project aws_demos should be selected by default.

5. Choose Finish to import the project into STM32 System Workbench.

6. From the Project menu, choose Build All. Confirm the project compiles without any errors.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Run the FreeRTOS demo project

1. Use a USB cable to connect your STMicroelectronics STM32L4 Discovery Kit IoT Node to your 
computer. (Check the manufacturer's documentation that came with your board for the correct 
USB port to use.)

2. From Project Explorer, right-click aws_demos, choose Debug As, and then choose Ac6 STM32 
C/C++ Application.

If a debug error occurs the first time a debug session is launched, follow these steps:

1. In STM32 System Workbench, from the Run menu, choose Debug Configurations.

2. Choose aws_demos Debug. (You might need to expand Ac6 STM32 Debugging.)

3. Choose the Debugger tab.

4. In Configuration Script, choose Show Generator Options.

Getting Started with FreeRTOS 483

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

5. In Mode Setup, set Reset Mode to Software System Reset. Choose Apply, and then choose
Debug.

3. When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

Using CMake with FreeRTOS

If you prefer not to use an IDE for FreeRTOS development, you can alternatively use CMake to build 
and run the demo applications or applications that you have developed using third-party code 
editors and debugging tools.

First create a folder to contain the generated build files (build-folder).

Use the following command to generate build files:

cmake -DVENDOR=st -DBOARD=stm32l475_discovery -DCOMPILER=arm-gcc -S freertos -B build-
folder

If arm-none-eabi-gcc is not in your shell path, you also need to set the AFR_TOOLCHAIN_PATH
CMake variable. For example:

-D AFR_TOOLCHAIN_PATH=/home/user/opt/gcc-arm-none-eabi/bin

For more information about using CMake with FreeRTOS, see Using CMake with FreeRTOS.

Troubleshooting

If you see the following in the UART output from the demo application, you need to update the Wi-
Fi module’s firmware:

[Tmr Svc] WiFi firmware version is: xxxxxxxxxxxxx
[Tmr Svc] [WARN] WiFi firmware needs to be updated.

To download the latest Wi-Fi firmware, see STM32L4 Discovery kit IoT node, low-power wireless, 
Bluetooth Low Energy, NFC, SubGHz, Wi-Fi. In Binary Resources, choose the download link for
Inventek ISM 43362 Wi-Fi module firmware update.

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting Started with FreeRTOS 484

https://www.st.com/resource/en/utilities/inventek_fw_updater.zip
https://www.st.com/resource/en/utilities/inventek_fw_updater.zip


FreeRTOS User Guide

Getting started with the Texas Instruments CC3220SF-LAUNCHXL

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial provides instructions for getting started with the Texas Instruments CC3220SF-
LAUNCHXL. If you do not have the Texas Instruments (TI) CC3220SF-LAUNCHXL Development Kit, 
visit the AWS Partner Device Catalog to purchase one from our  partner.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.

3. Loading the application binary image to your board, and then running the application.

Set up your development environment

Follow the steps below to set up your development environment to get started with FreeRTOS.

Note that FreeRTOS supports two IDEs for the TI CC3220SF-LAUNCHXL Development Kit: Code 
Composer Studio and IAR Embedded Workbench version 8.32. You can use either IDE to get 
started.

Install Code Composer Studio

1. Browse to TI Code Composer Studio.

2. Download the offline installer for the platform of your host machine (Windows, macOS, or 
Linux 64-bit).

Getting Started with FreeRTOS 485

https://devices.amazonaws.com/detail/a3G0L00000AANtaUAH/SimpleLink-Wi-Fi%C2%AE-CC3220SF-Wireless-Microcontroller-LaunchPad-Development-Kit
http://processors.wiki.ti.com/index.php/Download_CCS


FreeRTOS User Guide

3. Unzip and run the offline installer. Follow the prompts.

4. For Product Families to Install, choose SimpleLink Wi-Fi CC32xx Wireless MCUs.

5. On the next page, accept the default settings for debugging probes, and then choose Finish.

If you experience issues when you are installing Code Composer Studio, see TI Development Tools 
Support, Code Composer Studio FAQs, and Troubleshooting CCS.

Install IAR Embedded Workbench

1. Download and run the  Windows installer for version 8.32 of the IAR Embedded Workbench for 
ARM. In Debug probe drivers, make sure that TI XDS is selected.

2. Complete the installation and launch the program. On the License Wizard page, choose
Register with IAR Systems to get an evaluation license, or use your own IAR license.

Install the SimpleLink CC3220 SDK

Install the SimpleLink CC3220 SDK. The SimpleLink Wi-Fi CC3220 SDK contains drivers for the 
CC3220SF programmable MCU, more than 40 sample applications, and documentation required to 
use the samples.

Install Uniflash

Install Uniflash. CCS Uniflash is a standalone tool used to program on-chip flash memory on TI 
MCUs. Uniflash has a GUI, command line, and scripting interface.

Install the latest service pack

1. On your TI CC3220SF-LAUNCHXL, place the SOP jumper on the middle set of pins (position = 
1) and reset the board.

2. Start Uniflash. If your CC3220SF LaunchPad board appears under Detected Devices, choose
Start. If your board is not detected, choose CC3220SF-LAUNCHXL from the list of boards 
under New Configuration, and then choose Start Image Creator.

3. Choose New Project.

4. On the Start new project page, enter a name for your project. For Device Type, choose
CC3220SF. For Device Mode, choose Develop, and then choose Create Project.

5. On the right side of the Uniflash application window, choose Connect.

6. From the left column, choose Advanced, Files, and then Service Pack.

Getting Started with FreeRTOS 486

http://software-dl.ti.com/ccs/esd/documents/ccs_support.html
http://software-dl.ti.com/ccs/esd/documents/ccs_support.html
http://processors.wiki.ti.com/index.php/FAQ_-_CCS
http://processors.wiki.ti.com/index.php/Troubleshooting_CCSv7
http://netstorage.iar.com/SuppDB/Protected/PRODUPD/013570/EWARM-CD-8322-19423.exe
http://www.ti.com/tool/SIMPLELINK-CC3220-SDK
http://www.ti.com/tool/UNIFLASH


FreeRTOS User Guide

7. Choose Browse, and then navigate to where you installed the CC3220SF SimpleLink SDK. The 
service pack is located at ti/simplelink_cc32xx_sdk_VERSION/tools/cc32xx_tools/
servicepack-cc3x20/sp_VERSION.bin.

8. Choose the Burn

( ) 
button, and then choose Program Image (Create & Program) to install the service pack. 
Remember to switch the SOP jumper back to position 0 and reset the board.

Configure Wi-Fi provisioning

To configure the Wi-Fi settings for your board, do one of the following:

• Configure the FreeRTOS demo application described in Configuring the FreeRTOS demos.

• Use SmartConfig from Texas Instruments.

Build and run the FreeRTOS demo project

Build and run the FreeRTOS demo project in TI Code Composer

To import the FreeRTOS demo into TI Code Composer

1. Open TI Code Composer, and choose OK to accept the default workspace name.

2. On the Getting Started page, choose Import Project.

3. In Select search-directory, enter projects/ti/cc3220_launchpad/ccs/aws_demos. 
The project aws_demos should be selected by default. To import the project into TI Code 
Composer, choose Finish.

4. In Project Explorer, double-click aws_demos to make the project active.

5. From Project, choose Build Project to make sure the project compiles without errors or 
warnings.

To run the FreeRTOS demo in TI Code Composer

1. Make sure the Sense On Power (SOP) jumper on your Texas Instruments CC3220SF-LAUNCHXL 
is in position 0. For more information, see SimpleLink Wi-Fi CC3x20, CC3x3x Network Processor 
User's Guide.

Getting Started with FreeRTOS 487

http://dev.ti.com/tirex/#/?link=Software%2FSimpleLink%20CC32xx%20SDK%2FSimpleLink%20Academy%2FWi-Fi%2FWi-Fi%20Provisioning
http://www.ti.com/lit/swru455
http://www.ti.com/lit/swru455


FreeRTOS User Guide

2. Use a USB cable to connect your Texas Instruments CC3220SF-LAUNCHXL to your computer.

3. In the project explorer, make sure the CC3220SF.ccxml is selected as the active target 
configuration. To make it active, right-click the file and choose Set as active target 
configuration.

4. In TI Code Composer, from Run, choose Debug.

5. When the debugger stops at the breakpoint in main(), go to the Run menu, and choose
Resume.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Build and run FreeRTOS demo project in IAR Embedded Workbench

To import the FreeRTOS demo into IAR Embedded Workbench

1. Open IAR Embedded Workbench, choose File, and then choose Open Workspace.

2. Navigate to projects/ti/cc3220_launchpad/iar/aws_demos, choose aws_demos.eww, 
and then choose OK.

3. Right-click the project name (aws_demos), and then choose Make.

To run the FreeRTOS demo in IAR Embedded Workbench

1. Make sure the Sense On Power (SOP) jumper on your Texas Instruments CC3220SF-LAUNCHXL 
is in position 0. For more information, see SimpleLink Wi-Fi CC3x20, CC3x3x Network Processor 
User's Guide.

Getting Started with FreeRTOS 488

https://console.aws.amazon.com/iotv2/
http://www.ti.com/lit/swru455
http://www.ti.com/lit/swru455


FreeRTOS User Guide

2. Use a USB cable to connect your Texas Instruments CC3220SF-LAUNCHXL to your computer.

3. Rebuild your project.

To rebuild the project, from the Project menu, choose Make.

4. From the Project menu, choose Download and Debug. You can ignore "Warning: Failed to 
initialize EnergyTrace," if it's displayed. For more information about EnergyTrace, see MSP 
EnergyTrace Technology.

5. When the debugger stops at the breakpoint in main(), go to the Debug menu, and choose
Go.

Using CMake with FreeRTOS

If you prefer not to use an IDE for FreeRTOS development, you can alternatively use CMake to build 
and run the demo applications or applications that you have developed using third-party code 
editors and debugging tools.

To build the FreeRTOS demo with CMake

1. Create a folder to contain the generated build files (build-folder).

2. Make sure your search path ($PATH environment variable) contains the folder where the TI 
CGT compiler binary is located (for example C:\ti\ccs910\ccs\tools\compiler\ti-
cgt-arm_18.12.2.LTS\bin).

If you are using the TI ARM compiler with your TI board, use the following command to 
generate build files from source code:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S freertos -B build-
folder

For more information, see Using CMake with FreeRTOS.

Troubleshooting

If you don’t see messages in the MQTT client of the AWS IoT console, you might need to configure 
debug settings for the board.

Getting Started with FreeRTOS 489

http://www.ti.com/tool/energytrace?jktype=recommendedresults
http://www.ti.com/tool/energytrace?jktype=recommendedresults


FreeRTOS User Guide

To configure debug settings for TI boards

1. In Code Composer, on Project Explorer, choose aws_demos.

2. From the Run menu, choose Debug Configurations.

3. In the navigation pane, choose aws_demos.

4. On the Target tab, under Connection Options, choose Reset the target on a connect.

5. Choose Apply, and then choose Close.

If these steps don’t work, look at the program's output in the serial terminal. You should see some 
text that indicates the source of the problem.

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Getting started with the Windows Device Simulator

This tutorial provides instructions for getting started with the FreeRTOS Windows Device 
Simulator.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

FreeRTOS is released as a zip file that contains the FreeRTOS libraries and sample applications for 
the platform you specify. To run the samples on a Windows machine, download the libraries and 
samples ported to run on Windows. This set of files is referred to as the FreeRTOS simulator for 
Windows.

Note

This tutorial cannot be successfully run on Amazon EC2 Windows instances.

Set up your development environment

1. Install the latest version of Npcap. Select the "WinPcap API-compatible mode" during 
installation.

2. Install Microsoft Visual Studio.

Getting Started with FreeRTOS 490

https://npcap.com/
https://www.visualstudio.com/downloads


FreeRTOS User Guide

Visual Studio versions 2017 and 2019 are known to work. All editions of these Visual Studio 
versions are supported (Community, Professional, or Enterprise).

In addition to the IDE, install the Desktop development with C++ component.

Install the latest Windows 10 SDK. You can choose this under the Optional section of the
Desktop development with C++ component.

3. Make sure that you have an active hard-wired Ethernet connection.

4. (Optional) If you would like to use the CMake-based build system to build your FreeRTOS 
projects, install the latest version of CMake. FreeRTOS requires CMake version 3.13 or later.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

When the demo project successfully runs on your device you see "Hello World!" sent multiple times 
to the topic that you subscribed to.

Build and run the FreeRTOS demo project

You can use Visual Studio or CMake to build FreeRTOS projects.

Building and running the FreeRTOS demo project with the Visual Studio IDE

1. Load the project into Visual Studio.

In Visual Studio, from the File menu, choose Open. Choose File/Solution, navigate to the
projects/pc/windows/visual_studio/aws_demos/aws_demos.sln file, and then 
choose Open.

2. Retarget the demo project.

Getting Started with FreeRTOS 491

https://cmake.org/download/
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

The provided demo project depends on the Windows SDK, but it does not have a Windows SDK 
version specified. By default, the IDE might attempt to build the demo with an SDK version 
not present on your machine. To set the Windows SDK version, right-click on aws_demos and 
then choose Retarget Projects. This opens the Review Solution Actions window. Choose a 
Windows SDK version that is present on your machine (the initial value in the dropdown is 
fine), and then choose OK.

3. Build and run the project.

From the Build menu, choose Build Solution, and make sure the solution builds without errors 
or warnings. Choose Debug, Start Debugging to run the project. On the first run, you must
select a network interface.

Building and running the FreeRTOS demo project with CMake

We recommend that you use the CMake GUI instead of the CMake command line tool to build the 
demo project for the Windows Simulator.

After you install CMake, open the CMake GUI. On Windows, you can find this from the Start menu 
under CMake, CMake (cmake-gui).

1. Set the FreeRTOS source code directory.

In the GUI, set the FreeRTOS source code directory (freertos) for Where is the source code.

Set freertos/build for Where to build the binaries.

2. Configure the CMake Project.

In the CMake GUI, choose Add Entry, and on the Add Cache Entry window, set the following 
values:

Name

AFR_BOARD

Type

STRING

Value

pc.windows

Getting Started with FreeRTOS 492



FreeRTOS User Guide

Description

(Optional)

3. Choose Configure. If CMake prompts you to create the build directory, choose Yes, and then 
select a generator under Specify the generator for this project. We recommend using Visual 
Studio as the generator, but Ninja is also supported. (Note that when using Visual Studio 2019, 
the platform should be set to Win32 instead of its default setting.) Keep the other generator 
options unchanged and choose Finish.

4. Generate and Open the CMake Project.

After you have configured the project, the CMake GUI shows all options available for the 
generated project. For the purposes of this tutorial, you can leave the options at their default 
values.

Choose Generate to create a Visual Studio solution, and then choose Open Project to open 
the project in Visual Studio.

In Visual Studio, right-click the aws_demos project and choose Set as StartUp Project. This 
enables you to build and run the project. On the first run, you must select a network interface.

For more information about using CMake with FreeRTOS, see Using CMake with FreeRTOS.

Configure your network interface

On the first run of the demo project, you must select the network interface to use. The program 
counts your network interfaces. Find the number for your hard-wired Ethernet interface. The 
output should look like this:

0 0 [None] FreeRTOS_IPInit
1 0 [None] vTaskStartScheduler
1. rpcap://\Device\NPF_{AD01B877-A0C1-4F33-8256-EE1F4480B70D}
(Network adapter 'Intel(R) Ethernet Connection (4) I219-LM' on local host)

2. rpcap://\Device\NPF_{337F7AF9-2520-4667-8EFF-2B575A98B580}
(Network adapter 'Microsoft' on local host)

The interface that will be opened is set by "configNETWORK_INTERFACE_TO_USE", which
should be defined in FreeRTOSConfig.h

ERROR:  configNETWORK_INTERFACE_TO_USE is set to 0, which is an invalid value.

Getting Started with FreeRTOS 493



FreeRTOS User Guide

Please set configNETWORK_INTERFACE_TO_USE to one of the interface numbers listed above,
then re-compile and re-start the application.  Only Ethernet (as opposed to Wi-Fi)
interfaces are supported.

After you have identified the number for your hard-wired Ethernet interface, close the application 
window. In the previous example, the number to use is 1.

Open FreeRTOSConfig.h and set configNETWORK_INTERFACE_TO_USE to the number that 
corresponds to your hard-wired network interface.

Important

Only Ethernet interfaces are supported. Wi-Fi isn't supported.

Troubleshooting

Troubleshooting common problems on Windows

You might run into the following error when trying to build the demo project with Visual Studio:

Error "The Windows SDK version X.Y was not found" when building the provided Visual 
 Studio solution.

The project must be targeted to a Windows SDK version present on your computer.

For general troubleshooting information about getting started with FreeRTOS, see Troubleshooting 
getting started.

Getting started with the Xilinx Avnet MicroZed Industrial IoT Kit

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Getting Started with FreeRTOS 494



FreeRTOS User Guide

This tutorial provides instructions for getting started with the Xilinx Avnet MicroZed Industrial IoT 
Kit. If you do not have the Xilinx Avnet MicroZed Industrial IoT Kit, visit the AWS Partner Device 
Catalog to purchase one from our partner.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your 
device to the AWS Cloud. See First steps for instructions. In this tutorial, the path to the FreeRTOS 
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications 
for your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.

4. Loading the application binary image to your board, and then running the application.

Set up the MicroZed hardware

The following diagram might be helpful when you set up the MicroZed hardware:

Getting Started with FreeRTOS 495

https://devices.amazonaws.com/detail/a3G0L00000AANtqUAH/MicroZed-IIoT-Bundle-with-Amazon-FreeRTOS


FreeRTOS User Guide

To set up the MicroZed board

1. Connect your computer to the USB-UART port on your MicroZed board.

2. Connect your computer to the JTAG Access port on your MicroZed board.

3. Connect a router or internet-connected Ethernet port to the Ethernet and USB-Host port on 
your MicroZed board.

Set up your development environment

To set up FreeRTOS configurations for the MicroZed kit, you must use the Xilinx Software 
Development Kit (XSDK). XSDK is supported on Windows and Linux.

Download and install XSDK

To install Xilinx software, you need a free Xilinx account.

To download the XSDK

1. Go to the  Software Development Kit Standalone WebInstall Client download page.

2. Choose the option appropriate for your operating system.

3. You are directed to a Xilinx sign-in page.

If you have an account with Xilinx, enter your sign-in credentials and then choose Sign in.

If you do not have an account, choose Create your account. After you register, you should 
receive an email with a link to activate your Xilinx account.

4. On the Name and Address Verification page, enter your information and then choose Next. 
The download should be ready to start.

5. Save the Xilinx_SDK_version_os file.

To install the XSDK

1. Open the Xilinx_SDK_version_os file.

2. In Select Edition to Install, choose Xilinx Software Development Kit (XSDK) and then choose
Next.

3. On the following page of the installation wizard, under Installation Options, select Install 
Cable Drivers and then choose Next.

Getting Started with FreeRTOS 496

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2019-1.html


FreeRTOS User Guide

If your computer does not detect the MicroZed's USB-UART connection, install the CP210x USB-
to-UART Bridge VCP drivers manually. For instructions, see the Silicon Labs CP210x USB-to-UART 
Installation Guide.

For more information about XSDK, see the Getting Started with Xilinx SDK on the Xilink website.

Monitoring MQTT messages on the cloud

Before you run the FreeRTOS demo project, you can set up the MQTT client in the AWS IoT console 
to monitor the messages that your device sends to the AWS Cloud.

To subscribe to the MQTT topic with the AWS IoT MQTT client

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter your-thing-name/example/topic, and then choose
Subscribe to topic.

Build and run the FreeRTOS demo project

Open the FreeRTOS demo in the XSDK IDE

1. Launch the XSDK IDE with the workspace directory set to freertos/projects/xilinx/
microzed/xsdk.

2. Close the welcome page. From the menu, choose Project, and then clear Build Automatically.

3. From the menu, choose File, and then choose Import.

4. On the Select page, expand General, choose Existing Projects into Workspace, and then 
choose Next.

5. On the Import Projects page, choose Select root directory, and then enter the root directory 
of your demo project: freertos/projects/xilinx/microzed/xsdk/aws_demos. To 
browse for the directory, choose Browse.

After you specify a root directory, the projects in that directory appear on the Import Projects
page. All available projects are selected by default.

Getting Started with FreeRTOS 497

https://www.xilinx.com/support/documentation/boards_and_kits/install/ug1033-cp210x-usb-uart-install.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/install/ug1033-cp210x-usb-uart-install.pdf
https://www.xilinx.com/html_docs/xilinx2018_2/SDK_Doc/index.html
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

Note

If you see a warning at the top of the Import Projects page ("Some projects cannot be 
imported because they already exist in the workspace.") you can ignore it.

6. With all of the projects selected, choose Finish.

7. If you don't see the aws_bsp, fsbl, and MicroZed_hw_platform_0 projects in the projects 
pane, repeat the previous steps starting from #3 but with the root directory set to freertos/
vendors/xilinx, and import aws_bsp, fsbl, and MicroZed_hw_platform_0.

8. From the menu, choose Window, and then choose Preferences.

9. In the navigation pane, expand Run/Debug, choose String Substitution, and then choose
New.

10. In New String Substitution Variable, for Name, enter AFR_ROOT. For Value, enter the root 
path of the freertos/projects/xilinx/microzed/xsdk/aws_demos. Choose OK, and 
then choose OK to save the variable and close Preferences.

Build the FreeRTOS demo project

1. In the XSDK IDE, from the menu, choose Project, and then choose Clean.

2. In Clean, leave the options at their default values, and then choose OK. XSDK cleans and 
builds all of the projects, and then generates .elf files.

Note

To build all projects without cleaning them, choose Project, and then choose Build All.
To build individual projects, select the project you want to build, choose Project, and 
then choose Build Project.

Generate the boot image for the FreeRTOS demo project

1. In the XSDK IDE, right-click aws_demos, and then choose Create Boot Image.

2. In Create Boot Image, choose Create new BIF file.

3. Next to Output BIF file path, choose Browse, and then choose aws_demos.bif located at
<freertos>/vendors/xilinx/microzed/aws_demos/aws_demos.bif.

Getting Started with FreeRTOS 498



FreeRTOS User Guide

4. Choose Add.

5. On Add new boot image partition, next to File path, choose Browse, and then choose
fsbl.elf, located at vendors/xilinx/fsbl/Debug/fsbl.elf.

6. For the Partition type, choose bootloader, and then choose OK.

7. On Create Boot Image, choose Create Image. On Override Files, choose OK to overwrite the 
existing aws_demos.bif and generate the BOOT.bin file at projects/xilinx/microzed/
xsdk/aws_demos/BOOT.bin.

JTAG debugging

1. Set your MicroZed board's boot mode jumpers to the JTAG boot mode.

2. Insert your MicroSD card into the MicroSD card slot located directly under the USB-UART port.

Note

Before you debug, be sure to back up any content that you have on the MicroSD card.

Your board should look similar to the following:

Getting Started with FreeRTOS 499



FreeRTOS User Guide

Getting Started with FreeRTOS 500



FreeRTOS User Guide

3. In the XSDK IDE, right-click aws_demos, choose Debug As, and then choose 1 Launch on 
System Hardware (System Debugger).

4. When the debugger stops at the breakpoint in main(), from the menu, choose Run, and then 
choose Resume.

Note

The first time you run the application, a new certificate-key pair is imported 
into non-volatile memory. For subsequent runs, you can comment out
vDevModeKeyProvisioning() in the main.c file before you rebuild the images and 
the BOOT.bin file. This prevents the copying of the certificates and key to storage on 
every run.

You can opt to boot your MicroZed board from a MicroSD card or from QSPI flash to run the 
FreeRTOS demo project. For instructions, see Generate the boot image for the FreeRTOS demo 
project and Run the FreeRTOS demo project.

Run the FreeRTOS demo project

To run the FreeRTOS demo project, you can boot your MicroZed board from a MicroSD card or from 
QSPI flash.

As you set up your MicroZed board for running the FreeRTOS demo project, refer to the diagram 
in Set up the MicroZed hardware. Make sure that you have connected your MicroZed board to your 
computer.

Boot the FreeRTOS project from a MicroSD card

Format the MicroSD card that is provided with the Xilinx MicroZed Industrial IoT Kit.

1. Copy the BOOT.bin file to the MicroSD card.

2. Insert the card into the MicroSD card slot directly under the USB-UART port.

3. Set the MicroZed boot mode jumpers to SD boot mode.

Getting Started with FreeRTOS 501



FreeRTOS User Guide

4. Press the RST button to reset the device and start booting the application. You can also unplug 
the USB-UART cable from the USB-UART port, and then reinsert the cable.

Boot the FreeRTOS demo project from QSPI flash

1. Set your MicroZed board's boot mode jumpers to the JTAG boot mode.

2. Verify that your computer is connected to the USB-UART and JTAG Access ports. The green 
Power Good LED light should be illuminated.

3. In the XSDK IDE, from the menu, choose Xilinx, and then choose Program Flash.

4. In Program Flash Memory, the hardware platform should be filled in automatically. For
Connection, choose your MicroZed hardware server to connect your board with your host 
computer.

Note

If you are using the Xilinx Smart Lync JTAG cable, you must create a hardware server in 
XSDK IDE. Choose New, and then define your server.

5. In Image File, enter the directory path to your BOOT.bin image file. Choose Browse to browse 
for the file instead.

6. In Offset, enter 0x0.

7. In FSBL File, enter the directory path to your fsbl.elf file. Choose Browse to browse for the 
file instead.

8. Choose Program to program your board.

9. After the QSPI programming is complete, remove the USB-UART cable to power off the board.

10. Set your MicroZed board's boot mode jumpers to the QSPI boot mode.

11. Insert your card into the MicroSD card slot located directly under the USB-UART port.

Getting Started with FreeRTOS 502



FreeRTOS User Guide

Note

Be sure to back up any content that you have on the MicroSD card.

12. Press the RST button to reset the device and start booting the application. You can also unplug 
the USB-UART cable from the USB-UART port, and then reinsert the cable.

Troubleshooting

If you encounter build errors that are related to incorrect paths, try to clean and rebuild the project, 
as described in Build the FreeRTOS demo project.

If you are using Windows, make sure that you use forward slashes when you set the string 
substitution variables in the Windows XSDK IDE.

For general troubleshooting information about Getting Started with FreeRTOS, see
Troubleshooting getting started.

Next steps with FreeRTOS

Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend 
that you start here when you create a new project. If you already have an existing FreeRTOS 
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

After you build, flash, and run the FreeRTOS demo project for your board, you can visit the 
FreeRTOS.org website to learn more about  Creating a New FreeRTOS Project. There are also demos 
for many FreeRTOS libraries that show how to perform important tasks, interact with AWS IoT 
services, and program board-specific capabilities (such as cellular modems). For more information, 
see the FreeRTOS Library Categories page.

The FreeRTOS.org website also has in-depth information on  the FreeRTOS Kernel as well as 
fundamental real-time operating system concepts. For more information, see the FreeRTOS Kernel 
Developer Docs and FreeRTOS Kernel Secondary Docs pages.

Getting Started with FreeRTOS 503

https://www.freertos.org/Creating-a-new-FreeRTOS-project.html
https://www.freertos.org/libraries/categories.html
https://www.freertos.org/RTOS.html
https://www.freertos.org/features.html
https://www.freertos.org/features.html
https://www.freertos.org/kernel/secondarydocs.html


FreeRTOS User Guide

FreeRTOS Over-the-Air Updates

Note

See AWS IoT Over-the-Air (OTA) on the FreeRTOS website for recent information on 
performing Over-the-air (OTA) updates.

Over-the-air (OTA) updates allow you to deploy firmware updates to one or more devices in your 
fleet. Although OTA updates were designed to update device firmware, you can use them to send 
any files to one or more devices registered with AWS IoT. When you send updates over the air, we 
recommend that you digitally sign them so that the devices that receive the files can verify they 
haven't been tampered with en route.

You can use Code Signing for AWS IoT to sign your files, or you can sign your files with your own 
code-signing tools.

When you create an OTA update, the OTA Update Manager service creates an AWS IoT job to notify 
your devices that an update is available. The OTA demo application runs on your device and creates 
a FreeRTOS task that subscribes to notification topics for AWS IoT jobs and listens for update 
messages. When an update is available, the OTA Agent publishes requests to AWS IoT and receives 
updates using the HTTP or MQTT protocol, depending on the settings you chose. The OTA Agent 
checks the digital signature of the downloaded files and, if the files are valid, installs the firmware 
update. If you don't use the FreeRTOS OTA Update demo application, you must integrate the AWS 
IoT Over the air (OTA) library into your own application to get the firmware update capability.

FreeRTOS over-the-air updates make it possible for you to:

• Digitally sign firmware before deployment.

• Deploy new firmware images to a single device, a group of devices, or your entire fleet.

• Deploy firmware to devices as they are added to groups, reset, or reprovisioned.

• Verify the authenticity and integrity of new firmware after it's deployed to devices.

• Monitor the progress of a deployment.

• Debug a failed deployment.

Over-the-Air Updates 504

https://www.freertos.org/ota/index.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html


FreeRTOS User Guide

Tagging OTA resources

To help you manage your OTA resources, you can optionally assign your own metadata to updates 
and streams in the form of tags. Tags make it possible for you to categorize your AWS IoT resources 
in different ways (for example, by purpose, owner, or environment). This is useful when you have 
many resources of the same type. You can quickly identify a resource based on the tags you've 
assigned to it.

For more information, see Tagging Your AWS IoT Resources.

OTA update prerequisites

To use over-the-air (OTA) updates, do the following:

• Check the Prerequisites for OTA updates using HTTP or the Prerequisites for OTA updates using 
MQTT.

• Create an Amazon S3 bucket to store your update.

• Create an OTA Update service role.

• Create an OTA user policy.

• Create a code-signing certificate.

• If you are using Code Signing for AWS IoT, Grant access to code signing for AWS IoT.

• Download FreeRTOS with the OTA library.

Create an Amazon S3 bucket to store your update

OTA update files are stored in Amazon S3 buckets.

If you're using Code Signing for AWS IoT, the command that you use to create a code-signing job 
takes a source bucket (where the unsigned firmware image is located) and a destination bucket 
(where the signed firmware image is written). You can specify the same bucket for the source and 
destination. The file names are changed to GUIDs so the original files are not overwritten.

To create an Amazon S3 bucket

1. Sign in to the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. Enter a bucket name.

Over-the-Air Updates 505

https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot.html
https://console.aws.amazon.com/s3/


FreeRTOS User Guide

4. Under Bucket settings for Block Public Access keep Block all public access selected to accept 
the default permissions.

5. Under Bucket Versioning, select Enable to keep all versions in the same bucket.

6. Choose Create bucket.

For more information about Amazon S3, see Amazon Simple Storage Service User Guide.

Create an OTA Update service role

The OTA Update service assumes this role to create and manage OTA update jobs on your behalf.

To create an OTA service role

1. Sign in to the https://console.aws.amazon.com/iam/.

2. From the navigation pane, choose Roles.

3. Choose Create role.

4. Under Select type of trusted entity, choose AWS Service.

5. Choose IoT from the list of AWS services.

6. Under Select your use case, choose IoT.

7. Choose Next: Permissions.

8. Choose Next: Tags.

9. Choose Next: Review.

10. Enter a role name and description, and then choose Create role.

For more information about IAM roles, see IAM Roles.

Important

To address the confused deputy security issue, you must follow instructions in the AWS IoT 
Core guide.

To add OTA update permissions to your OTA service role

1. In the search box on the IAM console page, enter the name of your role, and then choose it 
from the list.

Over-the-Air Updates 506

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/iot/latest/developerguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/iot/latest/developerguide/cross-service-confused-deputy-prevention.html


FreeRTOS User Guide

2. Choose Attach policies.

3. In the Search box, enter "AmazonFreeRTOSOTAUpdate", select AmazonFreeRTOSOTAUpdate
from the list of filtered policies, and then choose Attach policy to attach the policy to your 
service role.

To add the required IAM permissions to your OTA service role

1. In the search box on the IAM console page, enter the name of your role, and then choose it 
from the list.

2. Choose Add inline policy.

3. Choose the JSON tab.

4. Copy and paste the following policy document into the text box:

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
      { 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetRole", 
                "iam:PassRole" 
            ], 
            "Resource": "arn:aws:iam::your_account_id:role/your_role_name" 
      } 
    ]
}

Make sure that you replace your_account_id with your AWS account ID, and
your_role_name with the name of the OTA service role.

5. Choose Review policy.

6. Enter a name for the policy, and then choose Create policy.

Over-the-Air Updates 507



FreeRTOS User Guide

Note

The following procedure isn't required if your Amazon S3 bucket name begins with "afr-
ota". If it does, the AWS managed policy AmazonFreeRTOSOTAUpdate already includes the 
required permissions.

To add the required Amazon S3 permissions to your OTA service role

1. In the search box on the IAM console page, enter the name of your role, and then choose it 
from the list.

2. Choose Add inline policy.

3. Choose the JSON tab.

4. Copy and paste the following policy document into the box.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "s3:GetObjectVersion", 
                "s3:GetObject", 
                "s3:PutObject" 
            ], 
            "Resource": [ 
                "arn:aws:s3:::example-bucket/*" 
            ] 
        } 
    ]
}

This policy grants your OTA service role permission to read Amazon S3 objects. Make sure that 
you replace example-bucket with the name of your bucket.

5. Choose Review policy.

6. Enter a name for the policy, and then choose Create policy.

Over-the-Air Updates 508



FreeRTOS User Guide

Create an OTA user policy

You must grant your user permission to perform over-the-air updates. Your user must have 
permissions to:

• Access the S3 bucket where your firmware updates are stored.

• Access certificates stored in AWS Certificate Manager.

• Access the AWS IoT MQTT-based file delivery feature.

• Access FreeRTOS OTA updates.

• Access AWS IoT jobs.

• Access IAM.

• Access Code Signing for AWS IoT. See Grant access to code signing for AWS IoT.

• List FreeRTOS hardware platforms.

• Tag and untag AWS IoT resources.

To grant your user the required permissions, see IAM Policies. Also see Authorizing users and cloud 
services to use AWS IoT Jobs.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM 
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party 
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM 
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the 
instructions in Adding permissions to a user (console) in the IAM User Guide.

Over-the-Air Updates 509

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/iam-policy-users-jobs.html
https://docs.aws.amazon.com/iot/latest/developerguide/iam-policy-users-jobs.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


FreeRTOS User Guide

Create a code-signing certificate

To digitally sign firmware images, you need a code-signing certificate and private key. For testing 
purposes, you can create a self‐signed certificate and private key. For production environments, 
purchase a certificate through a well‐known certificate authority (CA).

Different platforms require different types of code-signing certificates. The following sections 
describe how to create code-signing certificates for different FreeRTOS-qualified platforms.

Topics

• Creating a code-signing certificate for the Texas Instruments CC3220SF-LAUNCHXL

• Creating a code-signing certificate for the Espressif ESP32

• Creating a code-signing certificate for the Nordic nrf52840-dk

• Creating a code-signing certificate for the FreeRTOS Windows simulator

• Creating a code-signing certificate for custom hardware

Creating a code-signing certificate for the Texas Instruments CC3220SF-LAUNCHXL

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

The SimpleLink Wi-Fi CC3220SF Wireless Microcontroller Launchpad Development Kit supports 
two certificate chains for firmware code signing:

• Production (certificate-catalog)

To use the production certificate chain, you must purchase a commercial code-signing certificate 
and use the TI Uniflash tool to set the board to production mode.

• Testing and development (certificate-playground)

The playground certificate chain allows you to try out OTA updates with a self‐signed code-
signing certificate.

Over-the-Air Updates 510

http://www.ti.com/tool/UNIFLASH


FreeRTOS User Guide

Use the AWS Command Line Interface to import your code-signing certificate, private key, and 
certificate chain into AWS Certificate Manager. For more information see  Installing the AWS CLI in 
the AWS Command Line Interface User Guide.

Download and install the latest version of SimpleLink CC3220 SDK. By default, the files you need 
are located here:

C:\ti\simplelink_cc32xx_sdk_version\tools\cc32xx_tools\certificate-
playground (Windows)

/Applications/Ti/simplelink_cc32xx_version/tools/cc32xx_tools/certificate-
playground (macOS)

The certificates in the SimpleLink CC3220 SDK are in DER format. To create a self‐signed code-
signing certificate, you must convert them to PEM format.

Follow these steps to create a code-signing certificate that is linked to the Texas Instruments 
playground certificate hierarchy and meets AWS Certificate Manager and Code Signing for AWS IoT 
criteria.

Note

To create a code signing certificate, install  OpenSSL on your machine. After you install 
OpenSSL, make sure that openssl is assigned to the OpenSSL executable in your 
command prompt or terminal environment.

To create a self‐signed code signing certificate

1. Open a command prompt or terminal with administrator permissions.

2. In your working directory, use the following text to create a file named cert_config.txt. 
Replace test_signer@amazon.com with your email address.

[ req ]
prompt             = no
distinguished_name = my dn

[ my dn ]
commonName = test_signer@amazon.com

Over-the-Air Updates 511

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
http://www.ti.com/tool/download/SIMPLELINK-CC3220-SDK
https://www.openssl.org/


FreeRTOS User Guide

[ my_exts ]
keyUsage         = digitalSignature
extendedKeyUsage = codeSigning

3. Create a private key and certificate signing request (CSR):

openssl req -config cert_config.txt -extensions my_exts -nodes -days 365 -newkey 
 rsa:2048 -keyout tisigner.key -out tisigner.csr

4. Convert the Texas Instruments playground root CA private key from DER format to PEM 
format.

The TI playground root CA private key is located here:

C:\ti\simplelink_cc32xx_sdk_version\tools\cc32xx_tools\certificate-
playground\dummy-root-ca-cert-key (Windows)

/Applications/Ti/simplelink_cc32xx_sdk_version/tools/cc32xx_tools/
certificate-playground/dummy-root-ca-cert-key (macOS)

openssl rsa -inform DER -in dummy-root-ca-cert-key -out dummy-root-ca-cert-key.pem

5. Convert the Texas Instruments playground root CA certificate from DER format to PEM format.

The TI playground root certificate is located here:

C:\ti\simplelink_cc32xx_sdk_version\tools\cc32xx_tools\certificate-
playground/dummy-root-ca-cert (Windows)

/Applications/Ti/simplelink_cc32xx_sdk_version/tools/cc32xx_tools/
certificate-playground/dummy-root-ca-cert (macOS)

openssl x509 -inform DER -in dummy-root-ca-cert -out dummy-root-ca-cert.pem

6. Sign the CSR with the Texas Instruments root CA:

openssl x509 -extfile cert_config.txt -extensions my_exts  -req -days 365 -in 
 tisigner.csr -CA dummy-root-ca-cert.pem -CAkey dummy-root-ca-cert-key.pem -
set_serial 01 -out tisigner.crt.pem -sha1

7. Convert your code-signing certificate (tisigner.crt.pem) to DER format:

Over-the-Air Updates 512



FreeRTOS User Guide

openssl x509 -in tisigner.crt.pem -out tisigner.crt.der -outform DER

Note

You write the tisigner.crt.der certificate onto the TI development board later.

8. Import the code-signing certificate, private key, and certificate chain into AWS Certificate 
Manager:

aws acm import-certificate --certificate fileb://tisigner.crt.pem --private-key 
 fileb://tisigner.key --certificate-chain fileb://dummy-root-ca-cert.pem

This command displays an ARN for your certificate. You need this ARN when you create an OTA 
update job.

Note

This step is written with the assumption that you are going to use Code Signing for 
AWS IoT to sign your firmware images. Although the use of Code Signing for AWS IoT 
is recommended, you can sign your firmware images manually.

Creating a code-signing certificate for the Espressif ESP32

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

The Espressif ESP32 boards support a self-signed SHA-256 with ECDSA code-signing certificate.

Over-the-Air Updates 513



FreeRTOS User Guide

Note

To create a code signing certificate, install  OpenSSL on your machine. After you install 
OpenSSL, make sure that openssl is assigned to the OpenSSL executable in your 
command prompt or terminal environment.
Use the AWS Command Line Interface to import your code-signing certificate, private key, 
and certificate chain into AWS Certificate Manager. For information about installing the 
AWS CLI, see Installing the AWS CLI.

1. In your working directory, use the following text to create a file named cert_config.txt. 
Replace test_signer@amazon.com with your email address:

[ req ]
prompt             = no
distinguished_name = my_dn 
                     
[ my_dn ]
commonName = test_signer@amazon.com 
                     
[ my_exts ]
keyUsage         = digitalSignature
extendedKeyUsage = codeSigning

2. Create an ECDSA code-signing private key:

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt 
 ec_param_enc:named_curve -outform PEM -out ecdsasigner.key

3. Create an ECDSA code-signing certificate:

openssl req -new -x509 -config cert_config.txt -extensions my_exts -nodes -days 365 
 -key ecdsasigner.key -out ecdsasigner.crt

4. Import the code-signing certificate, private key, and certificate chain into AWS Certificate 
Manager:

aws acm import-certificate --certificate fileb://ecdsasigner.crt --private-key 
 fileb://ecdsasigner.key

Over-the-Air Updates 514

https://www.openssl.org/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html


FreeRTOS User Guide

This command displays an ARN for your certificate. You need this ARN when you create an OTA 
update job.

Note

This step is written with the assumption that you are going to use Code Signing for 
AWS IoT to sign your firmware images. Although the use of Code Signing for AWS IoT 
is recommended, you can sign your firmware images manually.

Creating a code-signing certificate for the Nordic nrf52840-dk

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

The Nordic nrf52840-dk supports a self-signed SHA256 with ECDSA code-signing certificate.

Note

To create a code signing certificate, install OpenSSL on your machine. After you install 
OpenSSL, make sure that openssl is assigned to the OpenSSL executable in your 
command prompt or terminal environment.
Use the AWS Command Line Interface to import your code-signing certificate, private key, 
and certificate chain into AWS Certificate Manager. For information about installing the 
AWS CLI, see Installing the AWS CLI.

1. In your working directory, use the following text to create a file named cert_config.txt. 
Replace test_signer@amazon.com with your email address:

[ req ]
prompt             = no
distinguished_name = my_dn 

Over-the-Air Updates 515

https://www.openssl.org/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html


FreeRTOS User Guide

                    
[ my_dn ]
commonName = test_signer@amazon.com 
                     
[ my_exts ]
keyUsage         = digitalSignature
extendedKeyUsage = codeSigning

2. Create an ECDSA code-signing private key:

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt 
 ec_param_enc:named_curve -outform PEM -out ecdsasigner.key

3. Create an ECDSA code-signing certificate:

openssl req -new -x509 -config cert_config.txt -extensions my_exts -nodes -days 365 
 -key ecdsasigner.key -out ecdsasigner.crt

4. Import the code-signing certificate, private key, and certificate chain into AWS Certificate 
Manager:

aws acm import-certificate --certificate fileb://ecdsasigner.crt --private-key 
 fileb://ecdsasigner.key

This command displays an ARN for your certificate. You need this ARN when you create an OTA 
update job.

Note

This step is written with the assumption that you are going to use Code Signing for 
AWS IoT to sign your firmware images. Although the use of Code Signing for AWS IoT 
is recommended, you can sign your firmware images manually.

Creating a code-signing certificate for the FreeRTOS Windows simulator

The FreeRTOS Windows simulator requires a code-signing certificate with an ECDSA P-256 key and 
SHA-256 hash to perform OTA updates. If you don't have a code-signing certificate, follow these 
steps to create one.

Over-the-Air Updates 516



FreeRTOS User Guide

Note

To create a code-signing certificate, install  OpenSSL on your machine. After you install 
OpenSSL, make sure that openssl is assigned to the OpenSSL executable in your 
command prompt or terminal environment.
Use the AWS Command Line Interface to import your code-signing certificate, private key, 
and certificate chain into AWS Certificate Manager. For information about installing the 
AWS CLI, see Installing the AWS CLI.

1. In your working directory, use the following text to create a file named cert_config.txt. 
Replace test_signer@amazon.com with your email address:

[ req ]
prompt             = no
distinguished_name = my_dn 
                     
[ my_dn ]
commonName = test_signer@amazon.com 
                     
[ my_exts ]
keyUsage         = digitalSignature
extendedKeyUsage = codeSigning

2. Create an ECDSA code-signing private key:

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt 
 ec_param_enc:named_curve -outform PEM -out ecdsasigner.key

3. Create an ECDSA code-signing certificate:

openssl req -new -x509 -config cert_config.txt -extensions my_exts -nodes -days 365 
 -key ecdsasigner.key -out ecdsasigner.crt

4. Import the code-signing certificate, private key, and certificate chain into AWS Certificate 
Manager:

aws acm import-certificate --certificate fileb://ecdsasigner.crt --private-key 
 fileb://ecdsasigner.key

Over-the-Air Updates 517

https://www.openssl.org/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html


FreeRTOS User Guide

This command displays an ARN for your certificate. You need this ARN when you create an OTA 
update job.

Note

This step is written with the assumption that you are going to use Code Signing for 
AWS IoT to sign your firmware images. Although the use of Code Signing for AWS IoT 
is recommended, you can sign your firmware images manually.

Creating a code-signing certificate for custom hardware

Using an appropriate toolset, create a self-signed certificate and private key for your hardware.

Use the AWS Command Line Interface to import your code-signing certificate, private key, and 
certificate chain into AWS Certificate Manager. For information about installing the AWS CLI, see 
Installing the AWS CLI.

After you create your code-signing certificate, you can use the AWS CLI to import it into ACM:

aws acm import-certificate --certificate fileb://code-sign.crt --private-key fileb://
code-sign.key

The output from this command displays an ARN for your certificate. You need this ARN when you 
create an OTA update job.

ACM requires certificates to use specific algorithms and key sizes. For more information, see
Prerequisites for Importing Certificates. For more information about ACM, see Importing 
Certificates into AWS Certificate Manager.

You must copy, paste, and format the contents of your code-signing certificate into the
vendors/vendor/boards/board/aws_demos/config_files/ota_demo_config.h file that 
is part of the FreeRTOS code you download later.

Grant access to code signing for AWS IoT

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Over-the-Air Updates 518

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate-prerequisites.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html


FreeRTOS User Guide

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM 
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party 
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM 
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the 
instructions in Adding permissions to a user (console) in the IAM User Guide.

Download FreeRTOS with the OTA library

You can clone or download FreeRTOS from GitHub. See the README.md file for instructions.

For information about setting up and running the OTA demo application, see Over-the-air updates 
demo application.

Important

• In this topic, the path to the FreeRTOS download directory is referred to as freertos.

• Space characters in the freertos path can cause build failures. When you clone or copy 
the repository, make sure the path you that create doesn't contain space characters.

• The maximum length of a file path on Microsoft Windows is 260 characters. Long 
FreeRTOS download directory paths can cause build failures.

• Because the source code may contain symbolic links, if you're using Windows to extract 
the archive, you may have to:

• Enable  Developer Mode or,

• Use a console that is elevated as administrator.

In this way, Windows can properly create symbolic links when it extracts the archive. 
Otherwise, symbolic links will be written as normal files that contain the paths of the 
symbolic links as text or are empty. For more information, see the blog entry  Symlinks in 
Windows 10!.

Over-the-Air Updates 519

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://github.com/freertos/freertos
https://github.com/freertos/freertos/blob/main/README.md
https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/
https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/


FreeRTOS User Guide

If you use Git under Windows, you must enable Developer Mode or you must:

• Set core.symlinks to true with the following command:

git config --global core.symlinks true

• Use a console that is elevated as administrator whenever you use a git command that 
writes to the system (for example, git pull, git clone, and git submodule update --init 
--recursive).

Prerequisites for OTA updates using MQTT

This section describes the general requirements for using MQTT to perform over-the-air (OTA 
updates).

Minimum requirements

• Device firmware must include the necessary FreeRTOS libraries (coreMQTT Agent, OTA update, 
and their dependencies).

• FreeRTOS version 1.4.0 or later is required. However, we recommend that you use the latest 
version when possible.

Configurations

Beginning with version 201912.00, FreeRTOS OTA can use either the HTTP or MQTT protocol to 
transfer firmware update images from AWS IoT to devices. If you specify both protocols when you 
create an OTA update in FreeRTOS, each device will determine the protocol used to transfer the 
image. See Prerequisites for OTA updates using HTTP for more information.

By default, the configuration of the OTA protocols in ota_config.h is to use the MQTT protocol.

Device specific configurations

None.

Memory usage

When MQTT is used for data transfer, no additional memory is required for the MQTT connection 
because it's shared between control and data operations.

Over-the-Air Updates 520

https://github.com/aws/amazon-freertos/blob/main/vendors/vendor/boards/board/aws_demos/config_files/ota_config.h


FreeRTOS User Guide

Device policy

Each device that receives an OTA update using MQTT must be registered as a thing in AWS IoT and 
the thing must have an attached policy like the one listed here. You can find more information 
about the items in the "Action" and "Resource" objects at AWS IoT Core Policy Actions and
AWS IoT Core Action Resources.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "iot:Connect", 
            "Resource": "arn:partition:iot:region:account:client/
${iot:Connection.Thing.ThingName}" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "iot:Subscribe", 
            "Resource": [ 
                "arn:partition:iot:region:account:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/streams/*", 
                "arn:partition:iot:region:account:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/jobs/*" 
            ] 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "iot:Publish", 
                "iot:Receive" 
            ], 
            "Resource": [ 
                "arn:partition:iot:region:account:topic/$aws/things/
${iot:Connection.Thing.ThingName}/streams/*", 
                "arn:partition:iot:region:account:topic/$aws/things/
${iot:Connection.Thing.ThingName}/jobs/*" 
            ] 
        } 
    ]
}

Over-the-Air Updates 521

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html


FreeRTOS User Guide

Notes

• The iot:Connect permissions allow your device to connect to AWS IoT over MQTT.

• The iot:Subscribe and iot:Publish permissions on the topics of AWS IoT jobs (.../jobs/
*) allow the connected device to receive job notifications and job documents, and to publish the 
completion state of a job execution.

• The iot:Subscribe and iot:Publish permissions on the topics of AWS IoT OTA streams 
(.../streams/*) allow the connected device to fetch OTA update data from AWS IoT. These 
permissions are required to perform firmware updates over MQTT.

• The iot:Receive permissions allow AWS IoT Core to publish messages on those topics to the 
connected device. This permission is checked on every delivery of an MQTT message. You can use 
this permission to revoke access to clients that are currently subscribed to a topic.

Prerequisites for OTA updates using HTTP

This section describes the general requirements for using HTTP to perform over-the-air (OTA) 
updates. Beginning with version 201912.00, FreeRTOS OTA can use either the HTTP or MQTT 
protocol to transfer firmware update images from AWS IoT to devices.

Note

• Although the HTTP protocol might be used to transfer the firmware image, the 
coreMQTT Agent library is still required because other interactions with AWS IoT Core use 
the coreMQTT Agent library, including sending or receiving job execution notifications, 
job documents, and execution status updates.

• When you specify both MQTT and HTTP protocols for the OTA update job, the setup 
of the OTA Agent software on each individual device determines the protocol used to 
transfer the firmware image. To change the OTA Agent from the default MQTT protocol 
method to the HTTP protocol, you can modify the header files used to compile the 
FreeRTOS source code for the device.

Minimum requirements

• Device firmware must include the necessary FreeRTOS libraries (coreMQTT Agent, HTTP, OTA 
Agent, and their dependencies).

Over-the-Air Updates 522



FreeRTOS User Guide

• FreeRTOS version 201912.00 or later is required to change the configuration of the OTA 
protocols to enable OTA data transfer over HTTP.

Configurations

See the following configuration of the OTA protocols in the \vendors\boards
\board\aws_demos\config_files\ota_config.h file.

To enable OTA data transfer over HTTP

1. Change configENABLED_DATA_PROTOCOLS to OTA_DATA_OVER_HTTP.

2. When the OTA updates, you can specify both protocols so that either MQTT or HTTP protocol 
can be used., You can set the primary protocol used by the device to HTTP by changing
configOTA_PRIMARY_DATA_PROTOCOL to OTA_DATA_OVER_HTTP.

Note

HTTP is only supported for OTA data operations. For control operations, you must use 
MQTT.

Device specific configurations

ESP32

Due to a limited amount of RAM, you must turn off BLE when you enable HTTP as 
an OTA data protocol. In the vendors/espressif/boards/esp32/aws_demos/
config_files/aws_iot_network_config.h file, change configENABLED_NETWORKS to
AWSIOT_NETWORK_TYPE_WIFI only.

/** 
     * @brief Configuration flag which is used to enable one or more network 
 interfaces for a board. 
     * 
     * The configuration can be changed any time to keep one or more network enabled 
 or disabled. 
     * More than one network interfaces can be enabled by using 'OR' operation with 
 flags for 

Over-the-Air Updates 523

https://github.com/aws/amazon-freertos/blob/main/vendors/vendor/boards/board/aws_demos/config_files/ota_config.h
https://github.com/aws/amazon-freertos/blob/main/vendors/vendor/boards/board/aws_demos/config_files/ota_config.h
https://github.com/aws/amazon-freertos/blob/main/vendors/espressif/boards/esp32/aws_demos/config_files/aws_iot_network_config.h
https://github.com/aws/amazon-freertos/blob/main/vendors/espressif/boards/esp32/aws_demos/config_files/aws_iot_network_config.h


FreeRTOS User Guide

     * each network types supported. Flags for all supported network types can be 
 found 
     * in "aws_iot_network.h" 
     * 
     */ 
    #define configENABLED_NETWORKS      ( AWSIOT_NETWORK_TYPE_WIFI )

Memory usage

When MQTT is used for data transfer, no additional heap memory is required for the MQTT 
connection because it's shared between control and data operations. However, enabling data 
over HTTP requires additional heap memory. The following is the heap memory usage data for 
all supported platforms, calculated using the FreeRTOS xPortGetFreeHeapSize API. You must 
make sure there is enough RAM to use the OTA library.

Texas Instruments CC3220SF-LAUNCHXL

Control operations (MQTT): 12 KB

Data operations (HTTP): 10 KB

Note

TI uses significantly less RAM because it does SSL on hardware, so it doesn't use the 
mbedtls library.

Microchip Curiosity PIC32MZEF

Control operations (MQTT): 65 KB

Data operations (HTTP): 43 KB

Espressif ESP32

Control operations (MQTT): 65 KB

Data operations (HTTP): 45 KB

Over-the-Air Updates 524



FreeRTOS User Guide

Note

BLE on ESP32 takes about 87 KB RAM. There's not enough RAM to enable all of them, 
which is mentioned in the device specific configurations above.

Windows simulator

Control operations (MQTT): 82 KB

Data operations (HTTP): 63 KB

Nordic nrf52840-dk

HTTP is not supported.

Device policy

This policy allows you to use either MQTT or HTTP for OTA updates.

Each device that receives an OTA update using HTTP must be registered as a thing in AWS IoT and 
the thing must have an attached policy like the one listed here. You can find more information 
about the items in the "Action" and "Resource" objects at AWS IoT Core Policy Actions and
AWS IoT Core Action Resources.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "iot:Connect", 
            "Resource": "arn:partition:iot:region:account:client/
${iot:Connection.Thing.ThingName}" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "iot:Subscribe", 
            "Resource": [ 
                "arn:partition:iot:region:account:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/jobs/*" 
            ] 

Over-the-Air Updates 525

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html


FreeRTOS User Guide

        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "iot:Publish", 
                "iot:Receive" 
            ], 
            "Resource": [ 
                "arn:partition:iot:region:account:topic/$aws/things/
${iot:Connection.Thing.ThingName}/jobs/*" 
            ] 
        } 
    ]
}

Notes

• The iot:Connect permissions allow your device to connect to AWS IoT over MQTT.

• The iot:Subscribe and iot:Publish permissions on the topics of AWS IoT jobs (.../jobs/
*) allow the connected device to receive job notifications and job documents, and to publish the 
completion state of a job execution.

• The iot:Receive permissions allow AWS IoT Core to publish messages on those topics to the 
current connected device. This permission is checked on every delivery of an MQTT message. You 
can use this permission to revoke access to clients that are currently subscribed to a topic.

OTA tutorial

This section contains a tutorial for updating firmware on devices running FreeRTOS using OTA 
updates. In addition to firmware images, you can use an OTA update to send any type of file to a 
device connected to AWS IoT.

You can use the AWS IoT console or the AWS CLI to create an OTA update. The console is the 
easiest way to get started with OTA because it does a lot of the work for you. The AWS CLI is useful 
when you are automating OTA update jobs, working with a large number of devices, or are using 
devices that have not been qualified for FreeRTOS. For more information about qualifying devices 
for FreeRTOS, see the FreeRTOS Partners website.

To create an OTA update

1. Deploy an initial version of your firmware to one or more devices.

Over-the-Air Updates 526

https://aws.amazon.com/partners/dqp/


FreeRTOS User Guide

2. Verify that the firmware is running correctly.

3. When a firmware update is required, make the code changes and build the new image.

4. If you are manually signing your firmware, sign and then upload the signed firmware image 
to your Amazon S3 bucket. If you are using Code Signing for AWS IoT, upload your unsigned 
firmware image to an Amazon S3 bucket.

5. Create an OTA update.

When you create an OTA update, you specify the image delivery protocol (MQTT or HTTP) or 
specify both to allow the device to choose. The FreeRTOS OTA agent on the device receives the 
updated firmware image and verifies the digital signature, checksum, and version number of the 
new image. If the firmware update is verified, the device is reset and, based on application-defined 
logic, commits the update. If your devices are not running FreeRTOS, you must implement an OTA 
agent that runs on your devices.

Installing the initial firmware

To update firmware, you must install an initial version of the firmware that uses the OTA Agent 
library to listen for OTA update jobs. If you are not running FreeRTOS, skip this step. You must copy 
your OTA Agent implementation onto your devices instead.

Topics

• Install the initial version of firmware on the Texas Instruments CC3220SF-LAUNCHXL

• Install the initial version of firmware on the Espressif ESP32

• Install the initial version of firmware on the Nordic nRF52840 DK

• Initial firmware on the Windows simulator

• Install the initial version of firmware on a custom board

Install the initial version of firmware on the Texas Instruments CC3220SF-LAUNCHXL

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Over-the-Air Updates 527



FreeRTOS User Guide

These steps are written with the assumption that you have already built the aws_demos project, 
as described in Download, build, flash, and run the FreeRTOS OTA demo on the Texas Instruments 
CC3220SF-LAUNCHXL.

1. On your Texas Instruments CC3220SF-LAUNCHXL, place the SOP jumper on the middle set of 
pins (position = 1) and reset the board.

2. Download and install the TI Uniflash tool.

3. Start Uniflash. From the list of configurations, choose CC3220SF-LAUNCHXL, and then choose
Start Image Creator.

4. Choose New Project.

5. On the Start new project page, enter a name for your project. For Device Type, choose
CC3220SF. For Device Mode, choose Develop. Choose Create Project.

6. Disconnect your terminal emulator.

7. On the right side of the Uniflash application window, choose Connect.

8. Under Advanced, Files, choose User Files.

9. In the File selector pane, choose the Add File icon

.

10. Browse to the /Applications/Ti/simplelink_cc32xx_sdk_version/tools/
cc32xx_tools/certificate-playground directory, select dummy-root-ca-cert, 
choose Open, and then choose Write.

11. In the File selector pane, choose the Add File icon

.

12. Browse to the working directory where you created the code-signing certificate and private 
key, choose tisigner.crt.der, choose Open, and then choose Write.

13. From the Action drop-down list, choose Select MCU Image, and then choose Browse to 
choose the firmware image to use write to your device (aws_demos.bin). This file is located 
in the freertos/vendors/ti/boards/cc3220_launchpad/aws_demos/ccs/Debug
directory. Choose Open.

a. In the file dialog box, confirm the file name is set to mcuflashimg.bin.

b. Select the Vendor check box.

c. Under File Token, type 1952007250.

d. Under Private Key File Name, choose Browse, and then choose tisigner.key from the 
working directory where you created the code-signing certificate and private key.

Over-the-Air Updates 528

http://www.ti.com/tool/UNIFLASH


FreeRTOS User Guide

e. Under Certification File Name, choose tisigner.crt.der.

f. Choose Write.

14. In the left pane, under Files, choose Service Pack.

15. Under Service Pack File Name, choose Browse, browse to
simplelink_cc32x_sdk_version/tools/cc32xx_tools/servicepack-cc3x20, 
choose sp_3.7.0.1_2.0.0.0_2.2.0.6.bin, and then choose Open.

16. In the left pane, under Files, choose Trusted Root-Certificate Catalog.

17. Clear the Use default Trusted Root-Certificate Catalog check box.

18. Under Source File, choose Browse, choose simplelink_cc32xx_sdk_version/tools/
cc32xx_tools/certificate-playground/certcatalogPlayGround20160911.lst, and then choose
Open.

19. Under Signature Source File, choose Browse, choose simplelink_cc32xx_sdk_version/
tools/cc32xx_tools/certificate-playground/
certcatalogPlayGround20160911.lst.signed_3220.bin, and then choose Open.

20. Choose the

button to save your project.

21. Choose the

button.

22. Choose Program Image (Create and Program).

23. After the programming process is complete, place the SOP jumper onto the first set of pins 
(position = 0), reset the board, and reconnect your terminal emulator to make sure the output 
is the same as when you debugged the demo with Code Composer Studio. Make a note of the 
application version number in the terminal output. You use this version number later to verify 
that your firmware has been updated by an OTA update.

The terminal should display output like the following.

0 0 [Tmr Svc] Simple Link task created

Device came up in Station mode

Over-the-Air Updates 529



FreeRTOS User Guide

1 369 [Tmr Svc] Starting key provisioning...
2 369 [Tmr Svc] Write root certificate...
3 467 [Tmr Svc] Write device private key...
4 568 [Tmr Svc] Write device certificate...
SL Disconnect...

5 664 [Tmr Svc] Key provisioning done...
Device came up in Station mode

Device disconnected from the AP on an ERROR..!!  

[WLAN EVENT] STA Connected to the AP: Guest , BSSID: 11:22:a1:b2:c3:d4

[NETAPP EVENT] IP acquired by the device

Device has connected to Guest

Device IP Address is 111.222.3.44  

6 1716 [OTA] OTA demo version 0.9.0
7 1717 [OTA] Creating MQTT Client...
8 1717 [OTA] Connecting to broker...
9 1717 [OTA] Sending command to MQTT task.
10 1717 [MQTT] Received message 10000 from queue.
11 2193 [MQTT] MQTT Connect was accepted. Connection established.
12 2193 [MQTT] Notifying task.
13 2194 [OTA] Command sent to MQTT task passed.
14 2194 [OTA] Connected to broker.
15 2196 [OTA Task] Sending command to MQTT task.
16 2196 [MQTT] Received message 20000 from queue.
17 2697 [MQTT] MQTT Subscribe was accepted. Subscribed.
18 2697 [MQTT] Notifying task.
19 2698 [OTA Task] Command sent to MQTT task passed.
20 2698 [OTA Task] [OTA] Subscribed to topic: $aws/things/TI-LaunchPad/jobs/$next/
get/accepted

21 2699 [OTA Task] Sending command to MQTT task.
22 2699 [MQTT] Received message 30000 from queue.
23 2800 [MQTT] MQTT Subscribe was accepted. Subscribed.
24 2800 [MQTT] Notifying task.
25 2801 [OTA Task] Command sent to MQTT task passed.

Over-the-Air Updates 530



FreeRTOS User Guide

26 2801 [OTA Task] [OTA] Subscribed to topic: $aws/things/TI-LaunchPad/jobs/notify-
next

27 2814 [OTA Task] [OTA] Check For Update #0
28 2814 [OTA Task] Sending command to MQTT task.
29 2814 [MQTT] Received message 40000 from queue.
30 2916 [MQTT] MQTT Publish was successful.
31 2916 [MQTT] Notifying task.
32 2917 [OTA Task] Command sent to MQTT task passed.
33 2917 [OTA Task] [OTA] Set job doc parameter [ clientToken: 0:TI-LaunchPad ]
34 2917 [OTA Task] [OTA] Missing job parameter: execution
35 2917 [OTA Task] [OTA] Missing job parameter: jobId
36 2918 [OTA Task] [OTA] Missing job parameter: jobDocument
37 2918 [OTA Task] [OTA] Missing job parameter: ts_ota
38 2918 [OTA Task] [OTA] Missing job parameter: files
39 2918 [OTA Task] [OTA] Missing job parameter: streamname
40 2918 [OTA Task] [OTA] Missing job parameter: certfile
41 2918 [OTA Task] [OTA] Missing job parameter: filepath
42 2918 [OTA Task] [OTA] Missing job parameter: filesize
43 2919 [OTA Task] [OTA] Missing job parameter: sig-sha1-rsa
44 2919 [OTA Task] [OTA] Missing job parameter: fileid
45 2919 [OTA Task] [OTA] Missing job parameter: attr
47 3919 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0
48 4919 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0
49 5919 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0

Install the initial version of firmware on the Espressif ESP32

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This guide is written with the assumption that you have already performed the steps in Getting 
Started with the Espressif ESP32-DevKitC and the ESP-WROVER-KIT and Over-the-Air Update 
Prerequisites. Before you attempt an OTA update, you might want to run the MQTT demo project 

Over-the-Air Updates 531

https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html


FreeRTOS User Guide

described in Getting Started with FreeRTOS to ensure that your board and tool chain are set up 
correctly.

To flash an initial factory image to the board

1. Open freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and define
CONFIG_OTA_MQTT_UPDATE_DEMO_ENABLED or
CONFIG_OTA_HTTP_UPDATE_DEMO_ENABLED.

2. Copy your SHA-256/ECDSA PEM-formatted code-signing certificate that you generated 
in the OTA update prerequisites to vendors/vendor/boards/board/aws_demos/
config_files/ota_demo_config.h. It should be formatted in following way.

#define otapalconfigCODE_SIGNING_CERTIFICATE  \
"-----BEGIN CERTIFICATE-----\n" \
"...base64 data...\n" \
"-----END CERTIFICATE-----\n"; 

3. With the OTA Update demo selected, follow the same steps outlined in Getting Started with 
ESP32 to build and flash the image. If you have previously built and flashed the project, you 
might need to run make clean first. After you run make flash monitor, you should see 
something like the following. The ordering of some messages might vary, because the demo 
application runs multiple tasks at once.

I (28) boot: ESP-IDF v3.1-dev-322-gf307f41-dirty 2nd stage bootloader
I (28) boot: compile time 16:32:33
I (29) boot: Enabling RNG early entropy source...
I (34) boot: SPI Speed : 40MHz
I (38) boot: SPI Mode : DIO
I (42) boot: SPI Flash Size : 4MB
I (46) boot: Partition Table:
I (50) boot: ## Label Usage Type ST Offset Length
I (57) boot: 0 nvs WiFi data 01 02 00010000 00006000
I (64) boot: 1 otadata OTA data 01 00 00016000 00002000
I (72) boot: 2 phy_init RF data 01 01 00018000 00001000
I (79) boot: 3 ota_0 OTA app 00 10 00020000 00100000
I (87) boot: 4 ota_1 OTA app 00 11 00120000 00100000
I (94) boot: 5 storage Unknown data 01 82 00220000 00010000
I (102) boot: End of partition table

Over-the-Air Updates 532

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html


FreeRTOS User Guide

I (106) esp_image: segment 0: paddr=0x00020020 vaddr=0x3f400020 size=0x14784 
 ( 83844) map
I (144) esp_image: segment 1: paddr=0x000347ac vaddr=0x3ffb0000 size=0x023ec 
 ( 9196) load
I (148) esp_image: segment 2: paddr=0x00036ba0 vaddr=0x40080000 size=0x00400 
 ( 1024) load
I (151) esp_image: segment 3: paddr=0x00036fa8 vaddr=0x40080400 size=0x09068 
 ( 36968) load
I (175) esp_image: segment 4: paddr=0x00040018 vaddr=0x400d0018 size=0x719b8 
 (465336) map
I (337) esp_image: segment 5: paddr=0x000b19d8 vaddr=0x40089468 size=0x04934 
 ( 18740) load
I (345) esp_image: segment 6: paddr=0x000b6314 vaddr=0x400c0000 size=0x00000 ( 0) 
 load
I (353) boot: Loaded app from partition at offset 0x20000
I (353) boot: ota rollback check done
I (354) boot: Disabling RNG early entropy source...
I (360) cpu_start: Pro cpu up.
I (363) cpu_start: Single core mode
I (368) heap_init: Initializing. RAM available for dynamic allocation:
I (375) heap_init: At 3FFAE6E0 len 00001920 (6 KiB): DRAM
I (381) heap_init: At 3FFC0748 len 0001F8B8 (126 KiB): DRAM
I (387) heap_init: At 3FFE0440 len 00003BC0 (14 KiB): D/IRAM
I (393) heap_init: At 3FFE4350 len 0001BCB0 (111 KiB): D/IRAM
I (400) heap_init: At 4008DD9C len 00012264 (72 KiB): IRAM
I (406) cpu_start: Pro cpu start user code
I (88) cpu_start: Starting scheduler on PRO CPU.
I (113) wifi: wifi firmware version: f79168c
I (113) wifi: config NVS flash: enabled
I (113) wifi: config nano formating: disabled
I (113) system_api: Base MAC address is not set, read default base MAC address from 
 BLK0 of EFUSE
I (123) system_api: Base MAC address is not set, read default base MAC address from 
 BLK0 of EFUSE
I (133) wifi: Init dynamic tx buffer num: 32
I (143) wifi: Init data frame dynamic rx buffer num: 32
I (143) wifi: Init management frame dynamic rx buffer num: 32
I (143) wifi: wifi driver task: 3ffc73ec, prio:23, stack:4096
I (153) wifi: Init static rx buffer num: 10
I (153) wifi: Init dynamic rx buffer num: 32
I (163) wifi: wifi power manager task: 0x3ffcc028 prio: 21 stack: 2560
0 6 [main] WiFi module initialized. Connecting to AP <Your_WiFi_SSID>...
I (233) phy: phy_version: 383.0, 79a622c, Jan 30 2018, 15:38:06, 0, 0
I (233) wifi: mode : sta (30:ae:a4:80:0a:04)

Over-the-Air Updates 533



FreeRTOS User Guide

I (233) WIFI: SYSTEM_EVENT_STA_START
I (363) wifi: n:1 0, o:1 0, ap:255 255, sta:1 0, prof:1
I (1343) wifi: state: init -> auth (b0)
I (1343) wifi: state: auth -> assoc (0)
I (1353) wifi: state: assoc -> run (10)
I (1373) wifi: connected with <Your_WiFi_SSID>, channel 1
I (1373) WIFI: SYSTEM_EVENT_STA_CONNECTED
1 302 [IP-task] vDHCPProcess: offer c0a86c13ip
I (3123) event: sta ip: 192.168.108.19, mask: 255.255.224.0, gw: 192.168.96.1
I (3123) WIFI: SYSTEM_EVENT_STA_GOT_IP
2 302 [IP-task] vDHCPProcess: offer c0a86c13ip
3 303 [main] WiFi Connected to AP. Creating tasks which use network...
4 304 [OTA] OTA demo version 0.9.6
5 304 [OTA] Creating MQTT Client...
6 304 [OTA] Connecting to broker...
I (4353) wifi: pm start, type:0

I (8173) PKCS11: Initializing SPIFFS
I (8183) PKCS11: Partition size: total: 52961, used: 0
7 1277 [OTA] Connected to broker.
8 1280 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/
<Your_Thing_Name>/jobs/$next/get/accepted
I (12963) ota_pal: prvPAL_GetPlatformImageState
I (12963) esp_ota_ops: [0] aflags/seq:0x2/0x1, pflags/seq:0xffffffff/0x0
9 1285 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/
<Your_Thing_Name>/jobs/notify-next
10 1286 [OTA Task] [OTA_CheckForUpdate] Request #0
11 1289 [OTA Task] [prvParseJSONbyModel] Extracted parameter [ clientToken: 
 0:<Your_Thing_Name> ]
12 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: execution
13 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: jobId
14 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: jobDocument
15 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: afr_ota
16 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: streamname
17 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: files
18 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: filepath
19 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: filesize
20 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: fileid
21 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: certfile
22 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: sig-sha256-ecdsa
23 1289 [OTA Task] [prvParseJobDoc] Ignoring job without ID.
24 1289 [OTA Task] [prvOTA_Close] Context->0x3ffbb4a8
25 1290 [OTA] [OTA_AgentInit] Ready.
26 1390 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0

Over-the-Air Updates 534



FreeRTOS User Guide

27 1490 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
28 1590 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
29 1690 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
[ ... ]

4. The ESP32 board is now listening for OTA updates. The ESP-IDF monitor is launched by the
make flash monitor command. You can press Ctrl+] to quit. You can also use your favorite 
TTY terminal program (for example, PuTTY, Tera Term, or GNU Screen) to listen to the board's 
serial output. Be aware that connecting to the board's serial port might cause it to reboot.

Install the initial version of firmware on the Nordic nRF52840 DK

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This guide is written with the assumption that you have already performed the steps in Getting 
started with the Nordic nRF52840-DK and Over-the-Air Update Prerequisites. Before you attempt 
an OTA update, you might want to run the MQTT demo project described in Getting Started with 
FreeRTOS to ensure that your board and toolchain are set up correctly.

To flash an initial factory image to the board

1. Open freertos/vendors/nordic/boards/nrf52840-dk/aws_demos/config_files/
aws_demo_config.h.

2. Replace #define CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED with
CONFIG_OTA_MQTT_UPDATE_DEMO_ENABLED or
CONFIG_OTA_HTTP_UPDATE_DEMO_ENABLED.

3. With the OTA Update demo selected, follow the same steps outlined in Getting started with 
the Nordic nRF52840-DK to build and flash the image.

You should see output similar to the following.

9 1285 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/your-thing-
name/jobs/notify-next

Over-the-Air Updates 535

https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html


FreeRTOS User Guide

10 1286 [OTA Task] [OTA_CheckForUpdate] Request #0
11 1289 [OTA Task] [prvParseJSONbyModel] Extracted parameter [ clientToken: 0:your-
thing-name ]
12 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: execution
13 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: jobId
14 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: jobDocument
15 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: afr_ota
16 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: streamname
17 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: files
18 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: filepath
19 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: filesize
20 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: fileid
21 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: certfile
22 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: sig-sha256-ecdsa
23 1289 [OTA Task] [prvParseJobDoc] Ignoring job without ID.
24 1289 [OTA Task] [prvOTA_Close] Context->0x3ffbb4a8
25 1290 [OTA] [OTA_AgentInit] Ready.
26 1390 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
27 1490 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
28 1590 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
29 1690 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0

Your board is now listening for OTA updates.

Initial firmware on the Windows simulator

When you use the Windows simulator, there is no need to flash an initial version of the firmware. 
The Windows simulator is part of the aws_demos application, which also includes the firmware.

Install the initial version of firmware on a custom board

Using your IDE, build the aws_demos project, making sure to include the OTA library. For more 
information about the structure of the FreeRTOS source code, see FreeRTOS demos.

Make sure to include your code-signing certificate, private key, and certificate trust chain either in 
the FreeRTOS project or on your device.

Using the appropriate tool, burn the application onto your board and make sure it is running 
correctly.

Over-the-Air Updates 536



FreeRTOS User Guide

Update the version of your firmware

The OTA Agent included with FreeRTOS checks the version of any update and installs it only if it is 
more recent than the existing firmware version. The following steps show you how to increment 
the firmware version of the OTA demo application.

1. Open the aws_demos project in your IDE.

2. Locate the file  /vendors/vendor/boards/board/aws_demos/config_files/
ota_demo_config.h and increment the value of APP_VERSION_BUILD.

3. To schedule an update to a Renesas rx65n platform with a filetype other than 0 (non-firmware 
files), you must sign the file with the Renesas Secure Flash Programmer tool, otherwise it will 
fail the signature check on the device. The tool creates a signed file package with the extension
.rsu which is a proprietary file type for Renesas. The tool can be found on Github. You can 
use the following example command to generate the image:

"Renesas Secure Flash Programmer.exe" CUI Update "RX65N(ROM 2MB)/Secure 
 Bootloader=256KB" "sig-sha256-ecdsa" 1 "file_name" "output_file_name.rsu"

4. Rebuild the project.

You must copy your firmware update into the Amazon S3 bucket that you created as described 
in Create an Amazon S3 bucket to store your update. The name of the file you need to copy to 
Amazon S3 depends on the hardware platform you are using:

• Texas Instruments CC3220SF-LAUNCHXL: vendors/ti/boards/cc3220_launchpad/
aws_demos/ccs/debug/aws_demos.bin

• Espressif ESP32: vendors/espressif/boards/esp32/aws_demos/make/build/
aws_demos.bin

Creating an OTA update (AWS IoT console)

1. In the navigation pane of the AWS IoT console, under Manage select Remote actions, and 
then choose Jobs.

2. Choose Create job.

3. Under Job type select Create FreeRTOS OTA update job, then choose Next.

4. In Job properties, enter a Job name and (optionally) enter a Description of the job, then 
choose Next.

Over-the-Air Updates 537

https://github.com/renesas/Amazon-FreeRTOS-Tools


FreeRTOS User Guide

5. You can deploy an OTA update to a single device or a group of devices. Under Devices to 
update, choose one or more things or thing groups from the dropdown.

6. Under Select the protocol for the file transfer, select either HTTP or MQTT, or select both to 
allow each device to determine the protocol to use.

7. Under Sign and choose your file, select Sign a new file for me.

8. Under Code signing profile, choose Create new profile.

9. In Create a code signing profile, enter a name for your code-signing profile.

a. Under Device hardware platform, choose your hardware platform.

Note

Only hardware platforms that have been qualified for FreeRTOS are displayed in 
this list. If you are testing a non-qualified platform, and you are using the ECDSA 
P-256 SHA-256 ciphersuite for signing, you can pick the Windows Simulator code 
signing profile to produce a compatible signature. If you are using a non-qualified 
platform, and you are using a ciphersuite other than ECDSA P-256 SHA-256 for 
signing, you can use Code Signing for AWS IoT, or you can sign your firmware 
update yourself. For more information, see Digitally signing your firmware update.

b. Under Code signing certificate, choose Select an existing certificate and then select a 
previously imported certificate, or choose Import a new code signing certificate, choose 
your files and select Import to import a new certificate.

c. Under Pathname of code signing certificate on device, enter the fully qualified path 
name to the code signing certificate on your device. For most devices you can leave this 
field blank. For the Windows simulator and for devices that do place the certificate in a 
specific file location, enter the pathname here.

Important

On the Texas Instruments CC3220SF-LAUNCHXL, do not include a leading forward 
slash (/) in front of the file name if your code signing certificate exists in the root 
of the file system. Otherwise, the OTA update fails during authentication with a
file not found error.

d. Select Create.

Over-the-Air Updates 538



FreeRTOS User Guide

10. Under File select Select an existing file then choose Browse S3. A list of your Amazon S3 
buckets is displayed. Choose the bucket that contains your firmware update, and then choose 
your firmware update in the bucket.

Note

The Microchip Curiosity PIC32MZEF demo projects produce two binary images with 
default names of mplab.production.bin and mplab.production.ota.bin. Use 
the second file when you upload an image for OTA updating.

11. Under Pathname of file on device, enter the fully qualified path name to the location on your 
device where the OTA job will copy the firmware image. This location varies by platform.

Important

On the Texas Instruments CC3220SF-LAUNCHXL, due to security restrictions, the 
firmware image path name must be /sys/mcuflashimg.bin.

12. Open File Type and enter an integer value in the range 0-255. The file type you enter will 
be added to the Job document that is delivered to the MCU. The MCU firmware/software 
developer has full ownership on what to do with this value. Possible scenarios include an 
MCU that has a secondary processor whose firmware can be updated independently from the 
primary processor. When the device receives an OTA update job, it can use the File Type to 
identify which processor the update is for.

13. Under IAM role, choose a role according to the instructions in Create an OTA Update service 
role.

14. Choose Next.

15. Enter an ID and description for your OTA update job.

16. Under Job type, choose Your job will complete after deploying to the selected devices/
groups (snapshot).

17. Choose any appropriate optional configurations for your job (Job executions rollout, Job 
abort, Job executions timeout, and Tags).

18. Choose Create.

Over-the-Air Updates 539



FreeRTOS User Guide

To use a previously signed firmware image

1. Under Select and sign your firmware image, choose Select a previously signed firmware 
image.

2. Under Pathname of firmware image on device, enter the fully qualified path name to the 
location on your device where the OTA job will copy the firmware image. This location varies 
by platform.

3. Under Previous code signing job, choose Select, and then choose the previous code-signing 
job used to sign the firmware image you are using for the OTA update.

Using a custom signed firmware image

1. Under Select and sign your firmware image, choose Use my custom signed firmware image.

2. Under Pathname of code signing certificate on device, enter the fully qualified path name to 
the code signing certificate on your device. For most devices you can leave this field blank. For 
the Windows simulator and for devices that do place the certificate in a specific file location, 
enter the pathname here.

3. Under Pathname of firmware image on device, enter the fully qualified path name to the 
location on your device where the OTA job will copy the firmware image. This location varies 
by platform.

4. Under Signature, paste your PEM format signature.

5. Under Original hash algorithm, choose the hash algorithm that was used when you created 
your file signature.

6. Under Original encryption algorithm, choose the algorithm that was used when you created 
your file signature.

7. Under Select your firmware image in Amazon S3, choose the Amazon S3 bucket and the 
signed firmware image in the Amazon S3 bucket.

After you have specified the code-signing information, specify the OTA update job type, service 
role, and an ID for your update.

Note

Do not use any personally identifiable information in the job ID for your OTA update. 
Examples of personally identifiable information include:

Over-the-Air Updates 540



FreeRTOS User Guide

• Names.

• IP addresses.

• Email addresses.

• Locations.

• Bank details.

• Medical information.

1. Under Job type, choose Your job will complete after deploying to the selected devices/
groups (snapshot).

2. Under IAM role for OTA update job, choose your OTA service role.

3. Enter an alphanumeric ID for your job, and then choose Create.

The job appears in the AWS IoT console with a status of IN PROGRESS.

Note

• The AWS IoT console does not update the state of jobs automatically. Refresh your 
browser to see updates.

Connect your serial UART terminal to your device. You should see output that indicates the device 
is downloading the updated firmware.

After the device downloads the updated firmware, it restarts and then installs the firmware. You 
can see what's happening in the UART terminal.

For a tutorial that shows you how to use the console to create an OTA update, see Over-the-air 
updates demo application.

Creating an OTA update with the AWS CLI

When you use the AWS CLI to create an OTA update, you:

1. Digitally sign your firmware image.

2. Create a stream of your digitally signed firmware image.

Over-the-Air Updates 541



FreeRTOS User Guide

3. Start an OTA update job.

Digitally signing your firmware update

When you use the AWS CLI to perform OTA updates, you can use Code Signing for AWS IoT, or 
you can sign your firmware update yourself. For a list of the cryptographic signing and hashing 
algorithms supported by Code Signing for AWS IoT, see  SigningConfigurationOverrides. If you 
want to use a cryptographic algorithm that is not supported by Code Signing for AWS IoT, you 
must sign your firmware binary before you upload it to Amazon S3.

Signing your firmware image with Code Signing for AWS IoT

To sign your firmware image using Code Signing for AWS IoT, you can use one of the AWS SDKs or 
command line tools. For more information about Code Signing for AWS IoT, see  Code Signing for 
AWS IoT.

After you install and configure the code-signing tools, copy your unsigned firmware image to your 
Amazon S3 bucket and start a code-signing job with the following AWS CLI commands. The put-
signing-profile command creates a reusable code-signing profile. The start-signing-job command 
starts the signing job.

aws signer put-signing-profile \ 
    --profile-name your_profile_name \ 
    --signing-material certificateArn=arn:aws:acm::your-region:your-aws-account-
id:certificate/your-certificate-id \ 
    --platform your-hardware-platform \ 
    --signing-parameters certname=your_certificate_path_on_device

aws signer start-signing-job \ 
    --source 
 's3={bucketName=your_s3_bucket,key=your_s3_object_key,version=your_s3_object_version_id}' 
 \ 
    --destination 's3={bucketName=your_destination_bucket}' \ 
    --profile-name your_profile_name

Note

your-source-bucket-name and your-destination-bucket-name can be the same 
Amazon S3 bucket.

Over-the-Air Updates 542

https://docs.aws.amazon.com/signer/latest/api/API_SigningConfigurationOverrides.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html


FreeRTOS User Guide

These are the parameters for the put-signing-profile and start-signing-job commands:

source

Specifies the location of the unsigned firmware in an S3 bucket.

• bucketName: The name of your S3 bucket.

• key: The key (file name) of your firmware in your S3 bucket.

• version: The S3 version of your firmware in your S3 bucket. This is different from your 
firmware version. You can find it by browsing to the Amazon S3 console, choosing your 
bucket, and at the top of the page, next to Versions, choosing Show.

destination

The destination on the device to which the signed firmware in the S3 bucket will be copied. The 
format of this parameter is the same as the source parameter.

signing-material

The ARN of your code-signing certificate. This ARN is generated when you import your 
certificate into ACM.

signing-parameters

A map of key-value pairs for signing. These can include any information that you want to use 
during signing.

Note

This parameter is required when you are creating a code-signing profile for signing OTA 
updates with Code Signing for AWS IoT.

platform

The platformId of the hardware platform to which you are distributing the OTA update.

To return a list of the available platforms and their platformId values, use the aws signer 
list-signing-platforms command.

The signing job starts and writes the signed firmware image into the destination Amazon S3 
bucket. The file name for the signed firmware image is a GUID. You need this file name when you 

Over-the-Air Updates 543



FreeRTOS User Guide

create a stream. You can find the file name by browsing to the Amazon S3 console and choosing 
your bucket. If you don't see a file with a GUID file name, refresh your browser.

The command displays a job ARN and job ID. You need these values later on. For more information 
about Code Signing for AWS IoT, see Code Signing for AWS IoT.

Signing your firmware image manually

Digitally sign your firmware image and upload your signed firmware image into your Amazon S3 
bucket.

Creating a stream of your firmware update

A stream is an abstract interface to data that can be consumed by a device. A stream can hide the 
complexity of accessing data stored in different locations or different cloud-based services. The 
OTA Update Manager service enables you to use multiple pieces of data, stored in various locations 
in Amazon S3, to perform an OTA Update.

When you create an AWS IoT OTA Update, you can also create a stream that contains your signed 
firmware update. Make a JSON file (stream.json) that identifies your signed firmware image. The 
JSON file should contain the following.

[ 
  { 
    "fileId":"your_file_id", 
    "s3Location":{ 
      "bucket":"your_bucket_name", 
      "key":"your_s3_object_key" 
    } 
  }    
]

These are the attributes in the JSON file:

fileId

An arbitrary integer between 0–255 that identifies your firmware image.

s3Location

The bucket and key for the firmware to stream.

Over-the-Air Updates 544

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html


FreeRTOS User Guide

bucket

The Amazon S3 bucket where your unsigned firmware image is stored.

key

The file name of your signed firmware image in the Amazon S3 bucket. You can find this 
value in the Amazon S3 console by looking at the contents of your bucket.

If you are using Code Signing for AWS IoT, the file name is a GUID generated by Code 
Signing for AWS IoT.

Use the create-stream AWS CLI command to create a stream.

aws iot create-stream \ 
    --stream-id your_stream_id \ 
    --description your_description \ 
    --files file://stream.json \ 
    --role-arn your_role_arn

These are the arguments for the create-stream AWS CLI command:

stream-id

An arbitrary string to identify the stream.

description

An optional description of the stream.

files

One or more references to JSON files that contain data about firmware images to stream. The 
JSON file must contain the following attributes:

fileId

An arbitrary file ID.

s3Location

The bucket name where the signed firmware image is stored and the key (file name) of the 
signed firmware image.

Over-the-Air Updates 545



FreeRTOS User Guide

bucket

The Amazon S3 bucket where the signed firmware image is stored.

key

The key (file name) of the signed firmware image.

When you use Code Signing for AWS IoT, this key is a GUID.

The following is an example stream.json file.

[ 
    { 
        "fileId":123, 
        "s3Location": { 
            "bucket":"codesign-ota-bucket", 
            "key":"48c67f3c-63bb-4f92-a98a-4ee0fbc2bef6" 
        } 
    }
]

role-arn

The OTA service role that also grants access to the Amazon S3 bucket where the firmware 
image is stored.

To find the Amazon S3 object key of your signed firmware image, use the aws signer describe-
signing-job --job-id my-job-id command where my-job-id is the job ID displayed by the
create-signing-job AWS CLI command. The output of the describe-signing-job command contains 
the key of the signed firmware image.

... text deleted for brevity ... 
  "signedObject": { 
    "s3": { 
      "bucketName": "ota-bucket", 
      "key": "7309da2c-9111-48ac-8ee4-5a4262af4429" 
    } 
  }
... text deleted for brevity ...

Over-the-Air Updates 546



FreeRTOS User Guide

Creating an OTA update

Use the create-ota-update AWS CLI command to create an OTA update job.

Note

Do not use any personally identifiable information (PII) in your OTA update job ID. 
Examples of personally identifiable information include:

• Names.

• IP addresses.

• Email addresses.

• Locations.

• Bank details.

• Medical information.

aws iot  create-ota-update \ 
    --ota-update-id value \ 
    [--description value] \ 
    --targets value \ 
    [--protocols value] \ 
    [--target-selection value] \ 
    [--aws-job-executions-rollout-config value] \ 
    [--aws-job-presigned-url-config value] \ 
    [--aws-job-abort-config value] \ 
    [--aws-job-timeout-config value] \ 
    --files value \ 
    --role-arn value \ 
    [--additional-parameters value] \ 
    [--tags value]  \ 
    [--cli-input-json value] \ 
    [--generate-cli-skeleton]

cli-input-json format

{ 
  "otaUpdateId": "string", 
  "description": "string", 
  "targets": [ 

Over-the-Air Updates 547



FreeRTOS User Guide

    "string" 
  ], 
  "protocols": [ 
    "string" 
  ], 
  "targetSelection": "string", 
  "awsJobExecutionsRolloutConfig": { 
    "maximumPerMinute": "integer", 
    "exponentialRate": { 
      "baseRatePerMinute": "integer", 
      "incrementFactor": "double", 
      "rateIncreaseCriteria": { 
        "numberOfNotifiedThings": "integer", 
        "numberOfSucceededThings": "integer" 
      } 
    } 
  }, 
  "awsJobPresignedUrlConfig": { 
    "expiresInSec": "long" 
  }, 
  "awsJobAbortConfig": { 
    "abortCriteriaList": [ 
      { 
        "failureType": "string", 
        "action": "string", 
        "thresholdPercentage": "double", 
        "minNumberOfExecutedThings": "integer" 
      } 
    ] 
  }, 
  "awsJobTimeoutConfig": { 
    "inProgressTimeoutInMinutes": "long" 
  }, 
  "files": [ 
    { 
      "fileName": "string", 
      "fileType": "integer", 
      "fileVersion": "string", 
      "fileLocation": { 
        "stream": { 
          "streamId": "string", 
          "fileId": "integer" 
        }, 
        "s3Location": { 

Over-the-Air Updates 548



FreeRTOS User Guide

          "bucket": "string", 
          "key": "string", 
          "version": "string" 
        } 
      }, 
      "codeSigning": { 
        "awsSignerJobId": "string", 
        "startSigningJobParameter": { 
          "signingProfileParameter": { 
            "certificateArn": "string", 
            "platform": "string", 
            "certificatePathOnDevice": "string" 
          }, 
          "signingProfileName": "string", 
          "destination": { 
            "s3Destination": { 
              "bucket": "string", 
              "prefix": "string" 
            } 
          } 
        }, 
        "customCodeSigning": { 
          "signature": { 
            "inlineDocument": "blob" 
          }, 
          "certificateChain": { 
            "certificateName": "string", 
            "inlineDocument": "string" 
          }, 
          "hashAlgorithm": "string", 
          "signatureAlgorithm": "string" 
        } 
      }, 
      "attributes": { 
        "string": "string" 
      } 
    } 
  ], 
  "roleArn": "string", 
  "additionalParameters": { 
    "string": "string" 
  }, 
  "tags": [ 
    { 

Over-the-Air Updates 549



FreeRTOS User Guide

      "Key": "string", 
      "Value": "string" 
    } 
  ]
}

cli-input-json fields

Name Type Description

otaUpdateId string

(max:128 min:1)

The ID of the OTA update to 
be created.

description string

(max:2028)

The description of the OTA 
update.

targets list The devices targeted to 
receive OTA updates.

protocols list The protocol used to transfer 
the OTA update image. Valid 
values are [HTTP], [MQTT], 
[HTTP, MQTT]. When both 
HTTP and MQTT are specified 
, the target device can choose 
the protocol.

targetSelection string Specifies whether the 
update will continue to 
run (CONTINUOUS), or will 
be complete after all the 
things specified as targets 
have completed the update 
(SNAPSHOT). If continuous, 
the update may also be run 
on a thing when a change 
is detected in a target. For 
example, an update will run 

Over-the-Air Updates 550



FreeRTOS User Guide

Name Type Description

on a thing when the thing 
is added to a target group, 
even after the update was 
completed by all things 
originally in the group. Valid 
values: CONTINUOUS | 
SNAPSHOT.

enum: CONTINUOUS | 
SNAPSHOT

awsJobExecutionsRo 
lloutConfig

Configuration for the rollout 
of OTA updates.

maximumPerMinute integer

(max:1000 min:1)

The maximum number of OTA 
update job executions started 
per minute.

exponentialRate The rate of increase for a job 
rollout. This parameter allows 
you to define an exponential 
rate increase for a job rollout.

baseRatePerMinute integer

(max:1000 min:1)

The minimum number of 
things that will be notified of 
a pending job, per minute, at 
the start of the job rollout. 
This is the initial rate of the 
rollout.

rateIncreaseCriteria The criteria to initiate the 
increase in rate of rollout for 
a job.

AWS IoT supports up to one 
digit after the decimal (for 
example, 1.5, but not 1.55).

Over-the-Air Updates 551



FreeRTOS User Guide

Name Type Description

numberOfNotifiedTh 
ings

integer

(min:1)

When this number of things 
have been notified, it will 
initiate an increase in the 
rollout rate.

numberOfSucceededT 
hings

integer

(min:1)

When this number of things 
have succeeded in their job 
execution, it will initiate an 
increase in the rollout rate.

awsJobPresignedUrl 
Config

Configuration information for 
pre-signed URLs.

expiresInSec long How long (in seconds) 
pre-signed URLs are valid. 
Valid values are 60 - 3600, 
the default value is 1800 
seconds. Pre-signed URLs are 
generated when a request for 
the job document is received.

awsJobAbortConfig The criteria that determine 
when and how a job stoppage 
takes place.

abortCriteriaList list The list of criteria that 
determine when and how to 
stop the job.

failureType string The type of job execution 
failures that can initiate a job 
stoppage.

enum: FAILED | REJECTED | 
TIMED_OUT | ALL

Over-the-Air Updates 552



FreeRTOS User Guide

Name Type Description

action string The type of job action to take 
to initiate the job stoppage.

enum: CANCEL

minNumberOfExecute 
dThings

integer

(min:1)

The minimum number of 
things which must receive job 
execution notifications before 
the job can be stopped.

awsJobTimeoutConfig Specifies the amount of time 
each device has to finish 
its execution of the job. A 
timer is started when the 
job execution status is set to
IN_PROGRESS . If the job 
execution status is not set 
to another terminal state 
before the timer expires, it 
will be automatically set to
TIMED_OUT .

Over-the-Air Updates 553



FreeRTOS User Guide

Name Type Description

inProgressTimeoutI 
nMinutes

long Specifies the amount of time, 
in minutes, this device has to 
finish execution of this job. 
The timeout interval can be 
anywhere between 1 minute 
and 7 days (1 to 10080 
minutes). The in progress 
timer can't be updated and 
will apply to all job execution 
s for the job. Whenever a 
job execution remains in the 
IN_PROGRESS status for 
longer than this interval, 
the job execution will fail 
and switch to the terminal
TIMED_OUT  status.

files list The files to be streamed by 
the OTA update.

fileName string The name of the file.

fileType integer

range- max:255 min:0

An integer value you can 
include in the job document 
to allow your devices to 
identify the type of file 
received from the cloud.

fileVersion string The file version.

fileLocation The location of the updated 
firmware.

stream The stream that contains the 
OTA update.

Over-the-Air Updates 554



FreeRTOS User Guide

Name Type Description

streamId string

(max:128 min:1)

The stream ID.

fileId integer

(max:255 min:0)

The ID of a file associated 
with a stream.

s3Location The location of the updated 
firmware in S3.

bucket string

(min:1)

The S3 bucket.

key string

(min:1)

The S3 key.

version string The S3 bucket version.

codeSigning The code signing method of 
the file.

awsSignerJobId string The ID of the AWSSignerJob 
which was created to sign the 
file.

startSigningJobPar 
ameter

Describes the code-signing 
job.

signingProfilePara 
meter

Describes the code-signing 
profile.

certificateArn string Certificate ARN.

platform string The hardware platform of 
your device.

Over-the-Air Updates 555



FreeRTOS User Guide

Name Type Description

certificatePathOnD 
evice

string The location of the code-sign 
ing certificate on your device.

signingProfileName string The code-signing profile 
name.

destination The location to write the 
code-signed file.

s3Destination Describes the location in S3 
of the updated firmware.

bucket string

(min:1)

The S3 bucket that contains 
the updated firmware.

prefix string The S3 prefix.

customCodeSigning A custom method for code 
signing a file.

signature The signature for the file.

inlineDocument blob A base64 encoded binary 
representation of the code 
signing signature.

certificateChain The certificate chain.

certificateName string The name of the certificate.

inlineDocument string A base64 encoded binary 
representation of the code 
signing certificate chain.

hashAlgorithm string The hash algorithm used to 
code sign the file.

Over-the-Air Updates 556



FreeRTOS User Guide

Name Type Description

signatureAlgorithm string The signature algorithm used 
to code sign the file.

attributes map A list of name/attribute pairs.

roleArn string

(max:2048 min:20)

The IAM role that grants AWS 
IoT access to the Amazon S3, 
AWS IoT jobs and AWS Code 
Signing resources to create an 
OTA update job.

additionalParameters map A list of additional OTA 
update parameters which are 
name-value pairs.

tags list Metadata which can be used 
to manage updates.

Key string

(max:128 min:1)

The tag's key.

Value string

(max:256 min:1)

The tag's value.

Output

{ 
  "otaUpdateId": "string", 
  "awsIotJobId": "string", 
  "otaUpdateArn": "string", 
  "awsIotJobArn": "string", 
  "otaUpdateStatus": "string"
}

Over-the-Air Updates 557



FreeRTOS User Guide

AWS CLI output fields

Name Type Description

otaUpdateId string

(max:128 min:1)

The OTA update ID.

awsIotJobId string The AWS IoT job ID associated 
with the OTA update.

otaUpdateArn string The OTA update ARN.

awsIotJobArn string The AWS IoT job ARN 
associated with the OTA 
update.

otaUpdateStatus string The OTA update status.

enum: CREATE_PENDING 
| CREATE_IN_PROGRESS 
| CREATE_COMPLETE | 
CREATE_FAILED

The following is an example of a JSON file passed into the create-ota-update command that uses 
Code Signing for AWS IoT.

[ 
  { 
    "fileName": "firmware.bin",                 
    "fileType": 1, 
    "fileLocation": { 
      "stream": { 
        "streamId": "004",                          
        "fileId":123 
      }                         
    }, 
    "codeSigning": { 
      "awsSignerJobId": "48c67f3c-63bb-4f92-a98a-4ee0fbc2bef6"      
    } 
  }

Over-the-Air Updates 558



FreeRTOS User Guide

]

The following is an example of a JSON file passed into the create-ota-update AWS CLI command 
that uses an inline file to provide custom code-signing material.

[ 
  { 
    "fileName": "firmware.bin", 
    "fileType": 1, 
    "fileLocation": { 
      "stream": { 
        "streamId": "004", 
        "fileId": 123 
      } 
    }, 
    "codeSigning": { 
      "customCodeSigning":{ 
        "signature":{ 
          "inlineDocument":"your_signature" 
        }, 
        "certificateChain": { 
          "certificateName": "your_certificate_name", 
          "inlineDocument":"your_certificate_chain" 
        }, 
        "hashAlgorithm":"your_hash_algorithm", 
        "signatureAlgorithm":"your_signature_algorithm" 
      } 
    } 
  }
]

The following is an example of a JSON file passed into the create-ota-update AWS CLI command 
that allows FreeRTOS OTA to start a code-signing job and create a code-signing profile and stream.

[ 
  { 
    "fileName": "your_firmware_path_on_device", 
    "fileType": 1, 
    "fileVersion": "1", 
    "fileLocation": { 
      "s3Location": { 
        "bucket": "your_bucket_name", 
        "key": "your_object_key", 

Over-the-Air Updates 559



FreeRTOS User Guide

        "version": "your_S3_object_version" 
      } 
    }, 
    "codeSigning":{ 
      "startSigningJobParameter":{ 
        "signingProfileName": "myTestProfile", 
        "signingProfileParameter": { 
          "certificateArn": "your_certificate_arn", 
          "platform": "your_platform_id", 
          "certificatePathOnDevice": "certificate_path" 
        }, 
        "destination": { 
          "s3Destination": { 
            "bucket": "your_destination_bucket" 
          } 
        } 
      } 
    }   
  }
]

The following is an example of a JSON file passed into the create-ota-update AWS CLI command 
that creates an OTA update that starts a code-signing job with an existing profile and uses the 
specified stream.

[ 
  { 
    "fileName": "your_firmware_path_on_device", 
    "fileType": 1, 
    "fileVersion": "1", 
    "fileLocation": { 
      "s3Location": { 
        "bucket": "your_s3_bucket_name", 
        "key": "your_object_key", 
        "version": "your_S3_object_version" 
      } 
    }, 
    "codeSigning":{ 
      "startSigningJobParameter":{ 
        "signingProfileName": "your_unique_profile_name", 
        "destination": { 
          "s3Destination": { 
            "bucket": "your_destination_bucket" 

Over-the-Air Updates 560



FreeRTOS User Guide

          } 
        } 
      } 
    }   
  }
]

The following is an example of a JSON file passed into the create-ota-update AWS CLI command 
that allows FreeRTOS OTA to create a stream with an existing code-signing job ID.

[ 
  { 
    "fileName": "your_firmware_path_on_device", 
    "fileType": 1, 
    "fileVersion": "1", 
    "codeSigning":{ 
      "awsSignerJobId": "your_signer_job_id" 
    }   
  }
]

The following is an example of a JSON file passed into the create-ota-update AWS CLI command 
that creates an OTA update. The update creates a stream from the specified S3 object and uses 
custom code signing.

[ 
  { 
    "fileName": "your_firmware_path_on_device", 
    "fileType": 1, 
    "fileVersion": "1", 
    "fileLocation": { 
      "s3Location": { 
        "bucket": "your_bucket_name", 
        "key": "your_object_key", 
        "version": "your_S3_object_version" 
      } 
    }, 
    "codeSigning":{ 
      "customCodeSigning": { 
        "signature":{ 
          "inlineDocument":"your_signature" 
        }, 

Over-the-Air Updates 561



FreeRTOS User Guide

        "certificateChain": { 
          "inlineDocument":"your_certificate_chain", 
          "certificateName": "your_certificate_path_on_device" 
        }, 
        "hashAlgorithm":"your_hash_algorithm", 
        "signatureAlgorithm":"your_sig_algorithm" 
      } 
    }   
  }
]

Listing OTA updates

You can use the list-ota-updates AWS CLI command to get a list of all OTA updates.

aws iot list-ota-updates

The output from the list-ota-updates command looks like this.

{ 
  "otaUpdates": [ 
      
    { 
      "otaUpdateId": "my_ota_update2", 
      "otaUpdateArn": "arn:aws:iot:us-west-2:123456789012:otaupdate/my_ota_update2", 
      "creationDate": 1522778769.042 
    }, 
    { 
      "otaUpdateId": "my_ota_update1", 
      "otaUpdateArn": "arn:aws:iot:us-west-2:123456789012:otaupdate/my_ota_update1", 
      "creationDate": 1522775938.956 
    }, 
    { 
      "otaUpdateId": "my_ota_update", 
      "otaUpdateArn": "arn:aws:iot:us-west-2:123456789012:otaupdate/my_ota_update", 
      "creationDate": 1522775151.031 
    } 
  ]
}

Over-the-Air Updates 562



FreeRTOS User Guide

Getting information about an OTA update

You can use the get-ota-update AWS CLI command to get the creation or deletion status of an 
OTA update.

aws iot get-ota-update --ota-update-id your-ota-update-id

The output from the get-ota-update command looks like the following.

{  
    "otaUpdateInfo": {  
        "otaUpdateId": "ota-update-001",  
        "otaUpdateArn": "arn:aws:iot:region:123456789012:otaupdate/ota-update-001",  
        "creationDate": 1575414146.286,  
        "lastModifiedDate": 1575414149.091,  
        "targets": [  
            "arn:aws:iot:region:123456789012:thing/myDevice"  
        ],  
        "protocols": [ "HTTP" ],  
        "awsJobExecutionsRolloutConfig": {  
            "maximumPerMinute": 0  
        },  
        "awsJobPresignedUrlConfig": {  
            "expiresInSec": 1800  
        },  
        "targetSelection": "SNAPSHOT",  
        "otaUpdateFiles": [  
            {  
                "fileName": "my_firmware.bin",  
                "fileType": 1, 
                "fileLocation": {  
                    "s3Location": {  
                        "bucket": "my-bucket",  
                        "key": "my_firmware.bin",  
                        "version": "AvP3bfJC9gyqnwoxPHuTqM5GWENt4iii"  
                    }  
                },  
                "codeSigning": {  
                    "awsSignerJobId": "b7a55a54-fae5-4d3a-b589-97ed103737c2",  
                    "startSigningJobParameter": {  
                        "signingProfileParameter": {},  
                        "signingProfileName": "my-profile-name",  
                        "destination": {  

Over-the-Air Updates 563



FreeRTOS User Guide

                            "s3Destination": {  
                                "bucket": "some-ota-bucket",  
                                "prefix": "SignedImages/"  
                            }  
                        }  
                    },  
                    "customCodeSigning": {}  
                }  
            }  
        ],  
        "otaUpdateStatus": "CREATE_COMPLETE",  
        "awsIotJobId": "AFR_OTA-ota-update-001",  
        "awsIotJobArn": "arn:aws:iot:region:123456789012:job/AFR_OTA-ota-update-001"  
    }  
}

The values returned for otaUpdateStatus include the following:

CREATE_PENDING

The creation of an OTA update is pending.

CREATE_IN_PROGRESS

An OTA update is being created.

CREATE_COMPLETE

An OTA update has been created.

CREATE_FAILED

The creation of an OTA update failed.

DELETE_IN_PROGRESS

An OTA update is being deleted.

DELETE_FAILED

The deletion of an OTA update failed.

Over-the-Air Updates 564



FreeRTOS User Guide

Note

To get the execution status of an OTA update after it is created, you need to use the
describe-job-execution command. For more information, see  Describe Job Execution.

Deleting OTA-related data

Currently, you cannot use the AWS IoT console to delete streams or OTA updates. You can use the 
AWS CLI to delete streams, OTA updates, and the AWS IoT jobs created during an OTA update.

Deleting an OTA stream

When you create an OTA update that uses MQTT, either you can use the command-line or the AWS 
IoT console to create a stream to break the firmware up into chunks so it can be sent over MQTT. 
You can delete this stream with the delete-stream AWS CLI command, as shown in the following 
example.

aws iot delete-stream --stream-id your_stream_id

Deleting an OTA update

When you create an OTA update, the following are created:

• An entry in the OTA update job database.

• An AWS IoT job to perform the update.

• An AWS IoT job execution for each device being updated.

The delete-ota-update command deletes the entry in the OTA update job database only. You must 
use the delete-job command to delete the AWS IoT job.

Use the delete-ota-update command to delete an OTA update.

aws iot delete-ota-update --ota-update-id your_ota_update_id

ota-update-id

The ID of the OTA update to delete.

Over-the-Air Updates 565

https://docs.aws.amazon.com/iot/latest/developerguide/manage-job-cli.html#describe-job-execution


FreeRTOS User Guide

delete-stream

Deletes the stream associated with the OTA update.

force-delete-aws-job

Deletes the AWS IoT job associated with the OTA update. If this flag is not set and the job is in 
the In_Progress state, the job is not deleted.

Deleting an IoT job created for an OTA update

FreeRTOS creates an AWS IoT job when you create an OTA update. A job execution is also created 
for each device that processes the job. You can use the delete-job AWS CLI command to delete a 
job and its associated job executions.

aws iot delete-job --job-id your-job-id --no-force

The no-force parameter specifies that only jobs that are in a terminal state (COMPLETED or 
CANCELLED) can be deleted. You can delete a job that is in a non-terminal state by passing the
force parameter. For more information, see DeleteJob API.

Note

Deleting a job with a status of IN_PROGRESS interrupts any job executions that are 
IN_PROGRESS on your devices and can result in a device being left in a nondeterministic 
state. Make sure that each device executing a job that has been deleted can recover to a 
known state.

Depending on the number of job executions created for the job and other factors, it can take a 
few minutes to delete a job. While the job is being deleted, its status is DELETION_IN_PROGRESS. 
Attempting to delete or cancel a job whose status is already DELETION_IN_PROGRESS results in an 
error.

You can use the delete-job-execution to delete a job execution. You might want to delete a 
job execution when a small number of devices are unable to process a job. This deletes the job 
execution for a single device, as shown in the following example.

aws iot delete-job-execution --job-id your-job-id --thing-name 

Over-the-Air Updates 566

https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJob.html


FreeRTOS User Guide

                    your-thing-name --execution-number your-job-execution-number --no-
force

As with the delete-job AWS CLI command, you can pass the --force parameter to the delete-job-
execution to force the deletion of a job execution. For more information , see DeleteJobExecution 
API.

Note

Deleting a job execution with a status of IN_PROGRESS interrupts any job executions 
that are IN_PROGRESS on your devices and can result in a device being left in a 
nondeterministic state. Make sure that each device executing a job that has been deleted 
can recover to a known state.

For more information about using the OTA update demo application, see Over-the-air updates 
demo application.

OTA Update Manager service

The over-the-air (OTA) Update Manager service provides a way to:

• Create an OTA update and the resources it uses, including an AWS IoT job, an AWS IoT stream, 
and code signing.

• Get information about an OTA update.

• List all OTA updates associated with your AWS account.

• Delete an OTA update.

An OTA update is a data structure maintained by the OTA Update Manager service. It contains:

• An OTA update ID.

• An optional OTA update description.

• A list of devices to update (targets).

• The type of OTA update: CONTINUOUS or SNAPSHOT. See the Jobs section of the AWS IoT 
Developer Guide for a discussion of the type of update that you need.

• The protocol used to perform the OTA update: [MQTT], [HTTP] or [MQTT, HTTP]. When you 
specify MQTT and HTTP, the device setup determines the protocol used.

Over-the-Air Updates 567

https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJobExecution.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html


FreeRTOS User Guide

• A list of files to send to the target devices.

• The IAM role that grants AWS IoT access to the Amazon S3, AWS IoT jobs and AWS Code Signing 
resources to create an OTA update job.

• An optional list of user-defined name-value pairs.

OTA updates were designed to update device firmware, but you can use them to send any files that 
you want to one or more devices registered with AWS IoT. When you send firmware updates over 
the air, we recommend that you digitally sign them so that the devices that receive them can verify 
they haven't been tampered with en route.

You can send updated firmware images using the HTTP or MQTT protocol, depending on the 
settings that you choose. You can sign your firmware updates with Code Signing for FreeRTOS or 
you can use your own code-signing tools.

For more control over the process, you can use the  CreateStream API to create a stream when 
sending updates over MQTT. In some instances, you can modify the FreeRTOS Agent code to adjust 
the size of the blocks that you send and receive.

When you create an OTA update, the OTA Manager service creates an AWS IoT job to notify your 
devices that an update is available. The FreeRTOS OTA Agent runs on your devices and listens for 
update messages. When an update is available, it requests the firmware update image over HTTP 
or MQTT and stores the files locally. It checks the digital signature of the downloaded files and, if 
valid, installs the firmware update. If you're not using FreeRTOS, you must implement your own 
OTA Agent to listen for and download updates and perform any installation operations.

Integrating the OTA Agent into your application

The over-the-air (OTA) Agent is designed to simplify the amount of code you must write to 
add OTA update functionality to your product. That integration burden consists primarily of 
initialization of the OTA Agent and creating a custom callback function for responding to the OTA 
Agent event messages. During initialization OS, MQTT, HTTP (if HTTP is used for file download) and 
platform specific implementation (PAL) interfaces are passed to the OTA Agent. Buffers can also be 
initialized and passed to the OTA Agent.

Note

Although the integration of the OTA update feature into your application is rather 
simple, the OTA update system requires an understanding of more than just device code 

Over-the-Air Updates 568

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateStream.html
https://github.com/aws/amazon-freertos/tree/202012.00/libraries/freertos_plus/aws/ota/src
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html


FreeRTOS User Guide

integration. To familiarize yourself with how to configure your AWS account with AWS IoT 
things, credentials, code-signing certificates, provisioning devices, and OTA update jobs, see
FreeRTOS Prerequisites.

Connection management

The OTA Agent uses the MQTT protocol for all control communication operations involving AWS 
IoT services, but it doesn't manage the MQTT connection. To ensure that the OTA Agent doesn't 
interfere with the connection management policy of your application, the MQTT connection 
(including disconnect and any reconnect functionality) must be handled by the main user 
application. The file can be downloaded over the MQTT or HTTP protocol. You can choose 
which protocol when you create the OTA job. If you choose MQTT, the OTA Agent uses the same 
connection for control operations and for downloading files.

Simple OTA demo

The following is an excerpt of a simple OTA demo that shows you how the Agent connects to the 
MQTT broker and initializes the OTA Agent. In this example, we configure the demo to use the 
default OTA application callback and to return some statistics once per second. For brevity, we 
leave out some details from this demo.

The OTA demo also demonstrates MQTT connection management by monitoring the disconnect 
callback and reestablishing the connection. When a disconnect happens, the demo first suspends 
the OTA Agent operations and then attempts to reestablish the MQTT connection. The MQTT 
reconnection attempts are delayed by a time which is exponentially increased up to a maximum 
value and a jitter is also added. If the connection is reestablished, the OTA Agent continues its 
operations.

For a working example that uses the AWS IoT MQTT broker, see the OTA demo code in the demos/
ota directory.

Because the OTA Agent is its own task, the intentional one-second delay in this example affects this 
application only. It has no impact on the performance of the Agent.

static BaseType_t prvRunOTADemo( void )
{ 
    /* Status indicating a successful demo or not. */ 
    BaseType_t xStatus = pdFAIL; 

Over-the-Air Updates 569

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-prereqs.html


FreeRTOS User Guide

    /* OTA library return status. */ 
    OtaErr_t xOtaError = OtaErrUninitialized; 

    /* OTA event message used for sending event to OTA Agent.*/ 
    OtaEventMsg_t xEventMsg = { 0 }; 

    /* OTA interface context required for library interface functions.*/ 
    OtaInterfaces_t xOtaInterfaces; 

    /* OTA library packet statistics per job.*/ 
    OtaAgentStatistics_t xOtaStatistics = { 0 }; 

    /* OTA Agent state returned from calling OTA_GetState.*/ 
    OtaState_t xOtaState = OtaAgentStateStopped; 

    /* Set OTA Library interfaces.*/ 
    prvSetOtaInterfaces( &xOtaInterfaces ); 

    /*************************** Init OTA Library. ***************************/ 

    if( ( xOtaError = OTA_Init( &xOtaBuffer, 
                                &xOtaInterfaces, 
                                ( const uint8_t * ) ( democonfigCLIENT_IDENTIFIER ), 
                                prvOtaAppCallback ) ) != OtaErrNone ) 
    { 
        LogError( ( "Failed to initialize OTA Agent, exiting = %u.", 
                    xOtaError ) ); 
    } 
    else 
    { 
        xStatus = pdPASS; 
    } 

    /************************ Create OTA Agent Task. ************************/ 

    if( xStatus == pdPASS ) 
    { 
        xStatus = xTaskCreate( prvOTAAgentTask, 
                               "OTA Agent Task", 
                               otaexampleAGENT_TASK_STACK_SIZE, 
                               NULL, 
                               otaexampleAGENT_TASK_PRIORITY, 
                               NULL ); 

Over-the-Air Updates 570



FreeRTOS User Guide

        if( xStatus != pdPASS ) 
        { 
            LogError( ( "Failed to create OTA agent task:" ) ); 
        } 
    } 

    /****************************** Start OTA ******************************/ 

    if( xStatus == pdPASS ) 
    { 
        /* Send start event to OTA Agent.*/ 
        xEventMsg.eventId = OtaAgentEventStart; 
        OTA_SignalEvent( &xEventMsg ); 
    } 

    /******************** Loop and display OTA statistics ********************/ 

    if( xStatus == pdPASS ) 
    { 
        while( ( xOtaState = OTA_GetState() ) != OtaAgentStateStopped ) 
        { 
            /* Get OTA statistics for currently executing job. */ 
            if( xOtaState != OtaAgentStateSuspended ) 
            { 
                OTA_GetStatistics( &xOtaStatistics ); 

                LogInfo( ( " Received: %u   Queued: %u   Processed: %u   Dropped: %u", 
                           xOtaStatistics.otaPacketsReceived, 
                           xOtaStatistics.otaPacketsQueued, 
                           xOtaStatistics.otaPacketsProcessed, 
                           xOtaStatistics.otaPacketsDropped ) ); 
            } 

            vTaskDelay( pdMS_TO_TICKS( otaexampleEXAMPLE_TASK_DELAY_MS ) ); 
        } 
    } 

    return xStatus;
}

Here is the high-level flow of this demo application:

• Create an MQTT Agent context.

Over-the-Air Updates 571



FreeRTOS User Guide

• Connect to your AWS IoT endpoint.

• Initialize the OTA Agent.

• Loop that allows an OTA update job and outputs statistics once a second.

• If MQTT disconnects, suspend the OTA Agent operations.

• Try connecting again with exponential delay and jitter.

• If reconnected, resume OTA Agent operations.

• If the Agent stops, delay one second, and then try reconnecting.

Using application callback for OTA Agent events

The previous example used prvOtaAppCallback as the callback handler for OTA Agent events. 
(See the fourth parameter to the OTA_Init API call). If you want to implement custom handling 
of the completion events, you must change the default handling in the OTA demo/application. 
During the OTA process, the OTA Agent can send one of the following event enums to the callback 
handler. It is up to the application developer to decide how and when to handle these events.

/** 
 * @ingroup ota_enum_types 
 * @brief OTA Job callback events. 
 * 
 * After an OTA update image is received and authenticated, the agent calls the user 
 * callback (set with the @ref OTA_Init API) with the value OtaJobEventActivate to 
 * signal that the device must be rebooted to activate the new image. When the device 
 * boots, if the OTA job status is in self test mode, the agent calls the user callback 
 * with the value OtaJobEventStartTest, signaling that any additional self tests 
 * should be performed. 
 * 
 * If the OTA receive fails for any reason, the agent calls the user callback with 
 * the value OtaJobEventFail instead to allow the user to log the failure and take 
 * any action deemed appropriate by the user code. 
 * 
 * See the OtaImageState_t type for more information. 
 */
typedef enum OtaJobEvent
{ 
    OtaJobEventActivate = 0,       /*!< @brief OTA receive is authenticated and ready 
 to activate. */ 
    OtaJobEventFail = 1,           /*!< @brief OTA receive failed. Unable to use this 
 update. */ 

Over-the-Air Updates 572



FreeRTOS User Guide

    OtaJobEventStartTest = 2,      /*!< @brief OTA job is now in self test, perform 
 user tests. */ 
    OtaJobEventProcessed = 3,      /*!< @brief OTA event queued by OTA_SignalEvent is 
 processed. */ 
    OtaJobEventSelfTestFailed = 4, /*!< @brief OTA self-test failed for current job. */ 
    OtaJobEventParseCustomJob = 5, /*!< @brief OTA event for parsing custom job 
 document. */ 
    OtaJobEventReceivedJob = 6,    /*!< @brief OTA event when a new valid AFT-OTA job 
 is received. */ 
    OtaJobEventUpdateComplete = 7, /*!< @brief OTA event when the update is completed. 
 */ 
    OtaLastJobEvent = OtaJobEventStartTest
} OtaJobEvent_t; 

The OTA Agent can receive an update in the background during active processing of the main 
application. The purpose of delivering these events is to allow the application to decide if 
action can be taken immediately or if it should be deferred until after completion of some other 
application-specific processing. This prevents an unanticipated interruption of your device during 
active processing (for example, vacuuming) that would be caused by a reset after a firmware 
update. These are the job events received by the callback handler:

OtaJobEventActivate

When the callback handler receives this event, you can either reset the device immediately or 
schedule a call to reset the device later. This allows you to postpone the device reset and self-
test phase, if necessary.

OtaJobEventFail

When the callback handler receives this event, the update has failed. You do not need to do 
anything in this case. You might want to output a log message or do something application-
specific.

OtaJobEventStartTest

The self-test phase is meant to allow newly updated firmware to execute and test itself before 
it determines whether it is functioning properly and commit itself to be the latest permanent 
application image. When a new update is received and authenticated and the device has been 
reset, the OTA Agent sends the OtaJobEventStartTest event to the callback function when 
it is ready for testing. The developer can add any required tests to determine if the device 
firmware is functioning properly after update. When the device firmware is deemed reliable by 

Over-the-Air Updates 573



FreeRTOS User Guide

the self tests, the code must commit the firmware as the new permanent image by calling the
OTA_SetImageState( OtaImageStateAccepted ) function.

OtaJobEventProcessed

The OTA event queued by OTA_SignalEvent is processed, so cleanup operations like freeing 
the OTA buffers can be done.

OtaJobEventSelfTestFailed

The OTA self-test failed for the current job. The default handling for this event is to shut down 
the OTA Agent and restart it so that the device rolls back to the previous image.

OtaJobEventUpdateComplete

The notification event for OTA job update completion.

OTA security

The following are three aspects of over-the-air (OTA) security:

Connection security

The OTA Update Manager service relies on existing security mechanisms, such as Transport 
Layer Security (TLS) mutual authentication, used by AWS IoT. OTA update traffic passes through 
the AWS IoT device gateway and uses AWS IoT security mechanisms. Each incoming and 
outgoing HTTP or MQTT message through the device gateway undergoes strict authentication 
and authorization.

Authenticity and integrity of OTA updates

Firmware can be digitally signed before an OTA update to ensure that it is from a reliable source 
and has not been tampered with.

The FreeRTOS OTA Update Manager service uses Code Signing for AWS IoT to automatically 
sign your firmware. For more information, see Code Signing for AWS IoT.

The OTA Agent, which runs on your devices, performs integrity checks on the firmware when it 
arrives on the device.

Operator security

Every API call made through the control plane API undergoes standard IAM Signature Version 4 
authentication and authorization. To create a deployment, you must have permissions to invoke 

Over-the-Air Updates 574

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html


FreeRTOS User Guide

the CreateDeployment, CreateJob, and CreateStream APIs. In addition, in your Amazon 
S3 bucket policy or ACL, you must give read permissions to the AWS IoT service principal so that 
the firmware update stored in Amazon S3 can be accessed during streaming.

Code Signing for AWS IoT

The AWS IoT console uses Code Signing for AWS IoT to automatically sign your firmware image for 
any device supported by AWS IoT.

Code Signing for AWS IoT uses a certificate and private key that you import into ACM. You can use 
a self–signed certificate for testing, but we recommend that you obtain a certificate from a well–
known commercial certificate authority (CA).

Code–signing certificates use the X.509 version 3 Key Usage and Extended Key Usage
extensions. The Key Usage extension is set to Digital Signature and the Extended 
Key Usage extension is set to Code Signing. For more information about signing your code 
image, see the Code Signing for AWS IoT Developer Guide and the Code Signing for AWS IoT API 
Reference.

Note

You can download the Code Signing for AWS IoT SDK from Tools for Amazon Web Services.

OTA troubleshooting

The following sections contain information to help you troubleshoot issues with OTA updates.

Topics

• Set up CloudWatch Logs for OTA updates

• Log AWS IoT OTA API calls with AWS CloudTrail

• Get CreateOTAUpdate failure details using the AWS CLI

• Get OTA failure codes with the AWS CLI

• Troubleshoot OTA updates of multiple devices

• Troubleshoot OTA updates with the Texas Instruments CC3220SF Launchpad

Over-the-Air Updates 575

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/signer/latest/api/Welcome.html
https://docs.aws.amazon.com/signer/latest/api/Welcome.html
https://aws.amazon.com/tools/


FreeRTOS User Guide

Set up CloudWatch Logs for OTA updates

The OTA Update service supports logging with Amazon CloudWatch. You can use the AWS 
IoT console to enable and configure Amazon CloudWatch logging for OTA updates. For more 
information, see Cloudwatch Logs.

To enable logging, you must create an IAM role and configure OTA update logging.

Note

Before you enable OTA update logging, make sure you understand the CloudWatch 
Logs access permissions. Users with access to CloudWatch Logs can see your debugging 
information. For information, see Authentication and Access Control for Amazon 
CloudWatch Logs.

Create a logging role and enable logging

Use the AWS IoT console to create a logging role and enable logging.

1. From the navigation pane, choose Settings.

2. Under Logs, choose Edit.

3. Under Level of verbosity, choose Debug.

4. Under Set role, choose Create new to create an IAM role for logging.

5. Under Name, enter a unique name for your role. Your role will be created with all required 
permissions.

6. Choose Update.

OTA update logs

The OTA Update service publishes logs to your account when one of the following occurs:

• An OTA update is created.

• An OTA update is completed.

• A code-signing job is created.

• A code-signing job is completed.

• An AWS IoT job is created.

Over-the-Air Updates 576

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/auth-and-access-control-cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/auth-and-access-control-cwl.html
https://console.aws.amazon.com/iot/home


FreeRTOS User Guide

• An AWS IoT job is completed.

• A stream is created.

You can view your logs in the CloudWatch console.

To view an OTA update in CloudWatch Logs

1. From the navigation pane, choose Logs.

2. In Log Groups, choose AWSIoTLogsV2.

OTA update logs can contain the following properties:

accountId

The AWS account ID in which the log was generated.

actionType

The action that generated the log. This can be set to one of the following values:

• CreateOTAUpdate: An OTA update was created.

• DeleteOTAUpdate: An OTA update was deleted.

• StartCodeSigning: A code-signing job was started.

• CreateAWSJob: An AWS IoT job was created.

• CreateStream: A stream was created.

• GetStream: A request for a stream was sent to the AWS IoT MQTT-based file delivery 
feature.

• DescribeStream: A request for information about a stream was sent to the AWS IoT MQTT-
based file delivery feature.

awsJobId

The AWS IoT job ID that generated the log.

clientId

The MQTT client ID that made the request that generated the log.

clientToken

The client token associated with the request that generated the log.

Over-the-Air Updates 577

https://console.aws.amazon.com/cloudwatch/home


FreeRTOS User Guide

details

More information about the operation that generated the log.

logLevel

The logging level of the log. For OTA update logs, this is always set to DEBUG.

otaUpdateId

The ID of the OTA update that generated the log.

protocol

The protocol used to make the request that generated the log.

status

The status of the operation that generated the log. Valid values are:

• Success

• Failure

streamId

The AWS IoT stream ID that generated the log.

timestamp

The time when the log was generated.

topicName

An MQTT topic used to make the request that generated the log.

Example logs

The following is an example log generated when a code-signing job is started:

{  
    "timestamp": "2018-07-23 22:59:44.955",  
    "logLevel": "DEBUG",  
    "accountId": "123456789012",  
    "status": "Success",  
    "actionType": "StartCodeSigning",  
    "otaUpdateId": "08957b03-eea3-448a-87fe-743e6891ca3a",  
    "details": "Start code signing job. The request status is SUCCESS."  
}

Over-the-Air Updates 578



FreeRTOS User Guide

The following is an example log generated when an AWS IoT job is created:

{  
    "timestamp": "2018-07-23 22:59:45.363",  
    "logLevel": "DEBUG",  
    "accountId": "123456789012",  
    "status": "Success",  
    "actionType": "CreateAWSJob",  
    "otaUpdateId": "08957b03-eea3-448a-87fe-743e6891ca3a",  
    "awsJobId": "08957b03-eea3-448a-87fe-743e6891ca3a",  
    "details": "Create AWS Job The request status is SUCCESS."  
}

The following is an example log generated when an OTA update is created:

{  
    "timestamp": "2018-07-23 22:59:45.413",  
    "logLevel": "DEBUG",  
    "accountId": "123456789012",  
    "status": "Success",  
    "actionType": "CreateOTAUpdate",  
    "otaUpdateId": "08957b03-eea3-448a-87fe-743e6891ca3a",  
    "details": "OTAUpdate creation complete. The request status is SUCCESS."  
}

The following is an example log generated when a stream is created:

{  
    "timestamp": "2018-07-23 23:00:26.391",  
    "logLevel": "DEBUG",  
    "accountId": "123456789012",  
    "status": "Success",  
    "actionType": "CreateStream",  
    "otaUpdateId": "3d3dc5f7-3d6d-47ac-9252-45821ac7cfb0",  
    "streamId": "6be2303d-3637-48f0-ace9-0b87b1b9a824",  
    "details": "Create stream. The request status is SUCCESS."  
}

The following is an example log generated when an OTA update is deleted:

{  

Over-the-Air Updates 579



FreeRTOS User Guide

    "timestamp": "2018-07-23 23:03:09.505",  
    "logLevel": "DEBUG",  
    "accountId": "123456789012",  
    "status": "Success",  
    "actionType": "DeleteOTAUpdate",  
    "otaUpdateId": "9bdd78fb-f113-4001-9675-1b595982292f",  
    "details": "Delete OTA Update. The request status is SUCCESS."  
}

The following is an example log generated when a device requests a stream from the MQTT-based 
file delivery feature:

{  
    "timestamp": "2018-07-25 22:09:02.678",  
    "logLevel": "DEBUG",  
    "accountId": "123456789012",  
    "status": "Success",  
    "actionType": "GetStream",  
    "protocol": "MQTT",  
    "clientId": "b9d2e49c-94fe-4ed1-9b07-286afed7e4c8",  
    "topicName": "$aws/things/b9d2e49c-94fe-4ed1-9b07-286afed7e4c8/
streams/1e51e9a8-9a4c-4c50-b005-d38452a956af/get/json",  
    "streamId": "1e51e9a8-9a4c-4c50-b005-d38452a956af",  
    "details": "The request status is SUCCESS."  
}

The following is an example log generated when a device calls the DescribeStream API:

{  
    "timestamp": "2018-07-25 22:10:12.690",  
    "logLevel": "DEBUG",  
    "accountId": "123456789012",  
    "status": "Success",  
    "actionType": "DescribeStream",  
    "protocol": "MQTT",  
    "clientId": "581075e0-4639-48ee-8b94-2cf304168e43",  
    "topicName": "$aws/things/581075e0-4639-48ee-8b94-2cf304168e43/streams/71c101a8-
bcc5-4929-9fe2-af563af0c139/describe/json",  
    "streamId": "71c101a8-bcc5-4929-9fe2-af563af0c139",  
    "clientToken": "clientToken",  
    "details": "The request status is SUCCESS."  
}

Over-the-Air Updates 580



FreeRTOS User Guide

Log AWS IoT OTA API calls with AWS CloudTrail

FreeRTOS is integrated with CloudTrail, a service that captures AWS IoT OTA API calls and delivers 
the log files to an Amazon S3 bucket that you specify. CloudTrail captures API calls from your code 
to the AWS IoT OTA APIs. Using the information collected by CloudTrail, you can determine the 
request that was made to AWS IoT OTA, the source IP address from which the request was made, 
who made the request, when it was made, and so on.

For more information about CloudTrail, including how to configure and enable it, see the AWS 
CloudTrail User Guide.

FreeRTOS information in CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to AWS IoT OTA actions 
are tracked in CloudTrail log files where they are written with other AWS service records. CloudTrail 
determines when to create and write to a new file based on a time period and file size.

The following AWS IoT OTA control plane actions are logged by CloudTrail:

• CreateStream

• DescribeStream

• ListStreams

• UpdateStream

• DeleteStream

• CreateOTAUpdate

• GetOTAUpdate

• ListOTAUpdates

• DeleteOTAUpdate

Note

AWS IoT OTA data plane actions (device side) are not logged by CloudTrail. Use CloudWatch 
to monitor these.

Every log entry contains information about who generated the request. The user identity 
information in the log entry helps you determine the following:

Over-the-Air Updates 581

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListStreams.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateOTAUpdate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_GetOTAUpdate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListOTAUpdates.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteOTAUpdate.html


FreeRTOS User Guide

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element. AWS IoT OTA actions are 
documented in the AWS IoT OTA API Reference.

You can store your log files in your Amazon S3 bucket for as long as you want, but you can also 
define Amazon S3 lifecycle rules to archive or delete log files automatically. By default, your log 
files are encrypted with Amazon S3 server-side encryption (SSE).

If you want to be notified when log files are delivered, you can configure CloudTrail to publish 
Amazon SNS notifications. For more information, see  Configuring Amazon SNS Notifications for 
CloudTrail.

You can also aggregate AWS IoT OTA log files from multiple AWS Regions and multiple AWS 
accounts into a single Amazon S3 bucket.

For more information, see  Receiving CloudTrail Log Files from Multiple Regions and Receiving 
CloudTrail Log Files from Multiple Accounts.

Understanding FreeRTOS log file entries

CloudTrail log files can contain one or more log entries. Each entry lists multiple JSON-formatted 
events. A log entry represents a single request from any source and includes information about the 
requested action, the date and time of the action, request parameters, and so on. Log entries are 
not an ordered stack trace of the public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the log from a call to
CreateOTAUpdate action.

{ 
    "eventVersion": "1.05", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "EXAMPLE", 
        "arn": "arn:aws:iam::your_aws_account:user/your_user_id", 
        "accountId": "your_aws_account", 
        "accessKeyId": "your_access_key_id", 
        "userName": "your_username", 
        "sessionContext": { 

Over-the-Air Updates 582

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/iot/latest/apireference
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html


FreeRTOS User Guide

            "attributes": { 
                "mfaAuthenticated": "false", 
                "creationDate": "2018-08-23T17:27:08Z" 
            } 
        }, 
        "invokedBy": "apigateway.amazonaws.com" 
    }, 
    "eventTime": "2018-08-23T17:27:19Z", 
    "eventSource": "iot.amazonaws.com", 
    "eventName": "CreateOTAUpdate", 
    "awsRegion": "your_aws_region", 
    "sourceIPAddress": "apigateway.amazonaws.com", 
    "userAgent": "apigateway.amazonaws.com", 
    "requestParameters": { 
        "targets": [ 
            "arn:aws:iot:your_aws_region:your_aws_account:thing/Thing_CMH" 
        ], 
        "roleArn": "arn:aws:iam::your_aws_account:role/Role_FreeRTOSJob", 
        "files": [ 
            { 
                "fileName": "/sys/mcuflashimg.bin", 
                "fileSource": { 
                    "fileId": 0, 
                    "streamId": "your_stream_id" 
                }, 
                "codeSigning": { 
                    "awsSignerJobId": "your_signer_job_id" 
                } 
            } 
        ], 
        "targetSelection": "SNAPSHOT", 
        "otaUpdateId": "FreeRTOSJob_CMH-23-1535045232806-92" 
    }, 
    "responseElements": { 
        "otaUpdateArn": "arn:aws:iot:your_aws_region:your_aws_account:otaupdate/
FreeRTOSJob_CMH-23-1535045232806-92", 
        "otaUpdateStatus": "CREATE_PENDING", 
        "otaUpdateId": "FreeRTOSJob_CMH-23-1535045232806-92" 
    }, 
    "requestID": "c9649630-a6f9-11e8-8f9c-e1cf2d0c9d8e", 
    "eventID": "ce9bf4d9-5770-4cee-acf4-0e5649b845c0", 
    "eventType": "AwsApiCall", 
    "recipientAccountId": "recipient_aws_account"

Over-the-Air Updates 583



FreeRTOS User Guide

}

Get CreateOTAUpdate failure details using the AWS CLI

If the process of creating an OTA update job fails, there may be actions you can take to remedy 
the problem. When you create an OTA update job, the OTA manager service creates an IoT job 
and schedules it for the target devices, and this process also creates or uses other types of AWS 
resources in your account (a code-signing job, an AWS IoT stream, an Amazon S3 object). Any error 
encountered may cause the process to fail without creating an AWS IoT job. In this troubleshooting 
section we give instructions on how to retrieve the details of the failure.

1. Install and configure the AWS CLI.

2. Run aws configure and enter the following information.

$ aws configure
AWS Access Key ID [None]: AccessID
AWS Secret Access Key [None]: AccessKey
Default region name [None]: Region
Default output format [None]: json

For more information, see  Quick configuration with aws configure.

3. Run:

aws iot get-ota-update --ota-update-id ota_update_job_001

Where ota_update_job_001 is the ID you gave the OTA update when you created it.

4. The output will look like this:

{ 
    "otaUpdateInfo": { 
        "otaUpdateId": "ota_update_job_001", 
        "otaUpdateArn": 
 "arn:aws:iot:region:account_id:otaupdate/ota_update_job_001", 
        "creationDate": 1584646864.534, 
        "lastModifiedDate": 1584646865.913, 
        "targets": [ 
            "arn:aws:iot:region:account_id:thing/thing_001" 
        ], 
        "protocols": [ 
            "MQTT" 

Over-the-Air Updates 584

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config


FreeRTOS User Guide

        ], 
        "awsJobExecutionsRolloutConfig": {}, 
        "awsJobPresignedUrlConfig": {}, 
        "targetSelection": "SNAPSHOT", 
        "otaUpdateFiles": [ 
            { 
               "fileName": "/12ds", 
                "fileLocation": { 
                    "s3Location": { 
                        "bucket": "bucket_name", 
                        "key": "demo.bin", 
                        "version": "Z7X.TWSAS7JSi4rybc02nMdcE41W1tV3" 
                    } 
                }, 
                "codeSigning": { 
                    "startSigningJobParameter": { 
                        "signingProfileParameter": {}, 
                        "signingProfileName": "signing_profile_name", 
                        "destination": { 
                            "s3Destination": { 
                                "bucket": "bucket_name", 
                                "prefix": "SignedImages/" 
                            } 
                        } 
                    }, 
                    "customCodeSigning": {} 
                } 
            } 
        ], 
        "otaUpdateStatus": "CREATE_FAILED", 
        "errorInfo": { 
            "code": "AccessDeniedException", 
            "message": "S3 object demo.bin not accessible. Please check 
 your permissions (Service: AWSSigner; Status Code: 403; Error Code: 
 AccessDeniedException; Request ID: 01d8e7a1-8c7c-4d85-9fd7-dcde975fdd2d)" 
        } 
    }
}

If the create failed, the otaUpdateStatus field in the command output will contain
CREATE_FAILED and the errorInfo field will contain the details of the failure.

Over-the-Air Updates 585



FreeRTOS User Guide

Get OTA failure codes with the AWS CLI

1. Install and configure the AWS CLI.

2. Run aws configure and enter following information.

$ aws configure
AWS Access Key ID [None]: AccessID
AWS Secret Access Key [None]: AccessKey
Default region name [None]: Region
Default output format [None]: json

For more information, see  Quick configuration with aws configure.

3. Run:

aws iot describe-job-execution --job-id JobID --thing-name ThingName

Where JobID is the complete job ID string for the job whose status we want to get (it was 
associated with the OTA update job when it was created) and ThingName is the AWS IoT thing 
name that the device is registered as in AWS IoT

4. The output will look like this:

{ 
    "execution": { 
        "jobId": "AFR_OTA-****************", 
        "status": "FAILED", 
        "statusDetails": { 
            "detailsMap": { 
                "reason": "0xEEEEEEEE: 0xffffffff" 
            } 
        }, 
        "thingArn": "arn:aws:iot:Region:AccountID:thing/ThingName", 
        "queuedAt": 1569519049.9, 
        "startedAt": 1569519052.226, 
        "lastUpdatedAt": 1569519052.226, 
        "executionNumber": 1, 
        "versionNumber": 2 
    }
}

Over-the-Air Updates 586

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config


FreeRTOS User Guide

In this example output, the "reason" in the "detailsmap" has two fields: the field 
shown as "0xEEEEEEEE" contains the generic error code from the OTA Agent; the field 
shown as "0xffffffff" contains the sub-code. The generic error codes are listed in  https://
docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html. See error 
codes with the prefix "kOTA_Err_". The sub-code can be a platform specific code or provide 
more details about the generic error.

Troubleshoot OTA updates of multiple devices

To perform OTAs on multiple devices (things) using the same firmware image, implement a 
function (for example getThingName()) that retrieves clientcredentialIOT_THING_NAME
from non-volatile memory. Make sure that this function reads the thing name from a part of non-
volatile memory that is not overwritten by the OTA, and that the thing name is provisioned before 
running the first job. If you are using the JITP flow, you can read the thing name out of your device 
certificate's common name.

Troubleshoot OTA updates with the Texas Instruments CC3220SF Launchpad

The CC3220SF Launchpad platform provides a software tamper-detection mechanism. It uses a 
security alert counter that is incremented whenever there is an integrity violation. The device is 
locked when the security alert counter reaches a predetermined threshold (the default is 15) and 
the host receives the SL_ERROR_DEVICE_LOCKED_SECURITY_ALERT asynchronous event. The 
locked device then has limited accessibility. To recover the device, you can reprogram it or use the 
restore-to-factory process to revert to the factory image. You should program the desired behavior 
by updating the asynchronous event handler in network_if.c.

FreeRTOS Libraries

FreeRTOS libraries provide additional functionality to the FreeRTOS kernel and its internal libraries. 
You can use FreeRTOS libraries for networking and security in embedded applications. FreeRTOS 
libraries also enable your applications to interact with AWS IoT services. FreeRTOS includes libraries 
that make it possible to:

• Securely connect devices to the AWS IoT Cloud using MQTT and device shadows.

• Discover and connect to AWS IoT Greengrass cores.

• Manage Wi-Fi connections.

• Listen for and process FreeRTOS Over-the-Air Updates.

FreeRTOS Libraries 587

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html


FreeRTOS User Guide

The libraries directory contains the source code of the FreeRTOS libraries. There are helper 
functions that assist in implementing the library functionality. We do not recommend that you 
change these helper functions.

FreeRTOS porting libraries

The following porting libraries are included in configurations of FreeRTOS that are available for 
download on the FreeRTOS console. These libraries are platform-dependent. Their contents change 
according to your hardware platform. For information about porting these libraries to a device, see 
the FreeRTOS Porting Guide.

FreeRTOS porting libraries

Library API Reference Description

Bluetooth Low 
Energy

Bluetooth Low Energy API 
Reference

Using the FreeRTOS Bluetooth Low 
Energy library, your microcontroller 
can communicate with the AWS IoT 
MQTT broker through a gateway 
device. For more information, see
Bluetooth Low Energy library.

Over-the-Air 
Updates

AWS IoT Over-the-air update API 
reference

The FreeRTOS AWS IoT Over-
the-air (OTA) update library lets 
you manage update notificat 
ions, download updates, and 
perform cryptographic verificat 
ion of firmware updates on your 
FreeRTOS device.

For more information, see AWS IoT 
Over the air (OTA) library.

FreeRTOS+POSIX FreeRTOS+POSIX API Reference You can use the FreeRTOS+POSIX 
library to port POSIX-compliant 
applications to the FreeRTOS 
ecosystem.

FreeRTOS Libraries 588

https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/ble/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/ble/index.html
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html
https://freertos.org/Documentation/api-ref/POSIX/index.html


FreeRTOS User Guide

Library API Reference Description

For more information, see
FreeRTOS+POSIX.

Secure Sockets Secure Sockets API Reference For more information, see Secure 
Sockets library.

FreeRTOS+TCP FreeRTOS+TCP API Reference FreeRTOS+TCP is a scalable, open 
source and thread safe TCP/IP stack 
for FreeRTOS.

For more information, see
FreeRTOS+TCP.

Wi-Fi Wi-Fi API Reference The FreeRTOS Wi-Fi library 
enables you to interface with 
your microcontroller's lower-level 
wireless stack.

For more information, see the Wi-Fi 
library.

corePKCS11   The corePKCS11 library is a 
reference implementation of the 
Public Key Cryptography Standard 
#11, to support provisioning and 
TLS client authentication.

For more information, see the
corePKCS11 library.

TLS   For more information, see
Transport Layer Security.

Common I/O Common I/O API Reference For more information, see Common 
I/O.

FreeRTOS Libraries 589

https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_POSIX/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/FreeRTOS_TCP_API_Functions.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html


FreeRTOS User Guide

Library API Reference Description

Cellular Interface Cellular Interface API Reference The Cellular Interface library 
exposes the capabilities of a few 
popular cellular modems through a 
uniform API. For more information, 
see the Cellular Interface library.

FreeRTOS application libraries

You can optionally include the following standalone application libraries in your FreeRTOS 
configuration to interact with AWS IoT services on the cloud.

Note

Some of the application libraries have the same APIs as libraries in the AWS IoT Device SDK 
for Embedded C. For these libraries, see the AWS IoT Device SDK C API Reference. For more 
information about the AWS IoT Device SDK for Embedded C, see AWS IoT Device SDK for 
Embedded C.

FreeRTOS application libraries

Library API Reference Description

AWS IoT Device 
Defender

Device Defender C SDK API 
Reference

The FreeRTOS AWS IoT Device 
Defender library connects your 
FreeRTOS device to AWS IoT Device 
Defender.

For more information, see AWS IoT 
Device Defender library.

AWS IoT Greengras 
s

Greengrass API Reference The FreeRTOS AWS IoT Greengras 
s library connects your FreeRTOS 
device to AWS IoT Greengrass.

FreeRTOS Libraries 590

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/index.html
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/device-defender-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/device-defender-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__greengrass__discovery_8h.html


FreeRTOS User Guide

Library API Reference Description

For more information, see AWS IoT 
Greengrass Discovery library.

MQTT MQTT (v1.x.x) Library API Reference

MQTT (v1) Agent API Reference

MQTT (v2.x.x) C SDK API Reference

The coreMQTT library provides a 
client for your FreeRTOS device 
to publish and subscribe to MQTT 
topics. MQTT is the protocol that 
devices use to interact with AWS 
IoT.

For more information about the 
coreMQTT library version 3.0.0, see
coreMQTT library.

coreMQTT Agent coreMQTT Agent Library API 
Reference

The coreMQTT Agent library is a 
high level API that adds thread 
safety to the coreMQTT library. It 
lets you create a dedicated MQTT 
agent task that manages an MQTT 
connection in the background and 
doesn't need any intervention from 
other tasks. The library provides 
thread safe equivalents to the 
coreMQTT's APIs, so it can be used 
in multi-threaded environments.

For more information about 
the coreMQTT Agent library see
coreMQTT Agent library.

FreeRTOS Libraries 591

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__lib_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/embedded-csdk/libraries/standard/coreMQTT-Agent/docs/doxygen/output/html/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/embedded-csdk/libraries/standard/coreMQTT-Agent/docs/doxygen/output/html/index.html


FreeRTOS User Guide

Library API Reference Description

AWS IoT Device 
Shadow

Device Shadow C SDK API 
Reference

The AWS IoT Device Shadow library 
enables your FreeRTOS device 
to interact with AWS IoT device 
shadows.

For more information, see AWS IoT 
Device Shadow library.

Configuring the FreeRTOS libraries

Configuration settings for FreeRTOS and the AWS IoT Device SDK for Embedded C are defined as 
C preprocessor constants. You can set configuration settings with a global configuration file, or by 
using a compiler option such as -D in gcc. Because configuration settings are defined as compile-
time constants, a library must be rebuilt if a configuration setting is changed.

If you want to use a global configuration file to set configuration options, create and save the file 
with the name iot_config.h, and place it in your include path. Within the file, use #define
directives to configure the FreeRTOS libraries, demos, and tests.

For more information about the supported global configuration options, see the Global 
Configuration File Reference.

backoffAlgorithm library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Introduction

The backoffAlgorithm library is a utility library that is used to space out repeated retransmissions 
of the same block of data, to avoid network congestion. This library calculates the backoff period 
for retrying network operations (like a failed network connection with the server) using an 
exponential backoff with jitter algorithm.

FreeRTOS Libraries 592

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/global_library_config.html#IOT_CONFIG_FILE
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/global_library_config.html#IOT_CONFIG_FILE
https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://github.com/FreeRTOS/backoffAlgorithm
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/


FreeRTOS User Guide

Exponential backoff with jitter is typically used when retrying a failed connection or network 
request to a server that is caused by network congestion or high loads on the server. It is used 
to spread out the timing of the retry requests created by multiple devices attempting network 
connections at the same time. In an environment with poor connectivity, a client can get 
disconnected at any time; so a backoff strategy also helps the client to conserve battery by not 
repeatedly attempting reconnections when they are unlikely to succeed.

The library is written in C and designed to be compliant with ISO C90 and MISRA C:2012. The 
library has no dependencies on any additional libraries other than the standard C library and has 
no heap allocation, making it suitable for IoT microcontrollers, but also fully portable to other 
platforms.

This library can be freely used and is distributed under the MIT open source license.

Code Size of backoffAlgorithm (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

backoff_algorithm.c 0.1K 0.1K

Total estimates 0.1K 0.1K

Bluetooth Low Energy library

Important

This library is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Overview

FreeRTOS supports publishing and subscribing to Message Queuing Telemetry Transport (MQTT) 
topics over Bluetooth Low Energy through a proxy device, such as a mobile phone. With the 
FreeRTOS Bluetooth Low Energy (BLE) library, your microcontroller can securely communicate with 
the AWS IoT MQTT broker.

FreeRTOS Libraries 593

https://en.wikipedia.org/wiki/ANSI_C#C90
https://misra.org.uk/product/misra-c2012-third-edition-first-revision/
https://freertos.org/a00114.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/ble/index.html


FreeRTOS User Guide

Using the Mobile SDKs for FreeRTOS Bluetooth Devices, you can write native mobile applications 
that communicate with the embedded applications on your microcontroller over BLE. For more 
information about the mobile SDKs, see Mobile SDKs for FreeRTOS Bluetooth devices.

The FreeRTOS BLE library includes services for configuring Wi-Fi networks, transferring large 
amounts of data, and providing network abstractions over BLE. The FreeRTOS BLE library also 
includes middleware and lower-level APIs for more direct control over your BLE stack.

Architecture

Three layers make up the FreeRTOS BLE library: services, middleware, and low-level wrappers.

FreeRTOS Libraries 594



FreeRTOS User Guide

Services

The FreeRTOS BLE services layer consists of four Generic Attribute (GATT) services that leverage 
the middleware APIs:

• Device information

• Wi-Fi provisioning

• Network abstraction

• Large object transfer

Device information

The Device information service gathers details about your microcontroller, including:

• The version of FreeRTOS that your device is using.

• The AWS IoT endpoint of the account for which the device is registered.

• Bluetooth Low Energy Maximum Transmission Unit (MTU).

Wi-Fi provisioning

The Wi-Fi provisioning service enables microcontrollers with Wi-Fi capabilities to do the following:

• List networks in range.

• Save networks and network credentials to flash memory.

• Set network priority.

• Delete networks and network credentials from flash memory.

Network abstraction

The network abstraction service abstracts the network connection type for applications. A common 
API interacts with your device's Wi-Fi, Ethernet, and Bluetooth Low Energy hardware stack, 
enabling an application to be compatible with multiple connection types.

Large Object Transfer

The Large Object Transfer service sends data to, and receives data from, a client. Other services, 
like Wi-Fi provisioning and Network abstraction, use the Large Object Transfer service to send and 
receive data. You can also use the Large Object Transfer API to directly interact with the service.

FreeRTOS Libraries 595



FreeRTOS User Guide

MQTT over BLE

MQTT over BLE contains the GATT profile for creating an MQTT proxy service over BLE. The 
MQTT proxy service allows an MQTT client to communicate with the AWS MQTT broker through a 
gateway device. For example, you can use the proxy service to connect a device running FreeRTOS 
to AWS MQTT through a smartphone app. The BLE device is the GATT server and exposes services 
and characteristics for the gateway device. The GATT server uses these exposed services and 
characteristics to perform MQTT operations with the cloud for that device. For more details, refer 
to Appendix A: MQTT over BLE GATT profile .

Middleware

FreeRTOS Bluetooth Low Energy middleware is an abstraction from the lower-level APIs. The 
middleware APIs make up a more user-friendly interface to the Bluetooth Low Energy stack.

Using middleware APIs, you can register several callbacks, across multiple layers, to a single event. 
Initializing the Bluetooth Low Energy middleware also initializes services and starts advertising.

Flexible callback subscription

Suppose your Bluetooth Low Energy hardware disconnects, and the MQTT over Bluetooth Low 
Energy service needs to detect the disconnection. An application that you wrote might also need to 
detect the same disconnection event. The Bluetooth Low Energy middleware can route the event 
to different parts of the code where you have registered callbacks, without making the higher 
layers compete for lower-level resources.

Low-level wrappers

The low-level FreeRTOS Bluetooth Low Energy wrappers are an abstraction from the 
manufacturer's Bluetooth Low Energy stack. Low-level wrappers offer a common set of APIs 
for direct control over the hardware. The low-level APIs optimize RAM usage, but are limited in 
functionality.

Use the Bluetooth Low Energy service APIs to interact with the Bluetooth Low Energy services. The 
service APIs demand more resources than the low-level APIs.

Dependencies and requirements

The Bluetooth Low Energy library has the following direct dependencies:

• Linear Containers library

FreeRTOS Libraries 596

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/linear_containers/index.html


FreeRTOS User Guide

• A platform layer that interfaces with the operating system for thread management, timers, clock 
functions, and network access.

Only the Wi-Fi Provisioning service has FreeRTOS library dependencies:

GATT Service Dependency

Wi-Fi Provisioning Wi-Fi library

To communicate with the AWS IoT MQTT broker, you must have an AWS account and you must 
register your devices as AWS IoT things. For more information about setting up, see the AWS IoT 
Developer Guide.

FreeRTOS Bluetooth Low Energy uses Amazon Cognito for user authentication on your mobile 
device. To use MQTT proxy services, you must create an Amazon Cognito identity and user 
pools. Each Amazon Cognito Identity must have the appropriate policy attached to it. For more 
information, see the Amazon Cognito Developer Guide.

Library configuration file

Applications that use the FreeRTOS MQTT over Bluetooth Low Energy service must provide an
iot_ble_config.h header file, in which configuration parameters are defined. Undefined 
configuration parameters take the default values specified in iot_ble_config_defaults.h.

Some important configuration parameters include:

IOT_BLE_ADD_CUSTOM_SERVICES

Allows users to create their own services.

FreeRTOS Libraries 597

https://docs.aws.amazon.com/iot/latest/developerguide/
https://docs.aws.amazon.com/iot/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/


FreeRTOS User Guide

IOT_BLE_SET_CUSTOM_ADVERTISEMENT_MSG

Allows users to customize the advertisement and scan response messages.

For more information, see Bluetooth Low Energy API Reference.

Optimization

When optimizing your board's performance, consider the following:

• Low-level APIs use less RAM, but offer limited functionality.

• You can set the bleconfigMAX_NETWORK parameter in the iot_ble_config.h header file to a 
lower value to reduce the amount of stack consumed.

• You can increase the MTU size to its maximum value to limit message buffering, and make code 
run faster and consume less RAM.

Usage restrictions

By default, the FreeRTOS Bluetooth Low Energy library sets the
eBTpropertySecureConnectionOnly property to TRUE, which places the device in a Secure 
Connections Only mode. As specified by the Bluetooth Core Specification v5.0, Vol 3, Part C, 10.2.4, 
when a device is in a Secure Connections Only mode, the highest LE security mode 1 level, level 4, 
is required for access to any attribute that has permissions higher than the lowest LE security mode 
1 level, level 1. At the LE security mode 1 level 4, a device must have input and output capabilities 
for numeric comparison.

Here are the supported modes, and their associated properties:

Mode 1, Level 1 (No security)

/* Disable numeric comparison */
#define IOT_BLE_ENABLE_NUMERIC_COMPARISON        ( 0 )
#define IOT_BLE_ENABLE_SECURE_CONNECTION         ( 0 )
#define IOT_BLE_INPUT_OUTPUT                     ( eBTIONone )
#define IOT_BLE_ENCRYPTION_REQUIRED               ( 0 )

Mode 1, Level 2 (Unauthenticated pairing with encryption)

#define IOT_BLE_ENABLE_NUMERIC_COMPARISON        ( 0 )

FreeRTOS Libraries 598

https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/ble/index.html
https://www.bluetooth.com/specifications/bluetooth-core-specification


FreeRTOS User Guide

#define IOT_BLE_ENABLE_SECURE_CONNECTION         ( 0 )
#define IOT_BLE_INPUT_OUTPUT                     ( eBTIONone )

Mode 1, Level 3 (Authenticated pairing with encryption)

This mode is not supported.

Mode 1, Level 4 (Authenticated LE Secure Connections pairing with encryption)

This mode is supported by default.

For information about LE security modes, see the Bluetooth Core Specification v5.0, Vol 3, Part C, 
10.2.1.

Initialization

If your application interacts with the Bluetooth Low Energy stack through middleware, you only 
need to initialize the middleware. Middleware takes care of initializing the lower layers of the stack.

Middleware

To initialize the middleware

1. Initialize any Bluetooth Low Energy hardware drivers before you call the Bluetooth Low Energy 
middleware API.

2. Enable Bluetooth Low Energy.

3. Initialize the middleware with IotBLE_Init().

Note

This initialization step is not required if you are running the AWS demos. Demo 
initialization is handled by the Network Manager, located at freertos/demos/
network_manager.

Low-level APIs

If you don't want to use the FreeRTOS Bluetooth Low Energy GATT services, you can bypass the 
middleware and interact directly with the low-level APIs to save resources.

FreeRTOS Libraries 599

https://www.bluetooth.com/specifications/bluetooth-core-specification


FreeRTOS User Guide

To initialize the low-level APIs

1.
Initialize any Bluetooth Low Energy hardware drivers before you call the APIs. Driver 
initialization is not part of the Bluetooth Low Energy low-level APIs.

2.
The Bluetooth Low Energy low-level API provides an enable/disable call to the Bluetooth Low 
Energy stack for optimizing power and resources. Before calling the APIs, you must enable 
Bluetooth Low Energy.

const BTInterface_t * pxIface = BTGetBluetoothInterface();
xStatus = pxIface->pxEnable( 0 );

3.
The Bluetooth manager contains APIs that are common to both Bluetooth Low Energy and 
Bluetooth classic. The callbacks for the common manager must be initialized second.

xStatus = xBTInterface.pxBTInterface->pxBtManagerInit( &xBTManagerCb );

4.
The Bluetooth Low Energy adapter fits on top of the common API. You must initialize its 
callbacks like you initialized the common API.

xBTInterface.pxBTLeAdapterInterface = ( BTBleAdapter_t * ) 
 xBTInterface.pxBTInterface->pxGetLeAdapter();
xStatus = xBTInterface.pxBTLeAdapterInterface-
>pxBleAdapterInit( &xBTBleAdapterCb );

5.
Register your new user application.

xBTInterface.pxBTLeAdapterInterface->pxRegisterBleApp( pxAppUuid );

6.
Initialize the callbacks to the GATT servers.

xBTInterface.pxGattServerInterface = ( BTGattServerInterface_t * ) 
 xBTInterface.pxBTLeAdapterInterface->ppvGetGattServerInterface();
xBTInterface.pxGattServerInterface->pxGattServerInit( &xBTGattServerCb );

After you initialize the Bluetooth Low Energy adapter, you can add a GATT server. You can 
register only one GATT server at a time.

FreeRTOS Libraries 600



FreeRTOS User Guide

xStatus = xBTInterface.pxGattServerInterface->pxRegisterServer( pxAppUuid );

7.
Set application properties like secure connection only and MTU size.

xStatus = xBTInterface.pxBTInterface-
>pxSetDeviceProperty( &pxProperty[ usIndex ] );

API reference

For a full API reference, see Bluetooth Low Energy API Reference.

Example usage

The examples below demonstrate how to use the Bluetooth Low Energy library for advertising and 
creating new services. For full FreeRTOS Bluetooth Low Energy demo applications, see Bluetooth 
Low Energy Demo Applications.

Advertising

1. In your application, set the advertising UUID:

static const BTUuid_t _advUUID =
{ 
    .uu.uu128 = IOT_BLE_ADVERTISING_UUID, 
    .ucType   = eBTuuidType128
};

2. Then define the IotBle_SetCustomAdvCb callback function:

void IotBle_SetCustomAdvCb( IotBleAdvertisementParams_t * pAdvParams,  
 IotBleAdvertisementParams_t * pScanParams)
{ 
    memset(pAdvParams, 0, sizeof(IotBleAdvertisementParams_t)); 
    memset(pScanParams, 0, sizeof(IotBleAdvertisementParams_t)); 

    /* Set advertisement message */ 
    pAdvParams->pUUID1 = &_advUUID; 
    pAdvParams->nameType = BTGattAdvNameNone; 

    /* This is the scan response, set it back to true. */ 

FreeRTOS Libraries 601

https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/ble/index.html
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html


FreeRTOS User Guide

    pScanParams->setScanRsp = true; 
    pScanParams->nameType = BTGattAdvNameComplete;
}

This callback sends the UUID in the advertisement message and the full name in the scan 
response.

3. Open vendors/vendor/boards/board/aws_demos/config_files/
iot_ble_config.h, and set IOT_BLE_SET_CUSTOM_ADVERTISEMENT_MSG to 1. This 
triggers the IotBle_SetCustomAdvCb callback.

Adding a new service

For full examples of services, see freertos/.../ble/services.

1. Create UUIDs for the service's characteristic and descriptors:

#define xServiceUUID_TYPE \
{\ 
    .uu.uu128 = gattDemoSVC_UUID, \ 
    .ucType   = eBTuuidType128 \
}
#define xCharCounterUUID_TYPE \
{\ 
    .uu.uu128 = gattDemoCHAR_COUNTER_UUID,\ 
    .ucType   = eBTuuidType128\
}
#define xCharControlUUID_TYPE \
{\ 
    .uu.uu128 = gattDemoCHAR_CONTROL_UUID,\ 
    .ucType   = eBTuuidType128\
}
#define xClientCharCfgUUID_TYPE \
{\ 
    .uu.uu16 = gattDemoCLIENT_CHAR_CFG_UUID,\ 
    .ucType  = eBTuuidType16\
}

2. Create a buffer to register the handles of the characteristic and descriptors:

static uint16_t usHandlesBuffer[egattDemoNbAttributes];

FreeRTOS Libraries 602



FreeRTOS User Guide

3. Create the attribute table. To save some RAM, define the table as a const.

Important

Always create the attributes in order, with the service as the first attribute.

static const BTAttribute_t pxAttributeTable[] = { 
     {     
         .xServiceUUID =  xServiceUUID_TYPE 
     }, 
    { 
         .xAttributeType = eBTDbCharacteristic, 
         .xCharacteristic =  
         { 
              .xUuid = xCharCounterUUID_TYPE, 
              .xPermissions = ( IOT_BLE_CHAR_READ_PERM ), 
              .xProperties = ( eBTPropRead | eBTPropNotify ) 
          } 
     }, 
     { 
         .xAttributeType = eBTDbDescriptor, 
         .xCharacteristicDescr = 
         { 
             .xUuid = xClientCharCfgUUID_TYPE, 
             .xPermissions = ( IOT_BLE_CHAR_READ_PERM | IOT_BLE_CHAR_WRITE_PERM ) 
          } 
     }, 
    { 
         .xAttributeType = eBTDbCharacteristic, 
         .xCharacteristic =  
         { 
              .xUuid = xCharControlUUID_TYPE, 
              .xPermissions = ( IOT_BLE_CHAR_READ_PERM | IOT_BLE_CHAR_WRITE_PERM 
  ), 
              .xProperties = ( eBTPropRead | eBTPropWrite ) 
          } 
     }
};

4. Create an array of callbacks. This array of callbacks must follow the same order as the table 
array defined above.

FreeRTOS Libraries 603



FreeRTOS User Guide

For example, if vReadCounter gets triggered when xCharCounterUUID_TYPE is accessed, 
and vWriteCommand gets triggered when xCharControlUUID_TYPE is accessed, define the 
array as follows:

static const IotBleAttributeEventCallback_t pxCallBackArray[egattDemoNbAttributes] 
 = 
    { 
  NULL, 
  vReadCounter, 
  vEnableNotification, 
  vWriteCommand
};

5. Create the service:

static const BTService_t xGattDemoService =  
{ 
  .xNumberOfAttributes = egattDemoNbAttributes, 
  .ucInstId = 0, 
  .xType = eBTServiceTypePrimary, 
  .pusHandlesBuffer = usHandlesBuffer, 
  .pxBLEAttributes = (BTAttribute_t *)pxAttributeTable
};

6. Call the API IotBle_CreateService with the structure that you created in the previous step. 
The middleware synchronizes the creation of all services, so any new services need to already 
be defined when the IotBle_AddCustomServicesCb callback is triggered.

a. Set IOT_BLE_ADD_CUSTOM_SERVICES to 1 in vendors/vendor/boards/board/
aws_demos/config_files/iot_ble_config.h.

b. Create IotBle_AddCustomServicesCb in your application:

void IotBle_AddCustomServicesCb(void)
{ 
    BTStatus_t xStatus; 
    /* Select the handle buffer. */ 
    xStatus = IotBle_CreateService( (BTService_t *)&xGattDemoService, 
 (IotBleAttributeEventCallback_t *)pxCallBackArray );
}

FreeRTOS Libraries 604



FreeRTOS User Guide

Porting

User input and output peripheral

A secure connection requires both input and output for numeric comparison. The
eBLENumericComparisonCallback event can be registered using the event manager:

xEventCb.pxNumericComparisonCb = &prvNumericComparisonCb;
xStatus = BLE_RegisterEventCb( eBLENumericComparisonCallback, xEventCb );

The peripheral must display the numeric passkey and take the result of the comparison as an input.

Porting API implementations

To port FreeRTOS to a new target, you must implement some APIs for the Wi-Fi Provisioning 
service and Bluetooth Low Energy functionality.

Bluetooth Low Energy APIs

To use the FreeRTOS Bluetooth Low Energy middleware, you must implement some APIs.

APIs common between GAP for Bluetooth Classic and GAP for Bluetooth Low Energy

• pxBtManagerInit

• pxEnable

• pxDisable

• pxGetDeviceProperty

• pxSetDeviceProperty (All options are mandatory expect eBTpropertyRemoteRssi and
eBTpropertyRemoteVersionInfo)

• pxPair

• pxRemoveBond

• pxGetConnectionState

• pxPinReply

• pxSspReply

• pxGetTxpower

• pxGetLeAdapter

• pxDeviceStateChangedCb

FreeRTOS Libraries 605



FreeRTOS User Guide

• pxAdapterPropertiesCb

• pxSspRequestCb

• pxPairingStateChangedCb

• pxTxPowerCb

APIs specific to GAP for Bluetooth Low Energy

• pxRegisterBleApp

• pxUnregisterBleApp

• pxBleAdapterInit

• pxStartAdv

• pxStopAdv

• pxSetAdvData

• pxConnParameterUpdateRequest

• pxRegisterBleAdapterCb

• pxAdvStartCb

• pxSetAdvDataCb

• pxConnParameterUpdateRequestCb

• pxCongestionCb

GATT server

• pxRegisterServer

• pxUnregisterServer

• pxGattServerInit

• pxAddService

• pxAddIncludedService

• pxAddCharacteristic

• pxSetVal

• pxAddDescriptor

• pxStartService

• pxStopService

FreeRTOS Libraries 606



FreeRTOS User Guide

• pxDeleteService

• pxSendIndication

• pxSendResponse

• pxMtuChangedCb

• pxCongestionCb

• pxIndicationSentCb

• pxRequestExecWriteCb

• pxRequestWriteCb

• pxRequestReadCb

• pxServiceDeletedCb

• pxServiceStoppedCb

• pxServiceStartedCb

• pxDescriptorAddedCb

• pxSetValCallbackCb

• pxCharacteristicAddedCb

• pxIncludedServiceAddedCb

• pxServiceAddedCb

• pxConnectionCb

• pxUnregisterServerCb

• pxRegisterServerCb

For more information about porting the FreeRTOS Bluetooth Low Energy library to your platform, 
see Porting the Bluetooth Low Energy Library in the FreeRTOS Porting Guide.

Mobile SDKs for FreeRTOS Bluetooth devices

Important

This library is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

FreeRTOS Libraries 607

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ble.html


FreeRTOS User Guide

You can use the Mobile SDKs for FreeRTOS Bluetooth Devices to create mobile applications 
that interact with your microcontroller over Bluetooth Low Energy. The Mobile SDKs can also 
communicate with AWS services, using Amazon Cognito for user authentication.

Android SDK for FreeRTOS Bluetooth devices

Use the Android SDK for FreeRTOS Bluetooth Devices to build Android mobile applications that 
interact with your microcontroller over Bluetooth Low Energy. The SDK is available on GitHub.

To install the Android SDK for FreeRTOS Bluetooth devices, follow the instructions for "Setting up 
the SDK" in the project's  README.md file.

For information about setting up and running the demo mobile application that is included with 
the SDK, see Prerequisites and FreeRTOS Bluetooth Low Energy Mobile SDK demo application.

iOS SDK for FreeRTOS Bluetooth devices

Use the iOS SDK for FreeRTOS Bluetooth Devices to build iOS mobile applications that interact 
with your microcontroller over Bluetooth Low Energy. The SDK is available on GitHub.

To install the iOS SDK

1. Install CocoaPods:

$ gem install cocoapods
$ pod setup

Note

You might need to use sudo to install CocoaPods.

2. Install the SDK with CocoaPods (add this to your podfile):

$ pod 'FreeRTOS', :git => 'https://github.com/aws/amazon-freertos-ble-ios-sdk.git'

For information about setting up and running the demo mobile application that is included with 
the SDK, see Prerequisites and FreeRTOS Bluetooth Low Energy Mobile SDK demo application.

FreeRTOS Libraries 608

https://github.com/aws/amazon-freertos-ble-android-sdk/
https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/README.md
https://github.com/aws/amazon-freertos-ble-ios-sdk/
http://cocoapods.org/


FreeRTOS User Guide

Appendix A: MQTT over BLE GATT profile

GATT Service Details

MQTT over BLE uses an instance of the data transfer GATT service to send MQTT Concise Binary 
Object Representation (CBOR) messages between the FreeRTOS device and the proxy device. The 
data transfer service exposes certain characteristics that help send and receive raw data over the 
BLE GATT protocol. It also handles the fragmentation and assembly of payloads greater than the 
BLE maximum transfer unit (MTU) size.

Service UUID

A9D7-166A-D72E-40A9-A002-4804-4CC3-FF00

Service Instances

One instance of the GATT service is created for each MQTT session with the broker. Each service 
has a unique UUID (two bytes) that identifies its type. Each individual instance is differentiated 
by the instance ID.

Each service is instantiated as a primary service on each BLE server device. You can create 
multiple instances of the service on a given device. The MQTT proxy service type has a unique 
UUID.

Characteristics

Characteristic content format: CBOR

Max characteristic value size : 512 bytes

Character 
istic

Requireme 
nt

Mandatory 
Properties

Optional 
Properties

Security 
Permissio 
ns

Brief 
Descripti 
on

UUID

Control M Write None Write 
Needs 
Encryptio 
n

Used to 
start and 
stop the 
MQTT 
proxy.

A9D7-166A 
-
D72E-40A 
9-
A002-48 
04-4CC3-
FF01

FreeRTOS Libraries 609



FreeRTOS User Guide

Character 
istic

Requireme 
nt

Mandatory 
Properties

Optional 
Properties

Security 
Permissio 
ns

Brief 
Descripti 
on

UUID

TXMessage M Read, 
Notificat 
ion

None Read 
Needs 
Encryptio 
n

Used to 
send a 
notificat 
ion 
containing 
a message 
to a 
broker via 
a proxy.

A9D7-166A 
-
D72E-40A 
9-
A002-48 
04-4CC3-
FF02

RXMessage M Read, 
Write 
Without 
Response

None Read, 
Write 
Needs 
Encryptio 
n

Used to 
receive a 
message 
from a 
broker via 
a proxy.

A9D7-166A 
-
D72E-40A 
9-
A002-48 
04-4CC3-
FF03

TXLargeMe 
ssage

M Read, 
Notificat 
ion

None Read 
Needs 
Encryptio 
n

Used to 
send a 
large 
message 
(Message 
> BLE 
MTU 
Size) to a 
broker via 
a proxy.

A9D7-166A 
-
D72E-40A 
9-
A002-48 
04-4CC3-
FF04

FreeRTOS Libraries 610



FreeRTOS User Guide

Character 
istic

Requireme 
nt

Mandatory 
Properties

Optional 
Properties

Security 
Permissio 
ns

Brief 
Descripti 
on

UUID

RXLargeMe 
ssage

M Read, 
Write 
Without 
Response

None Read, 
Write 
Needs 
Encryptio 
n

Used to 
receive 
large 
message 
(Message 
> BLE 
MTU Size) 
from a 
broker via 
a proxy.

A9D7-166A 
-
D72E-40A 
9-
A002-48 
04-4CC3-
FF05

GATT Procedure Requirements

Read Characteristic Values Mandatory

Read Long Characteristic Values Mandatory

Write Characteristic Values Mandatory

Write Long Characteristic Values Mandatory

Read Characteristic descriptors Mandatory

Write Characteristic descriptors Mandatory

Notifications Mandatory

Indications Mandatory

Message Types

The following message types are exchanged.

FreeRTOS Libraries 611



FreeRTOS User Guide

Message Type Message Map with these key / value 
pairs

0x01 CONNECT • Key = "w", value = Type 0 
Integer, Message type (1)

• Key = "d", value = Type 3, 
Text String, Client Identifie 
r for the session

• Key = "a", value = Type 
3, Text String, Broker 
endpoint for the session

• Key = "c", Value = Simple 
Value Type True/False

0x02 CONNACK • Key = "w, value = Type 0 
Integer, Message type (2)

• Key = "s", Value = Type 0 
Integer, Status code

0x03 PUBLISH • Key = "w", value = Type 0 
Integer, Message type (3)

• Key = "u", value = Type 
3, Text String, Topic for 
publish

• Key = "n", value = Type 0, 
Integer, QoS for publish

• Key = "i", value = Type 0, 
Integer, Message Identifier, 
Only for QoS 1 Publishes

• Key = "k", Value = Type 2, 
Byte String, Payload for 
publish

0x04 PUBACK • Sent Only for QoS 1 
messages.

FreeRTOS Libraries 612



FreeRTOS User Guide

Message Type Message Map with these key / value 
pairs

• Key = "w", value = Type 0 
Integer, Message type (4)

• Key = "i", value = Type 0, 
Integer, Message Identifier

0x08 SUBSCRIBE • Key = "w", value = Type 0 
Integer, Message type (8)

• Key = "v", value = Type 4, 
Array of text strings, topics 
for subscription

• Key = "o", value = Type 4, 
Array of Integers, QoS for 
subscription

• Key = "i", value = Type 0, 
Integer, Message Identifier

0x09 SUBACK • Key = "w", value = Type 0 
Integer, Message type (9)

• Key = "i", value = Type 0, 
Integer, Message Identifier

• Key = "s", value = Type 0, 
Integer, Status code for 
Subscription

0X0A UNSUBSCRIBE • Key = "w", value = Type 0 
Integer, Message type (10)

• Key = "v", value = Type 4, 
Array of text strings, topics 
for unsubscription

• Key = "i", value = Type 0, 
Integer, Message Identifier

FreeRTOS Libraries 613



FreeRTOS User Guide

Message Type Message Map with these key / value 
pairs

0x0B UNSUBACK • Key = "w", value = Type 0 
Integer, Message type (11)

• Key = "i", value = Type 0, 
Integer, Message Identifier

• Key = "s", value = Type 0, 
Integer, Status code for 
UnSubscription

0X0C PINGREQ • Key = "w", value = Type 0 
Integer, Message type (12)

0x0D PINGRESP • Key = "w", value = Type 0 
Integer, Message type (13)

0x0E DISCONNNECT • Key = "w", value = Type 0 
Integer, Message type (14)

Large Payload Transfer Characteristics

TXLargeMessage

TXLargeMessage is used by the device to send a large payload that is greater than the MTU 
size negotiated for the BLE connection.

• The device sends the first MTU bytes of the payload as a notification through the 
characteristic.

• The proxy sends a read request on this characteristic for the remaining bytes.

• The device sends up to the MTU size or the remaining bytes of the payload, whichever is 
less. Each time, it increases the offset read by the size of the payload sent.

• The proxy will continue to read the characteristic until it gets a zero length payload or a 
payload less than the MTU size.

• If the device doesn't get a read request within a specified timeout, the transfer fails and 
the proxy and gateway release the buffer.

FreeRTOS Libraries 614



FreeRTOS User Guide

• If the proxy doesn't get a read response within a specified timeout, the transfer fails and 
the proxy releases the buffer.

RXLargeMessage

RXLargeMessage is used by the device to receive a large payload that is greater than the 
MTU size negotiated for the BLE connection.

• The proxy writes messages, up to the MTU size, one by one, using write with response on 
this characteristic.

• The device buffers the message until it receives a write request with zero length or a 
length less than the MTU size.

• If the device doesn't get a write request within a specified timeout, the transfer fails and 
the device releases the buffer.

• If the proxy doesn't get a write response within a specified timeout, the transfer fails and 
the proxy releases the buffer.

Cellular Interface library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Introduction

The Cellular Interface library implements a simple unified API that hides the complexity of the 
cellular modem-specific AT commands and exposes a socket-like interface to C programmers.

Most cellular modems implement more or less of the AT commands defined by the  3GPP TS 
v27.007 standard. This project provides an implementation of such standard AT commands in 
a  reusable common component. The three Cellular Interface libraries in this project all take 
advantage of that common code. The library for each modem only implements the vendor-specific 
AT commands, then exposes the complete Cellular Interface library API.

The common component that implements the 3GPP TS v27.007 standard has been written in 
compliance with the following code quality criteria:

• GNU Complexity scores are not over 8

FreeRTOS Libraries 615

https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://freertos.github.io/FreeRTOS-Cellular-Interface/v1.3.0/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1515
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1515
https://github.com/FreeRTOS/FreeRTOS-Cellular-Interface/tree/main/source
https://freertos.org/Documentation/api-ref/cellular/cellular_porting_module_guide.html


FreeRTOS User Guide

• MISRA C:2012 coding standard. Any deviations from the standard are documented in source code 
comments marked by "coverity".

Dependencies and requirements

There is no direct dependency for the Cellular Interface library. However, Ethernet, Wi-Fi and 
cellular cannot co-exist in the FreeRTOS network stack. Developers must choose one of the 
network interface to integrate with the Secure Sockets library.

Porting

For information about porting the Cellular Interface library to your platform, see  Porting the 
Cellular Interface library in the FreeRTOS Porting Guide.

Memory use

Code Size of cellular interface library (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

cellular_3gpp_api.c 6.3K 5.7K

cellular_3gpp_urc_handler.c 0.9K 0.8K

cellular_at_core.c 1.4K 1.2K

cellular_common_api.c 0.5K 0.5K

cellular_common.c 1.6K 1.4K

cellular_pkthandler.c 1.4K 1.2K

cellular_pktio.c 1.8K 1.6K

Total estimates 13.9K 12.4K

Getting started

Download the source code

The source code can be downloaded as part of the FreeRTOS libraries or by itself.

FreeRTOS Libraries 616

https://docs.aws.amazon.com/freertos/latest/userguide/secure-sockets.html
https://docs.aws.amazon.com/freertos/latest/portingguide/freertos-porting-cellular.html
https://docs.aws.amazon.com/freertos/latest/portingguide/freertos-porting-cellular.html


FreeRTOS User Guide

To clone the library from Github using HTTPS:

git clone https://github.com/FreeRTOS/FreeRTOS-Cellular-Interface.git 

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Cellular-Interface.git 

Folder structure

At the root of this repository you will see these folders:

• source : reusable common code that implements the standard AT commands defined by 3GPP 
TS v27.007

• doc : documentation

• test : unit test and cbmc

• tools : tools for Coverity static analysis and CMock

Configure and build the Library

The Cellular Interface library should be built as part of an application. In order to do this, you must 
provide certain configurations. The  FreeRTOS_Cellular_Interface_Windows_Simulator project 
provides an  example of how to configure the build. More information can be found in the Cellular 
API References.

Please refer to the Cellular Interface page for more information.

Integrate the Cellular Interface library with MCU platforms

The Cellular Interface library runs on MCUs using an abstracted interface, the  Comm Interface, 
to communicate with cellular modems. A Comm Interface must be implemented on the MCU 
platform as well. The most common implementations of the Comm Interface communicate over 
UART hardware, but can be implemented over other physical interfaces, such as SPI, as well. The 
documentation for the Comm Interface can be found in the  Cellular Library API References. The 
following example implementations of the Comm Interface are available:

• FreeRTOS Windows simulator comm interface

FreeRTOS Libraries 617

https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Cellular_Interface_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/blob/main/FreeRTOS-Plus/Demo/FreeRTOS_Cellular_Interface_Windows_Simulator/MQTT_Mutual_Auth_Demo_with_BG96/cellular_config.h
https://freertos.github.io/FreeRTOS-Cellular-Interface/v1.3.0/cellular_config.html
https://freertos.github.io/FreeRTOS-Cellular-Interface/v1.3.0/cellular_config.html
https://www.freertos.org/cellular/index.html
https://github.com/FreeRTOS/FreeRTOS-Cellular-Interface/blob/main/source/interface/cellular_comm_interface.h
https://freertos.github.io/FreeRTOS-Cellular-Interface/v1.3.0/cellular_porting.html#cellular_porting_comm_if
https://github.com/FreeRTOS/FreeRTOS/blob/main/FreeRTOS-Plus/Demo/FreeRTOS_Cellular_Interface_Windows_Simulator/Common/comm_if_windows.c


FreeRTOS User Guide

• FreeRTOS Common IO UART comm interface

• STM32 L475 discovery board comm interface

• Sierra Sensor Hub board comm interface

Common I/O

Important

This library is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Overview

In general, device drivers are independent of the underlying operating system and are specific to 
a given hardware configuration. A hardware abstraction layer (HAL) provides a common interface 
between drivers and higher-level application code. The HAL abstracts away the details of how a 
specific driver works and provides a uniform API to control such devices. You can use the same APIs 
to access various device drivers across multiple microcontroller (MCU) based reference boards.

FreeRTOS common I/O acts as this hardware abstraction layer. It provides a set of standard APIs for 
accessing common serial devices on supported reference boards. These common APIs communicate 
and interact with these peripherals and enable your code to function across platforms. Without 
common I/O, writing code to work with low level devices is silicon-vendor specific.

Supported peripherals

• UART

• SPI

• I2C

Supported features

• Synchronous read/write – The function doesn't return until the requested amount of data is 
transferred.

FreeRTOS Libraries 618

https://github.com/aws/amazon-freertos/blob/main/libraries/abstractions/common_io/include/iot_uart.h
https://github.com/aws/amazon-freertos/blob/feature/cellular/vendors/st/boards/stm32l475_discovery/ports/comm_if/comm_if_uart.c
https://github.com/aws/amazon-freertos/blob/feature/cellular/vendors/sierra/boards/sensorhub/ports/comm_if/comm_if_sierra.c
https://docs.aws.amazon.com/freertos/latest/lib-ref/common-io/index.html


FreeRTOS User Guide

• Asynchronous read/write – The function returns immediately and the data transfer happens 
asynchronously. When the action completes, a registered user callback is invoked.

Peripheral specific

• I2C – Combine multiple operations into one transaction. Used to do write then read actions in 
one transaction.

• SPI – Transfer data between primary and secondary, which means the write and read happen 
simultaneously.

Porting

For more information, see the  FreeRTOS Porting Guide.

AWS IoT Device Defender library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Introduction

You can use the AWS IoT Device Defender library to send security metrics from your IoT devices 
to AWS IoT Device Defender. You can use AWS IoT Device Defender to continuously monitor these 
security metrics from devices for deviations from what you have defined as appropriate behavior 
for each device. If something doesn't look right, AWS IoT Device Defender sends out an alert so 
that you can take action to fix the issue. Interactions with AWS IoT Device Defender use MQTT, a 
lightweight publish-subscribe protocol. This library provides an API to compose and recognize the 
MQTT topic strings used by AWS IoT Device Defender.

For more information, see AWS IoT Device Defender in the AWS IoT Developer Guide.

The library is written in C and designed to be compliant with ISO C90 and MISRA C:2012. The 
library has no dependencies on any additional libraries other than the standard C library. It also 
doesn't have any platform dependencies, such as threading or synchronization. It can be used with 
any MQTT library and any JSON or CBOR library. The library has proofs showing safe memory use 

FreeRTOS Libraries 619

https://docs.aws.amazon.com/freertos/latest/portingguide/
https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://freertos.org/mqtt/index.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://en.wikipedia.org/wiki/ANSI_C#C90
https://misra.org.uk/product/misra-c2012-third-edition-first-revision/
https://freertos.org/json/json-terminology.html
https://cbor.io/
https://www.cprover.org/cbmc/


FreeRTOS User Guide

and no heap allocation, making it suitable for IoT microcontrollers, but also fully portable to other 
platforms.

The AWS IoT Device Defender library can be freely used and is distributed under the MIT open 
source license.

Code Size of AWS IoT Device Defender (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

defender.c 1.1K 0.6K

Total estimates 1.1K 0.6K

AWS IoT Greengrass Discovery library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Overview

The AWS IoT Greengrass Discovery  library is used by your microcontroller devices to discover a 
Greengrass core on your network. Using the AWS IoT Greengrass Discovery APIs, your device can 
send messages to a Greengrass core after it finds the core's endpoint.

Dependencies and requirements

To use the Greengrass Discovery library, you must create a thing in AWS IoT, including a certificate 
and policy. For more information, see AWS IoT Getting Started.

You must set values for the following constants in the freertos/demos/include/
aws_clientcredential.h file:

clientcredentialMQTT_BROKER_ENDPOINT

Your AWS IoT endpoint.

FreeRTOS Libraries 620

https://freertos.org/a00114.html
https://freertos.org/a00114.html
https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__greengrass__discovery_8h.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html


FreeRTOS User Guide

clientcredentialIOT_THING_NAME

The name of your IoT thing.

clientcredentialWIFI_SSID

The SSID for your Wi-Fi network.

clientcredentialWIFI_PASSWORD

Your Wi-Fi password.

clientcredentialWIFI_SECURITY

The type of security used by your Wi-Fi network.

You must also set values for the following constants in the freertos/demos/include/
aws_clientcredential_keys.h file:

keyCLIENT_CERTIFICATE_PEM

The certificate PEM associated with your thing.

keyCLIENT_PRIVATE_KEY_PEM

The private key PEM associated with your thing.

You must have a Greengrass group and core device set up in the console. For more information, see
Getting Started with AWS IoT Greengrass.

Although the coreMQTT library is not required for Greengrass connectivity, we strongly 
recommend you install it. The library can be used to communicate with the Greengrass core after it 
has been discovered.

API reference

For a full API reference, see Greengrass API Reference.

Example usage

Greengrass workflow

The MCU device initiates the discovery process by requesting from AWS IoT a JSON file that 
contains the Greengrass core connectivity parameters. There are two methods for retrieving the 
Greengrass core connectivity parameters from the JSON file:

FreeRTOS Libraries 621

https://docs.aws.amazon.com/greengrass/latest/developerguide/
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__greengrass__discovery_8h.html


FreeRTOS User Guide

• Automatic selection iterates through all of the Greengrass cores listed in the JSON file and 
connects to the first one available.

• Manual selection uses the information in aws_ggd_config.h to connect to the specified 
Greengrass core.

How to use the Greengrass API

All default configuration options for the Greengrass API are defined in
aws_ggd_config_defaults.h.

If only one Greengrass core is present, call GGD_GetGGCIPandCertificate to request the JSON 
file with Greengrass core connectivity information. When GGD_GetGGCIPandCertificate is 
returned, the pcBuffer parameter contains the text of the JSON file. The pxHostAddressData
parameter contains the IP address and port of the Greengrass core to which you can connect.

For more customization options, like dynamically allocating certificates, you must call the following 
APIs:

GGD_JSONRequestStart

Makes an HTTP GET request to AWS IoT to initiate the discovery request to discover a 
Greengrass core. GD_SecureConnect_Send is used to send the request to AWS IoT.

GGD_JSONRequestGetSize

Gets the size of the JSON file from the HTTP response.

GGD_JSONRequestGetFile

Gets the JSON object string. GGD_JSONRequestGetSize and GGD_JSONRequestGetFile use
GGD_SecureConnect_Read to get the JSON data from the socket. GGD_JSONRequestStart,
GGD_SecureConnect_Send, GGD_JSONRequestGetSize must be called to receive the JSON 
data from AWS IoT.

GGD_GetIPandCertificateFromJSON

Extracts the IP address and the Greengrass core certificate from the JSON data. You can turn 
on automatic selection by setting the xAutoSelectFlag to True. Automatic selection finds 
the first core device your FreeRTOS device can connect to. To connect to a Greengrass core, call 
the GGD_SecureConnect_Connect function, passing in the IP address, port, and certificate 

FreeRTOS Libraries 622



FreeRTOS User Guide

of the core device. To use manual selection, set the following fields of the HostParameters_t
parameter:

pcGroupName

The ID of the Greengrass group to which the core belongs. You can use the aws 
greengrass list-groups CLI command to find the ID of your Greengrass groups.

pcCoreAddress

The ARN of the Greengrass core to which you are connecting.

coreHTTP library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

HTTP C client library for small IoT devices (MCU or small MPU)

Introduction

The coreHTTP library is a client implementation of a subset of the HTTP/1.1 standard. The HTTP 
standard provides a stateless protocol that runs on top of TCP/IP and is often used in distributed, 
collaborative, hypertext information systems.

The coreHTTP library implements a subset of the HTTP/1.1  protocol standard. This library 
has been optimized for a low memory footprint. The library provides a fully synchronous API 
so applications can completely manage their concurrency. It uses fixed buffers only, so that 
applications have complete control of their memory allocation strategy.

The library is written in C and designed to be compliant with ISO C90 and MISRA C:2012. The 
library's only dependencies are the standard C library and LTS version (v12.19.1) of the http-parser
from Node.js. The library has proofs showing safe memory use and no heap allocation, making it 
suitable for IoT microcontrollers, but also fully portable to other platforms.

When using HTTP connections in IoT applications, we recommend that you use a secure transport 
interface, such as one that uses the TLS protocol as demonstrated in the coreHTTP mutual 
authentication demo.

FreeRTOS Libraries 623

https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://tools.ietf.org/html/rfc2616
https://en.wikipedia.org/wiki/ANSI_C#C90
https://misra.org.uk/product/misra-c2012-third-edition-first-revision/
https://github.com/nodejs/node/tree/v12.19.1/deps/http_parser
https://www.cprover.org/cbmc/


FreeRTOS User Guide

This library can be freely used and is distributed under the MIT open source license.

Code Size of coreHTTP (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

core_http_client.c 3.2K 2.6K

api.c (llhttp) 2.6K 2.0K

http.c (llhttp) 0.3K 0.3K

llhttp.c (llhttp) 17.9 15.9

Total estimates 23.9K 20.7K

coreJSON library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Introduction

JSON (JavaScript Object Notation) is a human-readable data serialization format. It is widely used 
to exchange data, such as with the AWS IoT Device Shadow service, and is part of many APIs, such 
as the GitHub REST API. JSON is maintained as a standard by Ecma International.

The coreJSON library provides a parser that supports key lookups while strictly enforcing the
ECMA-404 Standard JSON Data Interchange syntax. The library is written in C and designed to 
comply with ISO C90 and MISRA C:2012. It has proofs showing safe memory use and no heap 
allocation, making it suitable for IoT microcontrollers, but also fully portable to other platforms.

Memory use

The coreJSON library uses an internal stack to track nested structures in a JSON document. The 
stack exists for the duration of a single function call; it is not preserved. Stack size may be specified 

FreeRTOS Libraries 624

https://freertos.org/a00114.html
https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.cprover.org/cbmc/


FreeRTOS User Guide

by defining the macro, JSON_MAX_DEPTH, which defaults to 32 levels. Each level consumes a single 
byte.

Code Size of coreJSON (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

core_json.c 2.9K 2.4K

Total estimates 2.9K 2.4K

coreMQTT library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Introduction

The coreMQTT library is a client implementation of the MQTT (Message Queue Telemetry 
Transport) standard. The MQTT standard provides a lightweight publish/subscribe (or PubSub) 
messaging protocol that runs on top of TCP/IP and is often used in Machine to Machine (M2M) and 
Internet of Things (IoT) use cases.

The coreMQTT library is compliant with the  MQTT 3.1.1 protocol standard. This library has 
been optimized for a low memory footprint. The design of this library embraces different use-
cases, ranging from resource-constrained platforms using only QoS 0 MQTT PUBLISH messages 
to resource-rich platforms using QoS 2 MQTT PUBLISH over TLS (Transport Layer Security) 
connections. The library provides a menu of composable functions, which can be chosen and 
combined to precisely fit the needs of a particular use-case.

The library is written in C and designed to be compliant with ISO C90 and MISRA C:2012. This 
MQTT library has no dependencies on any additional libraries except for the following:

• The standard C library

• A customer-implemented network transport interface

FreeRTOS Libraries 625

https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://en.wikipedia.org/wiki/MQTT
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://en.wikipedia.org/wiki/ANSI_C#C90
https://misra.org.uk/product/misra-c2012-third-edition-first-revision/


FreeRTOS User Guide

• (Optional) A user-implemented platform time function

The library is decoupled from the underlying network drivers through the provision of a simple 
send and receive transport interface specification. The application writer can select an existing 
transport interface, or implement their own as appropriate for their application.

The library provides a high-level API to connect to an MQTT broker, subscribe/unsubscribe to a 
topic, publish a message to a topic and receive incoming messages. This API takes the transport 
interface described above as a parameter and uses that to send and receive messages to and from 
the MQTT broker.

The library also exposes low level serializer/deserializer API. This API can be used to build a simple 
IoT application consisting of only the required a subset of MQTT functionality, without any other 
overhead. The serializer/deserializer API can be used in conjunction with any available transport 
layer API, like sockets, to send and receive messages to and from the broker.

When using MQTT connections in IoT applications, we recommended that you use a secure 
transport interface, such as one that uses the TLS protocol.

This MQTT library doesn't have platform dependencies, such as threading or synchronization. This 
library does have proofs that demonstrate safe memory use and no heap allocation, which makes 
it suitable for IoT microcontrollers, but also fully portable to other platforms. It can be freely used, 
and is distributed under the MIT open source license.

Code Size of coreMQTT (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

core_mqtt.c 4.0K 3.4K

core_mqtt_state.c 1.7K 1.3K

core_mqtt_serializer.c 2.8K 2.2K

Total estimates 8.5K 6.9K

FreeRTOS Libraries 626

https://www.cprover.org/cbmc/
https://freertos.org/a00114.html


FreeRTOS User Guide

coreMQTT Agent library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Introduction

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library. It 
lets you create a dedicated MQTT agent task that manages an MQTT connection in the background 
and doesn't need any intervention from other tasks. The library provides thread safe equivalents to 
the coreMQTT's APIs, so it can be used in multi-threaded environments.

The MQTT agent is an independent task (or thread of execution). It achieves thread safety by 
being the only task that is permitted to access the MQTT library's API. It serializes access by 
isolating all MQTT API calls to a single task, and it removes the need for semaphores or any other 
synchronization primitives.

The library uses a thread safe messaging queue (or other inter-process communication mechanism) 
to serialize all requests to call MQTT APIs. The messaging implementation is decoupled from the 
library through a messaging interface, which allows the library to be ported to other operating 
systems. The messaging interface is composed of functions to send and receive pointers to the 
agent's command structures, and functions to allocate these command objects, which allows the 
application writer to decide the memory allocation strategy appropriate for their application.

The library is written in C and designed to be compliant with ISO C90 and MISRA C:2012. The 
library has no dependencies on any additional libraries other than coreMQTT library and the 
standard C library. The library has proofs that show safe memory use and no heap allocation, so it 
can be used for IoT microcontrollers, but is also fully portable to other platforms.

This library can be freely used and is distributed under the  MIT open source license.

Code Size of coreMQTT Agent (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

core_mqtt_agent.c 1.7K 1.5K

FreeRTOS Libraries 627

https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://en.wikipedia.org/wiki/ANSI_C#C90
https://misra.org.uk/product/misra-c2012-third-edition-first-revision/
https://www.cprover.org/cbmc/
https://www.freertos.org/a00114.html


FreeRTOS User Guide

Code Size of coreMQTT Agent (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

core_mqtt_agent_co 
mmand_functions.c

0.3K 0.2K

core_mqtt.c (coreMQTT) 4.0K 3.4K

core_mqtt_state.c (coreMQTT) 1.7K 1.3K

core_mqtt_serializer.c 
(coreMQTT)

2.8K 2.2K

Total estimates 10.5K 8.6K

AWS IoT Over the air (OTA) library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Introduction

The AWS IoT Over-the-air (OTA) update library enables you to manage the notification, download, 
and verification of firmware updates for FreeRTOS devices using HTTP or MQTT as the protocol. 
By using the OTA Agent library, you can logically separate firmware updates and the application 
running on your devices. The OTA Agent can share a network connection with the application. By 
sharing a network connection, you can potentially save a significant amount of RAM. In addition, 
the OTA Agent library lets you define application-specific logic for testing, committing, or rolling 
back a firmware update.

The Internet of Things (IoT) extends internet connectivity to embedded devices that were 
traditionally not connected. These devices can be programmed to communicate usable data 
over the internet, and can be remotely monitored and controlled. With advances in technology, 
these traditional embedded devices are getting internet capabilities in consumer, industrial, and 
enterprise spaces at a fast pace.

FreeRTOS Libraries 628

https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html


FreeRTOS User Guide

IoT devices are typically deployed in large quantities and often in places that are difficult or 
impractical for a human operator to access. Imagine a scenario where a security vulnerability that 
can expose data is discovered. In such scenarios, it is important to update the affected devices 
with security fixes quickly and reliably. Without the ability to perform OTA updates, it can also be 
difficult to update devices that are geographically dispersed. Having a technician update these 
devices will be costly, time consuming, and often times impractical. The time required to update 
these devices leaves them exposed to security vulnerabilities for a longer period. Recalling these 
devices for updating will also be costly and may cause significant disruption to consumers due to 
downtime.

Over the Air (OTA) Updates make it possible to update device firmware without an expensive recall 
or technician visit. This method adds the following benefits:

• Security - The ability to quickly respond to security vulnerabilities and software bugs that are 
discovered after the devices are deployed in the field.

• Innovation - Products can be updated frequently as new features are developed, driving the 
innovation cycle. The updates can take effect quickly with minimum downtime compared to 
traditional update methods.

• Cost - OTA updates can reduce maintenance costs significantly compared to methods 
traditionally used to update these devices.

Providing the OTA functionality requires the following design considerations:

• Secure Communication - Updates must use encrypted communication channels to prevent the 
downloads from being tampered with during transit.

• Recovery - Updates can fail due to things like intermittent network connectivity or receiving 
an invalid update. In these scenarios, the device needs to be able to return to a stable state and 
avoid becoming bricked.

• Author Verification - Updates must be verified to be from a trusted source, along with other 
validations like checking the version and compatibility.

For more information about setting up OTA updates with FreeRTOS, see FreeRTOS Over-the-Air 
Updates.

FreeRTOS Libraries 629



FreeRTOS User Guide

AWS IoT Over the air (OTA) library

The AWS IoT OTA library enables you to manage notifications of a newly available updates, 
download them, and perform cryptographic verification of firmware updates. Using the over-
the-air (OTA) client library, you can logically separate the firmware update mechanisms from 
the application running on your device. The over-the-air (OTA) client library can share a network 
connection with the application, saving memory in resource-constrained devices. In addition, the 
over-the-air (OTA) client library lets you define application-specific logic for testing, committing, 
or rolling back a firmware update. The library supports different application protocols like Message 
Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP) and provides various 
configuration options you can fine tune for your network type and conditions.

This library's APIs provide these major functions:

• Register for notifications or poll for new update requests that are available.

• Receive, parse and validate the update request.

• Download and verify the file according to the information in the update request.

• Run a self-test before activating the received update to ensure the functional validity of the 
update.

• Update the status of the device.

This library uses AWS services to manage various cloud related functions such as sending firmware 
updates, monitoring large numbers of devices across multiple regions, reducing the blast radius of 
faulty deployments, and verifying the security of updates. This library can be used with any MQTT 
or HTTP library.

The demos for this library demonstrate complete over-the-air updates using the coreMQTT Library 
and AWS Services on a FreeRTOS device.

Features

Here is the complete OTA Agent interface:

OTA_Init

Initializes the OTA engine by starting OTA Agent ("OTA Task") in the system. Only one OTA 
Agent may exist.

FreeRTOS Libraries 630

https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#ae5cc1dcc13fbcb32230f552f48b24f03


FreeRTOS User Guide

OTA_Shutdown

Signal to the OTA Agent to shut down. The OTA agent will optionally unsubscribe from all 
MQTT job notification topics, stop in progress OTA jobs, if any, and clear all resources.

OTA_GetState

Gets the current state of the OTA Agent.

OTA_ActivateNewImage

Activates the newest microcontroller firmware image received through OTA. (The detailed job 
status should now be self-test.)

OTA_SetImageState

Sets the validation state of the currently running microcontroller firmware image (testing, 
accepted or rejected).

OTA_GetImageState

Gets the state of the currently running microcontroller firmware image (testing, accepted or 
rejected).

OTA_CheckForUpdate

Requests the next available OTA update from the OTA Update service.

OTA_Suspend

Suspend all OTA Agent operations.

OTA_Resume

Resume OTA Agent operations.

OTA_SignalEvent

Signal an event to the OTA Agent task.

OTA_EventProcessingTask

OTA agent event processing loop.

OTA_GetStatistics

Get the statistics of OTA message packets which includes the number of packets received, 
queued, processed and dropped.

FreeRTOS Libraries 631

https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#ac779291eb93f4e0e6459816e60e13b09
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a6db3f9cb417cb135cb0e68f5b5f2b11f
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a5169ba09148e7f5668a90e776e712f8b
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#ab68cdf65934474e1f3d2cd1046314bea
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a9c5b25f9a7eff3ded8cdf088c2011742
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a1178e8009eb05e6f55f6506b625c9fc2
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a65b61ae5dd477e8b2e6c88ea0473c62b
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#ae9d40388ac87e4ac93288de37c98a138
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a2564144f284db077b8947ba58a6a72bb
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#ab3a0cfdc8694a606a1d736b2f54fb113
https://docs.aws.amazon.com/freertos/latest/lib-ref/embedded-csdk/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a63182243ef3c18d5f36cd427b83a1a22


FreeRTOS User Guide

OTA_Err_strerror

Error code to string conversion for OTA errors.

OTA_JobParse_strerror

Convert an OTA Job Parsing error code to a string.

OTA_PalStatus_strerror

Status code to string conversion for OTA PAL status.

OTA_OsStatus_strerror

Status code to string conversion for OTA OS status.

API reference

For more information, see the AWS IoT Over-the-air Update: Functions.

Example usage

A typical OTA-capable device application using the MQTT protocol drives the OTA Agent by using 
the following sequence of API calls.

1. Connect to the AWS IoT coreMQTT Agent. For more information, see coreMQTT Agent library.

2. Initialize the OTA Agent by calling OTA_Init, including the buffers, the required ota 
interfaces, the thing name and the application callback. The callback implements application-
specific logic that executes after completing an OTA update job.

3. When the OTA update is complete, FreeRTOS calls the job completion callback with one of the 
following events: accepted, rejected, or self test.

4. If the new firmware image has been rejected (for example, due to a validation error), the 
application can typically ignore the notification and wait for the next update.

5. If the update is valid and has been marked as accepted, call OTA_ActivateNewImage to reset 
the device and boot the new firmware image.

Porting

For information about porting OTA functionality to your platform, see Porting the OTA Library in 
the FreeRTOS Porting Guide.

FreeRTOS Libraries 632

https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a6f72911b8fe80f27bce42c3a36dca4b3
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/aws/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_8c.html#a1d42efa1af7fa0ed92060a3b7e869648
https://aws.github.io/ota-for-aws-iot-embedded-sdk/v3.4.0/ota_8c.html#a5a58be1ac41b7d619eeeb4861be37c89
https://aws.github.io/ota-for-aws-iot-embedded-sdk/v3.4.0/ota_8c.html#a4951f4bb1bfbb7312850454ca2b282a4
https://aws.github.io/ota-for-aws-iot-embedded-sdk/v3.4.0/ota_functions.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ota.html


FreeRTOS User Guide

Memory use

Code Size of AWS IoT OTA (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

ota.c 8.3K 7.5K

ota_interface.c 0.1K 0.1K

ota_base64.c 0.6K 0.6K

ota_mqtt.c 2.4K 2.2K

ota_cbor.c 0.8K 0.6K

ota_http.c 0.3K 0.3K

Total estimates 12.5K 11.3K

corePKCS11 library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Overview

The Public Key Cryptography Standard #11 defines a platform-independent API to manage and 
use cryptographic tokens. PKCS #11 refers to the API defined by the standard and to the standard 
itself. The PKCS #11 cryptographic API abstracts key storage, get/set properties for cryptographic 
objects, and session semantics. It's widely used for manipulating common cryptographic objects, 
and it's important because the functions it specifies allow application software to use, create, 
modify, and delete cryptographic objects, without ever exposing those objects to the application's 
memory. For example, FreeRTOS AWS reference integrations use a small subset of the PKCS 
#11 API to access the secret (private) key necessary to create a network connection that is 

FreeRTOS Libraries 633

https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html
https://en.wikipedia.org/wiki/PKCS_11


FreeRTOS User Guide

authenticated and secured by the Transport Layer Security (TLS) protocol without the application 
ever 'seeing' the key.

The corePKCS11 library contains a software-based mock implementation of the PKCS #11 interface 
(API) that uses the cryptographic functionality provided by Mbed TLS. Using a software mock 
enables rapid development and flexibility, but it's expected that you will replace the mock with 
an implementation specific to the secure key storage used in your production devices. Generally, 
vendors for secure cryptoprocessors, such as Trusted Platform Module (TPM), Hardware Security 
Module (HSM), Secure Element, or any other type of secure hardware enclave, distribute a PKCS 
#11 implementation with the hardware. The purpose of the corePKCS11 software only mock 
library is therefore to provide a non hardware specific PKCS #11 implementation that allows for 
rapid prototyping and development before switching to a cryptoprocessor specific PKCS #11 
implementation in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving 
asymmetric keys, random number generation, and hashing. The targeted use cases include 
certificate and key management for TLS authentication, and code-sign signature verification, on 
small embedded devices. See the file pkcs11.h (obtained from OASIS, the standard body) in 
the FreeRTOS source code repository. In the  FreeRTOS reference implementation, PKCS #11 API 
calls are made by the TLS helper interface in order to perform TLS client authentication during
SOCKETS_Connect. PKCS #11 API calls are also made by our one-time developer provisioning 
workflow to import a TLS client certificate and private key for authentication to the AWS IoT MQTT 
broker. Those two use cases, provisioning and TLS client authentication, require implementation of 
only a small subset of the PKCS #11 interface standard.

Features

The following subset of PKCS #11 is used. This list is in roughly the order in which the routines are 
called in support of provisioning, TLS client authentication, and cleanup. For detailed descriptions 
of the functions, see the PKCS #11 documentation provided by the standard committee.

General setup and tear down API

• C_Initialize

• C_Finalize

• C_GetFunctionList

• C_GetSlotList

• C_GetTokenInfo

FreeRTOS Libraries 634

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/libraries/standard/corePKCS11/docs/doxygen/output/html/index.html


FreeRTOS User Guide

• C_OpenSession

• C_CloseSession

• C_Login

Provisioning API

• C_CreateObject CKO_PRIVATE_KEY (for device private key)

• C_CreateObject CKO_CERTIFICATE (for device certificate and code verification certificate)

• C_GenerateKeyPair

• C_DestroyObject

Client authentication

• C_GetAttributeValue

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GenerateRandom

• C_SignInit

• C_Sign

• C_VerifyInit

• C_Verify

• C_DigestInit

• C_DigestUpdate

• C_DigestFinal

Asymmetric cryptosystem support

The FreeRTOS reference implementation uses PKCS #11 2048-bit RSA (signing only) and ECDSA 
with the NIST P-256 curve. The following instructions describe how to create an AWS IoT thing 
based on a P-256 client certificate.

Make sure you are using the following (or more recent) versions of the AWS CLI and OpenSSL:

FreeRTOS Libraries 635



FreeRTOS User Guide

aws --version
aws-cli/1.11.176 Python/2.7.9 Windows/8 botocore/1.7.34

openssl version
OpenSSL 1.0.2g  1 Mar 2016

The following procedure assumes that you used the aws configure command to configure 
the AWS CLI. For more information, see Quick configuration with aws configure in the AWS 
Command Line Interface User Guide.

To create an AWS IoT thing based on a P-256 client certificate

1. Create an AWS IoT thing.

aws iot create-thing --thing-name thing-name

2. Use OpenSSL to create a P-256 key.

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt 
 ec_param_enc:named_curve -outform PEM -out thing-name.key

3. Create a certificate enrollment request signed by the key created in step 2.

openssl req -new -nodes -days 365 -key thing-name.key -out thing-name.req

4. Submit the certificate enrollment request to AWS IoT.

aws iot create-certificate-from-csr  \ 
  --certificate-signing-request file://thing-name.req --set-as-active  \ 
  --certificate-pem-outfile thing-name.crt

5. Attach the certificate (referenced by the ARN output by the previous command) to the thing.

aws iot attach-thing-principal --thing-name thing-name \ 
  --principal "arn:aws:iot:us-
east-1:123456789012:cert/
86e41339a6d1bbc67abf31faf455092cdebf8f21ffbc67c4d238d1326c7de729"

6. Create a policy. (This policy is too permissive. It should be used for development purposes 
only.)

FreeRTOS Libraries 636

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config


FreeRTOS User Guide

aws iot create-policy --policy-name FullControl --policy-document file://
policy.json

The following is a listing of the policy.json file specified in the create-policy command. 
You can omit the greengrass:* action if you don't want to run the FreeRTOS demo for 
Greengrass connectivity and discovery.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": "iot:*", 
      "Resource": "*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": "greengrass:*", 
      "Resource": "*" 
    } 
  ]
}

7. Attach the principal (certificate) and policy to the thing.

aws iot attach-principal-policy --policy-name FullControl \ 
  --principal "arn:aws:iot:us-
east-1:123456789012:cert/
86e41339a6d1bbc67abf31faf455092cdebf8f21ffbc67c4d238d1326c7de729"

Now, follow the steps in the AWS IoT Getting Started section of this guide. Don’t forget to copy the 
certificate and private key you created into your aws_clientcredential_keys.h file. Copy your 
thing name into aws_clientcredential.h.

Note

The certificate and private key are hard-coded for demonstration purposes only. 
Production-level applications should store these files in a secure location.

FreeRTOS Libraries 637

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html


FreeRTOS User Guide

Porting

For information about porting the corePKCS11 library to your platform, see Porting the 
corePKCS11 Library in the FreeRTOS Porting Guide.

Memory use

Code Size of corePKCS11 (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

core_pkcs11.c 0.8K 0.8K

core_pki_utils.c 0.5K 0.3K

core_pkcs11_mbedtls.c 8.9K 7.5K

Total estimates 10.2K 8.6K

Secure Sockets library

Important

This library is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Overview

You can use the FreeRTOS Secure Sockets library to create embedded applications that 
communicate securely. The library is designed to make onboarding easy for software developers 
from various network programming backgrounds.

The FreeRTOS Secure Sockets library is based on the Berkeley sockets interface, with an additional 
secure communication option by TLS protocol. For information about the differences between the 
FreeRTOS Secure Sockets library and the Berkeley sockets interface, see SOCKETS_SetSockOpt in 
the Secure Sockets API Reference.

FreeRTOS Libraries 638

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html


FreeRTOS User Guide

Note

Currently, only client APIs, plus a lightweight IP (lwIP) implementation of the server side
Bind API, are supported for FreeRTOS Secure Sockets.

Dependencies and requirements

The FreeRTOS Secure Sockets library depends on a TCP/IP stack and on a TLS implementation. 
Ports for FreeRTOS meet these dependencies in one of three ways:

• A custom implementation of both TCP/IP and TLS

• A custom implementation of TCP/IP, and the FreeRTOS TLS layer with mbedTLS

• FreeRTOS+TCP and the FreeRTOS TLS layer with mbedTLS

The dependency diagram below shows the reference implementation included with the FreeRTOS 
Secure Sockets library. This reference implementation supports TLS and TCP/IP over Ethernet 
and Wi-Fi with FreeRTOS+TCP and mbedTLS as dependencies. For more information about the 
FreeRTOS TLS layer, see Transport Layer Security.

Features

FreeRTOS Secure Sockets library features include:

• A standard, Berkeley Sockets-based interface

• Thread-safe APIs for sending and receiving data

• Easy-to-enable TLS

FreeRTOS Libraries 639

https://savannah.nongnu.org/projects/lwip/
https://en.wikipedia.org/wiki/Mbed_TLS
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://en.wikipedia.org/wiki/Mbed_TLS


FreeRTOS User Guide

Troubleshooting

Error codes

The error codes that the FreeRTOS Secure Sockets library returns are negative values. For more 
information about each error code, see Secure Sockets Error Codes in the Secure Sockets API 
Reference.

Note

If the FreeRTOS Secure Sockets API returns an error code, the coreMQTT library, 
which depends on the FreeRTOS Secure Sockets library, returns the error code
AWS_IOT_MQTT_SEND_ERROR.

Developer support

The FreeRTOS Secure Sockets library includes two helper macros for handling IP addresses:

SOCKETS_inet_addr_quick

This macro converts an IP address that is expressed as four separate numeric octets into an IP 
address that is expressed as a 32-bit number in network-byte order.

SOCKETS_inet_ntoa

This macro converts an IP address that is expressed as a 32-bit number in network byte order to 
a string in decimal-dot notation.

Usage restrictions

Only TCP sockets are supported by the FreeRTOS Secure Sockets library. UDP sockets are not 
supported.

Server APIs are not supported by the FreeRTOS Secure Sockets library, except for a lightweight IP 
(lwIP) implementation of the server side Bind API. Client APIs are supported.

Initialization

To use the FreeRTOS Secure Sockets library, you need to initialize the library and its dependencies. 
To initialize the Secure Sockets library, use the following code in your application:

FreeRTOS Libraries 640

https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/


FreeRTOS User Guide

BaseType_t xResult = pdPASS;
xResult = SOCKETS_Init();

Dependent libraries must be initialized separately. For example, if FreeRTOS+TCP is a dependency, 
you need to invoke FreeRTOS_IPInit in your application as well.

API reference

For a full API reference, see  Secure Sockets API Reference.

Example usage

The following code connects a client to a server.

#include "aws_secure_sockets.h"

#define configSERVER_ADDR0                     127
#define configSERVER_ADDR1                     0
#define configSERVER_ADDR2                     0
#define configSERVER_ADDR3                     1
#define configCLIENT_PORT                      443

/* Rx and Tx timeouts are used to ensure the sockets do not wait too long for 
 * missing data. */
static const TickType_t xReceiveTimeOut = pdMS_TO_TICKS( 2000 );
static const TickType_t xSendTimeOut = pdMS_TO_TICKS( 2000 );

/* PEM-encoded server certificate */
/* The certificate used below is one of the Amazon Root CAs.\
Change this to the certificate of your choice. */
static const char cTlsECHO_SERVER_CERTIFICATE_PEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIBtjCCAVugAwIBAgITBmyf1XSXNmY/Owua2eiedgPySjAKBggqhkjOPQQDAjA5\n"
"MQswCQYDVQQGEwJVUzEPMA0GA1UEChMGQW1hem9uMRkwFwYDVQQDExBBbWF6b24g\n"
"Um9vdCBDQSAzMB4XDTE1MDUyNjAwMDAwMFoXDTQwMDUyNjAwMDAwMFowOTELMAkG\n"
"A1UEBhMCVVMxDzANBgNVBAoTBkFtYXpvbjEZMBcGA1UEAxMQQW1hem9uIFJvb3Qg\n"
"Q0EgMzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABCmXp8ZBf8ANm+gBG1bG8lKl\n"
"ui2yEujSLtf6ycXYqm0fc4E7O5hrOXwzpcVOho6AF2hiRVd9RFgdszflZwjrZt6j\n"
"QjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgGGMB0GA1UdDgQWBBSr\n"
"ttvXBp43rDCGB5Fwx5zEGbF4wDAKBggqhkjOPQQDAgNJADBGAiEA4IWSoxe3jfkr\n"
"BqWTrBqYaGFy+uGh0PsceGCmQ5nFuMQCIQCcAu/xlJyzlvnrxir4tiz+OpAUFteM\n"
"YyRIHN8wfdVoOw==\n"
"-----END CERTIFICATE-----\n";

FreeRTOS Libraries 641

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/API/FreeRTOS_IPInit.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html


FreeRTOS User Guide

static const uint32_t ulTlsECHO_SERVER_CERTIFICATE_LENGTH = 
 sizeof( cTlsECHO_SERVER_CERTIFICATE_PEM );

void vConnectToServerWithSecureSocket( void )
{ 
    Socket_t xSocket; 
    SocketsSockaddr_t xEchoServerAddress; 
    BaseType_t xTransmitted, lStringLength; 

    xEchoServerAddress.usPort = SOCKETS_htons( configCLIENT_PORT ); 
    xEchoServerAddress.ulAddress = SOCKETS_inet_addr_quick( configSERVER_ADDR0, 
                                                            configSERVER_ADDR1, 
                                                            configSERVER_ADDR2, 
                                                            configSERVER_ADDR3 ); 
                                                             
    /* Create a TCP socket. */ 
    xSocket = SOCKETS_Socket( SOCKETS_AF_INET, SOCKETS_SOCK_STREAM, 
 SOCKETS_IPPROTO_TCP ); 
    configASSERT( xSocket != SOCKETS_INVALID_SOCKET ); 
     
    /* Set a timeout so a missing reply does not cause the task to block indefinitely. 
 */ 
    SOCKETS_SetSockOpt( xSocket, 0, SOCKETS_SO_RCVTIMEO, &xReceiveTimeOut, 
 sizeof( xReceiveTimeOut ) ); 
    SOCKETS_SetSockOpt( xSocket, 0, SOCKETS_SO_SNDTIMEO, &xSendTimeOut, 
 sizeof( xSendTimeOut ) ); 

    /* Set the socket to use TLS. */ 
    SOCKETS_SetSockOpt( xSocket, 0, SOCKETS_SO_REQUIRE_TLS, NULL, ( size_t ) 0 ); 
    SOCKETS_SetSockOpt( xSocket, 0, SOCKETS_SO_TRUSTED_SERVER_CERTIFICATE, 
 cTlsECHO_SERVER_CERTIFICATE_PEM, ulTlsECHO_SERVER_CERTIFICATE_LENGTH ); 

    if( SOCKETS_Connect( xSocket, &xEchoServerAddress, sizeof( xEchoServerAddress ) ) 
 == 0 ) 
    { 
        /* Send the string to the socket. */ 
        xTransmitted = SOCKETS_Send( xSocket,                         /* The socket 
 receiving. */ 
                                     ( void * )"some message",        /* The data being 
 sent. */ 
                                     12,                              /* The length of 
 the data being sent. */ 
                                     0 );                             /* No flags. */ 

FreeRTOS Libraries 642



FreeRTOS User Guide

        if( xTransmitted < 0 ) 
        { 
            /* Error while sending data */ 
            return; 
        } 

        SOCKETS_Shutdown( xSocket, SOCKETS_SHUT_RDWR ); 
    } 
    else 
    { 
        //failed to connect to server 
    } 

    SOCKETS_Close( xSocket );
}

For a full example, see the Secure Sockets echo client demo.

Porting

FreeRTOS Secure Sockets depends on a TCP/IP stack and on a TLS implementation. Depending on 
your stack, to port the Secure Sockets library, you might need to port some of the following:

• The FreeRTOS+TCP TCP/IP stack

• The corePKCS11 library

• The Transport Layer Security

For more information about porting, see Porting the Secure Sockets Library in the FreeRTOS 
Porting Guide.

AWS IoT Device Shadow library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

FreeRTOS Libraries 643

https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ss.html
https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html


FreeRTOS User Guide

Introduction

You can use the AWS IoT Device Shadow library to store and retrieve the current state (the shadow) 
of every registered device. The device's shadow is a persistent, virtual representation of your 
device that you can interact with in your web applications even if the device is offline. The device 
state is captured as its shadow in a JSON document. You can send commands to the AWS IoT 
Device Shadow service over MQTT or HTTP to query the latest known device state, or to change 
the state. Each device's shadow is uniquely identified by the name of the corresponding thing, 
a representation of a specific device or logical entity on the AWS Cloud. For more information, 
see  Managing Devices with AWS IoT. More details about shadows can be found in AWS IoT 
documentation.

The AWS IoT Device Shadow library has no dependencies on additional libraries other than 
the standard C library. It also doesn't have any platform dependencies, such as threading or 
synchronization. It can be used with any MQTT library and any JSON library.

This library can be freely used and is distributed under the MIT open source license.

Code Size of AWS IoT Device Shadow (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

shadow.c 1.2K 0.9K

Total estimates 1.2K 0.9K

AWS IoT Jobs library

Note

The content on this page may not be up-to-date. Please refer to the FreeRTOS.org library 
page for the latest update.

Introduction

AWS IoT Jobs is a service that notifies one or more connected devices of a pending job. You can use 
a job to manage your fleet of devices, update firmware and security certificates on your devices, 

FreeRTOS Libraries 644

https://www.json.org/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-management.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://freertos.org/a00114.html
https://www.freertos.org/all-library.html
https://www.freertos.org/all-library.html


FreeRTOS User Guide

or perform administrative tasks such as restarting devices and performing diagnostics. For more 
information, see Jobs in the AWS IoT Developer Guide. Interactions with the AWS IoT Jobs service 
use MQTT, a lightweight publish-subscribe protocol. This library provides an API to compose and 
recognize the MQTT topic strings used by the AWS IoT Jobs service.

The AWS IoT Jobs library is written in C and designed to be compliant with ISO C90 and MISRA 
C:2012. The library has no dependencies on any additional libraries other than the standard C 
library. It can be used with any MQTT library and any JSON library. The library has proofs showing 
safe memory use and no heap allocation, making it suitable for IoT microcontrollers, but also fully 
portable to other platforms.

This library can be freely used and is distributed under the MIT open source license.

Code Size of AWS IoT Jobs (example generated with GCC for ARM Cortex-M)

File With -O1 Optimization With -Os Optimization

jobs.c 1.9K 1.6K

Total estimates 1.9K 1.6K

Transport Layer Security

Important

This library is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

The FreeRTOS Transport Layer Security (TLS) interface is a thin, optional wrapper used to abstract 
cryptographic implementation details away from the Secure Sockets Layer (SSL) interface above 
it in the protocol stack. The purpose of the TLS interface is to make the current software crypto 
library, mbed TLS, easy to replace with an alternative implementation for TLS protocol negotiation 
and cryptographic primitives. The TLS interface can be swapped out without any changes required 
to the SSL interface. See iot_tls.h in the FreeRTOS source code repository.

FreeRTOS Libraries 645

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://freertos.org/mqtt/index.html
https://en.wikipedia.org/wiki/ANSI_C#C90
https://misra.org.uk/product/misra-c2012-third-edition-first-revision/
https://misra.org.uk/product/misra-c2012-third-edition-first-revision/
https://www.cprover.org/cbmc/
https://freertos.org/a00114.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html


FreeRTOS User Guide

The TLS interface is optional because you can choose to interface directly from SSL into a crypto 
library. The interface is not used for MCU solutions that include a full-stack offload implementation 
of TLS and network transport.

For more information about porting the TLS interface, see Porting the TLS Library in the FreeRTOS 
Porting Guide.

Wi-Fi library

Important

This library is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Overview

The FreeRTOS Wi-Fi library abstracts port-specific Wi-Fi implementations into a common API 
that simplifies application development and porting for all FreeRTOS-qualified boards with Wi-Fi 
capabilities. Using this common API, applications can communicate with their lower-level wireless 
stack through a common interface.

Dependencies and requirements

The FreeRTOS Wi-Fi library requires the FreeRTOS+TCP core.

Features

The Wi-Fi library includes the following features:

• Support for WEP, WPA, WPA2, and WPA3 authentication

• Access Point Scanning

• Power management

• Network profiling

For more information about the features of the Wi-Fi library, see below.

FreeRTOS Libraries 646

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-tls.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html


FreeRTOS User Guide

Wi-Fi modes

Wi-Fi devices can be in one of three modes: Station, Access Point, or P2P. You can get the current 
mode of a Wi-Fi device by calling WIFI_GetMode. You can set a device's wi-fi mode by calling
WIFI_SetMode. Switching modes by calling WIFI_SetMode disconnects the device, if it is already 
connected to a network.

Station mode

Set your device to Station mode to connect the board to an existing access point.

Access Point (AP) mode

Set your device to AP mode to make the device an access point for other devices to connect to. 
When your device is in AP mode, you can connect another device to your FreeRTOS device and 
configure the new Wi-Fi credentials. To configure AP mode, call WIFI_ConfigureAP. To put 
your device into AP mode, call WIFI_StartAP. To turn off AP mode, call WIFI_StopAP.

Note

FreeRTOS libraries do not provide Wi-Fi provisioning in AP mode. You must supply the 
additional functionality, including DHCP and HTTP server capabilities, to achieve full 
support of AP mode.

P2P mode

Set your device to P2P mode to allow multiple devices to connect to each other directly, 
without an access point.

Security

The Wi-Fi API supports WEP, WPA, WPA2, and WPA3 security types. When a device is in Station 
mode, you must specify the network security type when calling the WIFI_ConnectAP function. 
When a device is in AP mode, the device can be configured to use any of the supported security 
types:

• eWiFiSecurityOpen

• eWiFiSecurityWEP

• eWiFiSecurityWPA

FreeRTOS Libraries 647



FreeRTOS User Guide

• eWiFiSecurityWPA2

• eWiFiSecurityWPA3

Scanning and connecting

To scan for nearby access points, set your device to Station mode, and call the WIFI_Scan
function. If you find a desired network in the scan, you can connect to the network by calling
WIFI_ConnectAP and providing the network credentials. You can disconnect a Wi-Fi device from 
the network by calling WIFI_Disconnect. For more information about scanning and connecting, 
see Example usage and API reference.

Power management

Different Wi-Fi devices have different power requirements, depending on the application and 
available power sources. A device might always be powered on to reduce latency or it might be 
intermittently connected and switch into a low power mode when Wi-Fi is not required. The 
interface API supports various power management modes like always on, low power, and normal 
mode. You set the power mode for a device using the WIFI_SetPMMode function. You can get the 
current power mode of a device by calling the WIFI_GetPMMode function.

Network profiles

The Wi-Fi library enables you to save network profiles in the non-volatile memory of your devices. 
This allows you to save network settings so they can be retrieved when a device reconnects to a 
Wi-Fi network, removing the need to provision devices again after they have been connected to 
a network. WIFI_NetworkAdd adds a network profile. WIFI_NetworkGet retrieves a network 
profile. WIFI_NetworkDel deletes a network profile. The number of profiles you can save 
depends on the platform.

Configuration

To use the Wi-Fi library, you need to define several identifiers in a configuration file. For 
information about these identifiers, see the API reference.

Note

The library does not include the required configuration file. You must create one. When 
creating your configuration file, be sure to include any board-specific configuration 
identifiers that your board requires.

FreeRTOS Libraries 648



FreeRTOS User Guide

Initialization

Before you use the Wi-Fi library, you need to initialize some board-specific components, in addition 
to the FreeRTOS components. Using the vendors/vendor/boards/board/aws_demos/
application_code/main.c file as a template for initialization, do the following:

1. Remove the sample Wi-Fi connection logic in main.c if your application handles Wi-Fi 
connections. Replace the following DEMO_RUNNER_RunDemos() function call:

if( SYSTEM_Init() == pdPASS ) 
    { 
    ... 
        DEMO_RUNNER_RunDemos(); 
    ... 
        }

With a call to your own application:

if( SYSTEM_Init() == pdPASS ) 
    { 
    ... 
        // This function should create any tasks 
        // that your application requires to run. 
        YOUR_APP_FUNCTION(); 
    ... 
        }

2. Call WIFI_On() to initialize and power on your Wi-Fi chip.

Note

Some boards might require additional hardware initialization.

3. Pass a configured WIFINetworkParams_t structure to WIFI_ConnectAP() to connect your 
board to an available Wi-Fi network. For more information about the WIFINetworkParams_t
structure, see Example usage and API reference.

API reference

For a full API reference, see Wi-Fi API Reference.

FreeRTOS Libraries 649

https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html


FreeRTOS User Guide

Example usage

Connecting to a known AP

#define clientcredentialWIFI_SSID    "MyNetwork"
#define clientcredentialWIFI_PASSWORD   "hunter2"

WIFINetworkParams_t xNetworkParams;
WIFIReturnCode_t xWifiStatus;

xWifiStatus = WIFI_On(); // Turn on Wi-Fi module

// Check that Wi-Fi initialization was successful
if( xWifiStatus == eWiFiSuccess )
{ 
    configPRINT( ( "WiFi library initialized.\n") );
}
else
{ 
    configPRINT( ( "WiFi library failed to initialize.\n" ) ); 
    // Handle module init failure
}

/* Setup parameters. */
xNetworkParams.pcSSID = clientcredentialWIFI_SSID;
xNetworkParams.ucSSIDLength = sizeof( clientcredentialWIFI_SSID );
xNetworkParams.pcPassword = clientcredentialWIFI_PASSWORD;
xNetworkParams.ucPasswordLength = sizeof( clientcredentialWIFI_PASSWORD );
xNetworkParams.xSecurity = eWiFiSecurityWPA2;

// Connect!
xWifiStatus = WIFI_ConnectAP( &( xNetworkParams ) );

if( xWifiStatus == eWiFiSuccess )
{ 
    configPRINT( ( "WiFi Connected to AP.\n" ) ); 
    // IP Stack will receive a network-up event on success
}
else
{ 
    configPRINT( ( "WiFi failed to connect to AP.\n" ) ); 
    // Handle connection failure
}

FreeRTOS Libraries 650



FreeRTOS User Guide

Scanning for nearby APs

WIFINetworkParams_t xNetworkParams;
WIFIReturnCode_t xWifiStatus;

configPRINT( ("Turning on wifi...\n") );
xWifiStatus = WIFI_On();

configPRINT( ("Checking status...\n") );
if( xWifiStatus == eWiFiSuccess )
{ 
    configPRINT( ("WiFi module initialized.\n") );
}
else
{ 
    configPRINTF( ("WiFi module failed to initialize.\n" ) ); 
    // Handle module init failure
}

WIFI_SetMode(eWiFiModeStation);

/* Some boards might require additional initialization steps to use the Wi-Fi library. 
 */

while (1)
{ 
    configPRINT( ("Starting scan\n") ); 
    const uint8_t ucNumNetworks = 12; //Get 12 scan results 
    WIFIScanResult_t xScanResults[ ucNumNetworks ]; 
    xWifiStatus = WIFI_Scan( xScanResults, ucNumNetworks ); // Initiate scan 

    configPRINT( ("Scan started\n") ); 

    // For each scan result, print out the SSID and RSSI 
    if ( xWifiStatus == eWiFiSuccess ) 
    { 
        configPRINT( ("Scan success\n") ); 
        for ( uint8_t i=0; i<ucNumNetworks; i++ )  
        { 
            configPRINTF( ("%s : %d \n", xScanResults[i].cSSID, 
 xScanResults[i].cRSSI) ); 
        } 
    } else { 
        configPRINTF( ("Scan failed, status code: %d\n", (int)xWifiStatus) ); 

FreeRTOS Libraries 651



FreeRTOS User Guide

    } 
     
    vTaskDelay(200);
}

Porting

The iot_wifi.c implementation needs to implement the functions defined in iot_wifi.h. At 
the very least, the implementation needs to return eWiFiNotSupported for any non-essential or 
unsupported functions.

For more information about porting the Wi-Fi library, see Porting the Wi-Fi Library in the FreeRTOS 
Porting Guide.

FreeRTOS demos

FreeRTOS includes some demo applications in the demos folder, under the main FreeRTOS 
directory. All of the examples that can be executed by FreeRTOS appear in the common folder, 
under demos. There is also a folder for each FreeRTOS-qualified platform under the demos folder.

Before you try the demo applications, we recommend that you complete the tutorial in Getting 
Started with FreeRTOS. It shows you how to set up and run the coreMQTT Agent demo.

Running the FreeRTOS demos

The following topics show you how to set up and run the FreeRTOS demos:

• Bluetooth Low Energy demo applications

• Demo bootloader for the Microchip Curiosity PIC32MZEF

• AWS IoT Device Defender demo

• AWS IoT Greengrass V1 discovery demo application

• AWS IoT Greengrass V2

• coreHTTP demos

• AWS IoT Jobs library demo

• coreMQTT demos

• Over-the-air updates demo application

• Secure Sockets echo client demo

• AWS IoT Device Shadow demo application

FreeRTOS demos 652

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-wifi.html


FreeRTOS User Guide

The DEMO_RUNNER_RunDemos function, located in the freertos/demos/demo_runner/
iot_demo_runner.c file, initializes a detached thread on which a single demo application 
runs. By default, DEMO_RUNNER_RunDemos only calls and starts the coreMQTT Agent demo. 
Depending on the configuration that you selected when you downloaded FreeRTOS, and where 
you downloaded FreeRTOS, the other example runner functions might start by default. To enable 
a demo application, open the freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h file, and define the demo that you want to run.

Note

Not all combinations of examples work together. Depending on the combination, the 
software might not run on the selected target due to memory constraints. We recommend 
that you run one demo at a time.

Configuring the demos

The demos have been configured to get you started quickly. You might want to change some of 
the configurations for your project to create a version that runs on your platform. You can find 
configuration files at vendors/vendor/boards/board/aws_demos/config_files.

Bluetooth Low Energy demo applications

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Overview

FreeRTOS Bluetooth Low Energy includes three demo applications:

• MQTT over Bluetooth Low Energy demo

This application demonstrates how to use the MQTT over Bluetooth Low Energy service.

• Wi-Fi provisioning demo

FreeRTOS demos 653



FreeRTOS User Guide

This application demonstrates how to use the Bluetooth Low Energy Wi-Fi Provisioning service.

• Generic Attributes Server demo

This application demonstrates how to use the FreeRTOS Bluetooth Low Energy middleware APIs 
to create a simple GATT server.

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

Prerequisites

To follow along with these demos, you need a microcontroller with Bluetooth Low Energy 
capabilities. You also need the iOS SDK for FreeRTOS Bluetooth devices or the Android SDK for 
FreeRTOS Bluetooth devices.

Set up AWS IoT and Amazon Cognito for FreeRTOS Bluetooth Low Energy

To connect your devices to AWS IoT across MQTT, you need to set up AWS IoT and Amazon 
Cognito.

To set up AWS IoT

1. Set up an AWS account on https://aws.amazon.com/.

2. Open the AWS IoT console, and from the navigation pane, choose Manage, and then choose
Things.

3. Choose Create, and then choose Create a single thing.

4. Enter a name for your device, and then choose Next.

5. If you are connecting your microcontroller to the cloud through a mobile device, choose
Create thing without certificate. Because the Mobile SDKs use Amazon Cognito for device 
authentication, you do not need to create a device certificate for demos that use Bluetooth 
Low Energy.

If you are connecting your microcontroller to the cloud directly over Wi-Fi, choose Create 
certificate, choose Activate, and then download the thing's certificate, public key, and private 
key.

FreeRTOS demos 654

https://aws.amazon.com/
https://console.aws.amazon.com/iot/


FreeRTOS User Guide

6. Choose the thing that you just created from the list of registered things, and then choose
Interact from your thing's page. Make a note of the AWS IoT REST API endpoint.

For more information about setting up, see the Getting Started with AWS IoT.

To create an Amazon Cognito user pool

1. Open the Amazon Cognito console, and choose Manage User Pools.

2. Choose Create a user pool.

3. Give the user pool a name, and then choose Review defaults.

4. From the navigation pane, choose App clients, and then choose Add an app client.

5. Enter a name for the app client, and then choose Create app client.

6. From the navigation pane, choose Review, and then choose Create pool.

Make a note of the pool ID that appears on the General Settings page of your user pool.

7. From the navigation pane, choose App clients, and then choose Show details. Make a note of 
the app client ID and app client secret.

To create an Amazon Cognito identity pool

1. Open the Amazon Cognito console, and choose Manage Identity Pools.

2. Enter a name for your identity pool.

3. Expand Authentication providers, choose the Cognito tab, and then enter your user pool ID 
and app client ID.

4. Choose Create Pool.

5. Expand View Details, and make a note of the two IAM role names. Choose Allow to create the 
IAM roles for authenticated and unauthenticated identities to access Amazon Cognito.

6. Choose Edit identity pool. Make a note of the identity pool ID. It should be of the form us-
west-2:12345678-1234-1234-1234-123456789012.

For more information about setting up Amazon Cognito, see the Getting Started with Amazon 
Cognito.

FreeRTOS demos 655

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-getting-started.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-getting-started.html


FreeRTOS User Guide

To create and attach an IAM policy to the authenticated identity

1. Open the IAM console, and from the navigation pane, choose Roles.

2. Find and choose your authenticated identity's role, choose Attach policies, and then choose
Add inline policy.

3. Choose the JSON tab, and paste the following JSON:

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Effect":"Allow", 
         "Action":[ 
            "iot:AttachPolicy", 
            "iot:AttachPrincipalPolicy", 
            "iot:Connect", 
            "iot:Publish", 
            "iot:Subscribe", 
            "iot:Receive", 
            "iot:GetThingShadow", 
            "iot:UpdateThingShadow", 
            "iot:DeleteThingShadow" 
         ], 
         "Resource":[ 
            "*" 
         ] 
      } 
   ]
}

4. Choose Review policy, enter a name for the policy, and then choose Create policy.

Keep your AWS IoT and Amazon Cognito information on hand. You need the endpoint and IDs to 
authenticate your mobile application with the AWS Cloud.

Set up your FreeRTOS environment for Bluetooth Low Energy

To set up your environment, you need to download FreeRTOS with the Bluetooth Low Energy 
library on your microcontroller, and download and configure the Mobile SDK for FreeRTOS 
Bluetooth Devices on your mobile device.

FreeRTOS demos 656



FreeRTOS User Guide

To set up your microcontroller's environment with FreeRTOS Bluetooth Low Energy

1. Download or clone FreeRTOS from GitHub. See the README.md file for instructions.

2. Set up FreeRTOS on your microcontroller.

For information about getting started with FreeRTOS on a FreeRTOS-qualified microcontroller, 
see the guide for your board in Getting Started with FreeRTOS.

Note

You can run the demos on any Bluetooth Low Energy-enabled microcontroller with 
FreeRTOS and ported FreeRTOS Bluetooth Low Energy libraries. Currently, the 
FreeRTOS MQTT over Bluetooth Low Energy demo project is fully ported to the 
following Bluetooth Low Energy-enabled devices:

• Espressif ESP32-DevKitC and the ESP-WROVER-KIT

• Nordic nRF52840-DK

Common components

The FreeRTOS demo applications have two common components:

• Network Manager

• Bluetooth Low Energy Mobile SDK demo application

Network Manager

Network Manager manages your microcontroller's network connection. It is located in your 
FreeRTOS directory at demos/network_manager/aws_iot_network_manager.c. If the 
Network Manager is enabled for both Wi-Fi and Bluetooth Low Energy, the demos start with 
Bluetooth Low Energy by default. If the Bluetooth Low Energy connection is disrupted, and your 
board is Wi-Fi-enabled, the Network Manager switches to an available Wi-Fi connection to prevent 
you from disconnecting from the network.

To enable a network connection type with the Network Manager, add the network connection 
type to the configENABLED_NETWORKS parameter in vendors/vendor/boards/board/
aws_demos/config_files/aws_iot_network_config.h (where the vendor is the name of 
the vendor and the board is the name of the board that you are using to run the demos).

FreeRTOS demos 657

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/main/README.md
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_nordic.html


FreeRTOS User Guide

For example, if you have both Bluetooth Low Energy and Wi-Fi enabled, the line that starts with
#define configENABLED_NETWORKS in aws_iot_network_config.h reads as follows:

#define  configENABLED_NETWORKS  ( AWSIOT_NETWORK_TYPE_BLE | AWSIOT_NETWORK_TYPE_WIFI )

To get a list of currently supported network connection types, see the lines that begin with
#define AWSIOT_NETWORK_TYPE in aws_iot_network.h.

FreeRTOS Bluetooth Low Energy Mobile SDK demo application

The FreeRTOS Bluetooth Low Energy Mobile SDK demo application is located on GitHub at Android 
SDK for FreeRTOS Bluetooth Devices under amazon-freertos-ble-android-sdk/app and the
iOS SDK for FreeRTOS Bluetooth Devices under amazon-freertos-ble-ios-sdk/Example/
AmazonFreeRTOSDemo. In this example, we use screenshots of the iOS version of the demo mobile 
application.

Note

If you are using an iOS device, you need Xcode to build the demo mobile application. If 
you are using an Android device, you can use Android Studio to build the demo mobile 
application.

To configure the iOS SDK demo application

When you define configuration variables, use the format of the placeholder values provided in the 
configuration files.

1. Confirm that the iOS SDK for FreeRTOS Bluetooth devices is installed.

2. Issue the following command from amazon-freertos-ble-ios-sdk/Example/
AmazonFreeRTOSDemo/:

$ pod install

3. Open the amazon-freertos-ble-ios-sdk/Example/AmazonFreeRTOSDemo/
AmazonFreeRTOSDemo.xcworkspace project with Xcode, and change the signing developer 
account to your account.

4. Create an AWS IoT policy in your region (if you haven't already).

FreeRTOS demos 658

https://github.com/aws/amazon-freertos-ble-android-sdk
https://github.com/aws/amazon-freertos-ble-android-sdk
https://github.com/aws/amazon-freertos-ble-ios-sdk


FreeRTOS User Guide

Note

This policy is different from the IAM policy created for the Amazon Cognito 
authenticated identity.

a. Open the AWS IoT console.

b. In the navigation pane, choose Secure, choose Policies, and then choose Create. Enter 
a name to identify your policy. In the Add statements section, choose Advanced mode. 
Copy and paste the following JSON into the policy editor window. Replace aws-region
and aws-account with your AWS Region and account ID.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "iot:Connect", 
            "Resource":"arn:aws:iot:region:account-id:*" 
        },  
        { 
            "Effect": "Allow", 
            "Action": "iot:Publish", 
            "Resource": "arn:aws:iot:region:account-id:*" 
        }, 
        { 
             "Effect": "Allow", 
             "Action": "iot:Subscribe", 
             "Resource": "arn:aws:iot:region:account-id:*" 
        }, 
        { 
             "Effect": "Allow", 
             "Action": "iot:Receive", 
             "Resource": "arn:aws:iot:region:account-id:*" 
        } 
    ]
}

c. Choose Create.

FreeRTOS demos 659

https://console.aws.amazon.com/iot/


FreeRTOS User Guide

5. Open amazon-freertos-ble-ios-sdk/Example/AmazonFreeRTOSDemo/
AmazonFreeRTOSDemo/Amazon/AmazonConstants.swift, and redefine the following 
variables:

• region: Your AWS Region.

• iotPolicyName: Your AWS IoT policy name.

• mqttCustomTopic: The MQTT topic that you want to publish to.

6. Open amazon-freertos-ble-ios-sdk/Example/AmazonFreeRTOSDemo/
AmazonFreeRTOSDemo/Support/awsconfiguration.json.

Under CognitoIdentity, redefine the following variables:

• PoolId: Your Amazon Cognito identity pool ID.

• Region: Your AWS Region.

Under CognitoUserPool, redefine the following variables:

• PoolId: Your Amazon Cognito user pool ID.

• AppClientId: Your app client ID.

• AppClientSecret: Your app client secret.

• Region: Your AWS Region.

To configure the Android SDK demo application

When you define configuration variables, use the format of the placeholder values provided in the 
configuration files.

1. Confirm that the Android SDK for FreeRTOS Bluetooth devices is installed.

2. Create an AWS IoT policy in your region (if you haven't already).

Note

This policy is different from the IAM policy created for the Amazon Cognito 
authenticated identity.

FreeRTOS demos 660



FreeRTOS User Guide

a. Open the AWS IoT console.

b. In the navigation pane, choose Secure, choose Policies, and then choose Create. Enter 
a name to identify your policy. In the Add statements section, choose Advanced mode. 
Copy and paste the following JSON into the policy editor window. Replace aws-region
and aws-account with your AWS Region and account ID.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "iot:Connect", 
            "Resource":"arn:aws:iot:region:account-id:*" 
        },  
        { 
            "Effect": "Allow", 
            "Action": "iot:Publish", 
            "Resource": "arn:aws:iot:region:account-id:*" 
        }, 
        { 
             "Effect": "Allow", 
             "Action": "iot:Subscribe", 
             "Resource": "arn:aws:iot:region:account-id:*" 
        }, 
        { 
             "Effect": "Allow", 
             "Action": "iot:Receive", 
             "Resource": "arn:aws:iot:region:account-id:*" 
        } 
    ]
}

c. Choose Create.

3. Open  https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/
main/java/software/amazon/freertos/demo/DemoConstants.java and redefine the following 
variables:

• AWS_IOT_POLICY_NAME: Your AWS IoT policy name.

• AWS_IOT_REGION: Your AWS Region.

FreeRTOS demos 661

https://console.aws.amazon.com/iot/
https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/java/software/amazon/freertos/demo/DemoConstants.java
https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/java/software/amazon/freertos/demo/DemoConstants.java


FreeRTOS User Guide

4. Open  https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/
res/raw/awsconfiguration.json.

Under CognitoIdentity, redefine the following variables:

• PoolId: Your Amazon Cognito identity pool ID.

• Region: Your AWS Region.

Under CognitoUserPool, redefine the following variables:

• PoolId: Your Amazon Cognito user pool ID.

• AppClientId: Your app client ID.

• AppClientSecret: Your app client secret.

• Region: Your AWS Region.

To discover and establish secure connections with your microcontroller over Bluetooth Low 
Energy

1. In order to pair your microcontroller and mobile device securely (step 6), you need a serial 
terminal emulator with both input and output capabilities (such as TeraTerm). Configure the 
terminal to connect to your board by a serial connection as instructed in Installing a terminal 
emulator.

2. Run the Bluetooth Low Energy demo project on your microcontroller.

3. Run the Bluetooth Low Energy Mobile SDK demo application on your mobile device.

To start the demo application in the Android SDK from the command line, run the following 
command:

$ ./gradlew installDebug

4. Confirm that your microcontroller appears under Devices on the Bluetooth Low Energy Mobile 
SDK demo app.

FreeRTOS demos 662

https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/res/raw/awsconfiguration.json
https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/res/raw/awsconfiguration.json


FreeRTOS User Guide

Note

All devices with FreeRTOS and the device information service (freertos/.../
device_information) that are in range appear in the list.

5. Choose your microcontroller from the list of devices. The application establishes a connection 
with the board, and a green line appears next to the connected device.

You can disconnect from your microcontroller by dragging the line to the left.

FreeRTOS demos 663



FreeRTOS User Guide

6. If prompted, pair your microcontroller and mobile device.

If the code for numeric comparison is the same on both devices, pair the devices.

FreeRTOS demos 664



FreeRTOS User Guide

Note

The Bluetooth Low Energy Mobile SDK demo application uses Amazon Cognito for user 
authentication. Make sure that you have set up a Amazon Cognito user and identity pools, 
and that you have attached IAM policies to authenticated identities.

MQTT over Bluetooth Low Energy

In the MQTT over Bluetooth Low Energy demo, your microcontroller publishes messages to the 
AWS Cloud through an MQTT proxy.

To subscribe to a demo MQTT topic

1. Sign in to the AWS IoT console.

2. In the navigation pane, choose Test, then choose MQTT test client to open the MQTT client.

3. In Subscription topic, enter thing-name/example/topic1, and then choose Subscribe to 
topic.

If you use Bluetooth Low Energy to pair the microcontroller with your mobile device, the MQTT 
messages are routed through the Bluetooth Low Energy Mobile SDK demo application on your 
mobile device.

To enable the demo over Bluetooth Low Energy

1. Open vendors/vendor/boards/board/aws_demos/config_files/
aws_demo_config.h, and define CONFIG_MQTT_BLE_TRANSPORT_DEMO_ENABLED.

2. Open demos/include/aws_clientcredential.h, and configure
clientcredentialMQTT_BROKER_ENDPOINT with the AWS IoT broker endpoint. Configure
clientcredentialIOT_THING_NAME with the thing name for the BLE micro controller 
device. The AWS IoT broker endpoint can be obtained from the AWS IoT console by choosing
Settings in the left navigation pane, or through the CLI by running the command: aws iot 
describe-endpoint --endpoint-type=iot:Data-ATS.

FreeRTOS demos 665



FreeRTOS User Guide

Note

The AWS IoT broker endpoint and thing name must both be in the same region where 
the cognito identity and user pool are configured.

To run the demo

1. Build and run the demo project on your microcontroller.

2. Make sure that you have paired your board and your mobile device using the FreeRTOS 
Bluetooth Low Energy Mobile SDK demo application.

3. From the Devices list in the demo mobile app, choose your microcontroller, and then choose
MQTT Proxy to open the MQTT proxy settings.

FreeRTOS demos 666



FreeRTOS User Guide

4. After you enable the MQTT proxy, MQTT messages appear on the thing-name/example/
topic1 topic, and data is printed to the UART terminal.

Wi-Fi provisioning

Wi-Fi Provisioning is a FreeRTOS Bluetooth Low Energy service that allows you to securely 
send Wi-Fi network credentials from a mobile device to a microcontroller over Bluetooth Low 
Energy. The source code for the Wi-Fi Provisioning service can be found at freertos/.../
wifi_provisioning.

Note

The Wi-Fi Provisioning demo is currently supported on the Espressif ESP32-DevKitC.

To enable the demo

1. Enable the Wi-Fi Provisioning service. Open vendors/vendor/boards/board/
aws_demos/config_files/iot_ble_config.h, and set #define 
IOT_BLE_ENABLE_WIFI_PROVISIONING to 1 (where the vendor is the name of the vendor 
and the board is the name of the board that you are using to run the demos).

Note

The Wi-Fi Provisioning service is disabled by default.

2. Configure the Network Manager to enable both Bluetooth Low Energy and Wi-Fi.

To run the demo

1. Build and run the demo project on your microcontroller.

2. Make sure that you have paired your microcontroller and your mobile device using the
FreeRTOS Bluetooth Low Energy Mobile SDK demo application.

3. From the Devices list in the demo mobile app, choose your microcontroller, and then choose
Network Config to open the network configuration settings.

FreeRTOS demos 667



FreeRTOS User Guide

4. After you choose Network Config for your board, the microcontroller sends a list of the 
networks in the vicinity to the mobile device. Available Wi-Fi networks appear in a list under
Scanned Networks.

FreeRTOS demos 668



FreeRTOS User Guide

From the Scanned Networks list, choose your network, and then enter the SSID and password, 
if required.

FreeRTOS demos 669



FreeRTOS User Guide

The microcontroller connects to and saves the network. The network appears under Saved 
Networks.

FreeRTOS demos 670



FreeRTOS User Guide

You can save several networks in the demo mobile app. When you restart the application and 
demo, the microcontroller connects to the first available saved network, starting from the top of 
the Saved Networks list.

To change the network priority order or delete networks, on the Network Configuration page, 
choose Editing Mode. To change the network priority order, choose the right side of the network 
that you want to reprioritize, and drag the network up or down. To delete a network, choose the 
red button on the left side of the network that you want to delete.

FreeRTOS demos 671



FreeRTOS User Guide

Generic Attributes Server

In this example, a demo Generic Attributes (GATT) Server application on your microcontroller sends 
a simple counter value to the FreeRTOS Bluetooth Low Energy Mobile SDK demo application.

Using the Bluetooth Low Energy Mobile SDKs, you can create your own GATT client for a mobile 
device that connects to the GATT server on your microcontroller and runs in parallel with the demo 
mobile application.

FreeRTOS demos 672



FreeRTOS User Guide

To enable the demo

1. Enable the Bluetooth Low Energy GATT demo. In vendors/vendor/boards/board/
aws_demos/config_files/iot_ble_config.h (where the vendor is the name of the 
vendor and the board is the name of the board that you are using to run the demos), add
#define IOT_BLE_ADD_CUSTOM_SERVICES ( 1 ) to the list of define statements.

Note

The Bluetooth Low Energy GATT demo is disabled by default.

2. Open freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and define
CONFIG_BLE_GATT_SERVER_DEMO_ENABLED.

To run the demo

1. Build and run the demo project on your microcontroller.

2. Make sure that you have paired your board and your mobile device using the FreeRTOS 
Bluetooth Low Energy Mobile SDK demo application.

3. From the Devices list in the app, choose your board, and then choose MQTT Proxy to open the 
MQTT proxy options.

FreeRTOS demos 673



FreeRTOS User Guide

4. Return to the Devices list, choose your board, and then choose Custom GATT MQTT to open 
the custom GATT service options.

5. Choose Start Counter to start publishing data to the your-thing-name/example/topic
MQTT topic.

After you enable the MQTT proxy, Hello World and incrementing counter messages appear on 
the your-thing-name/example/topic topic.

Demo bootloader for the Microchip Curiosity PIC32MZEF

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 

FreeRTOS demos 674



FreeRTOS User Guide

existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Note

In agreement with Microchip, we are removing the Curiosity PIC32MZEF (DM320104) from 
the FreeRTOS Reference Integration repository main branch and will no longer carry it in 
new releases. Microchip has issued an official notice that the PIC32MZEF (DM320104) is 
no longer recommended for new designs. The PIC32MZEF projects and source code can 
still be accessed through the previous release tags. Microchip recommends that customers 
use the Curiosity  PIC32MZ-EF-2.0 Development board (DM320209) for new designs. 
The PIC32MZv1 platform can still be found in v202012.00 of the FreeRTOS Reference 
Integration repository. However, the platform is no longer supported by v202107.00 of the 
FreeRTOS Reference.

This demo bootloader implements firmware version checking, cryptographic signature verification, 
and application self-testing. These capabilities support over-the-air (OTA) firmware updates for 
FreeRTOS.

The firmware verification includes verifying the authenticity and integrity of the new firmware 
received over the air. The bootloader verifies the cryptographic signature of the application before 
booting. The demo uses elliptic-curve digital signature algorithm (ECDSA) over SHA-256. The 
utilities provided can be used to generate a signed application that can be flashed on the device.

The bootloader supports the following features required for OTA:

• Maintains application images on the device and switches between them.

• Allows self-test execution of a received OTA image and rollback on failure.

• Checks signature and version of the OTA update image.

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

FreeRTOS demos 675

https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DM320104
https://devices.amazonaws.com/detail/a3G0h0000077I69EAE/Curiosity-PIC32MZ-EF-2-0-Development-Board
https://github.com/aws/amazon-freertos/tree/202012.00
https://github.com/aws/amazon-freertos/tree/202107.00


FreeRTOS User Guide

Bootloader states

The bootloader process is shown in the following state machine.

The following table describes the bootloader states.

Bootloader State Description

Initialization Bootloader is in the initialization state.

Verification Bootloader is verifying the images present on 
the device.

Execute Image Bootloader is launching the selected image.

Execute Default Bootloader is launching the default image.

Error Bootloader is in the error state.

In the preceding diagram, both Execute Image and Execute Default are shown as the
Execution state.

Bootloader Execution State

The bootloader is in the Execution state and is ready to launch the selected verified image. 
If the image to be launched is in the upper bank, the banks are swapped before executing the 
image, because the application is always built for the lower bank.

FreeRTOS demos 676



FreeRTOS User Guide

Bootloader Default Execution State

If the configuration option to launch the default image is enabled, the bootloader launches 
the application from a default execution address. This option must be disabled except while 
debugging.

Bootloader Error State

The bootloader is in an error state and no valid images are present on the device. The 
bootloader must notify the user. The default implementation sends a log message to the 
console and fast-blinks the LED on the board indefinitely.

Flash device

The Microchip Curiosity PIC32MZEF platform contains an internal program flash of two megabytes 
(MB) divided into two banks. It supports memory map swapping between these two banks and live 
updates. The demo bootloader is programmed in a separate lower boot flash region.

Application image structure

The diagram shows the primary components of the application image stored on each bank of the 
device.

FreeRTOS demos 677



FreeRTOS User Guide

Component Size (in bytes)

Image header 8 bytes

Image descriptor 24 bytes

Application binary < 1 MB - (324)

Trailer 292 bytes

Image header

The application images on the device must start with a header that consists of a magic code and 
image flags.

Header Field Size (in bytes)

Magic code 7 bytes

Image flags 1 byte

Magic code

The image on the flash device must start with a magic code. The default magic code is @AFRTOS. 
The bootloader checks if a valid magic code is present before booting the image. This is the first 
step of verification.

Image flags

The image flags are used to store the status of the application images. The flags are used in the 
OTA process. The image flags of both banks determine the state of the device. If the executing 
image is marked as commit pending, it means the device is in the OTA self-test phase. Even if 
images on the devices are marked valid, they go through the same verification steps on every boot. 
If an image is marked as new, the bootloader marks it as commit pending and launches it for self-
test after verification. The bootloader also initializes and starts the watchdog timer so that if the 
new OTA image fails self-test, the device reboots and bootloader rejects the image by erasing it 
and executes the previous valid image.

FreeRTOS demos 678



FreeRTOS User Guide

The device can have only one valid image. The other image can be a new OTA image or a commit 
pending (self-test). After a successful OTA update, the old image is erased from the device.

Status Value Description

New image 0xFF Application image is new and 
never executed.

Commit pending 0xFE Application image is marked 
for test execution.

Valid 0xFC Application image is marked 
valid and committed.

Invalid 0xF8 Application image is marked 
invalid.

Image descriptor

The application image on the flash device must contain the image descriptor following the image 
header. The image descriptor is generated by a post-build utility that uses configuration files (ota-
descriptor.config) to generate the appropriate descriptor and prepends it to the application 
binary. The output of this post-build step is the binary image that can be used for OTA.

Descriptor Field Size (in bytes)

Sequence Number 4 bytes

Start Address 4 bytes

End Address 4 bytes

Execution Address 4 bytes

Hardware ID 4 bytes

Reserved 4 bytes

FreeRTOS demos 679



FreeRTOS User Guide

Sequence Number

The sequence number must be incremented before building a new OTA image. See the ota-
descriptor.config file. The bootloader uses this number to determine the image to boot. 
Valid values are from 1 to 4294967295.

Start Address

The starting address of the application image on the device. As the image descriptor is 
prepended to the application binary, this address is the start of the image descriptor.

End Address

The ending address of the application image on the device, excluding the image trailer.

Execution Address

The execution address of the image.

Hardware ID

A unique hardware ID used by the bootloader to verity the OTA image is built for the correct 
platform.

Reserved

This is reserved for future use.

Image trailer

The image trailer is appended to the application binary. It contains the signature type string, 
signature size, and signature of the image.

Trailer Field Size (in bytes)

Signature Type 32 bytes

Signature Size 4 bytes

Signature 256 bytes

FreeRTOS demos 680



FreeRTOS User Guide

Signature Type

The signature type is a string that represents the cryptographic algorithm being used and 
serves as a marker for the trailer. The bootloader supports the elliptic-curve digital signature 
algorithm (ECDSA). The default is sig-sha256-ecdsa.

Signature Size

The size of the cryptographic signature, in bytes.

Signature

The cryptographic signature of the application binary prepended with the image descriptor.

Bootloader configuration

The basic bootloader configuration options are provided in freertos/vendors/microchip/
boards/curiosity_pic32mzef/bootloader/config_files/aws_boot_config.h. Some 
options are provided for debugging purposes only.

Enable Default Start

Enables the execution of the application from the default address and must be enabled for 
debugging only. The image is executed from the default address without any verification.

Enable Crypto Signature Verification

Enables cryptographic signature verification on boot. Failed images are erased from the device. 
This option is provided for debugging purposes only and must remain enabled in production.

Erase Invalid Image

Enables a full bank erase if image verification on that bank fails. The option is provided for 
debugging and must remain enabled in production.

Enable Hardware ID Verification

Enables verification of the hardware ID in the descriptor of the OTA image and the hardware ID 
programmed in the bootloader. This is optional and can be disabled if hardware ID verification 
is not required.

Enable Address Verification

Enables verification of the start, end, and execution addresses in the descriptor of OTA image. 
We recommend that you keep this option enabled.

FreeRTOS demos 681



FreeRTOS User Guide

Building the bootloader

The demo bootloader is included as a loadable project in the aws_demos project located in
freertos/vendors/microchip/boards/curiosity_pic32mzef/aws_demos/mplab/ in the 
FreeRTOS source code repository. When the aws_demos project is built, it builds the bootloader 
first, followed by the application. The final output is a unified hex image including the bootloader 
and the application. The factory_image_generator.py utility is provided to generate a unified 
hex image with cryptographic signature. The bootloader utility scripts are located in freertos/
demos/ota/bootloader/utility/.

Bootloader pre-build step

This pre-build step executes a utility script called codesigner_cert_utility.py that extracts 
the public key from the code-signing certificate and generates a C header file that contains the 
public key in Abstract Syntax Notation One (ASN.1) encoded format. This header is compiled into 
the bootloader project. The generated header contains two constants: an array of the public key 
and the length of the key. The bootloader project can also be built without aws_demos and can be 
debugged as a normal application.

AWS IoT Device Defender demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

This demo shows you how to use the AWS IoT Device Defender library to connect to AWS IoT 
Device Defender. The demo uses the coreMQTT library to establish an MQTT connection over TLS 
(mutual authentication) to the AWS IoT MQTT Broker and the coreJSON library to validate and 
parse responses received from the AWS IoT Device Defender service. The demo shows you how to 
construct a JSON formatted report using metrics collected from the device, and how to submit the 
constructed report to the AWS IoT Device Defender service. The demo also shows how to register 
a callback function with the coreMQTT library to handle the responses from the AWS IoT Device 
Defender service to confirm whether a sent report was accepted or rejected.

FreeRTOS demos 682

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html


FreeRTOS User Guide

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

Functionality

This demo creates a single application task that demonstrates how to collect metrics, construct 
a device defender report in JSON format, and submit it to the AWS IoT Device Defender service 
through a secure MQTT connection to the AWS IoT MQTT Broker. The demo includes the standard 
networking metrics as well as custom metrics. For custom metrics, the demo includes:

• A metric named "task_numbers" which is a list of FreeRTOS task IDs. The type of this metric is 
"list of numbers".

• A metric named "stack_high_water_mark" which is the stack high watermark for the demo 
application task. The type of this metric is "number".

How we collect networking metrics depends on the TCP/IP stack in use. For FreeRTOS+TCP and 
supported lwIP configurations, we provide metrics collection implementations that collect real 
metrics from the device and submit them in the AWS IoT Device Defender report. You can find the 
implementations for  FreeRTOS+TCP and  lwIP on GitHub.

For boards using any other TCP/IP stack, we provide stub definitions of the metrics collection 
functions that return zeros for all networking metrics. Implement the functions in freertos/
demos/device_defender_for_aws/metrics_collector/stub/metrics_collector.c for 
your network stack to send real metrics. The file is also available on the  GitHub website.

For ESP32, the default lwIP configuration does not use core locking and therefore the demo will 
use stubbed metrics. If you want to use the reference lwIP metrics collection implementation, 
define the following macros in lwiopts.h:

#define LINK_SPEED_OF_YOUR_NETIF_IN_BPS 0
#define LWIP_TCPIP_CORE_LOCKING         1
#define LWIP_STATS                      1
#define MIB2_STATS                      1

The following is an example output when you run the demo.

FreeRTOS demos 683

https://github.com/aws/amazon-freertos/blob/main/demos/device_defender_for_aws/metrics_collector/freertos_plus_tcp/metrics_collector.c
https://github.com/aws/amazon-freertos/blob/main/demos/device_defender_for_aws/metrics_collector/lwip/metrics_collector.c
https://github.com/aws/amazon-freertos/blob/main/demos/device_defender_for_aws/metrics_collector/stub/metrics_collector.c


FreeRTOS User Guide

If your board isn't using FreeRTOS+TCP or a supported lwIP configuration, the output will look like 
the following.

FreeRTOS demos 684



FreeRTOS User Guide

The source code of the demo is in your download in freertos/demos/
device_defender_for_aws/ directory or on the GitHub website.

FreeRTOS demos 685

https://github.com/aws/amazon-freertos/tree/main/demos/device_defender_for_aws


FreeRTOS User Guide

Subscribing to AWS IoT Device Defender topics

The  subscribeToDefenderTopics function subscribes to the MQTT topics on which 
responses to published Device Defender reports will be received. It uses the macro
DEFENDER_API_JSON_ACCEPTED to construct the topic string on which responses for accepted 
device defender reports are received. It uses the macro DEFENDER_API_JSON_REJECTED to 
construct the topic string on which responses for rejected device defender reports will be received.

Collecting device metrics

The  collectDeviceMetrics function gathers networking metrics using the functions defined in
metrics_collector.h. The metrics collected are the number of bytes and packets sent and 
received, the open TCP ports, the open UDP ports, and the established TCP connections.

Generating the AWS IoT Device Defender report

The  generateDeviceMetricsReportfunction generates a device defender report using the function 
defined in report_builder.h. That function takes the networking metrics and a buffer, creates 
a JSON document in the format as expected by AWS IoT Device Defender and writes it to the 
provided buffer. The format of the JSON document expected by AWS IoT Device Defender is 
specified in Device-side metrics in the AWS IoT Developer Guide.

Publishing the AWS IoT Device Defender report

The AWS IoT Device Defender report is published on the MQTT topic for publishing 
JSON AWS IoT Device Defender reports. The report is constructed using the macro
DEFENDER_API_JSON_PUBLISH, as shown in this  code snippet on the GitHub website.

Callback for handling responses

The  publishCallback function handles incoming MQTT publish messages. It uses the
Defender_MatchTopic API from the AWS IoT Device Defender library to check if the incoming 
MQTT message is from the AWS IoT Device Defender service. If the message is from the AWS IoT 
Device Defender service, it parses the received JSON response and extracts the report ID in the 
response. The report ID is then verified to be the same as the one sent in the report.

FreeRTOS demos 686

https://github.com/aws/amazon-freertos/blob/main/demos/device_defender_for_aws/defender_demo.c#L514-L530
https://github.com/aws/amazon-freertos/blob/main/demos/device_defender_for_aws/defender_demo.c#L376-L511
https://github.com/aws/amazon-freertos/blob/main/demos/device_defender_for_aws/defender_demo.c#L552-L581
https://docs.aws.amazon.com/iot/latest/developerguide/detect-device-side-metrics.html
https://github.com/aws/amazon-freertos/blob/main/demos/device_defender_for_aws/defender_demo.c#L691-L695
https://github.com/aws/amazon-freertos/blob/main/demos/device_defender_for_aws/defender_demo.c#L302-L373


FreeRTOS User Guide

AWS IoT Greengrass V1 discovery demo application

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Before you run the AWS IoT Greengrass Discovery demo for FreeRTOS, you need to set up AWS, 
AWS IoT Greengrass, and AWS IoT. To set up AWS, follow the instructions at Setting up your AWS 
account and permissions. To set up AWS IoT Greengrass, you need to create a Greengrass group 
and then add a Greengrass core. For more information about setting up AWS IoT Greengrass, see
Getting Started with AWS IoT Greengrass.

After you set up AWS and AWS IoT Greengrass, you need to configure some additional permissions 
for AWS IoT Greengrass.

To set up AWS IoT Greengrass permissions

1. Browse to the IAM console.

2. From the navigation pane, choose Roles, and then find and choose Greengrass_ServiceRole.

3. Choose Attach policies, select AmazonS3FullAccess and AWSIoTFullAccess, and then choose
Attach policy.

4. Browse to the AWS IoT console.

5. In the navigation pane, choose Greengrass, choose Groups, and then choose the Greengrass 
group that you previously created.

6. Choose Settings, and then choose Add role.

7. Choose Greengrass_ServiceRole, and then choose Save.

Connect your board to AWS IoT and configure your FreeRTOS demo.

1. Registering your MCU board with AWS IoT

After you register your board, you need to create and attach a new Greengrass policy to the 
device's certificate.

FreeRTOS demos 687

https://docs.aws.amazon.com/greengrass/latest/developerguide/gg-gs.html
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

To create a new AWS IoT Greengrass policy

1. Browse to the AWS IoT console.

2. In the navigation pane, choose Secure, choose Policies, and then choose Create.

3. Enter a name to identify your policy.

4. In the Add statements section, choose Advanced mode. Copy and paste the following JSON 
into the policy editor window:

{ 
      "Effect": "Allow", 
      "Action": [ 
        "greengrass:*" 
      ], 
      "Resource": "*"
}

This policy grants AWS IoT Greengrass permissions to all resources.

5. Choose Create.

To attach the AWS IoT Greengrass policy to your device's certificate

1. Browse to the AWS IoT console.

2. In the navigation pane, choose Manage, choose Things, and then choose the thing that you 
previously created.

3. Choose Security, and then choose the certificate attached to your device.

4. Choose Policies, choose Actions, and then choose Attach Policy.

5. Find and choose the Greengrass policy that you created earlier, and then choose Attach.

2. Downloading FreeRTOS

Note

If you are downloading FreeRTOS from the FreeRTOS console, choose Connect to AWS 
IoT Greengrass- Platform instead of Connect to AWS IoT- Platform.

3. Configuring the FreeRTOS demos.

FreeRTOS demos 688

https://console.aws.amazon.com/iotv2/
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

Open freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and define
CONFIG_GREENGRASS_DISCOVERY_DEMO_ENABLED.

After you set up AWS IoT and AWS IoT Greengrass, and after you download and configure 
FreeRTOS, you can build, flash, and run the Greengrass demo on your device. To set up your board's 
hardware and software development environment, follow the instructions in the Board-specific 
getting started guides.

The Greengrass demo publishes a series of messages to the Greengrass core, and to the AWS IoT 
MQTT client. To view the messages in the AWS IoT MQTT client, open the AWS IoT console, choose
Test, choose MQTT test client and then add a subscription to freertos/demos/ggd.

In the MQTT client, you should see the following strings:

Message from Thing to Greengrass Core: Hello world msg #1!
Message from Thing to Greengrass Core: Hello world msg #0!
Message from Thing to Greengrass Core: Address of Greengrass Core 
 found! 123456789012.us-west-2.compute.amazonaws.com

Using an Amazon EC2 instance

If you are working with an Amazon EC2 instance

1. Find the Public DNS (IPv4) associated with your Amazon EC2 instance— go to the Amazon EC2 
console, and in the left navigation panel, choose Instances. Choose your Amazon EC2 instance, 
and then choose the Description panel. Look for the entry for the Public DNS (IPv4) and make 
a note of it.

2. Find the entry for Security groups and choose the security group attached to your Amazon 
EC2 instance.

3. Choose the Inbound rules tab then choose Edit inbound rules and add the following rules.

FreeRTOS demos 689

https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

Inbound rules

Type Protocol Port range Source Description - 
optional

HTTP TCP 80 0.0.0.0/0 -

HTTP TCP 80 ::/0 -

SSH TCP 22 0.0.0.0/0 -

Custom TCP TCP 8883 0.0.0.0/0 MQTT 
communica 
tions

Custom TCP TCP 8883 ::/0 MQTT 
communica 
tions

HTTPS TCP 443 0.0.0.0/0 -

HTTPS TCP 443 ::0/0 -

All ICMP - IPv4 ICMP All 0.0.0.0/0 -

All ICMP - IPv4 ICMP All ::0/0 -

4. In the AWS IoT console choose Greengrass, then Groups, and choose the Greengrass group 
that you previously created. Choose Settings. Change the Local connection detection to
Manually manage connection information.

5. In the navigation pane, choose Cores then select your group core.

6. Choose Connectivity and make sure you have only one core endpoint (delete all of the rest) 
and that it is not an IP address (because it is subject to change). The best option is to use the 
Public DNS (IPv4) that you noted in the first step.

7. Add the FreeRTOS IoT thing you created to the GG group.

a. Choose the back arrow to return to the AWS IoT Greengrass group page. In the navigation 
pane, choose Devices then choose Add Device.

b. Choose Select an IoT Thing. Choose your device then choose Finish.

FreeRTOS demos 690



FreeRTOS User Guide

8. Add the necessary subscriptions— in the Greengrass Group page, choose Subscriptions then 
choose Add Subscription and enter information as shown here.

Subscriptions

Source Target Topic

TIGG1 IoT Cloud freertos/demos/ggd

Where "Source" is the name given to the AWS IoT thing created in the AWS IoT console when 
you registered your board - "TIGG1" in the example given here.

9. Start a deployment of your AWS IoT Greengrass group and make sure that the deployment 
is successful. You should now be able to successfully run the AWS IoT Greengrass discovery 
demo.

AWS IoT Greengrass V2

Compatibility with AWS IoT Greengrass V2 devices

AWS IoT Greengrass V2 support for client devices is backwards-compatible with AWS IoT 
Greengrass V1. You can connect FreeRTOS client devices to V2 core devices without changing the 
application code. To enable client devices to connect to a V2 core device, do the following.

• Deploy Greengrass software to the Greengrass core device. See  Connect client devices to core 
devices to connect a device to AWS IoT Greengrass V2.

• To relay messages (including Lambda functions) between client devices, AWS IoT Core cloud 
service, and Greengrass components, deploy and configure the  MQTT bridge component.

• Deploy the  IP detector component to automatically detect connectivity information, or 
manually manage the endpoints.

• See  Interact with local AWS IoT devices for more information.

For more details, see AWS documentation about running AWS IoT Greengrass V1 applications on 
AWS IoT Greengrass V2.

FreeRTOS demos 691

https://docs.aws.amazon.com//greengrass/v2/developerguide/connect-client-devices.html
https://docs.aws.amazon.com//greengrass/v2/developerguide/connect-client-devices.html
https://docs.aws.amazon.com//greengrass/v2/developerguide/mqtt-bridge-component.html
https://docs.aws.amazon.com//greengrass/v2/developerguide/ip-detector-component.html
https://docs.aws.amazon.com//greengrass/v2/developerguide/interact-with-local-iot-devices.html
https://docs.aws.amazon.com//greengrass/v2/developerguide/migrate-from-v1.html#connect-v1-greengrass-devices
https://docs.aws.amazon.com//greengrass/v2/developerguide/migrate-from-v1.html#connect-v1-greengrass-devices


FreeRTOS User Guide

coreHTTP demos

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

These demos can help you learn how to use the coreHTTP library.

Topics

• coreHTTP mutual authentication demo

• coreHTTP basic Amazon S3 upload demo

• coreHTTP basic S3 download demo

• coreHTTP basic multithreaded demo

coreHTTP mutual authentication demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

The coreHTTP (Mutual Authentication) demo project shows you how to establish a connection 
to an HTTP server using TLS with mutual authentication between the client and the server. This 
demo uses an mbedTLS-based transport interface implementation to establish a server- and client-
authenticated TLS connection, and demonstrates a request response workflow in HTTP.

FreeRTOS demos 692



FreeRTOS User Guide

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

Functionality

This demo creates a single application task with examples that show how to complete the 
following:

• Connect to the HTTP server on the AWS IoT endpoint.

• Send a POST request.

• Receive the response.

• Disconnect from the server.

After you complete these steps, the demo generates output similar to the following screenshot.

The AWS IoT console generates output similar to the following screenshot.

FreeRTOS demos 693



FreeRTOS User Guide

Source code organization

The demo source file is named http_demo_mutual_auth.c and can be found in the freertos/
demos/coreHTTP/ directory and on the  GitHub website.

Connecting to the AWS IoT HTTP server

The  connectToServerWithBackoffRetries function attempts to make a mutually authenticated 
TLS connection to the AWS IoT HTTP server. If the connection fails, it retries after a timeout. The 
timeout value exponentially increases until the maximum number of attempts is reached or the 
maximum timeout value is reached. The RetryUtils_BackoffAndSleep function provides 
exponentially increasing timeout values and returns RetryUtilsRetriesExhausted when the 
maximum number of attempts have been reached. The connectToServerWithBackoffRetries
function returns a failure status if the TLS connection to the broker can't be established after the 
configured number of attempts.

Sending an HTTP request and receiving the response

The  prvSendHttpRequest function demonstrates how to send a POST request to the AWS IoT 
HTTP server. For more information on making a request to the REST API in AWS IoT, see Device 
communication protocols - HTTPS. The response is received with the same coreHTTP API call,
HTTPClient_Send.

coreHTTP basic Amazon S3 upload demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

This example demonstrates how to send a PUT request to the Amazon Simple Storage Service 
(Amazon S3) HTTP server and upload a small file. It also performs a GET request to verify the size 
of the file after the upload. This example uses a network transport interface that uses mbedTLS to 
establish a mutually authenticated connection between an IoT device client running coreHTTP and 
the Amazon S3 HTTP server.

FreeRTOS demos 694

https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_mutual_auth.c
https://github.com/aws/amazon-freertos/blob/main/demos/common/http_demo_helpers/http_demo_utils.c#L131-L170
https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_mutual_auth.c#L402-L507
https://docs.aws.amazon.com/iot/latest/developerguide/http.html
https://docs.aws.amazon.com/iot/latest/developerguide/http.html
https://freertos.org/network-interface.html


FreeRTOS User Guide

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

Single threaded versus multi threaded

There are two coreHTTP usage models, single threaded and multithreaded (multitasking). Although 
the demo in this section runs the HTTP library in a thread, it actually demonstrates how to use 
coreHTTP in a single threaded environment. Only one task in this demo uses the HTTP API. 
Although single threaded applications must repeatedly call the HTTP library, multithreaded 
applications can instead send HTTP requests in the background within an agent (or daemon) task.

Source code organization

The demo source file is named http_demo_s3_upload.c and can be found in the freertos/
demos/coreHTTP/ directory and on the  GitHub website.

Configuring the Amazon S3 HTTP server connection

This demo uses a pre-signed URL to connect to the Amazon S3 HTTP server and authorize access to 
the object to download. The Amazon S3 HTTP server's TLS connection uses server authentication 
only. At the application level, access to the object is authenticated with parameters in the pre-
signed URL query. Follow the steps below to configure your connection to AWS.

1. Set up an AWS account:

a. If you haven't already,  create an AWS account.

b. Accounts and permissions are set using AWS Identity and Access Management (IAM). You 
use IAM to manage permissions for each user in your account. By default, a user doesn't 
have permissions until granted by the root owner.

i. To add a user to your AWS account, see the  IAM User Guide.

ii. Grant permission to your AWS account to access FreeRTOS and AWS IoT by adding 
this policy:

• AmazonS3FullAccess

2. Create a bucket in Amazon S3 by following the steps in How do I create an S3 bucket? in the
Amazon Simple Storage Service User Guide.

FreeRTOS demos 695

https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_upload.c
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html


FreeRTOS User Guide

3. Upload a file to Amazon S3 by following the steps in How do I upload files and folders to an 
S3 bucket?.

4. Generate a pre-signed URL using the script located at the FreeRTOS-Plus/Demo/
coreHTTP_Windows_Simulator/Common/presigned_url_generator/
presigned_urls_gen.py file.

For usage instructions, see the FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator/
Common/presigned_url_generator/README.md file.

Functionality

The demo first connects to the Amazon S3 HTTP server with TLS server authentication. Then, it 
creates an HTTP request to upload the data specified in democonfigDEMO_HTTP_UPLOAD_DATA. 
After uploading the file, it checks that file was successfully uploaded by requesting for the size of 
the file. The source code for the demo can be found on the GitHub website.

Connecting to the Amazon S3 HTTP server

The  connectToServerWithBackoffRetries function attempts to make a TCP connection to the 
HTTP server. If the connection fails, it retries after a timeout. The timeout value will exponentially 
increase until the maximum number of attempts are reached or the maximum timeout value is 
reached. The connectToServerWithBackoffRetries function returns a failure status if the 
TCP connection to the server can't be established after the configured number of attempts.

The prvConnectToServer function demonstrates how to establish a connection to the Amazon 
S3 HTTP server by using server authentication only. It uses the mbedTLS-based transport 
interface that is implemented in the FreeRTOS-Plus/Source/Application-Protocols/
network_transport/freertos_plus_tcp/using_mbedtls/using_mbedtls.c file. The 
definition of prvConnectToServer can be found on the GitHub website.

Upload data

The prvUploadS3ObjectFile function demonstrates how to create a PUT request and specify 
the file to upload. The Amazon S3 bucket where the file is uploaded and the name of file to 
upload are specified in the pre-signed URL. To save memory, the same buffer is used for both the 
request headers and to receive the response. The response is received synchronously using the
HTTPClient_Send API function. A 200 OK response status code is expected from the Amazon S3 
HTTP server. Any other status code is an error.

FreeRTOS demos 696

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_upload.c
https://github.com/aws/amazon-freertos/blob/main/demos/common/http_demo_helpers/http_demo_utils.c#L131-L170
https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_upload.c#L306-L366


FreeRTOS User Guide

The source code for prvUploadS3ObjectFile() can be found on the  GitHub website.

Verifying the upload

The prvVerifyS3ObjectFileSize function calls prvGetS3ObjectFileSize to retrieve the 
size of the object in the S3 bucket. The Amazon S3 HTTP server doesn't currently support HEAD 
requests using a pre-signed URL, so the 0th byte is requested. The size of the file is contained in 
the response's Content-Range header field. A 206 Partial Content response is expected 
from the server. Any other response status code is an error.

The source code for prvGetS3ObjectFileSize() can be found on the  GitHub website.

coreHTTP basic S3 download demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

This demo shows how to use range requests to download files from the Amazon S3 
HTTP server. Range requests are natively supported in the coreHTTP API when you use
HTTPClient_AddRangeHeader to create the HTTP request. For a microcontroller environment, 
range requests are highly encouraged. By downloading a large file in separate ranges, instead of 
in a single request, each section of the file can be processed without blocking the network socket. 
Range requests lower the risk of having dropped packets, which require retransmissions on the TCP 
connection, and so they improve the power consumption of the device.

This example uses a network transport interface that uses mbedTLS to establish a mutually 
authenticated connection between an IoT device client running coreHTTP and the Amazon S3 
HTTP server.

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

FreeRTOS demos 697

https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_upload.c#L539-L632
https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_upload.c#L370-L535
https://tools.ietf.org/html/rfc7233
https://freertos.org/network-interface.html


FreeRTOS User Guide

Single threaded versus multi threaded

There are two coreHTTP usage models, single threaded and multithreaded (multitasking). Although 
the demo in this section runs the HTTP library in a thread, it actually demonstrates how to use 
coreHTTP in a single threaded environment (only one task uses the HTTP API in the demo). 
Although single threaded applications must repeatedly call the HTTP library, multithreaded 
applications can instead send HTTP requests in the background within an agent (or daemon) task.

Source code organization

The demo project is named http_demo_s3_download.c and can be found in the freertos/
demos/coreHTTP/ directory and on the  GitHub website.

Configuring the Amazon S3 HTTP server connection

This demo uses a pre-signed URL to connect to the Amazon S3 HTTP server and authorize access to 
the object to download. The Amazon S3 HTTP server's TLS connection uses server authentication 
only. At the application level, access to the object is authenticated with parameters in the pre-
signed URL query. Follow the steps below to configure your connection to AWS.

1. Set up an AWS account:

a. If you haven't already,  create and activate an AWS account.

b. Accounts and permissions are set using AWS Identity and Access Management (IAM). IAM 
allows you to manage permissions for each user in your account. By default, a user doesn't 
have permissions until granted by the root owner.

i. To add a user to your AWS account, see the IAM User Guide.

ii. Grant permission to your AWS account to access FreeRTOS and AWS IoT by adding 
these policies:

• AmazonS3FullAccess

2. Create a bucket in S3 by following the steps in How do I create an S3 Bucket? in the Amazon 
Simple Storage Service Console User Guide.

3. Upload a file to S3 by following the steps in How do I upload files and folders to an S3 
bucket?.

4. Generate a pre-signed URL using the script located at FreeRTOS-Plus/Demo/
coreHTTP_Windows_Simulator/Common/presigned_url_generator/

FreeRTOS demos 698

https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_download.c
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html


FreeRTOS User Guide

presigned_urls_gen.py. For usage instructions, see FreeRTOS-Plus/Demo/
coreHTTP_Windows_Simulator/Common/presigned_url_generator/README.md.

Functionality

The demo retrieves the size of the file first. Then it requests each byte range sequentially, in a loop, 
with range sizes of democonfigRANGE_REQUEST_LENGTH.

Source code for the demo can be found on the GitHub website.

Connecting to the Amazon S3 HTTP server

The function  connectToServerWithBackoffRetries() attempts to make a TCP connection to the 
HTTP server. If the connection fails, it retries after a timeout. The timeout value will exponentially 
increase until the maximum number of attempts are reached or the maximum timeout value 
is reached. connectToServerWithBackoffRetries() returns a failure status if the TCP 
connection to the server cannot be established after the configured number of attempts.

The function prvConnectToServer() demonstrates how to establish a connection to the 
Amazon S3 HTTP server using server authentication only. It uses the mbedTLS-based transport 
interface that is implemented in the file  FreeRTOS-Plus/Source/Application-Protocols/
network_transport/freertos_plus_tcp/using_mbedtls/using_mbedtls.c.

The source code for prvConnectToServer() can be found on  GitHub.

Creating a range request

The API function HTTPClient_AddRangeHeader() supports serializing a byte range into the 
HTTP request headers to form a range request. Range requests are used in this demo to retrieve 
the file size and to request each section of the file.

The function prvGetS3ObjectFileSize() retrieves the size of the file in the S3 bucket. The
Connection: keep-alive header is added in this first request to Amazon S3 to keep the 
connection open after the response is sent. The S3 HTTP server does not currently support HEAD 
requests using a pre-signed URL, so the 0th byte is requested. The size of the file is contained in 
the response's Content-Range header field. A 206 Partial Content response is expected 
from the server; any other response status-code received is an error.

The source code for prvGetS3ObjectFileSize() can be found on  GitHub.

FreeRTOS demos 699

https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_download.c
https://github.com/aws/amazon-freertos/blob/main/demos/common/http_demo_helpers/http_demo_utils.c#L131-L170
https://github.com/FreeRTOS/FreeRTOS/blob/202012.00/FreeRTOS-Plus/Source/Application-Protocols/network_transport/freertos_plus_tcp/using_mbedtls/using_mbedtls.c
https://github.com/FreeRTOS/FreeRTOS/blob/202012.00/FreeRTOS-Plus/Source/Application-Protocols/network_transport/freertos_plus_tcp/using_mbedtls/using_mbedtls.c
https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_download.c#L273-L333
https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_download.c#L337-L502


FreeRTOS User Guide

After it retrieves the file size, this demo creates a new range request for each byte range of the file 
to download. It uses HTTPClient_AddRangeHeader() for each section of the file.

Sending range requests and receiving responses

The function prvDownloadS3ObjectFile() sends the range requests in a loop until the entire 
file is downloaded. The API function HTTPClient_Send() sends a request and receives the 
response synchronously. When the function returns, the response is received in an xResponse. The 
status-code is then verified to be 206 Partial Content and the number of bytes downloaded 
so far is incremented by the Content-Length header value.

The source code for prvDownloadS3ObjectFile() can be found on  GitHub.

coreHTTP basic multithreaded demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

This demo uses FreeRTOS's thread-safe queues to hold requests and responses waiting to be 
processed. In this demo, there are three tasks to take note of.

• The main task waits for requests to appear in the request queue. It will send those requests over 
the network, then place the response into the response queue.

• A request task creates HTTP library request objects to send to the server and places them into 
the request queue. Each request object specifies a byte range of the S3 file that the application 
has configured for download.

• A response task waits for responses to appear in the response queue. It logs every response it 
receives.

This basic multithreaded demo is configured to use a TLS connection with server authentication 
only, this is required by the Amazon S3 HTTP server. Application layer authentication is done using 
the Signature Version 4 parameters in the presigned URL query.

FreeRTOS demos 700

https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_download.c#L506-L651
https://freertos.org/a00018.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-query-string-auth.html


FreeRTOS User Guide

Source code organization

The demo project is named http_demo_s3_download_multithreaded.c and can be found in 
the freertos/demos/coreHTTP/ directory and the  GitHub website.

Building the demo project

The demo project uses the free community edition of Visual Studio. To build the demo:

1. Open the mqtt_multitask_demo.sln Visual Studio solution file from within the Visual 
Studio IDE.

2. Select Build Solution from the IDE's Build menu.

Note

If you are using Microsoft Visual Studio 2017 or earlier, then you must select a Platform 
Toolset compatible with your version: Project -> RTOSDemos Properties -> Platform 
Toolset.

Configuring the demo project

The demo uses the FreeRTOS+TCP TCP/IP stack, so follow the instructions provided for the TCP/IP 
starter project to:

1. Install the  pre-requisite components (such as WinPCap).

2. Optionally  set a static or dynamic IP address, gateway address and netmask.

3. Optionally  set a MAC address.

4. Select an Ethernet network interface on your host machine.

5. Importantly  test your network connection before attempting to run the HTTP demo.

Configuring the Amazon S3 HTTP server connection

Follow the instructions for Configuring the Amazon S3 HTTP server connection in the coreHTTP 
basic download demo.

Functionality

The demo creates three tasks in total:

FreeRTOS demos 701

https://github.com/aws/amazon-freertos/blob/main/demos/coreHTTP/http_demo_s3_download_multithreaded.c
https://visualstudio.microsoft.com/vs/community/
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/examples_FreeRTOS_simulator.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/examples_FreeRTOS_simulator.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/examples_FreeRTOS_simulator.html#prerequisites
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/examples_FreeRTOS_simulator.html#static-dynamic
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/examples_FreeRTOS_simulator.html#mac-addr
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/examples_FreeRTOS_simulator.html#network-interface
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/examples_FreeRTOS_simulator.html#connectivity-test


FreeRTOS User Guide

• One that sends requests and receives responses over the network.

• One that creates requests to send.

• One that processes the received responses.

In this demo, the primary task:

1. Creates the request and response queues.

2. Creates the connection to the server.

3. Creates the request and response tasks.

4. Waits for the request queue to send requests over the network.

5. Places responses received over the network into the response queue.

The request task:

1. Creates each of the range requests.

The response task:

1. Processes each of the responses received.

Typedefs

The demo defines the following structures to support multithreading.

Request items

The following structures define a request item to place into the request queue. The request item is 
copied into the queue after the request task creates an HTTP request.

/** 
 * @brief Data type for the request queue. 
 * 
 * Contains the request header struct and its corresponding buffer, to be 
 * populated and enqueued by the request task, and read by the main task. The 
 * buffer is included to avoid pointer inaccuracy during queue copy operations. 
 */

FreeRTOS demos 702



FreeRTOS User Guide

typedef struct RequestItem
{ 
    HTTPRequestHeaders_t xRequestHeaders; 
    uint8_t ucHeaderBuffer[ democonfigUSER_BUFFER_LENGTH ];
} RequestItem_t; 

Response Item

The following structures define a response item to place into the response queue. The response 
item is copied into the queue after the main HTTP task receives a response over the network.

/** 
 * @brief Data type for the response queue. 
 * 
 * Contains the response data type and its corresponding buffer, to be enqueued 
 * by the main task, and interpreted by the response task. The buffer is 
 * included to avoid pointer inaccuracy during queue copy operations. 
 */
typedef struct ResponseItem
{ 
    HTTPResponse_t xResponse; 
    uint8_t ucResponseBuffer[ democonfigUSER_BUFFER_LENGTH ];
} ResponseItem_t; 

Main HTTP send task

The main application task:

1. Parses the presigned URL for the host address to establish a connection with the Amazon S3 
HTTP server.

2. Parses the presigned URL for the path to the objects in the S3 bucket.

3. Connects to the Amazon S3 HTTP server using TLS with server authentication.

4. Creates the request and response queues.

5. Creates the request and response tasks.

The function prvHTTPDemoTask() does this set up, and gives the demo status. The source code 
for this function can be found on  Github.

FreeRTOS demos 703

https://github.com/FreeRTOS/FreeRTOS/blob/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator/HTTP_S3_Download_Multithreaded/DemoTasks/S3DownloadMultithreadedHTTPExample.c#L451-L650


FreeRTOS User Guide

In the function prvDownloadLoop(), the main task blocks and waits on requests from the request 
queue. When it receives a request it sends it using API function HTTPClient_Send(). If the API 
function was successful, then it places the response into the response queue.

The source code for prvDownloadLoop() can be found on  Github.

HTTP request task

The request task is specified in the function prvRequestTask. The source code for this function 
can be found on  Github.

The request task retrieves the size of the file in the Amazon S3 bucket. This is done in the function
prvGetS3ObjectFileSize. The "Connection: keep-alive" header is added to this request to 
Amazon S3 to keep the connection open after the response is sent. The Amazon S3 HTTP server 
does not currently support HEAD requests using a presigned URL, so the 0th byte is requested. 
The size of the file is contained in the response's Content-Range header field. A 206 Partial 
Content response is expected from the server; any other response status-code received is an error.

The source code for prvGetS3ObjectFileSize can be found on  Github.

After retrieving the file size, the request task continues to request each range of the file. 
Each range request is placed into the request queue for the main task to send. The file ranges 
are configured by the demo user in the macro democonfigRANGE_REQUEST_LENGTH. 
Range requests are natively supported in the HTTP client library API using the function
HTTPClient_AddRangeHeader. The function prvRequestS3ObjectRange demonstrates how 
to use HTTPClient_AddRangeHeader().

The source code for the function prvRequestS3ObjectRange can be found on  Github.

HTTP response task

The response tasks waits on the response queue for responses received over the network. The 
main task populates the response queue when it successfully receives an HTTP response. This task 
processes the responses by logging the status-code, headers, and body. A real-world application 
may process the response by writing the response body to flash memory, for example. If the 
response status-code is not 206 partial content, then the task notifies the main task that the 
demo should fail. The response task is specified in function prvResponseTask. The source code 
for this function can be found on  Github.

FreeRTOS demos 704

https://github.com/FreeRTOS/FreeRTOS/blob/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator/HTTP_S3_Download_Multithreaded/DemoTasks/S3DownloadMultithreadedHTTPExample.c#L1071-L1174
https://github.com/FreeRTOS/FreeRTOS/blob/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator/HTTP_S3_Download_Multithreaded/DemoTasks/S3DownloadMultithreadedHTTPExample.c#L778-L876
https://github.com/FreeRTOS/FreeRTOS/blob/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator/HTTP_S3_Download_Multithreaded/DemoTasks/S3DownloadMultithreadedHTTPExample.c#L757-L774
https://github.com/FreeRTOS/FreeRTOS/blob/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator/HTTP_S3_Download_Multithreaded/DemoTasks/S3DownloadMultithreadedHTTPExample.c#L694-L753
https://github.com/FreeRTOS/FreeRTOS/blob/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator/HTTP_S3_Download_Multithreaded/DemoTasks/S3DownloadMultithreadedHTTPExample.c#L961-L1047


FreeRTOS User Guide

AWS IoT Jobs library demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

The AWS IoT Jobs library demo shows you how to connect to the AWS IoT Jobs service through an 
MQTT connection, retrieve a job from AWS IoT, and process it on a device. The AWS IoT Jobs demo 
project uses the  FreeRTOS Windows port, so it can be built and evaluated with the Visual Studio 
Community version on Windows. No microcontroller hardware is needed. The demo establishes a 
secure connection to the AWS IoT MQTT broker using TLS in the same manner as the coreMQTT 
mutual authentication demo.

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

Source code organization

The demo code is in the jobs_demo.c file and can be found on the GitHub website or in the
freertos/demos/jobs_for_aws/ directory.

Configure the AWS IoT MQTT broker connection

In this demo, you use an MQTT connection to the AWS IoT MQTT broker. This connection is 
configured in the same way as the coreMQTT mutual authentication demo.

Functionality

The demo shows the workflow used to receive jobs from AWS IoT and process them on a device. 
The demo is interactive and requires you to create jobs by using either the AWS IoT console or the 
AWS Command Line Interface (AWS CLI). For more information about creating a job, see create-job

FreeRTOS demos 705

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://github.com/aws/amazon-freertos/blob/main/demos/jobs_for_aws/jobs_demo.c
https://docs.aws.amazon.com/cli/latest/reference/iot/create-job.html


FreeRTOS User Guide

in the AWS CLI Command Reference. The demo requires the job document to have an action key 
set to print to print a message to the console.

See the following format for this job document.

{ 
    "action": "print", 
    "message": "ADD_MESSAGE_HERE"
} 

You can use the AWS CLI to create a job as in the following example command.

aws iot create-job \ 
    --job-id t12 \ 
    --targets arn:aws:iot:region:123456789012:thing/device1 \ 
    --document '{"action":"print","message":"hello world!"}' 
         

The demo also uses a job document that has the action key set to publish to republish the 
message to a topic. See the following format for this job document.

{ 
    "action": "publish", 
    "message": "ADD_MESSAGE_HERE", 
    "topic": "topic/name/here"
}

The demo loops until it receives a job document with the action key set to exit to exit the demo. 
The format for the job document is as follows.

{ 
    "action: "exit"
} 

Entry point of the Jobs demo

The source code for the Jobs demo entry point function can be found on  GitHub. This function 
performs the following operations:

1. Establish an MQTT connection using the helper functions in mqtt_demo_helpers.c.

FreeRTOS demos 706

https://github.com/aws/amazon-freertos/blob/main/demos/jobs_for_aws/jobs_demo.c#L773-L967


FreeRTOS User Guide

2. Subscribe to the MQTT topic for the NextJobExecutionChanged API, using helper functions 
in mqtt_demo_helpers.c. The topic string is assembled earlier, using macros defined by the 
AWS IoT Jobs library.

3. Publish to the MQTT topic for the StartNextPendingJobExecution API, using helper 
functions in mqtt_demo_helpers.c. The topic string is assembled earlier, using macros 
defined by the AWS IoT Jobs library.

4. Repeatedly call MQTT_ProcessLoop to receive incoming messages which are handed to
prvEventCallback for processing.

5. After the demo receives the exit action, unsubscribe from the MQTT topic and disconnect, 
using the helper functions in the mqtt_demo_helpers.c file.

Callback for received MQTT messages

The  prvEventCallback function calls Jobs_MatchTopic from the AWS IoT Jobs library 
to classify the incoming MQTT message. If the message type corresponds to a new job,
prvNextJobHandler() is called.

The  prvNextJobHandler function, and the functions it calls, parse the job document from the 
JSON-formatted message, and run the action specified by the job. Of particular interest is the
prvSendUpdateForJob function.

Send an update for a running job

The function  prvSendUpdateForJob() calls Jobs_Update() from the Jobs library to populate the 
topic string used in the MQTT publish operation that immediately follows.

coreMQTT demos

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

These demos can help you learn how to use the coreMQTT library.

FreeRTOS demos 707

https://github.com/aws/amazon-freertos/blob/main/demos/jobs_for_aws/jobs_demo.c#L674-L769
https://github.com/aws/amazon-freertos/blob/main/demos/jobs_for_aws/jobs_demo.c#L601-L670
https://github.com/aws/amazon-freertos/blob/main/demos/jobs_for_aws/jobs_demo.c#L413-L457


FreeRTOS User Guide

Topics

• coreMQTT mutual authentication demo

• coreMQTT Agent connection sharing demo

coreMQTT mutual authentication demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

The coreMQTT mutual authentication demo project shows you how to establish a connection to 
an MQTT broker using TLS with mutual authentication between the client and the server. This 
demo uses an mbedTLS-based transport interface implementation to establish a server and client-
authenticated TLS connection, and demonstrates the subscribe-publish workflow of MQTT at 
QoS 1 level. It subscribes to a topic filter, then publishes to topics that match the filter and waits 
for receipt of those messages back from the server at QoS 1 level. This cycle of publishing to the 
broker and receiving the same message back from the broker is repeated indefinitely. Messages in 
this demo are sent at QoS 1, which guarantees at least one delivery according to the MQTT spec.

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

Source code

The demo source file is named mqtt_demo_mutual_auth.c and can be found in the freertos/
demos/coreMQTT/ directory and the  GitHub website.

Functionality

The demo creates a single application task that loops through a set of examples that demonstrate 
how to connect to the broker, subscribe to a topic on the broker, publish to a topic on the broker, 

FreeRTOS demos 708

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180914
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180914
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c


FreeRTOS User Guide

then finally, disconnect from the broker. The demo application both subscribes to and publishes to 
the same topic. Each time the demo publishes a message to the MQTT broker, the broker sends the 
same message back to the demo application.

A successful completion of the demo will generate an output similar to the following image.

The AWS IoT console will generate an output similar to the following image.

FreeRTOS demos 709



FreeRTOS User Guide

Retry logic with exponential backoff and jitter

The  prvBackoffForRetry function shows how failed network operations with the server, for 
example, TLS connections or MQTT subscribe requests, can be retried with exponential backoff 
and jitter. The function calculates the backoff period for the next retry attempt, and performs the 
backoff delay if the retry attempts haven't been exhausted. Because the calculation of the backoff 
period requires the generation of a random number, the function uses the PKCS11 module to 
generate the random number. Use of the PKCS11 module allows access to a True Random Number 
Generator (TRNG) if the vendor platform supports it. We recommended that you seed the random 
number generator with a device-specific entropy source so that the probability of collisions from 
devices during connection retries is mitigated.

Connecting to the MQTT broker

The  prvConnectToServerWithBackoffRetries function attempts to make a mutually 
authenticated TLS connection to the MQTT broker. If the connection fails, it retries after 
a backoff period. The backoff period will exponentially increase until the maximum 
number of attempts is reached or the maximum backoff period is reached. The

FreeRTOS demos 710

https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L671-L717
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L721-L782


FreeRTOS User Guide

BackoffAlgorithm_GetNextBackoff function provides an exponentially increasing backoff 
value and returns RetryUtilsRetriesExhausted when the maximum number of attempts has 
been reached. The prvConnectToServerWithBackoffRetries function returns a failure status 
if the TLS connection to the broker can't be established after the configured number of attempts.

The  prvCreateMQTTConnectionWithBroker function demonstrates how to establish an MQTT 
connection to an MQTT broker with a clean session. It uses the TLS transport interface, which 
is implemented in the FreeRTOS-Plus/Source/Application-Protocols/platform/
freertos/transport/src/tls_freertos.c file. Keep in mind that we're setting the keep-
alive seconds for the broker in xConnectInfo.

The next function shows how the TLS transport interface and time function are set in an MQTT 
context using the MQTT_Init function. It also shows how an event callback function pointer 
(prvEventCallback) is set. This callback is used for reporting incoming messages.

Subscribing to an MQTT topic

The  prvMQTTSubscribeWithBackoffRetries function demonstrates how to subscribe to a topic 
filter on the MQTT broker. The example demonstrates how to subscribe to one topic filter, but it's 
possible to pass a list of topic filters in the same subscribe API call to subscribe to more than one 
topic filter. Also, in case the MQTT broker rejects the subscription request, the subscription will 
retry, with exponential backoff, for RETRY_MAX_ATTEMPTS.

Publishing to a topic

The  prvMQTTPublishToTopic function demonstrates how to publish to a topic on the MQTT 
broker.

Receiving incoming messages

The application registers an event callback function before it connects to the broker, as 
described earlier. The prvMQTTDemoTask function calls the MQTT_ProcessLoop function 
to receive incoming messages. When an incoming MQTT message is received, it calls the 
event callback function registered by the application. The  prvEventCallback function is an 
example of such an event callback function. prvEventCallback examines the incoming 
packet type and calls the appropriate handler. In the example below, the function either 
calls prvMQTTProcessIncomingPublish() for handling incoming publish messages or
prvMQTTProcessResponse() to handle acknowledgements (ACK).

FreeRTOS demos 711

https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L785-L848
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L871-L969
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L972-L1004
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L1139-L1154


FreeRTOS User Guide

Processing incoming MQTT publish packets

The  prvMQTTProcessIncomingPublish function demonstrates how to process a publish packet 
from the MQTT broker.

Unsubscribing from a topic

The last step in the workflow is to unsubscribe from the topic so that the broker won't send 
any published messages from mqttexampleTOPIC. Here is the definition of the function 
prvMQTTUnsubscribeFromTopic.

Changing the root CA used in the demo

By default, the FreeRTOS demos use the Amazon Root CA 1 certificate (RSA 2048 bit key) to 
authenticate with the AWS IoT Core server. It is possible to use other  CA certificates for server 
authentication, including the Amazon Root CA 3 certificate (ECC 256 bit key). To change the root 
CA for the coreMQTT mutual authentication demo:

1. In a text editor, open the freertos/vendors/vendor/boards/board/aws_demos/
config_files/mqtt_demo_mutual_auth_config.h file.

2. In the file, locate the following line.

 * #define democonfigROOT_CA_PEM    "...insert here..." 

Uncomment this line and, if necessary, move it past the comment block end  */.

3. Copy the CA certificate that you want to use and then paste it in the "...insert here..."
text. The result should look like the following example.

#define democonfigROOT_CA_PEM   "-----BEGIN CERTIFICATE-----\n"\
"MIIBtjCCAVugAwIBAgITBmyf1XSXNmY/Owua2eiedgPySjAKBggqhkjOPQQDAjA5\n"\
"MQswCQYDVQQGEwJVUzEPMA0GA1UEChMGQW1hem9uMRkwFwYDVQQDExBBbWF6b24g\n"\
"Um9vdCBDQSAzMB4XDTE1MDUyNjAwMDAwMFoXDTQwMDUyNjAwMDAwMFowOTELMAkG\n"\
"A1UEBhMCVVMxDzANBgNVBAoTBkFtYXpvbjEZMBcGA1UEAxMQQW1hem9uIFJvb3Qg\n"\
"Q0EgMzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABCmXp8ZBf8ANm+gBG1bG8lKl\n"\
"ui2yEujSLtf6ycXYqm0fc4E7O5hrOXwzpcVOho6AF2hiRVd9RFgdszflZwjrZt6j\n"\
"QjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgGGMB0GA1UdDgQWBBSr\n"\
"ttvXBp43rDCGB5Fwx5zEGbF4wDAKBggqhkjOPQQDAgNJADBGAiEA4IWSoxe3jfkr\n"\
"BqWTrBqYaGFy+uGh0PsceGCmQ5nFuMQCIQCcAu/xlJyzlvnrxir4tiz+OpAUFteM\n"\
"YyRIHN8wfdVoOw==\n"\
"-----END CERTIFICATE-----\n"

FreeRTOS demos 712

https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L1108-L1135
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L1007-L1043
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT/mqtt_demo_mutual_auth.c#L1007-L1043
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs


FreeRTOS User Guide

4. (Optional) You can change the root CA for other demos. Repeat steps 1 through 3 for each
freertos/vendors/vendor/boards/board/aws_demos/config_files/demo-
name_config.h file.

coreMQTT Agent connection sharing demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

The coreMQTT connection sharing demo project shows you how to use a multithreaded application 
to establish a connection to the AWS MQTT broker using TLS with mutual authentication between 
the client and the server. This demo uses an mbedTLS-based transport interface implementation 
to establish a server and client-authenticated TLS connection, and demonstrates the subscribe-
publish workflow of MQTT at the  QoS 1 level. The demo subscribes to a topic filter, publishes to 
topics that match the filter, and then waits to receive those messages back from the server at the 
QoS 1 level. This cycle of publishing to the broker and receiving the same message back from the 
broker is repeated a number of times for each created task. Messages in this demo are sent at QoS 
1, which guarantees at least one delivery according to the MQTT specification.

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

This demo uses a thread safe queue to hold commands to interact with the MQTT API. There are 
two tasks to take note of in this demo.

• An MQTT Agent (main) task processes the commands from the command queue while other 
tasks enqueue them. This task enters a loop, during which it processes commands from the 
command queue. If a termination command is received, this task will break out of the loop.

FreeRTOS demos 713

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180914


FreeRTOS User Guide

• A demo subpub task creates a subscription to an MQTT topic, then creates publish operations 
and pushes them to the command queue. These publish operations are then run by the MQTT 
Agent task. The demo subpub task waits for the publish to complete, indicated by execution of 
the command completion callback, then enters a short delay before it starts the next publish. 
This task shows examples of how application tasks would use the coreMQTT Agent API.

For incoming publish messages, the coreMQTT Agent invokes a single callback function. This demo 
also includes a subscription manager that allows tasks to specify a callback to invoke for incoming 
publish messages on topics to which they have subscribed. The agent's incoming publish callback in 
this demo invokes the subscription manager to fan out publishes to any task that has registered a 
subscription.

This demo uses a TLS connection with mutual authentication to connect to AWS. If the network 
unexpectedly disconnects during the demo, then the client attempts to reconnect using 
exponential backoff logic. If the client successfully reconnects, but the broker can't resume the 
prior session, then the client will resubscribe to the same topics as the previous session.

Single threaded vs multithreaded

There are two coreMQTT usage models, single threaded and multithreaded (multitasking). The 
single threaded model uses the coreMQTT library solely from one thread, and requires you to 
make repeated explicit calls in the MQTT library. Multithreaded use cases can instead run the 
MQTT protocol in the background within an agent (or daemon) task, as shown in the demo 
documented here. When you run the MQTT protocol in an agent task you do not have to explicitly 
manage any MQTT state or call the MQTT_ProcessLoop API function. Also, when you use an 
agent task, multiple application tasks can share a single MQTT connection without the need for 
synchronization primitives such as mutexes.

Source code

The demo source files are named mqtt_agent_task.c and simple_sub_pub_demo.c and can 
be found in the freertos/demos/coreMQTT_Agent/ directory and the GitHub website.

Functionality

This demo creates at least two tasks: a primary one that processes requests for MQTT API calls, 
and a configurable number of subtasks that create those requests. In this demo, the primary task 
creates the subtasks, calls the processing loop, and cleans up afterwards. The primary task creates 
a single MQTT connection to the broker that is shared among the subtasks. The subtasks create an 

FreeRTOS demos 714

https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT_Agent/


FreeRTOS User Guide

MQTT subscription with the broker and then publish messages to it. Each subtask uses a unique 
topic for its publishes.

Main task

The main application task,  RunCoreMQTTAgentDemo, establishes an MQTT session, creates the 
subtasks, and runs the processing loop  MQTTAgent_CommandLoop until a termination command 
is received. If the network unexpectedly disconnects, the demo will reconnect to the broker in 
the background, and re-establish subscriptions with the broker. After the processing loop has 
terminated, it disconnects from the broker.

Commands

When you invoke a coreMQTT Agent API it creates a command that is sent to the agent task's 
queue, which is processed in MQTTAgent_CommandLoop(). At the time the command is created, 
optional completion callback and context parameters may be passed. Once the corresponding 
command is complete, the completion callback will be invoked with the passed context and any 
return values that were created as a result of the command. The signature for the completion 
callback is as follows:

typedef void (* MQTTAgentCommandCallback_t )( void * pCmdCallbackContext, 
                                              MQTTAgentReturnInfo_t * pReturnInfo ); 

The command completion context is user-defined; for this demo, it is:  struct 
MQTTAgentCommandContext.

Commands are considered completed when:

• Subscribes, unsubscribes, and publishes with QoS > 0: Once the corresponding acknowledgment 
packet has been received.

• All other operations: Once the corresponding coreMQTT API has been invoked.

Any structures used by the command, including publish information, subscription information, and 
completion contexts, must stay in scope until the command has completed. A calling task must not 
reuse any of a command's structures before the invocation of the completion callback. Note that 
since the completion callback is invoked by the MQTT Agent, it will run with the thread context of 
the agent task, not the task that created the command. Inter-process communication mechanisms, 
such as task notifications or queues, can be used to signal the calling task of command completion.

FreeRTOS demos 715

https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT_Agent/mqtt_agent_task.c#L435-L480
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT_Agent/mqtt_agent_task.c#L856
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT_Agent/simple_sub_pub_demo.c#L105-L115
https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT_Agent/simple_sub_pub_demo.c#L105-L115


FreeRTOS User Guide

Running the command loop

Commands are processed continuously in MQTTAgent_CommandLoop(). If 
there are no commands to be processed, the loop will wait for a maximum of
MQTT_AGENT_MAX_EVENT_QUEUE_WAIT_TIME for one to be added to the queue, and, if no 
command is added, it will run a single iteration of MQTT_ProcessLoop(). This ensures both that 
MQTT Keep-Alive is managed, and that any incoming publishes are received even when there are 
no commands in the queue.

The command loop function will return for the following reasons:

• A command returns any status code besides MQTTSuccess. The error status is returned by 
the command loop, so you may decide how to handle it. In this demo, the TCP connection is 
reestablished, and a reconnect attempt is made. If there is any error, a reconnection can occur in 
the background without any intervention from other tasks using MQTT.

• A disconnect command (from MQTTAgent_Disconnect) is processed. The command loop exits 
so that TCP can be disconnected.

• A terminate command (from MQTTAgent_Terminate) is processed. This command also marks 
any command still in the queue or awaiting an acknowledgment packet as an error, with a return 
code of MQTTRecvFailed.

Subscription manager

Since the demo uses multiple topics, a subscription manager is a convenient way to associate 
subscribed topics with unique callbacks or tasks. The subscription manager in this demo is single-
threaded, so it should not be used by multiple tasks concurrently. In this demo, subscription 
manager functions are only called from callback functions that are passed to the MQTT agent, and 
run only with the agent task's thread context.

Simple subscribe-publish Task

Each instance of the  prvSimpleSubscribePublishTask creates a subscription to an MQTT topic, and 
creates publish operations for that topic. To demonstrate multiple publish types, even numbered 
tasks use QoS 0 (which are complete once the publish packet is sent) and odd tasks use QoS 1 
(which are complete upon receipt of a PUBACK packet).

FreeRTOS demos 716

https://github.com/aws/amazon-freertos/blob/main/demos/coreMQTT_Agent/simple_sub_pub_demo.c#L447-L569


FreeRTOS User Guide

Over-the-air updates demo application

FreeRTOS includes a demo application that demonstrates the functionality of the over-
the-air (OTA) library. The OTA demo application is located in the freertos/demos/
ota/ota_demo_core_mqtt/ota_demo_core_mqtt.c or the freertos/demos/ota/
ota_demo_core_http/ota_demo_core_http.c file.

The OTA demo application does the following:

1. Initializes the FreeRTOS network stack and MQTT buffer pool.

2. Creates a task to exercise the OTA library using vRunOTAUpdateDemo().

3. Creates an MQTT client using _establishMqttConnection().

4. Connects to the AWS IoT MQTT broker using IotMqtt_Connect() and registers an MQTT 
disconnect callback: prvNetworkDisconnectCallback.

5. Calls OTA_AgentInit() to create the OTA task and registers a callback to be used when the 
OTA task is complete.

6. Reuses the MQTT connection with xOTAConnectionCtx.pvControlClient = 
_mqttConnection;

7. If MQTT disconnects, the application suspends the OTA agent, tries to reconnect using 
exponential delay with jitter, and then resumes the OTA agent.

Before you can use OTA updates, complete all prerequisites in FreeRTOS Over-the-Air Updates

After you complete the setup for OTA updates, download, build, flash, and run the FreeRTOS 
OTA demo on a platform that supports OTA functionality. Device-specific demo instructions are 
available for the following FreeRTOS-qualified devices:

• Texas Instruments CC3220SF-LAUNCHXL

• Microchip Curiosity PIC32MZEF

• Espressif ESP32

• Download, build, flash and run the FreeRTOS OTA demo on the Renesas RX65N

After you build, flash, and run the OTA demo application on your device, you can use the AWS IoT 
console or the AWS CLI to create an OTA update job. After you have created an OTA update job, 
connect a terminal emulator to see the progress of the OTA update. Make a note of any errors 
generated during the process.

FreeRTOS demos 717



FreeRTOS User Guide

A successful OTA update job displays output like the following. Some lines in this example have 
been removed from the listing for brevity.

    249 21207 [iot_thread] [ota_demo_core_mqtt.c:1850] [INFO] [MQTT]  Received: 0   
 Queued: 0   Processed: 0   Dropped: 0 
    250 21247 [MQTT Agent Task] [core_mqtt.c:886] [INFO] [MQTT] Packet received. 
 ReceivedBytes=601. 
    251 21247 [MQTT Agent Task] [core_mqtt.c:1045] [INFO] [MQTT] De-serialized incoming 
 PUBLISH packet: DeserializerResult=MQTTSuccess. 
    252 21248 [MQTT Agent Task] [core_mqtt.c:1058] [INFO] [MQTT] State record updated. 
 New state=MQTTPubAckSend. 
    253 21249 [MQTT Agent Task] [ota_demo_core_mqtt.c:976] [INFO] [MQTT] Received job 
 message callback, size 548. 
    254 21252 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[execution.jobId: AFR_OTA-9702f1a3-b747-4c3e-a0eb-a3b0cf83ddbb] 
    255 21253 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[execution.jobDocument.afr_ota.streamname: AFR_OTA-945d320b-a18b-441b-
b435-4a18d4e7671f] 
    256 21255 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[execution.jobDocument.afr_ota.protocols: ["MQTT"]] 
    257 21256 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[filepath: aws_demos.bin] 
    258 21257 [OTA Agent Task] [ota.c:1684] [INFO] [OTA] Extracted parameter: [key: 
 value]=[filesize: 1164016] 
    259 21258 [OTA Agent Task] [ota.c:1684] [INFO] [OTA] Extracted parameter: [key: 
 value]=[fileid: 0] 
    260 21259 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[certfile: ecdsa-sha256-signer.crt.pem] 
    261 21260 [OTA Agent Task] [ota.c:1575] [INFO] [OTA] Extracted parameter [ sig-
sha256-ecdsa: MEQCIE1SFkIHHiZAvkPpu6McJtx7SYoD... ] 
    262 21261 [OTA Agent Task] [ota.c:1684] [INFO] [OTA] Extracted parameter: [key: 
 value]=[fileType: 0] 
    263 21262 [OTA Agent Task] [ota.c:2199] [INFO] [OTA] Job document was accepted. 
 Attempting to begin the update. 
    264 21263 [OTA Agent Task] [ota.c:2323] [INFO] [OTA] Job parsing success: 
 OtaJobParseErr_t=OtaJobParseErrNone, Job name=AFR_OTA-9702f1a3-b747-4c3e-a0eb-
a3b0cf83ddbb 
    265 21318 [iot_thread] [ota_demo_core_mqtt.c:1850] [INFO] [MQTT]  Received: 0   
 Queued: 0   Processed: 0   Dropped: 0 
    266 21418 [iot_thread] [ota_demo_core_mqtt.c:1850] [INFO] [MQTT]  Received: 0   
 Queued: 0   Processed: 0   Dropped: 0 
    267 21469 [OTA Agent Task] [ota.c:938] [INFO] [OTA] Setting OTA data interface. 

FreeRTOS demos 718



FreeRTOS User Guide

    268 21470 [OTA Agent Task] [ota.c:2839] [INFO] [OTA] Current State=[CreatingFile], 
 Event=[ReceivedJobDocument], New state=[CreatingFile] 
    269 21482 [MQTT Agent Task] [core_mqtt.c:886] [INFO] [MQTT] Packet received. 
 ReceivedBytes=3. 
    270 21483 [OTA Agent Task] [ota_demo_core_mqtt.c:1503] [INFO] [MQTT] SUBSCRIBED 
 to topic $aws/things/__test_infra_thing71/streams/AFR_OTA-945d320b-a18b-441b-
b435-4a18d4e7671f/data/cbor to bro 
    271 21484 [OTA Agent Task] [ota.c:2839] [INFO] [OTA] Current 
 State=[RequestingFileBlock], Event=[CreateFile], New state=[RequestingFileBlock] 
    272 21518 [iot_thread] [ota_demo_core_mqtt.c:1850] [INFO] [MQTT]  Received: 0   
 Queued: 0   Processed: 0   Dropped: 0 
    273 21532 [MQTT Agent Task] [core_mqtt_agent_command_functions.c:76] [INFO] [MQTT] 
 Publishing message to $aws/things/__test_infra_thing71/streams/AFR_OTA-945d320b-
a18b-441b-b435-4a18d4e7671f/ 
    274 21534 [OTA Agent Task] [ota_demo_core_mqtt.c:1553] [INFO] [MQTT] Sent PUBLISH 
 packet to broker $aws/things/__test_infra_thing71/streams/AFR_OTA-945d320b-a18b-441b-
b435-4a18d4e7671f/get/cbor 
    275 21534 [OTA Agent Task] [ota_mqtt.c:1112] [INFO] [OTA] Published to MQTT 
 topic to request the next block: topic=$aws/things/__test_infra_thing71/streams/
AFR_OTA-945d320b-a18b-441b-b435-4a1 
    276 21537 [OTA Agent Task] [ota.c:2839] [INFO] [OTA] Current 
 State=[WaitingForFileBlock], Event=[RequestFileBlock], New state=[WaitingForFileBlock] 
    277 21558 [MQTT Agent Task] [core_mqtt.c:886] [INFO] [MQTT] Packet received. 
 ReceivedBytes=4217. 
    278 21559 [MQTT Agent Task] [core_mqtt.c:1045] [INFO] [MQTT] De-serialized incoming 
 PUBLISH packet: DeserializerResult=MQTTSuccess. 
    279 21560 [MQTT Agent Task] [core_mqtt.c:1058] [INFO] [MQTT] State record updated. 
 New state=MQTTPublishDone. 
    280 21561 [MQTT Agent Task] [ota_demo_core_mqtt.c:1026] [INFO] [MQTT] Received data 
 message callback, size 4120. 
    281 21563 [OTA Agent Task] [ota.c:2464] [INFO] [OTA] Received valid file block: 
 Block index=0, Size=4096 
    282 21566 [OTA Agent Task] [ota.c:2683] [INFO] [OTA] Number of blocks remaining: 
 284 
      
    ... // Output removed for brevity 
      
    3672 42745 [OTA Agent Task] [ota.c:2464] [INFO] [OTA] Received valid file block: 
 Block index=284, Size=752 
    3673 42747 [OTA Agent Task] [ota.c:2633] [INFO] [OTA] Received final block of the 
 update. 
    (428298) ota_pal: No such certificate file: ecdsa-sha256-signer.crt.pem. Using 
 certificate in ota_demo_config.h. 

FreeRTOS demos 719



FreeRTOS User Guide

    3674 42818 [iot_thread] [ota_demo_core_mqtt.c:1850] [INFO] [MQTT]  Received: 285   
 Queued: 285   Processed: 284   Dropped: 0 
    3675 42918 [iot_thread] [ota_demo_core_mqtt.c:1850] [INFO] [MQTT]  Received: 285   
 Queued: 285   Processed: 284   Dropped: 0 
      
    ... // Output removed for brevity 
      
    3678 43197 [OTA Agent Task] [ota.c:2654] [INFO] [OTA] Received entire update and 
 validated the signature. 
    3685 43215 [OTA Agent Task] [ota_demo_core_mqtt.c:862] [INFO] [MQTT] Received 
 OtaJobEventActivate callback from OTA Agent. 
      
    ... // Output removed for brevity 
      
    2 39 [iot_thread] [INFO ][DEMO][390] ---------STARTING DEMO--------- 
      
    [0;32mI (3633) WIFI: WIFI_EVENT_STA_CONNECTED 
    [0;32mI (4373) WIFI: SYSTEM_EVENT_STA_GOT_IP 
      
    ... // Output removed for brevity  
      
    4 351 [sys_evt] [INFO ][DEMO][3510] Connected to WiFi access point, ip address: 
 255.255.255.0. 
    5 351 [iot_thread] [INFO ][DEMO][3510] Successfully initialized the demo. Network 
 type for the demo: 1 
    6 351 [iot_thread] [ota_demo_core_mqtt.c:1902] [INFO] [MQTT] OTA over MQTT demo, 
 Application version 0.9.1 
    7 351 [iot_thread] [ota_demo_core_mqtt.c:1323] [INFO] [MQTT] Creating a TLS 
 connection to <endpoint>-ats.iot.us-west-2.amazonaws.com:8883. 
    9 718 [iot_thread] [core_mqtt.c:886] [INFO] [MQTT] Packet received. 
 ReceivedBytes=2. 
    10 718 [iot_thread] [core_mqtt_serializer.c:970] [INFO] [MQTT] CONNACK session 
 present bit not set. 
    11 718 [iot_thread] [core_mqtt_serializer.c:912] [INFO] [MQTT] Connection accepted. 
      
    ... // Output removed for brevity 
      
    17 736 [OTA Agent Task] [ota_demo_core_mqtt.c:1503] [INFO] [MQTT] SUBSCRIBED to 
 topic $aws/things/__test_infra_thing71/jobs/notify-next to broker. 
    18 737 [OTA Agent Task] [ota_mqtt.c:381] [INFO] [OTA] Subscribed to MQTT topic: 
 $aws/things/__test_infra_thing71/jobs/notify-next 
    30 818 [iot_thread] [ota_demo_core_mqtt.c:1850] [INFO] [MQTT]  Received: 0   
 Queued: 0   Processed: 0   Dropped: 0 

FreeRTOS demos 720



FreeRTOS User Guide

    31 819 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[execution.jobId: AFR_OTA-9702f1a3-b747-4c3e-a0eb-a3b0cf83ddbb] 
    32 820 [OTA Agent Task] [ota.c:1684] [INFO] [OTA] Extracted parameter: [key: 
 value]=[execution.statusDetails.updatedBy: 589824] 
    33 822 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[execution.jobDocument.afr_ota.streamname: AFR_OTA-945d320b-a18b-441b-
b435-4a18d4e7671f] 
    34 823 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[execution.jobDocument.afr_ota.protocols: ["MQTT"]] 
    35 824 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[filepath: aws_demos.bin] 
    36 825 [OTA Agent Task] [ota.c:1684] [INFO] [OTA] Extracted parameter: [key: 
 value]=[filesize: 1164016] 
    37 826 [OTA Agent Task] [ota.c:1684] [INFO] [OTA] Extracted parameter: [key: 
 value]=[fileid: 0] 
    38 827 [OTA Agent Task] [ota.c:1645] [INFO] [OTA] Extracted parameter: [key: 
 value]=[certfile: ecdsa-sha256-signer.crt.pem] 
    39 828 [OTA Agent Task] [ota.c:1575] [INFO] [OTA] Extracted parameter [ sig-sha256-
ecdsa: MEQCIE1SFkIHHiZAvkPpu6McJtx7SYoD... ] 
    40 829 [OTA Agent Task] [ota.c:1684] [INFO] [OTA] Extracted parameter: [key: 
 value]=[fileType: 0] 
    41 830 [OTA Agent Task] [ota.c:2102] [INFO] [OTA] In self test mode. 
    42 830 [OTA Agent Task] [ota.c:1936] [INFO] [OTA] New image has a higher version 
 number than the current image: New image version=0.9.1, Previous image version=0.9.0 
    43 832 [OTA Agent Task] [ota.c:2120] [INFO] [OTA] Image version is valid: Begin 
 testing file: File ID=0 
    53 896 [OTA Agent Task] [ota.c:794] [INFO] [OTA] Beginning self-test. 
    62 971 [OTA Agent Task] [ota_demo_core_mqtt.c:1553] [INFO] [MQTT] Sent PUBLISH 
 packet to broker $aws/things/__test_infra_thing71/jobs/AFR_OTA-9702f1a3-b747-4c3e-
a0eb-a3b0cf83ddbb/update to br63 971 [MQTT Agent Task] [core_mqtt.c:1045] [INFO] [MQTT] 
 De-serialized incoming PUBLISH packet: DeserializerResult=MQTTSuccess. 
    65 973 [MQTT Agent Task] [core_mqtt.c:1058] [INFO] [MQTT] State record updated. New 
 state=MQTTPublishDone. 
    64 973 [OTA Agent Task] [ota_demo_core_mqtt.c:902] [INFO] [MQTT] Successfully 
 updated with the new image.   

Over-the-air demo configurations

The OTA demo configurations are demo-specific configuration options provided in
aws_iot_ota_update_demo.c. These configurations are different from the OTA library 
configurations provided in the OTA library config file.

FreeRTOS demos 721



FreeRTOS User Guide

OTA_DEMO_KEEP_ALIVE_SECONDS

For the MQTT client, this configuration is the maximum time interval that can elapse between 
finishing the transmission of one control packet and starting to send the next. In the absence 
of a control packet, a PINGREQ is sent. The broker must disconnect a client that doesn't 
send a message or a PINGREQ packet in one and a half times of this keep alive interval. This 
configuration should be adjusted based on the application's requirements.

OTA_DEMO_CONN_RETRY_BASE_INTERVAL_SECONDS

The base interval, in seconds, before retrying the network connection. The OTA demo will try 
to reconnect after this base time interval. The interval is doubled after every failed attempt. A 
random delay, up to a maximum of this base delay, is also added to the interval.

OTA_DEMO_CONN_RETRY_MAX_INTERVAL_SECONDS

The maximum interval, in seconds, before retrying the network connection. The reconnect delay 
is doubled on every failed attempt, but it can go only up to this maximum value, plus a jitter of 
the same interval.

Download, build, flash, and run the FreeRTOS OTA demo on the Texas Instruments CC3220SF-
LAUNCHXL

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

To download FreeRTOS and the OTA demo code

• You can download the source code on the GitHub site at https://github.com/FreeRTOS/ 
FreeRTOS.

FreeRTOS demos 722

https://github.com/FreeRTOS/FreeRTOS
https://github.com/FreeRTOS/FreeRTOS


FreeRTOS User Guide

To build the demo application

1. Follow the instructions in Getting Started with FreeRTOS to import the aws_demos project 
into Code Composer Studio, configure your AWS IoT endpoint, your Wi-Fi SSID and password, 
and a private key and certificate for your board.

2. Open freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and define
CONFIG_OTA_MQTT_UPDATE_DEMO_ENABLED or
CONFIG_OTA_HTTP_UPDATE_DEMO_ENABLED.

3. Build the solution and make sure it builds without errors.

4. Start a terminal emulator and use the following settings to connect to your board:

• Baud rate: 115200

• Data bits: 8

• Parity: None

• Stop bits: 1

5. Run the project on your board to confirm it can connect to Wi-Fi and the AWS IoT MQTT 
message broker.

When run, the terminal emulator should display text like the following:

    0 1000 [Tmr Svc] Simple Link task created 
    Device came up in Station mode 
    1 2534 [Tmr Svc] Write certificate... 
    2 5486 [Tmr Svc] [ERROR] Failed to destroy object. PKCS11_PAL_DestroyObject failed. 
    3 5486 [Tmr Svc] Write certificate... 
    4 5776 [Tmr Svc] Security alert threshold = 15 
    5 5776 [Tmr Svc] Current number of alerts = 1 
    6 5778 [Tmr Svc] Running Demos. 
    7 5779 [iot_thread] [INFO ][DEMO][5779] ---------STARTING DEMO--------- 
    8 5779 [iot_thread] [INFO ][INIT][5779] SDK successfully initialized. 
    Device came up in Station mode 
    [WLAN EVENT] STA Connected to the AP: afrlab-pepper , BSSID: 74:83:c2:b4:46:27 
    [NETAPP EVENT] IP acquired by the device 
    Device has connected to afrlab-pepper 
    Device IP Address is 192.168.36.176  

FreeRTOS demos 723



FreeRTOS User Guide

    9 8283 [iot_thread] [INFO ][DEMO][8282] Successfully initialized the demo. Network 
 type for the demo: 1 
    10 8283 [iot_thread] [INFO] OTA over MQTT demo, Application version 0.9.0 
    11 8283 [iot_thread] [INFO] Creating a TLS connection to <endpoint>-ats.iot.us-
west-2.amazonaws.com:8883. 
    12 8852 [iot_thread] [INFO] Creating an MQTT connection to <endpoint>-ats.iot.us-
west-2.amazonaws.com. 
    13 8914 [iot_thread] [INFO] Packet received. ReceivedBytes=2. 
    14 8914 [iot_thread] [INFO] CONNACK session present bit not set. 
    15 8914 [iot_thread] [INFO] Connection accepted. 
    16 8914 [iot_thread] [INFO] Received MQTT CONNACK successfully from broker. 
    17 8914 [iot_thread] [INFO] MQTT connection established with the broker. 
    18 8915 [iot_thread] [INFO]  Received: 0   Queued: 0   Processed: 0   Dropped: 0 
    19 8953 [OTA Agent T] [INFO] Current State=[RequestingJob], Event=[Start], New 
 state=[RequestingJob] 
    20 9008 [MQTT Agent ] [INFO] Packet received. ReceivedBytes=3. 
    21 9015 [OTA Agent T] [INFO] SUBSCRIBED to topic $aws/things/__test_infra_thing73/
jobs/notify-next to broker. 
    22 9015 [OTA Agent T] [INFO] Subscribed to MQTT topic: $aws/things/
__test_infra_thing73/jobs/notify-next 
    23 9504 [MQTT Agent ] [INFO] Publishing message to $aws/things/
__test_infra_thing73/jobs/$next/get. 
    24 9535 [MQTT Agent ] [INFO] Packet received. ReceivedBytes=2. 
    25 9535 [MQTT Agent ] [INFO] Ack packet deserialized with result: MQTTSuccess. 
    26 9536 [MQTT Agent ] [INFO] State record updated. New state=MQTTPublishDone. 
    27 9537 [OTA Agent T] [INFO] Sent PUBLISH packet to broker $aws/things/
__test_infra_thing73/jobs/$next/get to broker. 
    28 9537 [OTA Agent T] [WARN] OTA Timer handle NULL for Timerid=0, can't stop. 
    29 9537 [OTA Agent T] [INFO] Current State=[WaitingForJob], 
 Event=[RequestJobDocument], New state=[WaitingForJob] 
    30 9539 [MQTT Agent ] [INFO] Packet received. ReceivedBytes=120. 
    31 9539 [MQTT Agent ] [INFO] De-serialized incoming PUBLISH packet: 
 DeserializerResult=MQTTSuccess. 
    32 9540 [MQTT Agent ] [INFO] State record updated. New state=MQTTPublishDone. 
    33 9540 [MQTT Agent ] [INFO] Received job message callback, size 62. 
    34 9616 [OTA Agent T] [INFO] Failed job document content check: Required job 
 document parameter was not extracted: parameter=execution 
    35 9616 [OTA Agent T] [INFO] Failed job document content check: Required job 
 document parameter was not extracted: parameter=execution.jobId 
    36 9617 [OTA Agent T] [INFO] Failed job document content check: Required job 
 document parameter was not extracted: parameter=execution.jobDocument 
    37 9617 [OTA Agent T] [INFO] Failed job document content check: Required job 
 document parameter was not extracted: parameter=execution.jobDocument.afr_ota 

FreeRTOS demos 724



FreeRTOS User Guide

    38 9617 [OTA Agent T] [INFO] Failed job document content 
 check: Required job document parameter was not extracted: 
 parameter=execution.jobDocument.afr_ota.protocols 
    39 9618 [OTA Agent T] [INFO] Failed job document content check: Required job 
 document parameter was not extracted: parameter=execution.jobDocument.afr_ota.files 
    40 9618 [OTA Agent T] [INFO] Failed job document content check: Required job 
 document parameter was not extracted: parameter=filesize 
    41 9618 [OTA Agent T] [INFO] Failed job document content check: Required job 
 document parameter was not extracted: parameter=fileid 
    42 9619 [OTA Agent T] [INFO] Failed to parse JSON document as AFR_OTA job: 
 DocParseErr_t=7 
    43 9619 [OTA Agent T] [INFO] No active job available in received job document: 
 OtaJobParseErr_t=OtaJobParseErrNoActiveJobs 
    44 9619 [OTA Agent T] [ERROR] Failed to execute state transition handler: Handler 
 returned error: OtaErr_t=OtaErrJobParserError 
    45 9620 [OTA Agent T] [INFO] Current State=[WaitingForJob], 
 Event=[ReceivedJobDocument], New state=[CreatingFile] 
    46 9915 [iot_thread] [INFO]  Received: 0   Queued: 0   Processed: 0   Dropped: 0 
    47 10915 [iot_thread] [INFO]  Received: 0   Queued: 0   Processed: 0   Dropped: 0 
    48 11915 [iot_thread] [INFO]  Received: 0   Queued: 0   Processed: 0   Dropped: 0 
    49 12915 [iot_thread] [INFO]  Received: 0   Queued: 0   Processed: 0   Dropped: 0 
    50 13915 [iot_thread] [INFO]  Received: 0   Queued: 0   Processed: 0   Dropped: 0 
    51 14915 [iot_thread] [INFO]  Received: 0   Queued: 0   Processed: 0   Dropped: 0 

Download, build, flash, and run the FreeRTOS OTA demo on the Microchip Curiosity PIC32MZEF

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

Note

In agreement with Microchip, we are removing the Curiosity PIC32MZEF (DM320104) from 
the FreeRTOS Reference Integration repository main branch and will no longer carry it in 
new releases. Microchip has issued an official notice that the PIC32MZEF (DM320104) is 
no longer recommended for new designs. The PIC32MZEF projects and source code can 
still be accessed through the previous release tags. Microchip recommends that customers 

FreeRTOS demos 725

https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DM320104


FreeRTOS User Guide

use the Curiosity  PIC32MZ-EF-2.0 Development board (DM320209) for new designs. 
The PIC32MZv1 platform can still be found in v202012.00 of the FreeRTOS Reference 
Integration repository. However, the platform is no longer supported by v202107.00 of the 
FreeRTOS Reference.

To download the FreeRTOS OTA demo code

• You can download the source code on the GitHub site at https://github.com/FreeRTOS/ 
FreeRTOS.

To build the OTA update demo application

1. Follow the instructions in Getting Started with FreeRTOS to import the aws_demos project 
into the MPLAB X IDE, configure your AWS IoT endpoint, your Wi-Fi SSID and password, and a 
private key and certificate for your board.

2. Open the vendors/vendor/boards/board/aws_demos/config_files/
ota_demo_config.h file, and enter your certificate.

[] = "your-certificate-key";

3. Paste the contents of your code-signing certificate here:

#define otapalconfigCODE_SIGNING_CERTIFICATE [] = "your-certificate-key";

Follow the same format as aws_clientcredential_keys.h -- each line must end with the 
new line character ('\n') and be enclosed in quotation marks.

For example, your certificate should look similar to the following:

"-----BEGIN CERTIFICATE-----\n"
"MIIBXTCCAQOgAwIBAgIJAM4DeybZcTwKMAoGCCqGSM49BAMCMCExHzAdBgNVBAMM\n"
"FnRlc3Rf62lnbmVyQGFtYXpvbi5jb20wHhcNMTcxMTAzMTkxODM1WhcNMTgxMTAz\n"
"MTkxODM2WjAhMR8wHQYDVQBBZZZ0ZXN0X3NpZ25lckBhbWF6b24uY29tMFkwEwYH\n"
"KoZIzj0CAQYIKoZIzj0DAQcDQgAERavZfvwL1X+E4dIF7dbkVMUn4IrJ1CAsFkc8\n"
"gZxPzn683H40XMKltDZPEwr9ng78w9+QYQg7ygnr2stz8yhh06MkMCIwCwYDVR0P\n"
"BAQDAgeAMBMGA1UdJQQMMAoGCCsGAQUFBwMDMAoGCCqGSM49BAMCA0gAMEUCIF0R\n"
"r5cb7rEUNtWOvGd05MacrgOABfSoVYvBOK9fP63WAqt5h3BaS123coKSGg84twlq\n"
"TkO/pV/xEmyZmZdV+HxV/OM=\n"

FreeRTOS demos 726

https://devices.amazonaws.com/detail/a3G0h0000077I69EAE/Curiosity-PIC32MZ-EF-2-0-Development-Board
https://github.com/aws/amazon-freertos/tree/202012.00
https://github.com/aws/amazon-freertos/tree/202107.00
https://github.com/FreeRTOS/FreeRTOS
https://github.com/FreeRTOS/FreeRTOS


FreeRTOS User Guide

"-----END CERTIFICATE-----\n";

4. Install Python 3 or later.

5. Install pyOpenSSL by running pip install pyopenssl.

6. Copy your code-signing certificate in .pem format in the path demos/ota/
bootloader/utility/codesigner_cert_utility/. Rename the certificate file
aws_ota_codesigner_certificate.pem.

7. Open freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and define
CONFIG_OTA_MQTT_UPDATE_DEMO_ENABLED or
CONFIG_OTA_HTTP_UPDATE_DEMO_ENABLED.

8. Build the solution and make sure it builds without errors.

9. Start a terminal emulator and use the following settings to connect to your board:

• Baud rate: 115200

• Data bits: 8

• Parity: None

• Stop bits: 1

10. Unplug the debugger from your board and run the project on your board to confirm it can 
connect to Wi-Fi and the AWS IoT MQTT message broker.

When you run the project, the MPLAB X IDE should open an output window. Make sure the ICD4
tab is selected. You should see the following output.

Bootloader version 00.09.00
[prvBOOT_Init] Watchdog timer initialized.
[prvBOOT_Init] Crypto initialized.

[prvValidateImage] Validating image at Bank : 0
[prvValidateImage] No application image or magic code present at: 0xbd000000
[prvBOOT_ValidateImages] Validation failed for image at 0xbd000000

[prvValidateImage] Validating image at Bank : 1
[prvValidateImage] No application image or magic code present at: 0xbd100000
[prvBOOT_ValidateImages] Validation failed for image at 0xbd100000

FreeRTOS demos 727

https://www.python.org/downloads/


FreeRTOS User Guide

[prvBOOT_ValidateImages] Booting default image.

>0 36246 [IP-task] vDHCPProcess: offer ac140a0eip 
                                                 1 36297 [IP-task] vDHCPProcess: offer 
 ac140a0eip 
                 2 36297 [IP-task]

IP Address: 172.20.10.14
3 36297 [IP-task] Subnet Mask: 255.255.255.240
4 36297 [IP-task] Gateway Address: 172.20.10.1
5 36297 [IP-task] DNS Server Address: 172.20.10.1

6 36299 [OTA] OTA demo version 0.9.2
7 36299 [OTA] Creating MQTT Client...
8 36299 [OTA] Connecting to broker...
9 38673 [OTA] Connected to broker.
10 38793 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/devthingota/
jobs/$next/get/accepted
11 38863 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/devthingota/
jobs/notify-next
12 38863 [OTA Task] [OTA_CheckForUpdate] Request #0
13 38964 [OTA] [OTA_AgentInit] Ready.
14 38973 [OTA Task] [prvParseJSONbyModel] Extracted parameter [ clientToken: 
 0:devthingota ]
15 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: execution
16 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: jobId
17 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: jobDocument
18 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: streamname
19 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: files
20 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: filepath
21 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: filesize
22 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: fileid
23 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: certfile
24 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: sig-sha256-ecdsa
25 38975 [OTA Task] [prvParseJobDoc] Ignoring job without ID.
26 38975 [OTA Task] [prvOTA_Close] Context->0x8003b620
27 38975 [OTA Task] [prvPAL_Abort] Abort - OK
28 39964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0
29 40964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0
30 41964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0
31 42964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0
32 43964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0

FreeRTOS demos 728



FreeRTOS User Guide

33 44964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0
34 45964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0
35 46964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0
36 47964 [OTA] State: Ready  Received: 1   Queued: 1   Processed: 1   Dropped: 0

The terminal emulator should display text like the following:

AWS Validate: no valid signature in descr: 0xbd000000
AWS Validate: no valid signature in descr: 0xbd100000

>AWS Launch:  No Map performed. Running directly from address: 0x9d000020?
AWS Launch:  wait for app at: 0x9d000020
WILC1000: Initializing...
0 0  

>[None] Seed for randomizer: 1172751941
1 0 [None] Random numbers: 00004272 00003B34 00000602 00002DE3
Chip ID 1503a0

[spi_cmd_rsp][356][nmi spi]: Failed cmd response read, bus error...

[spi_read_reg][1086][nmi spi]: Failed cmd response, read reg (0000108c)...

[spi_read_reg][1116]Reset and retry 10 108c

Firmware ver. : 4.2.1

Min driver ver : 4.2.1

Curr driver ver: 4.2.1

WILC1000: Initialization successful!

Start Wi-Fi Connection...
Wi-Fi Connected
2 7219 [IP-task] vDHCPProcess: offer c0a804beip
3 7230 [IP-task] vDHCPProcess: offer c0a804beip
4 7230 [IP-task]  

IP Address: 192.168.4.190
5 7230 [IP-task] Subnet Mask: 255.255.240.0
6 7230 [IP-task] Gateway Address: 192.168.0.1

FreeRTOS demos 729



FreeRTOS User Guide

7 7230 [IP-task] DNS Server Address: 208.67.222.222

8 7232 [OTA] OTA demo version 0.9.0
9 7232 [OTA] Creating MQTT Client...
10 7232 [OTA] Connecting to broker...
11 7232 [OTA] Sending command to MQTT task.
12 7232 [MQTT] Received message 10000 from queue.
13 8501 [IP-task] Socket sending wakeup to MQTT task.
14 10207 [MQTT] Received message 0 from queue.
15 10256 [IP-task] Socket sending wakeup to MQTT task.
16 10256 [MQTT] Received message 0 from queue.
17 10256 [MQTT] MQTT Connect was accepted. Connection established.
18 10256 [MQTT] Notifying task.
19 10257 [OTA] Command sent to MQTT task passed.
20 10257 [OTA] Connected to broker.
21 10258 [OTA Task] Sending command to MQTT task.
22 10258 [MQTT] Received message 20000 from queue.
23 10306 [IP-task] Socket sending wakeup to MQTT task.
24 10306 [MQTT] Received message 0 from queue.
25 10306 [MQTT] MQTT Subscribe was accepted. Subscribed.
26 10306 [MQTT] Notifying task.
27 10307 [OTA Task] Command sent to MQTT task passed.
28 10307 [OTA Task] [OTA] Subscribed to topic: $aws/things/Microchip/jobs/$next/get/
accepted

29 10307 [OTA Task] Sending command to MQTT task.
30 10307 [MQTT] Received message 30000 from queue.
31 10336 [IP-task] Socket sending wakeup to MQTT task.
32 10336 [MQTT] Received message 0 from queue.
33 10336 [MQTT] MQTT Subscribe was accepted. Subscribed.
34 10336 [MQTT] Notifying task.
35 10336 [OTA Task] Command sent to MQTT task passed.
36 10336 [OTA Task] [OTA] Subscribed to topic: $aws/things/Microchip/jobs/notify-next

37 10336 [OTA Task] [OTA] Check For Update #0
38 10336 [OTA Task] Sending command to MQTT task.
39 10336 [MQTT] Received message 40000 from queue.
40 10366 [IP-task] Socket sending wakeup to MQTT task.
41 10366 [MQTT] Received message 0 from queue.
42 10366 [MQTT] MQTT Publish was successful.
43 10366 [MQTT] Notifying task.
44 10366 [OTA Task] Command sent to MQTT task passed.
45 10376 [IP-task] Socket sending wakeup to MQTT task.

FreeRTOS demos 730



FreeRTOS User Guide

46 10376 [MQTT] Received message 0 from queue.
47 10376 [OTA Task] [OTA] Set job doc parameter [ clientToken: 0:Microchip ]
48 10376 [OTA Task] [OTA] Missing job parameter: execution
49 10376 [OTA Task] [OTA] Missing job parameter: jobId
50 10376 [OTA Task] [OTA] Missing job parameter: jobDocument
51 10378 [OTA Task] [OTA] Missing job parameter: ts_ota
52 10378 [OTA Task] [OTA] Missing job parameter: files
53 10378 [OTA Task] [OTA] Missing job parameter: streamname
54 10378 [OTA Task] [OTA] Missing job parameter: certfile
55 10378 [OTA Task] [OTA] Missing job parameter: filepath
56 10378 [OTA Task] [OTA] Missing job parameter: filesize
57 10378 [OTA Task] [OTA] Missing job parameter: sig-sha256-ecdsa
58 10378 [OTA Task] [OTA] Missing job parameter: fileid
59 10378 [OTA Task] [OTA] Missing job parameter: attr
60 10378 [OTA Task] [OTA] Returned buffer to MQTT Client.
61 11367 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0
62 12367 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0
63 13367 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0
64 14367 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0
65 15367 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0
66 16367 [OTA] [OTA] Queued: 1   Processed: 1   Dropped: 0

This output shows the Microchip Curiosity PIC32MZEF can connect to AWS IoT and subscribe to the 
MQTT topics required for OTA updates. The Missing job parameter messages are expected 
because there are no OTA update jobs pending.

Download, build, flash, and run the FreeRTOS OTA demo on the Espressif ESP32

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

1. Download the FreeRTOS source from GitHub. See the README.md file for instructions. Create 
a project in your IDE that includes all required sources and libraries.

2. Follow the instructions in Getting Started with Espressif to set up the required GCC-based 
toolchain.

FreeRTOS demos 731

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/main/README.md
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html


FreeRTOS User Guide

3. Open freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and define
CONFIG_OTA_MQTT_UPDATE_DEMO_ENABLED or
CONFIG_OTA_HTTP_UPDATE_DEMO_ENABLED.

4. Build the demo project by running make in the vendors/espressif/boards/esp32/
aws_demos directory. You can flash the demo program and verify its output by running make 
flash monitor, as described in Getting Started with Espressif.

5. Before running the OTA Update demo:

• Open freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and 
define CONFIG_OTA_MQTT_UPDATE_DEMO_ENABLED or
CONFIG_OTA_HTTP_UPDATE_DEMO_ENABLED.

• Open vendors/vendor/boards/board/aws_demos/config_files/
ota_demo_config.h, and copy your SHA-256/ECDSA code-signing certificate in:

#define otapalconfigCODE_SIGNING_CERTIFICATE [] = "your-certificate-key";

Download, build, flash and run the FreeRTOS OTA demo on the Renesas RX65N

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This chapter shows you how download, build, flash and run the FreeRTOS OTA demo applications 
on the Renesas RX65N.

Topics

• Set up your operating environment

• Set up your AWS resources

FreeRTOS demos 732

https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html


FreeRTOS User Guide

• Import, configure the header file and build aws_demos and boot_loader

Set up your operating environment

The procedures in this section use the following environments:

• IDE: e2 studio 7.8.0, e2 studio 2020-07

• Toolchains: CCRX Compiler v3.0.1

• Target devices: RSKRX65N-2MB

• Debuggers: E2, E2 Lite emulator

• Software: Renesas Flash Programmer, Renesas Secure Flash Programmer.exe, Tera Term

To set up your hardware

1. Connect the E2 Lite emulator and USB serial port to your RX65N board and PC.

2. Connect the power source to the RX65N.

Set up your AWS resources

1. To run the FreeRTOS demos, you must have an AWS account with an IAM user that has 
permission to access AWS IoT services. If you haven't already, follow the steps in Setting up 
your AWS account and permissions.

2. To set up for OTA updates, follow the steps in OTA update prerequisites. In particular, follow 
the steps in Prerequisites for OTA updates using MQTT.

3. Open the AWS IoT console.

4. In the left navigation pane, choose Manage, then choose Things to create a thing.

A thing is a representation of a device or logical entity in AWS IoT. It can be a physical device 
or sensor (for example, a light bulb or a switch on a wall). It can also be a logical entity like an 
instance of an application or physical entity that doesn't connect to AWS IoT, but is related 
to devices that do (for example, a car that has engine sensors or a control panel). AWS IoT 
provides a thing registry that helps you manage your things.

a. Choose Create, then choose Create a single thing.

b. Enter a Name for your thing, then choose Next.

c. Choose Create certificate.

FreeRTOS demos 733

https://console.aws.amazon.com/iot/home


FreeRTOS User Guide

d. Download the three files that are created and then choose Activate.

e. Choose Attach a policy.

f. Select the policy that you created in Device policy.

Each device that receives an OTA update using MQTT must be registered as a thing in 
AWS IoT and the thing must have an attached policy like the one listed. You can find more 
information about the items in the "Action" and "Resource" objects at AWS IoT Core 
Policy Actions and AWS IoT Core Action Resources.

Notes

• The iot:Connect permissions allow your device to connect to AWS IoT over MQTT.

• The iot:Subscribe and iot:Publish permissions on the topics of AWS IoT 
jobs (.../jobs/*) allow the connected device to receive job notifications and job 
documents, and to publish the completion state of a job execution.

• The iot:Subscribe and iot:Publish permissions on the topics of AWS IoT OTA 
streams (.../streams/*) allow the connected device to fetch OTA update data from 
AWS IoT. These permissions are required to perform firmware updates over MQTT.

• The iot:Receive permissions allow AWS IoT Core to publish messages on those 
topics to the connected device. This permission is checked on every delivery of an MQTT 

FreeRTOS demos 734

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html


FreeRTOS User Guide

message. You can use this permission to revoke access to clients that are currently 
subscribed to a topic.

5. To create a code-signing profile and register a code-signing certificate on AWS.

a. To create the keys and certification, see section 7.3 "Generating ECDSA-SHA256 Key Pairs 
with OpenSSL" in  Renesas MCU Firmware Update Design Policy.

b. Open the AWS IoT console. In the left navigation pane, select Manage, then Jobs. Select
Create a job then Create OTA update Job.

c. Under Select devices to update choose Select then choose the thing you created 
previously. Select Next.

d. On the Create a FreeRTOS OTA update job page, do the following:

i. For Select the protocol for firmware image transfer, choose MQTT.

ii. For Select and sign your firmware image, choose Sign a new firmware image for 
me.

iii. For Code signing profile, choose Create.

iv. In the Create a code signing profile window, enter a Profile name. For the Device 
hardware platform select Windows Simulator. For the Code signing certificate
choose Import.

v. Browse to select the certificate (secp256r1.crt), the certificate private key 
(secp256r1.key), and the certificate chain (ca.crt).

vi. Enter a Pathname of code signing certificate on device. Then choose Create.

6. To grant access to code signing for AWS IoT, follow the steps in Grant access to code signing 
for AWS IoT.

If don't have Tera Term installed on your PC, you can download it from https://ttssh2.osdn.jp/ 
index.html.en and set it up as shown here. Make sure that you plug in the USB Serial port from 
your device to your PC.

FreeRTOS demos 735

https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy
https://console.aws.amazon.com/iot/home
https://ttssh2.osdn.jp/index.html.en
https://ttssh2.osdn.jp/index.html.en


FreeRTOS User Guide

Import, configure the header file and build aws_demos and boot_loader

To begin, you select the latest version of the FreeRTOS package, and this will be downloaded from 
GitHub and imported automatically into the project. This way you can focus on the configuring 
FreeRTOS and writing application code.

1. Launch e2 studio.

2. Choose File, and then choose Import….

3. Select Renesas GitHub FreeRTOS (with IoT libraries) Project.

FreeRTOS demos 736



FreeRTOS User Guide

4. Choose Check for more version… to show the download dialog box.

FreeRTOS demos 737



FreeRTOS User Guide

5. Select the latest package.

FreeRTOS demos 738



FreeRTOS User Guide

6. Choose Agree to accept the end user license agreement.

FreeRTOS demos 739



FreeRTOS User Guide

7. Wait for the download to complete.

8. Select the aws_demos and boot_loader projects, then choose Finish to import them.

FreeRTOS demos 740



FreeRTOS User Guide

9. For both projects, open the project properties. In the navigation pane, choose Tool Chain 
Editor.

a. Choose the Current toolchain.

b. Choose the Current builder.

FreeRTOS demos 741



FreeRTOS User Guide

10. In the navigation pane, choose Settings. Choose the Toolchain tab, and then choose the 
toolchain Version.

Choose the Tool Settings tab, expand Converter and then choose Output. In the main 
window, make sure Output hex file is selected, and then choose the Output file type.

FreeRTOS demos 742



FreeRTOS User Guide

11. In the bootloader project, open projects\renesas\rx65n-rsk\e2studio\boot_loader
\src\key\code_signer_public_key.h and input the public key. For information on how 
to create a public key, see  How to implement FreeRTOS OTA by using Amazon Web Services 
on RX65N and section 7.3 "Generating ECDSA-SHA256 Key Pairs with OpenSSL" in Renesas 
MCU Firmware Update Design Policy.

FreeRTOS demos 743

https://www.renesas.com/us/en/document/apn/rx-family-how-implement-freertos-ota-using-amazon-web-services-rx65n
https://www.renesas.com/us/en/document/apn/rx-family-how-implement-freertos-ota-using-amazon-web-services-rx65n
https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy
https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy


FreeRTOS User Guide

Then build the project to create boot_loader.mot.

12. Open the aws_demos project.

a. Open the AWS IoT console.

b. In the left navigation pane, choose Settings. Make a note of your custom endpoint in the
Device data endpoint text box.

c. Choose Manage, and then choose Things. Make a note of the AWS IoT thing name of your 
board.

d. In the aws_demos project, open demos/include/aws_clientcredential.h and 
specify the following values.

#define clientcredentialMQTT_BROKER_ENDPOINT[] = "Your AWS IoT endpoint";
#define clientcredentialIOT_THING_NAME "The AWS IoT thing name of your board"

FreeRTOS demos 744

https://console.aws.amazon.com/iot/home


FreeRTOS User Guide

e. Open the tools/certificate_configuration/CertificateConfigurator.html
file.

f. Import the certificate PEM file and Private Key PEM file that you downloaded earlier.

g. Choose Generate and save aws_clientcredential_keys.h and replace this file in the
demos/include/ directory.

h. Open the vendors/renesas/boards/rx65n-rsk/aws_demos/config_files/
ota_demo_config.h file, and specify these values.

#define otapalconfigCODE_SIGNING_CERTIFICATE [] = "your-certificate-key";

Where your-certificate-key is the value from the file secp256r1.crt. Remember 
to add "\" after each line in the certification. For more information on creating the
secp256r1.crt file, see  How to implement FreeRTOS OTA by using Amazon Web 
Services on RX65N and section 7.3 "Generating ECDSA-SHA256 Key Pairs with OpenSSL" 
in Renesas MCU Firmware Update Design Policy.

FreeRTOS demos 745

https://www.renesas.com/us/en/document/apn/rx-family-how-implement-freertos-ota-using-amazon-web-services-rx65n
https://www.renesas.com/us/en/document/apn/rx-family-how-implement-freertos-ota-using-amazon-web-services-rx65n
https://www.renesas.com/us/en/document/apn/renesas-mcu-firmware-update-design-policy


FreeRTOS User Guide

13. Task A: Install the initial version of the firmware

a. Open the vendors/renesas/boards/board/aws_demos/
config_files/aws_demo_config.h file, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and 
define either CONFIG_OTA_MQTT_UPDATE_DEMO_ENABLED or
CONFIG_OTA_HTTP_UPDATE_DEMO_ENABLED.

b. Open the demos/include/ aws_application_version.h file, and set the initial 
version of the firmware to 0.9.2.

c. Change the following settings in the Section Viewer.

FreeRTOS demos 746



FreeRTOS User Guide

d. Choose Build to create the aws_demos.mot file.

14. Create the file userprog.mot with the Renesas Secure Flash Programmer. userprog.mot
is a combination of aws_demos.mot and boot_loader.mot. You can flash this file to the 
RX65N-RSK to install the initial firmware.

a. Download  https://github.com/renesas/Amazon-FreeRTOS-Tools and open Renesas 
Secure Flash Programmer.exe.

b. Choose the Initial Firm tab and then set the following parameters:

FreeRTOS demos 747

https://github.com/renesas/Amazon-FreeRTOS-Tools


FreeRTOS User Guide

• Private Key Path – The location of secp256r1.privatekey.

• Boot Loader File Path– The location of boot_loader.mot (projects\renesas
\rx65n-rsk\e2studio\boot_loader\HardwareDebug).

• File Path – The location of the aws_demos.mot (projects\renesas\rx65n-rsk
\e2studio\aws_demos\HardwareDebug).

c. Create a directory named init_firmware, Generate userprog.mot, and save it to the
init_firmware directory. Verify that the generate succeeded.

15. Flash the initial firmware on the RX65N-RSK.

a. Download the latest version of the Renesas Flash Programmer (Programming GUI) from 
https://www.renesas.com/tw/en/products/software-tools/tools/programmer/renesas-
flash-programmer-programming-gui.html.

b. Open the vendors\renesas\rx_mcu_boards\boards\rx65n-rsk\aws_demos
\flash_project\erase_from_bank\ erase.rpj file to erase data on the bank.

c. Choose Start to erase the bank.

FreeRTOS demos 748

https://www.renesas.com/tw/en/products/software-tools/tools/programmer/renesas-flash-programmer-programming-gui.html
https://www.renesas.com/tw/en/products/software-tools/tools/programmer/renesas-flash-programmer-programming-gui.html
https://www.renesas.com/tw/en/products/software-tools/tools/programmer/renesas-flash-programmer-programming-gui.html


FreeRTOS User Guide

d. To flash userprog.mot, choose Browse... and navigate to the init_firmware directory, 
select the userprog.mot file and choose Start.

FreeRTOS demos 749



FreeRTOS User Guide

16. Version 0.9.2 (initial version) of the firmware was installed to your RX65N-RSK. The RX65N-
RSK board is now listening for OTA updates. If you have opened Tera Term on your PC, you see 
something like the following when the initial firmware runs.

-------------------------------------------------
RX65N secure boot program
-------------------------------------------------
Checking flash ROM status.
bank 0 status = 0xff [LIFECYCLE_STATE_BLANK]
bank 1 status = 0xfc [LIFECYCLE_STATE_INSTALLING]
bank info = 1. (start bank = 0)
start installing user program.

FreeRTOS demos 750



FreeRTOS User Guide

copy secure boot (part1) from bank0 to bank1...OK
copy secure boot (part2) from bank0 to bank1...OK
update LIFECYCLE_STATE from [LIFECYCLE_STATE_INSTALLING] to [LIFECYCLE_STATE_VALID]
bank1(temporary area) block0 erase (to update LIFECYCLE_STATE)...OK
bank1(temporary area) block0 write (to update LIFECYCLE_STATE)...OK
swap bank...
-------------------------------------------------
RX65N secure boot program
-------------------------------------------------
Checking flash ROM status.
bank 0 status = 0xf8 [LIFECYCLE_STATE_VALID]
bank 1 status = 0xff [LIFECYCLE_STATE_BLANK]
bank info = 0. (start bank = 1)
integrity check scheme = sig-sha256-ecdsa
bank0(execute area) on code flash integrity check...OK
jump to user program
#0 1 [ETHER_RECEI] Deferred Interrupt Handler Task started
1 1 [ETHER_RECEI] Network buffers: 3 lowest 3
2 1 [ETHER_RECEI] Heap: current 234192 lowest 234192
3 1 [ETHER_RECEI] Queue space: lowest 8
4 1 [IP-task] InitializeNetwork returns OK
5 1 [IP-task] xNetworkInterfaceInitialise returns 0
6 101 [ETHER_RECEI] Heap: current 234592 lowest 233392
7 2102 [ETHER_RECEI] prvEMACHandlerTask: PHY LS now 1
8 3001 [IP-task] xNetworkInterfaceInitialise returns 1
9 3092 [ETHER_RECEI] Network buffers: 2 lowest 2
10 3092 [ETHER_RECEI] Queue space: lowest 7
11 3092 [ETHER_RECEI] Heap: current 233320 lowest 233320
12 3193 [ETHER_RECEI] Heap: current 233816 lowest 233120
13 3593 [IP-task] vDHCPProcess: offer c0a80a09ip
14 3597 [ETHER_RECEI] Heap: current 233200 lowest 233000
15 3597 [IP-task] vDHCPProcess: offer c0a80a09ip
16 3597 [IP-task] IP Address: 192.168.10.9
17 3597 [IP-task] Subnet Mask: 255.255.255.0
18 3597 [IP-task] Gateway Address: 192.168.10.1
19 3597 [IP-task] DNS Server Address: 192.168.10.1
20 3600 [Tmr Svc] The network is up and running
21 3622 [Tmr Svc] Write certificate...
22 3697 [ETHER_RECEI] Heap: current 232320 lowest 230904
23 4497 [ETHER_RECEI] Heap: current 226344 lowest 225944
24 5317 [iot_thread] [INFO ][DEMO][5317] ---------STARTING DEMO---------

25 5317 [iot_thread] [INFO ][INIT][5317] SDK successfully initialized.

FreeRTOS demos 751



FreeRTOS User Guide

26 5317 [iot_thread] [INFO ][DEMO][5317] Successfully initialized the demo. Network 
 type for the demo: 4
27 5317 [iot_thread] [INFO ][MQTT][5317] MQTT library successfully initialized.
28 5317 [iot_thread] [INFO ][DEMO][5317] OTA demo version 0.9.2

29 5317 [iot_thread] [INFO ][DEMO][5317] Connecting to broker...

30 5317 [iot_thread] [INFO ][DEMO][5317] MQTT demo client identifier is rx65n-gr-
rose (length 13).
31 5325 [ETHER_RECEI] Heap: current 206944 lowest 206504
32 5325 [ETHER_RECEI] Heap: current 206440 lowest 206440
33 5325 [ETHER_RECEI] Heap: current 206240 lowest 206240
38 5334 [ETHER_RECEI] Heap: current 190288 lowest 190288
39 5334 [ETHER_RECEI] Heap: current 190088 lowest 190088
40 5361 [ETHER_RECEI] Heap: current 158512 lowest 158168
41 5363 [ETHER_RECEI] Heap: current 158032 lowest 158032
42 5364 [ETHER_RECEI] Network buffers: 1 lowest 1
43 5364 [ETHER_RECEI] Heap: current 156856 lowest 156856
44 5364 [ETHER_RECEI] Heap: current 156656 lowest 156656
46 5374 [ETHER_RECEI] Heap: current 153016 lowest 152040
47 5492 [ETHER_RECEI] Heap: current 141464 lowest 139016
48 5751 [ETHER_RECEI] Heap: current 140160 lowest 138680
49 5917 [ETHER_RECEI] Heap: current 138280 lowest 138168
59 7361 [iot_thread] [INFO ][MQTT][7361] Establishing new MQTT connection.
62 7428 [iot_thread] [INFO ][MQTT][7428] (MQTT connection 81cfc8, CONNECT operation 
 81d0e8) Wait complete with result SUCCESS.
63 7428 [iot_thread] [INFO ][MQTT][7428] New MQTT connection 4e8c established.
64 7430 [iot_thread] [OTA_AgentInit_internal] OTA Task is Ready.
65 7430 [OTA Agent T] [prvOTAAgentTask] Called handler. Current State [Ready] Event 
 [Start] New state [RequestingJob]
66 7431 [OTA Agent T] [INFO ][MQTT][7431] (MQTT connection 81cfc8) SUBSCRIBE 
 operation scheduled.
67 7431 [OTA Agent T] [INFO ][MQTT][7431] (MQTT connection 81cfc8, SUBSCRIBE 
 operation 818c48) Waiting for operation completion.
68 7436 [ETHER_RECEI] Heap: current 128248 lowest 127992
69 7480 [OTA Agent T] [INFO ][MQTT][7480] (MQTT connection 81cfc8, SUBSCRIBE 
 operation 818c48) Wait complete with result SUCCESS.
70 7480 [OTA Agent T] [prvSubscribeToJobNotificationTopics] OK: $aws/things/rx65n-
gr-rose/jobs/$next/get/accepted
71 7481 [OTA Agent T] [INFO ][MQTT][7481] (MQTT connection 81cfc8) SUBSCRIBE 
 operation scheduled.
72 7481 [OTA Agent T] [INFO ][MQTT][7481] (MQTT connection 81cfc8, SUBSCRIBE 
 operation 818c48) Waiting for operation completion.

FreeRTOS demos 752



FreeRTOS User Guide

73 7530 [OTA Agent T] [INFO ][MQTT][7530] (MQTT connection 81cfc8, SUBSCRIBE 
 operation 818c48) Wait complete with result SUCCESS.
74 7530 [OTA Agent T] [prvSubscribeToJobNotificationTopics] OK: $aws/things/rx65n-
gr-rose/jobs/notify-next
75 7530 [OTA Agent T] [prvRequestJob_Mqtt] Request #0
76 7532 [OTA Agent T] [INFO ][MQTT][7532] (MQTT connection 81cfc8) MQTT PUBLISH 
 operation queued.
77 7532 [OTA Agent T] [INFO ][MQTT][7532] (MQTT connection 81cfc8, PUBLISH 
 operation 818b80) Waiting for operation completion.
78 7552 [OTA Agent T] [INFO ][MQTT][7552] (MQTT connection 81cfc8, PUBLISH 
 operation 818b80) Wait complete with result SUCCESS.
79 7552 [OTA Agent T] [prvOTAAgentTask] Called handler. Current State 
 [RequestingJob] Event [RequestJobDocument] New state [WaitingForJob]
80 7552 [OTA Agent T] [prvParseJSONbyModel] Extracted parameter [ clientToken: 
 0:rx65n-gr-rose ]
81 7552 [OTA Agent T] [prvParseJSONbyModel] parameter not present: execution
82 7552 [OTA Agent T] [prvParseJSONbyModel] parameter not present: jobId
83 7552 [OTA Agent T] [prvParseJSONbyModel] parameter not present: jobDocument
84 7552 [OTA Agent T] [prvParseJSONbyModel] parameter not present: afr_ota
85 7552 [OTA Agent T] [prvParseJSONbyModel] parameter not present: protocols
86 7552 [OTA Agent T] [prvParseJSONbyModel] parameter not present: files
87 7552 [OTA Agent T] [prvParseJSONbyModel] parameter not present: filepath
99 7651 [ETHER_RECEI] Heap: current 129720 lowest 127304
100 8430 [iot_thread] [INFO ][DEMO][8430] State: Ready  Received: 1   Queued: 0   
 Processed: 0   Dropped: 0
101 9430 [iot_thread] [INFO ][DEMO][9430] State: WaitingForJob  Received: 1   
 Queued: 0   Processed: 0   Dropped: 0
102 10430 [iot_thread] [INFO ][DEMO][10430] State: WaitingForJob  Received: 1   
 Queued: 0   Processed: 0   Dropped: 0
103 11430 [iot_thread] [INFO ][DEMO][11430] State: WaitingForJob  Received: 1   
 Queued: 0   Processed: 0   Dropped: 0
104 12430 [iot_thread] [INFO ][DEMO][12430] State: WaitingForJob  Received: 1   
 Queued: 0   Processed: 0   Dropped: 0
105 13430 [iot_thread] [INFO ][DEMO][13430] State: WaitingForJob  Received: 1   
 Queued: 0   Processed: 0   Dropped: 0
106 14430 [iot_thread] [INFO ][DEMO][14430] State: WaitingForJob  Received: 1   
 Queued: 0   Processed: 0   Dropped: 0
107 15430 [iot_thread] [INFO ][DEMO][15430] State: WaitingForJob  Received: 1   
 Queued: 0   Processed: 0   Dropped: 0 

17. Task B: Update the version of your firmware

a. Open the demos/include/aws_application_version.hfile and increment the
APP_VERSION_BUILD token value to 0.9.3.

FreeRTOS demos 753



FreeRTOS User Guide

b. Rebuild the project.

18. Create the userprog.rsu file with the Renesas Secure Flash Programmer to update the 
version of your firmware.

a. Open the Amazon-FreeRTOS-Tools\Renesas Secure Flash Programmer.exe file.

b. Choose the Update Firm tab and set the following parameters:

• File Path – The location of the aws_demos.mot file (projects\renesas\rx65n-rsk
\e2studio\aws_demos\HardwareDebug).

c. Create a directory named update _firmware. Generate userprog.rsu and save it to 
the update_firmware directory. Verify that the generate succeeded.

19. Upload the firmware update, userproj.rsu, into an Amazon S3 bucket as described in
Create an Amazon S3 bucket to store your update.

FreeRTOS demos 754



FreeRTOS User Guide

20. Create a job to update firmware on the RX65N-RSK.

AWS IoT Jobs is a service that notifies one or more connected devices of a pending Job. A job 
can be used to manage a fleet of devices, update firmware and security certificates on devices, 
or perform administrative tasks such as restarting devices and performing diagnostics.

a. Sign in to the AWS IoT console. In the navigation pane, choose Manage, and choose Jobs.

b. Choose Create a job, then choose Create OTA Update job. Select a thing, then choose
Next.

c. Create a FreeRTOS OTA update job as follows:

• Choose MQTT.

• Select the code signing profile you created in the previous section.

• Select the firmware image that you uploaded to an Amazon S3 bucket.

• For Pathname of firmware image on device, enter test.

• Choose the IAM role that you created in the previous section.

d. Choose Next.

FreeRTOS demos 755

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://console.aws.amazon.com/iotv2/


FreeRTOS User Guide

e. Enter an ID and then choose Create.

21. Reopen Tera Term to verify that the firmware was updated successfully to OTA demo version 
0.9.3.

22. On the AWS IoT console, verify that the job status is Succeeded.

FreeRTOS demos 756



FreeRTOS User Guide

Tutorial: Perform OTA updates on Espressif ESP32 using FreeRTOS Bluetooth Low Energy

Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is 
deprecated. We recommend that you start here when you create a new project. If you 
already have an existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS 
repository, see the Amazon-FreeRTOS Github Repository Migration Guide.

This tutorial shows you how to update an Espressif ESP32 microcontroller that is connected to 
an MQTT Bluetooth Low Energy proxy on an Android device. It updates the device using AWS IoT 
Over-the-air (OTA) update jobs. The device connects to AWS IoT using Amazon Cognito credentials 
entered in the Android demo app. An authorized operator initiates the OTA update from the cloud. 
When the device connects through the Android demo app, the OTA update is initiated and the 
firmware is updated on the device.

FreeRTOS versions 2019.06.00 Major and later include Bluetooth Low Energy MQTT proxy support 
that can be used for Wi-Fi provisioning and secure connections to AWS IoT services. By using 
the Bluetooth Low Energy feature, you can build low-power devices that can be paired to a 
mobile device for connectivity without requiring Wi-Fi. Devices can communicate using MQTT by 

FreeRTOS demos 757



FreeRTOS User Guide

connecting through Android or iOS Bluetooth Low Energy SDKs that use generic access profile 
(GAP) and generic attributes (GATT) profiles.

Here are the steps that we will follow to allow OTA updates over Bluetooth Low Energy:

1. Configure storage: Create an Amazon S3 bucket and policies and configure a user that can 
perform updates.

2. Create a code-signing certificate: Create a signing certificate and allow the user to sign 
firmware updates.

3. Configure Amazon Cognito authentication: Create a credential provider, user pool, and 
application access to the user pool.

4. Configure FreeRTOS: Set up Bluetooth Low Energy, client credentials, and the code-signing 
public certificate.

5. Configure an Android app: Set up credential provider, user pool, and deploy the application to 
an Android device.

6. Run the OTA update script: To initiate an OTA update, use the OTA update script.

For more information about how the updates work, see FreeRTOS Over-the-Air Updates. For 
additional information about how to set up the Bluetooth Low Energy MQTT proxy functionality, 
see the post  Using Bluetooth Low Energy with FreeRTOS on Espressif ESP32 by Richard Kang.

Prerequisites

To perform the steps in this tutorial, you need the following resources:

• An ESP32 development board.

• A MicroUSB to USB A cable.

• An AWS account (the Free Tier is sufficient).

• An Android phone with Android v 6.0 or later and Bluetooth version 4.2 or later.

On your development computer you need:

• Sufficient disk space (~500 Mb) for the Xtensa toolchain and FreeRTOS source code and 
examples.

• Android Studio installed.

FreeRTOS demos 758

https://aws.amazon.com/blogs/iot/using-bluetooth-low-energy-with-amazon-freertos-on-espressif-esp32/


FreeRTOS User Guide

• The AWS CLI installed.

• Python3 installed.

• The boto3 AWS Software Developer Kit (SDK) for Python.

The steps in this tutorial assume that Xtensa toolchain, ESP-IDF, and FreeRTOS code are installed 
in the /esp directory in your home directory. You must add ~/esp/xtensa-esp32-elf/bin to 
your $PATH variable.

Step 1: Configure storage

1. Create an Amazon S3 bucket to store your update with versioning enabled to hold the 
firmware images.

2. Create an OTA Update service role and add the following managed policies to the role:

• AWSIotLogging

• AWSIotRuleActions

• AWSIotThingsRegistration

• AWSFreeRTOSOTAUpdate

3. Create a user that can perform OTA updates. This user can sign and deploy firmware updates 
to IoT devices in the account, and has access to do OTA updates on all devices. Access should 
be limited to trusted entities.

4. Follow the steps to Create an OTA user policy and attach it to your user.

Step 2: Create the code-signing certificate

1. Create an Amazon S3 bucket with versioning enabled to hold the firmware images.

2. Create a code-signing certificate that can be used to sign the firmware. Note the certificate 
Amazon Resource Name (ARN) when the certificate is imported.

aws acm import-certificate --profile=ota-update-user --certificate file://
ecdsasigner.crt --private-key file://ecdsasigner.key

Example output:

{
"CertificateArn": "arn:aws:acm:us-east-1:<account>:certificate/<certid>"

FreeRTOS demos 759

https://aws.amazon.com/cli/
https://github.com/boto/boto3
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html


FreeRTOS User Guide

}

You'll use the ARN later to create a signing profile. If you want, you can create the profile now 
with the following command:

aws signer put-signing-profile --profile=ota-update-user --profile-
name esp32Profile --signing-material certificateArn=arn:aws:acm:us-
east-1:account:certificate/certid --platform AmazonFreeRTOS-Default --signing-
parameters certname=/cert.pem

Example output:

{
"arn": "arn:aws:signer::<account>:/signing-profiles/esp32Profile"
}

Step 3: Amazon Cognito authentication configuration

Create an AWS IoT policy

1. Sign in to the AWS IoT console.

2. In the upper-right corner of the console, choose My Account. Under Account Settings, make a 
note of your 12-digit account ID.

3. In the left navigation pane, choose Settings. In Device data endpoint, make a note of 
the endpoint value. The endpoint should be something like xxxxxxxxxxxxxx.iot.us-
west-2.amazonaws.com. In this example, the AWS Region is "us-west-2".

4. In the left navigation pane, choose Secure, choose Policies, and then choose Create. If you 
don't have any policies in your account, you will see the message "You don’t have any policies 
yet" and you can choose Create a policy.

5. Enter a name for your policy, for example, "esp32_mqtt_proxy_iot_policy".

6. In the Add statements section, choose Advanced mode. Copy and paste the following JSON 
into the policy editor window. Replace aws-account-id with your account ID and aws-
region with your Region (for example, "us-west-2").

{ 
  "Version": "2012-10-17", 
  "Statement": [ 

FreeRTOS demos 760

https://console.aws.amazon.com/iot/


FreeRTOS User Guide

    { 
      "Effect": "Allow", 
      "Action": "iot:Connect", 
      "Resource": "arn:aws:iot:aws-region:aws-account-id:*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": "iot:Publish", 
      "Resource": "arn:aws:iot:aws-region:aws-account-id:*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": "iot:Subscribe", 
      "Resource": "arn:aws:iot:aws-region:aws-account-id:*" 
    }, 
    { 
      "Effect": "Allow", 
      "Action": "iot:Receive", 
      "Resource": "arn:aws:iot:aws-region:aws-account-id:*" 
    } 
  ]
}

7. Choose Create.

Create an AWS IoT thing

1. Sign in to the AWS IoT console.

2. In the left navigation pane, choose Manage, and then choose Things.

3. In the top-right corner, choose Create. If you don't have any things registered in your account, 
the message "You don’t have any things yet" is displayed and you can choose Register a thing.

4. On the Creating AWS IoT things page, choose Create a single thing.

5. On the Add your device to the thing registry page, enter a name for your thing (for example, 
"esp32-ble"). Only alphanumeric, hyphen (-), and underscore (_) characters are allowed. Choose
Next.

6. On the Add a certificate for your thing page, under Skip certificate and create thing, choose
Create thing without certificate. Because we use the BLE proxy mobile app that uses an 
Amazon Cognito credential for authentication and authorization, no device certificate is 
required.

FreeRTOS demos 761

https://console.aws.amazon.com/iot/


FreeRTOS User Guide

Create an Amazon Cognito App Client

1. Sign in to the Amazon Cognito console.

2. In the top-right navigation banner, choose Create a user pool.

3. Enter the pool name (for example, "esp32_mqtt_proxy_user_pool").

4. Choose Review defaults.

5. In App Clients, choose Add app client, and then choose Add an app client.

6. Enter an app client name (for example "mqtt_app_client").

7. Make sure Generate client secret is selected.

8. Choose Create app client.

9. Choose Return to pool details.

10. On the Review page of the user pool, choose Create pool. You should see a message that says 
"Your user pool was created successfully." Make a note of the pool ID.

11. In the navigation pane, choose App clients.

12. Choose Show Details. Make a note of the app client ID and the app client secret.

Create an Amazon Cognito identity pool

1. Sign in to the Amazon Cognito console.

2. Choose Create new identity pool.

3. Enter a name for the identity pool (for example, "mqtt_proxy_identity_pool").

4. Expand Authentication providers.

5. Choose the Cognito tab.

6. Enter the user pool ID and app client ID that you noted in previous steps.

7. Choose Create Pool.

8. On the next page, to create new roles for authenticated and unauthenticated identities, 
choose Allow.

9. Make a note of the identity pool ID, which is in the format us-east-1:xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx.

Attach an IAM policy to the authenticated identity

1. Open the Amazon Cognito console.

FreeRTOS demos 762

https://console.aws.amazon.com/cognito/users/
https://console.aws.amazon.com/cognito/federated
https://console.aws.amazon.com/cognito/federated


FreeRTOS User Guide

2. Select the identity pool that you just created (for example, "mqtt_proxy_identity_pool").

3. Choose Edit identity pool.

4. Make a note of the IAM Role assigned to the authenticated role (for example, 
"Cognito_mqtt_proxy_identity_poolAuth_Role").

5. Open the IAM console.

6. In the navigation pane, choose Roles.

7. Search for the role assigned (for example, "Cognito_mqtt_proxy_identity_poolAuth_Role"), and 
then select it.

8. Choose Add inline policy, and then choose JSON.

9. Enter the following policy:

{ 
       "Version": "2012-10-17", 
       "Statement": [ 
       { 
          "Effect": "Allow", 
          "Action": [ 
             "iot:AttachPolicy", 
             "iot:AttachPrincipalPolicy", 
             "iot:Connect", 
             "iot:Publish", 
             "iot:Subscribe" 
          ], 
          "Resource": "*" 
       }] 
    }

10. Choose Review Policy.

11. Enter a policy name (for example, "mqttProxyCognitoPolicy").

12. Choose Create policy.

Step 4: Configure Amazon FreeRTOS

1. Download the latest version of the Amazon FreeRTOS code from the FreeRTOS GitHub repo.

2. To enable the OTA update demo, follow the steps in Getting started with the Espressif ESP32-
DevKitC and the ESP-WROVER-KIT.

3. Make these additional modifications in the following files:

FreeRTOS demos 763

https://console.aws.amazon.com/iam/home
https://github.com/aws/amazon-freertos


FreeRTOS User Guide

a. Open vendors/espressif/boards/esp32/aws_demos/config_files/
aws_demo_config.h and define CONFIG_OTA_UPDATE_DEMO_ENABLED.

b. Open vendors/espressif/boards/esp32/aws_demos/common/
config_files/aws_demo_config.h and change democonfigNETWORK_TYPES to
AWSIOT_NETWORK_TYPE_BLE.

c. Open demos/include/aws_clientcredential.h and enter your endpoint URL for
clientcredentialMQTT_BROKER_ENDPOINT.

Enter your thing name for clientcredentialIOT_THING_NAME (for example, "esp32-
ble"). Certificates don't have to be added when you use Amazon Cognito credentials.

d. Open vendors/espressif/boards/esp32/aws_demos/config_files/
aws_iot_network_config.h and change configSUPPORTED_NETWORKS and
configENABLED_NETWORKS to include only AWSIOT_NETWORK_TYPE_BLE.

e. Open the vendors/vendor/boards/board/aws_demos/config_files/
ota_demo_config.h file, and enter your certificate.

#define otapalconfigCODE_SIGNING_CERTIFICATE [] = "your-certificate-key";

The application should start up and print the demo version:

11 13498 [iot_thread] [INFO ][DEMO][134980] Successfully initialized the demo. 
 Network type for the demo: 2
12 13498 [iot_thread] [INFO ][MQTT][134980] MQTT library successfully initialized.
13 13498 [iot_thread] OTA demo version 0.9.20
14 13498 [iot_thread] Creating MQTT Client...

Step 5: Configure an Android app

1. Download the Android Bluetooth Low Energy SDK and a sample app from the amazon-
freertos-ble-android-sdk GitHub repo.

2. Open the file app/src/main/res/raw/awsconfiguration.json and fill in the Pool Id, 
Region, AppClientId, and AppClientSecret using the instructions in the following JSON sample.

{ 
  "UserAgent": "MobileHub/1.0", 

FreeRTOS demos 764

https://github.com/aws/amazon-freertos-ble-android-sdk
https://github.com/aws/amazon-freertos-ble-android-sdk


FreeRTOS User Guide

  "Version": "1.0", 
  "CredentialsProvider": { 
    "CognitoIdentity": { 
      "Default": { 
        "PoolId": "Cognito->Manage Identity Pools->Federated Identities-
>mqtt_proxy_identity_pool->Edit Identity Pool->Identity Pool ID", 
        "Region": "Your region (for example us-east-1)" 
      } 
    } 
  }, 

  "IdentityManager": { 
    "Default": {} 
  }, 

  "CognitoUserPool": { 
    "Default": { 
      "PoolId": "Cognito-> Manage User Pools -> esp32_mqtt_proxy_user_pool -> 
 General Settings -> PoolId", 
      "AppClientId": "Cognito-> Manage User Pools -> esp32_mqtt_proxy_user_pool -> 
 General Settings -> App clients ->Show Details", 
      "AppClientSecret": "Cognito-> Manage User Pools -> esp32_mqtt_proxy_user_pool 
 -> General Settings -> App clients ->Show Details", 
      "Region": "Your region (for example us-east-1)" 
    } 
  }
} 

3. Open app/src/main/java/software/amazon/freertos/DemoConstants.java
and enter the policy name that you created earlier (for example,
esp32_mqtt_proxy_iot_policy) and also the Region (for example, us-east-1).

4. Build and install the demo app.

a. In Android Studio, choose Build, then Make Module app.

b. Choose Run, then Run app. You can go to the logcat window pane in Android Studio to 
monitor log messages.

c. On the Android device, create an account from the login screen.

d. Create a user. If a user already exists, enter the credentials.

e. Allow the Amazon FreeRTOS Demo to access the device’s location.

f. Scan for Bluetooth Low Energy devices.

FreeRTOS demos 765



FreeRTOS User Guide

g. Move the slider for the device found to On.

h. Press y on the serial port debug console for the ESP32.

i. Choose Pair & Connect.

5. The More... link becomes active after the connection is established. The connection state 
should change to "BLE_CONNECTED" in the Android device logcat when the connection is 
complete:

2019-06-06 20:11:32.160 23484-23497/software.amazon.freertos.demo I/FRD: BLE 
 connection state changed: 0; new state: BLE_CONNECTED

6. Before the messages can be transmitted, the Amazon FreeRTOS device and the Android device 
negotiate the MTU. You should see the following output in logcat:

2019-06-06 20:11:46.720 23484-23497/software.amazon.freertos.demo I/FRD: 
 onMTUChanged : 512 status: Success

7. The device connects to the app and starts sending MQTT messages using the MQTT proxy. To 
confirm that the device can communicate, make sure the MQTT_CONTROL characteristic data 
value changes to 01:

2019-06-06 20:12:28.752 23484-23496/software.amazon.freertos.demo D/FRD: <-<-<- 
 Writing to characteristic: MQTT_CONTROL with data: 01
2019-06-06 20:12:28.839 23484-23496/software.amazon.freertos.demo D/FRD: 
 onCharacteristicWrite for: MQTT_CONTROL; status: Success; value: 01

8. When the devices are paired, you will see a prompt on the ESP32 console. To enable BLE, press
y. The demo won't function until you perform this step.

E (135538) BT_GATT: GATT_INSUF_AUTHENTICATION: MITM Required
W (135638) BT_L2CAP: l2cble_start_conn_update, the last connection update command 
 still pending.
E (135908) BT_SMP: Value for numeric comparison = 391840
15 13588 [InputTask] Numeric comparison:391840
16 13589 [InputTask] Press 'y' to confirm
17 14078 [InputTask] Key accepted
W (146348) BT_SMP: FOR LE SC LTK IS USED INSTEAD OF STK
18 16298 [iot_thread] Connecting to broker...
19 16298 [iot_thread] [INFO ][MQTT][162980] Establishing new MQTT connection.
20 16298 [iot_thread] [INFO ][MQTT][162980] (MQTT connection 0x3ffd5754, CONNECT 
 operation 0x3ffd586c) Waiting for operation completion.

FreeRTOS demos 766



FreeRTOS User Guide

21 16446 [iot_thread] [INFO ][MQTT][164450] (MQTT connection 0x3ffd5754, CONNECT 
 operation 0x3ffd586c) Wait complete with result SUCCESS.
22 16446 [iot_thread] [INFO ][MQTT][164460] New MQTT connection 0x3ffc0ccc 
 established.
23 16446 [iot_thread] Connected to broker. 

Step 6: Run the OTA update script

1. To install the prerequisites, run the following commands:

pip3 install boto3

pip3 install pathlib

2. Increment the FreeRTOS application version in demos/include/
aws_application_version.h.

3. Build a new .bin file.

4. Download the python script  start_ota.py. To see the help contents for the script, run the 
following command in a terminal window:

python3 start_ota.py -h

You should see something like the following:

usage: start_ota.py [-h] --profile PROFILE [--region REGION] 
                    [--account ACCOUNT] [--devicetype DEVICETYPE] --name NAME 
                    --role ROLE --s3bucket S3BUCKET --otasigningprofile 
                    OTASIGNINGPROFILE --signingcertificateid 
                    SIGNINGCERTIFICATEID [--codelocation CODELOCATION]
Script to start OTA update
optional arguments:
-h, --help            show this help message and exit
--profile PROFILE     Profile name created using aws configure
--region REGION       Region
--account ACCOUNT     Account ID
--devicetype DEVICETYPE thing|group
--name NAME           Name of thing/group
--role ROLE           Role for OTA updates
--s3bucket S3BUCKET   S3 bucket to store firmware updates

FreeRTOS demos 767

https://github.com/aws-samples/amazon-freertos-ota-scripts/blob/master/scripts/start_ota.py


FreeRTOS User Guide

--otasigningprofile OTASIGNINGPROFILE 
                      Signing profile to be created or used
--signingcertificateid SIGNINGCERTIFICATEID 
                      certificate id (not arn) to be used
--codelocation CODELOCATION 
                      base folder location (can be relative) 

5. If you used the provided AWS CloudFormation template to create resources, run the following 
command:

python3 start_ota_stream.py --profile otausercf --name esp32-ble --role 
 ota_ble_iot_role-sample --s3bucket afr-ble-ota-update-bucket-sample --
otasigningprofile abcd --signingcertificateid certificateid

You should see the update start in the ESP32 debug console:

38 2462 [OTA Task] [prvParseJobDoc] Job was accepted. Attempting to start transfer.
---
49 2867 [OTA Task] [prvIngestDataBlock] Received file block 1, size 1024
50 2867 [OTA Task] [prvIngestDataBlock] Remaining: 1290
51 2894 [OTA Task] [prvIngestDataBlock] Received file block 2, size 1024
52 2894 [OTA Task] [prvIngestDataBlock] Remaining: 1289
53 2921 [OTA Task] [prvIngestDataBlock] Received file block 3, size 1024
54 2921 [OTA Task] [prvIngestDataBlock] Remaining: 1288
55 2952 [OTA Task] [prvIngestDataBlock] Received file block 4, size 1024
56 2953 [OTA Task] [prvIngestDataBlock] Remaining: 1287
57 2959 [iot_thread] State: Active  Received: 5   Queued: 5   Processed: 5   
 Dropped: 0

6. When the OTA update is complete, the device restarts as required by the OTA update process. 
It then tries to connect using the updated firmware. If the upgrade has succeeded, the updated 
firmware is marked as active and you should see the updated version in the console:

13 13498 [iot_thread] OTA demo version 0.9.21

FreeRTOS demos 768



FreeRTOS User Guide

AWS IoT Device Shadow demo application

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

Introduction

This demo shows how to use the AWS IoT Device Shadow library to connect to the AWS Device 
Shadow service. It uses the coreMQTT library to establish an MQTT connection with TLS (Mutual 
Authentication) to the AWS IoT MQTT Broker and the coreJSON library parser to parse shadow 
documents received from the AWS Shadow service. The demo shows basic shadow operations, 
such as how to update a shadow document and how to delete a shadow document. The demo also 
shows how to register a callback function with the coreMQTT library to handle messages like the 
shadow /update and /update/delta messages that are sent from the AWS IoT Device Shadow 
service.

This demo is intended as a learning exercise only because the request to update the shadow 
document (state) and the update response are done by the same application. In a realistic 
production scenario, an external application would request an update of the state of the device 
remotely, even if the device is not currently connected. The device will acknowledge the update 
request when it is connected.

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.

Functionality

The demo creates a single application task that loops through a set of examples that demonstrate 
shadow /update and /update/delta callbacks to simulate toggling a remote device's state. 
It sends a shadow update with the new desired state and waits for the device to change its
reported state in response to the new desired state. In addition, a shadow /update callback is 

FreeRTOS demos 769

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html


FreeRTOS User Guide

used to print the changing shadow states. This demo also uses a secure MQTT connection to the 
AWS IoT MQTT Broker, and assumes there is a powerOn state in the device shadow.

The demo performs the following operations:

1. Establish an MQTT connection by using the helper functions in shadow_demo_helpers.c.

2. Assemble MQTT topic strings for device shadow operations, using macros defined by the AWS 
IoT Device Shadow library.

3. Publish to the MQTT topic used for deleting a device shadow to delete any existing device 
shadow.

4. Subscribe to the MQTT topics for /update/delta, /update/accepted and /update/
rejected using helper functions in shadow_demo_helpers.c.

5. Publish a desired state of powerOn using helper functions in shadow_demo_helpers.c. This 
will cause an /update/delta message to be sent to the device.

6. Handle incoming MQTT messages in prvEventCallback, and determine whether the 
message is related to the device shadow by using a function defined by the AWS IoT Device 
Shadow library (Shadow_MatchTopic). If the message is a device shadow /update/delta
message, then the main demo function will publish a second message to update the reported 
state to powerOn. If an /update/accepted message is received, verify that it has the same
clientToken as previously published in the update message. That will mark the end of the 
demo.

FreeRTOS demos 770



FreeRTOS User Guide

The demo can be found in the file freertos/demos/device_shadow_for_aws/
shadow_demo_main.c or on  GitHub.

The following screenshot shows the expected output when the demo succeeds.

Connect to the AWS IoT MQTT broker

To connect to the AWS IoT MQTT broker, we use the same method as MQTT_Connect() in the
coreMQTT mutual authentication demo.

Delete the shadow document

To delete the shadow document, call xPublishToTopic with an empty message, using 
macros defined by the AWS IoT Device Shadow library. This uses MQTT_Publish to publish 
to the /delete topic. The following code section shows how this is done in the function
prvShadowDemoTask.

/* First of all, try to delete any Shadow document in the cloud. */
returnStatus = PublishToTopic( SHADOW_TOPIC_STRING_DELETE( THING_NAME ), 
                               SHADOW_TOPIC_LENGTH_DELETE( THING_NAME_LENGTH ), 
                               pcUpdateDocument, 

FreeRTOS demos 771

https://github.com/aws/amazon-freertos/blob/main/demos/device_shadow_for_aws/shadow_demo_main.c


FreeRTOS User Guide

                               0U );

Subscribe to shadow topics

Subscribe to the Device Shadow topics to receive notifications from the AWS IoT broker about 
shadow changes. The Device Shadow topics are assembled by macros defined in the Device 
Shadow library. The following code section shows how this is done in the prvShadowDemoTask
function.

/* Then try to subscribe shadow topics. */
if( returnStatus == EXIT_SUCCESS )
{ 
    returnStatus = SubscribeToTopic(  
                     SHADOW_TOPIC_STRING_UPDATE_DELTA( THING_NAME ), 
                     SHADOW_TOPIC_LENGTH_UPDATE_DELTA( THING_NAME_LENGTH ) );
}

if( returnStatus == EXIT_SUCCESS )
{ 
    returnStatus = SubscribeToTopic(  
                     SHADOW_TOPIC_STRING_UPDATE_ACCEPTED( THING_NAME ), 
                     SHADOW_TOPIC_LENGTH_UPDATE_ACCEPTED( THING_NAME_LENGTH ) );
}

if( returnStatus == EXIT_SUCCESS )
{ 
    returnStatus = SubscribeToTopic(  
                     SHADOW_TOPIC_STRING_UPDATE_REJECTED( THING_NAME ), 
                     SHADOW_TOPIC_LENGTH_UPDATE_REJECTED( THING_NAME_LENGTH ) );
} 

Send Shadow Updates

To send a shadow update, the demo calls xPublishToTopic with a message in JSON format, 
using macros defined by the Device Shadow library. This uses MQTT_Publish to publish to the
/delete topic. The following code section shows how this is done in the prvShadowDemoTask
function.

#define SHADOW_REPORTED_JSON    \ 

FreeRTOS demos 772



FreeRTOS User Guide

    "{"                         \ 
    "\"state\":{"               \ 
    "\"reported\":{"            \ 
    "\"powerOn\":%01d"          \ 
    "}"                         \ 
    "},"                        \ 
    "\"clientToken\":\"%06lu\"" \ 
    "}"
snprintf( pcUpdateDocument, 
          SHADOW_REPORTED_JSON_LENGTH + 1, 
          SHADOW_REPORTED_JSON, 
           ( int ) ulCurrentPowerOnState, 
           ( long unsigned ) ulClientToken );

xPublishToTopic( SHADOW_TOPIC_STRING_UPDATE( THING_NAME ), 
                 SHADOW_TOPIC_LENGTH_UPDATE( THING_NAME_LENGTH ), 
                 pcUpdateDocument, 
                 ( SHADOW_DESIRED_JSON_LENGTH + 1 ) );

Handle shadow delta messages and shadow update messages

The user callback function, that was registered to the coreMQTT Client Library using the
MQTT_Init function, will notify us about an incoming packet event. See the callback function 
prvEventCallback on GitHub.

The callback function confirms the incoming packet is of type MQTT_PACKET_TYPE_PUBLISH, and 
uses the Device Shadow Library API Shadow_MatchTopic to confirm that the incoming message is 
a shadow message.

If the incoming message is a shadow message with type ShadowMessageTypeUpdateDelta, then 
we call  prvUpdateDeltaHandler to handle this message. The handler prvUpdateDeltaHandler
uses the coreJSON library to parse the message to get the delta value for the powerOn state and 
compares this against the current device state maintained locally. If those are different, the local 
device state is updated to reflect the new value of the powerOn state from the shadow document.

If the incoming message is a shadow message with type ShadowMessageTypeUpdateAccepted, 
then we call  prvUpdateAcceptedHandler to handle this message. The handler
prvUpdateAcceptedHandler parses the message using the coreJSON library to get the
clientToken from the message. This handler function checks that the client token from the JSON 
message matches the client token used by the application. If it doesn't match, the function logs a 
warning message.

FreeRTOS demos 773

https://www.freertos.org/iot-device-shadow/device-shadow-demo.html#handle-shadow-messages
https://github.com/aws/amazon-freertos/blob/main/demos/device_shadow_for_aws/shadow_demo_main.c#L671-L753
https://github.com/aws/amazon-freertos/blob/main/demos/device_shadow_for_aws/shadow_demo_main.c#L671-L753
https://github.com/aws/amazon-freertos/blob/main/demos/device_shadow_for_aws/shadow_demo_main.c#L464-L580
https://github.com/aws/amazon-freertos/blob/main/demos/device_shadow_for_aws/shadow_demo_main.c#L584-L667


FreeRTOS User Guide

Secure Sockets echo client demo

Important

This demo is hosted on the Amazon-FreeRTOS repository which is deprecated. We 
recommend that you start here when you create a new project. If you already have an 
existing FreeRTOS project based on the now deprecated Amazon-FreeRTOS repository, see 
the Amazon-FreeRTOS Github Repository Migration Guide.

The following example uses a single RTOS task. The source code for this example can be found at
demos/tcp/aws_tcp_echo_client_single_task.c.

Before you begin, verify that you have downloaded FreeRTOS to your microcontroller and built 
and run the FreeRTOS demo projects. You can clone or download FreeRTOS from GitHub. See the
README.md file for instructions.

To run the demo

Note

To set up and run the FreeRTOS demos, follow the steps in Getting Started with FreeRTOS.
The TCP server and client demos are currently not supported on the Cypress 
CYW943907AEVAL1F and CYW954907AEVAL1F Development Kits.

1. Follow the instructions in Setting Up the TLS Echo Server in the FreeRTOS Porting Guide.

A TLS echo server should be running and listening on the port 9000.

During the setup, you should have generated four files:

• client.pem (client certificate)

• client.key (client private key)

• server.pem (server certificate)

• server.key (server private key)

2. Use the tool tools/certificate_configuration/CertificateConfigurator.html
to copy the client certificate (client.pem) and client private key (client.key) to
aws_clientcredential_keys.h.

FreeRTOS demos 774

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/main/README.md
https://docs.aws.amazon.com/freertos/latest/portingguide/tls-echo-server.html


FreeRTOS User Guide

3. Open the FreeRTOSConfig.h file.

4. Set the configECHO_SERVER_ADDR0, configECHO_SERVER_ADDR1,
configECHO_SERVER_ADDR2, and configECHO_SERVER_ADDR3 variables to the four 
integers that make up the IP address where the TLS Echo Server is running.

5. Set the configTCP_ECHO_CLIENT_PORT variable to 9000, the port where the TLS Echo 
Server is listening.

6. Set the configTCP_ECHO_TASKS_SINGLE_TASK_TLS_ENABLED variable to 1.

7. Use the tool tools/certificate_configuration/PEMfileToCString.html to copy 
the server certificate (server.pem) to cTlsECHO_SERVER_CERTIFICATE_PEM in the file
aws_tcp_echo_client_single_task.c.

8. Open freertos/vendors/vendor/boards/board/aws_demos/
config_files/aws_demo_config.h, comment out #define 
CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED, and define
CONFIG_OTA_MQTT_UPDATE_DEMO_ENABLED or
CONFIG_OTA_HTTP_UPDATE_DEMO_ENABLED.

The microcontroller and the TLS Echo Server should be on the same network. When the demo 
starts (main.c), you should see a log message that reads Received correct string from 
echo server.

FreeRTOS demos 775


	FreeRTOS
	Table of Contents
	What is FreeRTOS?
	Downloading FreeRTOS source code
	FreeRTOS versioning
	FreeRTOS Long Term Support
	FreeRTOS Extended Maintenance Plan
	FreeRTOS architecture
	FreeRTOS-qualified hardware platforms
	Development workflow
	Additional resources

	FreeRTOS kernel fundamentals
	FreeRTOS kernel scheduler
	Memory management
	Kernel memory allocation
	Application memory management

	Intertask coordination
	Queues
	Semaphores and mutexes
	Direct-to-task notifications
	Stream buffers
	Sending data
	Receiving data

	Message buffers
	Sending data
	Receiving data


	Symmetric multiprocessing (SMP) support
	Modifying applications to use the FreeRTOS-SMP kernel

	Software timers
	Low power support
	Kernel configuration

	AWS IoT Device SDK for Embedded C
	Common IO
	Libraries
	Common IO - basic
	Common IO - BLE

	Common IO for Amazon Common Software
	What is ACS?
	Qualification Program


	Getting Started with FreeRTOS
	Getting Started with AWS IoT and FreeRTOS using Quick Connect
	Explore FreeRTOS libraries
	Understand how to build a secure and robust AWS IoT product
	Develop your AWS IoT application product

	AWS IoT Device Tester for FreeRTOS
	FreeRTOS qualification suite
	Custom test suites
	Supported versions of AWS IoT Device Tester for FreeRTOS
	Latest version of AWS IoT Device Tester for FreeRTOS
	Earlier IDT versions for FreeRTOS

	Unsupported IDT versions for FreeRTOS
	Download IDT for FreeRTOS
	Download IDT manually
	Download IDT programmatically
	API request
	API response
	Examples


	Use IDT with FreeRTOS qualification suite 2.0 (FRQ 2.0)
	Prerequisites
	Prepare for FreeRTOS qualification
	Download IDT for FreeRTOS
	Download Git
	Create and configure an AWS account
	AWS IoT Device Tester managed policy
	(Optional) Install the AWS Command Line Interface

	Preparing to test your microcontroller board for the first time
	Add library porting layers and implement a FreeRTOS tests repository
	Configure your AWS credentials
	Create a device pool in IDT for FreeRTOS
	Configure build, flash, and test settings
	Configure settings for testing devices
	IDT for FreeRTOS variables
	Path variables



	Use the IDT for FreeRTOS user interface to run the FreeRTOS qualification suite 2.0 (FRQ 2.0)
	Prerequisites
	Configure AWS credentials
	Configure AWS credentials with a credentials file
	Configure AWS credentials with environment variables

	Open the IDT for FreeRTOS UI
	Create a new configuration
	Modify an existing configuration
	Run qualification tests

	Running the FreeRTOS qualification 2.0 suite
	IDT for FreeRTOS commands

	Understanding results and logs
	Viewing results
	Interpreting IDT for FreeRTOS results
	Viewing logs



	Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0)
	Prerequisites
	Download FreeRTOS
	Considerations for LTS qualification (qualification for FreeRTOS that uses LTS libraries)

	Download IDT for FreeRTOS
	Create and configure an AWS account
	Sign up for an AWS account
	Create a user with administrative access

	AWS IoT Device Tester managed policy
	(Optional) Install the AWS Command Line Interface

	Preparing to test your microcontroller board for the first time
	Add library porting layers
	Configure your AWS credentials
	Create a device pool in IDT for FreeRTOS
	Configure build, flash, and test settings
	Configure settings for testing devices
	IDT for FreeRTOS variables
	Path variables



	Use the IDT for FreeRTOS user interface to run the FreeRTOS qualification suite
	Prerequisites
	Use a supported web browser
	Download FreeRTOS
	Considerations for LTS qualification (qualification for FreeRTOS that uses LTS libraries)

	Download IDT for FreeRTOS
	Create and configure an AWS account
	Sign up for an AWS account
	Create a user with administrative access

	AWS IoT Device Tester managed policy

	Getting started with the IDT-FreeRTOS UI
	Configure AWS credentials
	Configure AWS credentials with a credentials file
	Configure AWS credentials with environment variables

	Open the IDT-FreeRTOS UI
	Create a new configuration
	Modify an existing configuration
	Run qualification tests


	Running Bluetooth Low Energy tests
	Prerequisites
	Raspberry Pi setup
	FreeRTOS device setup
	Running the BLE tests
	Troubleshooting BLE tests

	Running the FreeRTOS qualification suite
	IDT for FreeRTOS commands
	Test for re-qualification

	Understanding results and logs
	Viewing results
	Interpreting IDT for FreeRTOS results
	Viewing logs



	Use IDT to develop and run your own test suites
	Download the latest version of AWS IoT Device Tester for FreeRTOS
	Test suite creation workflow
	Tutorial: Build and run the sample IDT test suite
	Prerequisites
	Configure device information for IDT
	Build the sample test suite
	Use IDT to run the sample test suite
	Troubleshooting

	Tutorial: Develop a simple IDT test suite
	Prerequisites
	Create a test suite directory
	Create configuration files
	Get the IDT client SDK
	Create the test case executable
	Configure device information for IDT
	Run the test suite
	Troubleshooting
	Create IDT test suite configuration files
	Configure suite.json
	Configure group.json
	Configure test.json
	Configure test_orchestrator.yaml
	Configure userdata_schema.json

	Configure the IDT test orchestrator
	Test orchestrator format
	Test orchestrator context

	Configure the IDT state machine
	State machine format
	Valid states and state definitions
	RunTask
	Choice
	Parallel
	AddProductFeatures
	Report
	LogMessage
	SelectGroup
	Fail
	Succeed

	State machine context
	Execution errors
	Catch
	hasExecutionError

	Example state machines
	Example state machine: Run a single test group
	Example state machine: Run user-selected test groups
	Example state machine: Run a single test group with product features
	Example state machine: Run two test groups in parallel


	Create IDT test case executable
	Use the IDT Client SDK
	Device interaction
	IDT interaction
	Host interaction

	Enable IDT CLI commands
	Write event logs
	Report results to IDT
	Specify exit behavior

	Use the IDT context
	Context schema
	Access data in the context

	Configure settings for test runners
	Configure device.json
	(Optional) Configure userdata.json
	(Optional) Configure resource.json
	(Optional) Configure config.json

	Debug and run custom test suites
	Run IDT in debug mode
	IDT CLI commands to run tests

	Review IDT test results and logs
	Console message format
	AWS IoT Device Tester report schema
	Test suite report schema

	IDT usage metrics
	Sign up for an AWS account
	Create a user with administrative access
	Provide AWS credentials to IDT



	AWS IoT Device Tester for FreeRTOS test suite versions
	Troubleshooting
	Troubleshooting device configuration
	Where do I look?
	IDT error codes
	Debugging config file parsing errors
	Debugging test results parsing errors
	Debugging integrity check failures
	Debugging FullWiFi test group failures
	Debugging a "required parameter missing" error
	Debugging a "test could not start" error
	Debugging an "unable to find start of test results" error
	Debugging a "Test failure:expected __ results but saw ___" error
	Debugging a "________ was unselected due to ConditionalTests constraints" error
	Debugging an IDT timeout during device output monitoring
	Debugging a "not authorized to access resource" error
	Debugging network test errors
	OTA Update failures due to same version payload
	OTA test failure on PresignedUrlExpired test case
	Debugging device interface and port errors
	Supported platforms
	Device interfaces
	Reading device data

	Development toolchain problems
	Code Composer Studio on Ubuntu

	Logging
	Console errors
	Log errors
	S3 bucket issues


	Troubleshooting timeout errors
	Cellular feature and AWS charges
	Qualification report generation policy

	AWS Managed policy for AWS IoT Device Tester
	AWS managed policy: AWSIoTDeviceTesterForFreeRTOSFullAccess
	AWS IoT Device Tester updates to AWS managed policies

	Support policy for AWS IoT Device Tester for FreeRTOS

	Security in AWS
	Identity and Access Management for FreeRTOS
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How FreeRTOS works with IAM
	Identity-based policies for FreeRTOS
	Identity-based policy examples for FreeRTOS

	Resource-based policies within FreeRTOS
	Policy actions for FreeRTOS
	Policy resources for FreeRTOS
	Policy condition keys for FreeRTOS
	ACLs in FreeRTOS
	ABAC with FreeRTOS
	Using temporary credentials with FreeRTOS
	Cross-service principal permissions for FreeRTOS
	Service roles for FreeRTOS
	Service-linked roles for FreeRTOS

	Identity-based policy examples for FreeRTOS
	Policy best practices
	Using the FreeRTOS console
	Allow users to view their own permissions

	Troubleshooting FreeRTOS identity and access
	I am not authorized to perform an action in FreeRTOS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my FreeRTOS resources


	Compliance validation
	Resilience in AWS
	Infrastructure security in FreeRTOS

	Amazon-FreeRTOS Github Repository Migration Guide
	Appendix

	FreeRTOS Archived documentation
	FreeRTOS User Guide Archive
	Previous FreeRTOS User Guide contents
	Getting Started with FreeRTOS
	FreeRTOS demo application
	First steps
	Setting up your AWS account and permissions
	Sign up for an AWS account
	Create a user with administrative access

	Registering your MCU board with AWS IoT
	Downloading FreeRTOS
	Configuring the FreeRTOS demos

	Troubleshooting getting started
	General getting started troubleshooting tips
	Installing a terminal emulator
	Finding your board's serial port


	Using CMake with FreeRTOS
	Prerequisites
	Developing FreeRTOS applications with third-party code editors and debugging tools
	Building FreeRTOS with CMake
	Generating build files (CMake command-line tool)
	Generating build files (CMake GUI)
	Building FreeRTOS from generated build files
	Building with native build system
	Building with CMake



	Developer-mode key provisioning
	Introduction
	Option #1: private key import from AWS IoT
	Option #2: onboard private key generation

	Board-specific getting started guides
	Getting started with the Cypress CYW943907AEVAL1F Development Kit
	Overview
	Setting up your development environment
	Download and install the WICED Studio SDK
	Set environment variables

	Establishing a serial connection
	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS demo project
	Troubleshooting

	Getting started with the Cypress CYW954907AEVAL1F Development Kit
	Overview
	Setting up your development environment
	Download and install the WICED Studio SDK
	Set environment variables

	Establishing a serial connection
	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS demo project
	Troubleshooting

	Getting started with the Cypress CY8CKIT-064S0S2-4343W kit
	Getting started
	Setting up the development environment
	Updating tools for ModusToolbox 2.1 or older
	Updating OpenOCD
	Updating Firmware-loader


	Setting up your hardware
	Build and run the FreeRTOS Demo project
	Running other demos

	Debugging
	OTA updates

	Getting started with the Microchip ATECC608A Secure Element with Windows simulator
	Overview
	Set up the Microchip ATECC608A hardware
	Set up your development environment
	Sign up for an AWS account
	Create a user with administrative access

	Build and run the FreeRTOS demo project
	Troubleshooting

	Getting started with the Espressif ESP32-DevKitC and the ESP-WROVER-KIT
	Overview
	Prerequisites
	Sign up for an AWS account
	Create a user with administrative access

	Get started
	Configure the FreeRTOS demo applications
	Monitoring MQTT messages on the cloud
	Build, flash, and run the FreeRTOS demo project using the idf.py script
	Build and Flash FreeRTOS with CMake

	Run the Bluetooth Low Energy demos
	Using FreeRTOS in your own CMake project for ESP32
	Using components from FreeRTOS
	Add custom components using ESP-IDF
	Override the configurations for FreeRTOS
	Providing your own sdkconfig for ESP-IDF
	Summary

	Troubleshooting
	Debugging
	Debugging code on Espressif ESP32-DevKitC and ESP-WROVER-KIT (ESP-IDF v4.2)


	Getting started with the Espressif ESP32-WROOM-32SE
	Overview
	Prerequisites
	Sign up for an AWS account
	Create a user with administrative access

	Get started
	Configure the FreeRTOS demo applications
	Monitoring MQTT messages on the AWS Cloud
	Build, flash, and run the FreeRTOS demo project using the idf.py script
	Build and Flash FreeRTOS with CMake

	Additional information

	Getting started with the Espressif ESP32-S2
	Overview
	Prerequisites
	Sign up for an AWS account
	Create a user with administrative access

	Get started
	Configure the FreeRTOS demo applications
	Monitoring MQTT messages on the AWS Cloud
	Build, flash, and run the FreeRTOS demo project using the idf.py script
	Build and flash FreeRTOS on Windows, Linux, and macOS (ESP-IDF v4.2)

	Build and Flash FreeRTOS with CMake

	Additional information

	Getting started with the Infineon XMC4800 IoT Connectivity Kit
	Overview
	Set up your development environment
	Install DAVE
	Install Segger J-Link drivers

	Establish a serial connection
	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS demo project
	Import the FreeRTOS demo into DAVE
	Run the FreeRTOS demo project
	Build the FreeRTOS demo with CMake

	Troubleshooting

	Getting started with the Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit
	Overview
	Set up your development environment
	Install DAVE
	Install Segger J-Link drivers

	Establish a serial connection
	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS demo project
	Import the FreeRTOS demo into DAVE
	Run the FreeRTOS demo project
	Build the FreeRTOS demo with CMake

	Troubleshooting


	Getting started with the MW32x AWS IoT Starter Kit
	Setting up your hardware
	Setting up the development environment
	GNU Toolchain
	Linux Toolchain Setup Procedure
	Working with a Linux development host
	Installing Packages
	Avoiding sudo
	Setting up the Serial Console
	Installing OpenOCD

	Setting up Eclipse

	Build and run the FreeRTOS demo project
	Debugging
	Troubleshooting

	Getting started with the MediaTek MT7697Hx development kit
	Overview
	Set up your development environment
	Download and install Keil MDK

	Establish a serial connection
	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS demo project with Keil MDK
	Troubleshooting
	Debugging FreeRTOS projects in Keil μVision
	Troubleshooting the IDE debugger settings


	Getting started with the Microchip Curiosity PIC32MZ EF
	Overview
	Set up the Microchip Curiosity PIC32MZ EF hardware
	Set up the Microchip Curiosity PIC32MZ EF hardware using PICkit On Board (PKOB)
	Set up your development environment
	Monitoring MQTT messages in the cloud
	Build and run the FreeRTOS demo project
	Open the FreeRTOS demo in the MPLAB IDE
	Run the FreeRTOS demo project
	Build the FreeRTOS demo with CMake

	Troubleshooting

	Getting started with the Nordic nRF52840-DK
	Overview
	Set up the Nordic hardware
	Set up your development environment
	Download and install Segger Embedded Studio
	Set up the FreeRTOS Bluetooth Low Energy Mobile SDK demo application

	Establish a serial connection
	Download and configure FreeRTOS
	Download FreeRTOS
	Configure your project

	Build and run the FreeRTOS demo project
	Troubleshooting

	Getting started with the Nuvoton NuMaker-IoT-M487
	Overview
	Set up your development environment
	Build and run the FreeRTOS demo project
	Using CMake with FreeRTOS
	Troubleshooting
	Debugging FreeRTOS projects in Keil μVision
	Troubleshooting μVision debug settings


	Getting started with the NXP LPC54018 IoT Module
	Overview
	Set up the NXP hardware
	Set up your development environment
	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS Demo project
	Import the FreeRTOS demo into your IDE
	Run the FreeRTOS demo project

	Troubleshooting

	Getting started with the Renesas Starter Kit+ for RX65N-2MB
	Overview
	Set up the Renesas hardware
	Set up your development environment
	Build and run FreeRTOS samples
	Build the FreeRTOS Demo in e2studio
	Monitoring MQTT messages on the cloud
	Run the FreeRTOS project

	Troubleshooting

	Getting started with the STMicroelectronics STM32L4 Discovery Kit IoT Node
	Overview
	Set up your development environment
	Install System Workbench for STM32

	Build and run the FreeRTOS demo project
	Import the FreeRTOS demo into the STM32 System Workbench
	Monitoring MQTT messages on the cloud
	Run the FreeRTOS demo project
	Using CMake with FreeRTOS

	Troubleshooting

	Getting started with the Texas Instruments CC3220SF-LAUNCHXL
	Overview
	Set up your development environment
	Install Code Composer Studio
	Install IAR Embedded Workbench
	Install the SimpleLink CC3220 SDK
	Install Uniflash
	Install the latest service pack
	Configure Wi-Fi provisioning

	Build and run the FreeRTOS demo project
	Build and run the FreeRTOS demo project in TI Code Composer
	Monitoring MQTT messages on the cloud
	Build and run FreeRTOS demo project in IAR Embedded Workbench
	Using CMake with FreeRTOS

	Troubleshooting

	Getting started with the Windows Device Simulator
	Set up your development environment
	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS demo project
	Building and running the FreeRTOS demo project with the Visual Studio IDE
	Building and running the FreeRTOS demo project with CMake
	Configure your network interface

	Troubleshooting
	Troubleshooting common problems on Windows


	Getting started with the Xilinx Avnet MicroZed Industrial IoT Kit
	Overview
	Set up the MicroZed hardware
	Set up your development environment
	Download and install XSDK

	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS demo project
	Open the FreeRTOS demo in the XSDK IDE
	Build the FreeRTOS demo project
	Generate the boot image for the FreeRTOS demo project
	JTAG debugging
	Run the FreeRTOS demo project
	Boot the FreeRTOS project from a MicroSD card
	Boot the FreeRTOS demo project from QSPI flash


	Troubleshooting


	Next steps with FreeRTOS

	FreeRTOS Over-the-Air Updates
	Tagging OTA resources
	OTA update prerequisites
	Create an Amazon S3 bucket to store your update
	Create an OTA Update service role
	Create an OTA user policy
	Create a code-signing certificate
	Creating a code-signing certificate for the Texas Instruments CC3220SF-LAUNCHXL
	Creating a code-signing certificate for the Espressif ESP32
	Creating a code-signing certificate for the Nordic nrf52840-dk
	Creating a code-signing certificate for the FreeRTOS Windows simulator
	Creating a code-signing certificate for custom hardware

	Grant access to code signing for AWS IoT
	Download FreeRTOS with the OTA library
	Prerequisites for OTA updates using MQTT
	Minimum requirements
	Configurations
	Device specific configurations
	Memory usage
	Device policy

	Prerequisites for OTA updates using HTTP
	Minimum requirements
	Configurations
	Device specific configurations
	Memory usage
	Device policy


	OTA tutorial
	Installing the initial firmware
	Install the initial version of firmware on the Texas Instruments CC3220SF-LAUNCHXL
	Install the initial version of firmware on the Espressif ESP32
	Install the initial version of firmware on the Nordic nRF52840 DK
	Initial firmware on the Windows simulator
	Install the initial version of firmware on a custom board

	Update the version of your firmware
	Creating an OTA update (AWS IoT console)
	Creating an OTA update with the AWS CLI
	Digitally signing your firmware update
	Signing your firmware image with Code Signing for AWS IoT
	Signing your firmware image manually

	Creating a stream of your firmware update
	Creating an OTA update
	Listing OTA updates
	Getting information about an OTA update
	Deleting OTA-related data
	Deleting an OTA stream
	Deleting an OTA update
	Deleting an IoT job created for an OTA update



	OTA Update Manager service
	Integrating the OTA Agent into your application
	Connection management
	Simple OTA demo
	Using application callback for OTA Agent events

	OTA security
	Code Signing for AWS IoT

	OTA troubleshooting
	Set up CloudWatch Logs for OTA updates
	Create a logging role and enable logging
	OTA update logs
	Example logs


	Log AWS IoT OTA API calls with AWS CloudTrail
	FreeRTOS information in CloudTrail
	Understanding FreeRTOS log file entries

	Get CreateOTAUpdate failure details using the AWS CLI
	Get OTA failure codes with the AWS CLI
	Troubleshoot OTA updates of multiple devices
	Troubleshoot OTA updates with the Texas Instruments CC3220SF Launchpad


	FreeRTOS Libraries
	FreeRTOS porting libraries
	FreeRTOS application libraries
	Configuring the FreeRTOS libraries
	backoffAlgorithm library
	Introduction

	Bluetooth Low Energy library
	Overview
	Architecture
	Services
	Device information
	Wi-Fi provisioning
	Network abstraction
	Large Object Transfer
	MQTT over BLE

	Middleware
	Flexible callback subscription

	Low-level wrappers

	Dependencies and requirements
	Library configuration file
	Optimization
	Usage restrictions
	Initialization
	Middleware
	Low-level APIs

	API reference
	Example usage
	Advertising
	Adding a new service

	Porting
	User input and output peripheral
	Porting API implementations
	Bluetooth Low Energy APIs
	APIs common between GAP for Bluetooth Classic and GAP for Bluetooth Low Energy
	APIs specific to GAP for Bluetooth Low Energy
	GATT server



	Mobile SDKs for FreeRTOS Bluetooth devices
	Android SDK for FreeRTOS Bluetooth devices
	iOS SDK for FreeRTOS Bluetooth devices

	Appendix A: MQTT over BLE GATT profile
	GATT Service Details


	Cellular Interface library
	Introduction
	Dependencies and requirements
	Porting
	Memory use
	Getting started
	Download the source code
	Folder structure
	Configure and build the Library

	Integrate the Cellular Interface library with MCU platforms

	Common I/O
	AWS IoT Device Defender library
	Introduction

	AWS IoT Greengrass Discovery library
	Overview
	Dependencies and requirements
	API reference
	Example usage
	Greengrass workflow
	How to use the Greengrass API


	coreHTTP library
	Introduction

	coreJSON library
	Introduction
	Memory use

	coreMQTT library
	Introduction

	coreMQTT Agent library
	Introduction

	AWS IoT Over the air (OTA) library
	Introduction
	AWS IoT Over the air (OTA) library

	Features
	API reference
	Example usage
	Porting
	Memory use

	corePKCS11 library
	Overview
	Features
	General setup and tear down API
	Provisioning API
	Client authentication

	Asymmetric cryptosystem support
	Porting
	Memory use

	Secure Sockets library
	Overview
	Dependencies and requirements
	Features
	Troubleshooting
	Error codes

	Developer support
	Usage restrictions
	Initialization
	API reference
	Example usage
	Porting

	AWS IoT Device Shadow library
	Introduction

	AWS IoT Jobs library
	Introduction

	Transport Layer Security
	Wi-Fi library
	Overview
	Dependencies and requirements
	Features
	Wi-Fi modes
	Security
	Scanning and connecting
	Power management
	Network profiles

	Configuration
	Initialization
	API reference
	Example usage
	Connecting to a known AP
	Scanning for nearby APs

	Porting


	FreeRTOS demos
	Running the FreeRTOS demos
	Configuring the demos
	Bluetooth Low Energy demo applications
	Overview
	Prerequisites
	Set up AWS IoT and Amazon Cognito for FreeRTOS Bluetooth Low Energy
	Set up your FreeRTOS environment for Bluetooth Low Energy

	Common components
	Network Manager
	FreeRTOS Bluetooth Low Energy Mobile SDK demo application

	MQTT over Bluetooth Low Energy
	Wi-Fi provisioning
	Generic Attributes Server

	Demo bootloader for the Microchip Curiosity PIC32MZEF
	Bootloader states
	Flash device
	Application image structure
	Image header
	Magic code
	Image flags

	Image descriptor
	Image trailer
	Bootloader configuration
	Building the bootloader
	Bootloader pre-build step


	AWS IoT Device Defender demo
	Introduction
	Functionality
	Subscribing to AWS IoT Device Defender topics
	Collecting device metrics
	Generating the AWS IoT Device Defender report
	Publishing the AWS IoT Device Defender report
	Callback for handling responses


	AWS IoT Greengrass V1 discovery demo application
	Using an Amazon EC2 instance

	AWS IoT Greengrass V2
	Compatibility with AWS IoT Greengrass V2 devices

	coreHTTP demos
	coreHTTP mutual authentication demo
	Introduction
	Functionality
	Source code organization
	Connecting to the AWS IoT HTTP server
	Sending an HTTP request and receiving the response

	coreHTTP basic Amazon S3 upload demo
	Introduction
	Single threaded versus multi threaded

	Source code organization
	Configuring the Amazon S3 HTTP server connection
	Functionality
	Connecting to the Amazon S3 HTTP server
	Upload data
	Verifying the upload


	coreHTTP basic S3 download demo
	Introduction
	Single threaded versus multi threaded

	Source code organization
	Configuring the Amazon S3 HTTP server connection
	Functionality
	Connecting to the Amazon S3 HTTP server
	Creating a range request
	Sending range requests and receiving responses


	coreHTTP basic multithreaded demo
	Introduction
	Source code organization
	Building the demo project
	Configuring the demo project
	Configuring the Amazon S3 HTTP server connection
	Functionality
	Typedefs
	Main HTTP send task
	HTTP request task
	HTTP response task


	AWS IoT Jobs library demo
	Introduction
	Source code organization
	Configure the AWS IoT MQTT broker connection
	Functionality
	Entry point of the Jobs demo
	Callback for received MQTT messages
	Send an update for a running job


	coreMQTT demos
	coreMQTT mutual authentication demo
	Introduction
	Source code
	Functionality
	Retry logic with exponential backoff and jitter
	Connecting to the MQTT broker
	Subscribing to an MQTT topic
	Publishing to a topic
	Receiving incoming messages
	Processing incoming MQTT publish packets
	Unsubscribing from a topic
	Changing the root CA used in the demo

	coreMQTT Agent connection sharing demo
	Introduction
	Single threaded vs multithreaded

	Source code
	Functionality
	Main task
	Commands
	Running the command loop
	Subscription manager

	Simple subscribe-publish Task


	Over-the-air updates demo application
	Over-the-air demo configurations
	Download, build, flash, and run the FreeRTOS OTA demo on the Texas Instruments CC3220SF-LAUNCHXL
	Download, build, flash, and run the FreeRTOS OTA demo on the Microchip Curiosity PIC32MZEF
	Download, build, flash, and run the FreeRTOS OTA demo on the Espressif ESP32
	Download, build, flash and run the FreeRTOS OTA demo on the Renesas RX65N
	Set up your operating environment
	Set up your AWS resources
	Import, configure the header file and build aws_demos and boot_loader

	Tutorial: Perform OTA updates on Espressif ESP32 using FreeRTOS Bluetooth Low Energy
	Prerequisites
	Step 1: Configure storage
	Step 2: Create the code-signing certificate
	Step 3: Amazon Cognito authentication configuration
	Step 4: Configure Amazon FreeRTOS
	Step 5: Configure an Android app
	Step 6: Run the OTA update script


	AWS IoT Device Shadow demo application
	Introduction
	Functionality
	Connect to the AWS IoT MQTT broker
	Delete the shadow document
	Subscribe to shadow topics
	Send Shadow Updates
	Handle shadow delta messages and shadow update messages

	Secure Sockets echo client demo




