An Introduction to the C shell

William Joy
(revised for 4.3BSD by Mark Seiden)

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Cshis a new command language interpreter darx® systems. It incorporates
good features of other shells andhiatory mechanism similar to theedo of INTERLISP.
While incorporating many features of other shells which make writing shell programs
(shell scripts) easier, most of the features uniguesiiare designed more for the interac-
tive UNIX user.

UNIX users who have read a general introduction to the system will find a valuable
basic explanation of the shell here. Simple terminal interactionastiis possible after
reading just the first section of this document. The second section describes the shell's
capabilities which you can explore after you have begun to become acquainted with the
shell. Later sections introduce features which are useful, but not necessary for all users of
the shell.

Additional information includes an appendix listing special characters of the shell
and a glossary of terms and commands introduced in this manual.

Introduction

A shellis a command language interpret&shis the name of one particular command interpreter
onuNiIx. The primary purpose afshis to translate command lines typed at a terminal into system actions,
such as invocation of other progran@shis a user program just like any you might write. Hopefiudsh
will be a very useful program for you in interacting with thex system.

In addition to this document, you will want to refer to a copy ofulex User Reference Manual.
Thecshdocumentation in section 1 of the manual provides a full description of all features of the shell and
is the definitive reference for questions about the shell.

Many words in this document are showritalics. These are important words; names of commands,
and words which have special meaning in discussing the shelinaxd Many of the words are defined in
a glossary at the end of this document. If you don’t know what is meant by a word, you should look for it
in the glossary.

Acknowledgements

Numerous people have provided good input about previous versiogsafd aided in its debugging
and in the debugging of its documentation. | would especially like to thank Michael Ubell who made the
crucial observation that history commands could be done well over the word structure of input text, and
implemented a prototype history mechanism in an older version of the shell. Eric Allman has also provided
a large number of useful comments on the shell, helping to unify those concepts which are present and to
identify and eliminate useless and marginally useful features. Mike O’Brien suggested the pathname hash-
ing mechanism which speeds command execution. Jim Kulp added the job control and directory stack
primitives and added their documentation to this introduction.

usD:4-2 An Introduction to the C shell

1. Terminal usage of the shell

1.1. The basic notion of commands

A shellin uNix acts mostly as a medium through which otweagramsare invoked. While it has a
set ofbuiltin functions which it performs directly, most commands cause execution of programs that are, in
fact, external to the shell. The shell is thus distinguished from the command interpreters of other systems
both by the fact that it is just a user program, and by the fact that it is used almost exclusively as a mecha-
nism for invoking other programs.

Commandsn the UNIx system consist of a list of strings wordsinterpreted as aommand name
followed byarguments.Thus the command

mail bill

consists of two words. The first wordail names the command to be executed, in this case the mail pro-
gram which sends messages to other users. The shell uses the name of the command in attempting to
execute it for you. It will look in a number directoriesfor a file with the namenail which is expected to

contain the mail program.

The rest of the words of the command are givemrgsmentsto the command itself when it is
executed. In this case we specified also the argubilemthich is interpreted by thmail program to be the
name of a user to whom mail is to be sent. In normal terminal usage we might os&Elttemmand as
follows.

% mail bill
| have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EOT
%

Here we typed a message to sentlifloand ended this message with a "D which sent an end-of-file
to the mail program. (Here and throughout this document, the notatidis‘fo be read “controlx” and
represents the striking of tlxekey while the control key is held down.) The mail program then echoed the
characters ‘EOT’ and transmitted our message. The characters ‘% ' were printed before and after the malil
command by the shell to indicate that input was needed.

After typing the ‘% ’ prompt the shell was reading command input from our terminal. We typed a
complete command ‘mail bill'. The shell then executednta®l program with argumertill and went dor-
mant waiting for it to complete. The mail program then read input from our terminal until we signalled an
end-of-file via typing a "D after which the shell noticed that mail had completed and signaled us that it was
ready to read from the terminal again by printing another ‘% ' prompt.

This is the essential pattern of all interaction withx through the shell. A complete command is
typed at the terminal, the shell executes the command and when this execution completes, it prompts for a
new command. If you run the editor for an hour, the shell will patiently wait for you to finish editing and
obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now its#fteommand, which sets the default
eraseandkill characters on your terminal — the erase character erases the last character you typed and the
kill character erases the entire line you have entered so far. By default, the erase character is the delete key
(equivalent to “?’) and the kill character is “U’. Some people prefer to make the erase character the
backspace key (equivalent to “"H’). You can make this be true by typing

tset —e

which tells the programset to set the erase character to tset’s default setting for this character (a
backspace).

An Introduction to the C shell uUsD:4-3

1.2. Flag arguments

A useful notion inuNix is that of aflag argument. While many arguments to commands specify file
names or user names, some arguments rather specify an optional capability of the command which you
wish to invoke. By convention, such arguments begin with the character ‘=’ (hyphen). Thus the command

Is
will produce a list of the files in the currambrking directory The option-s is the size option, and
Is —s

causeds to also give, for each file the size of the file in blocks of 512 characters. The manual section for
each command in thenix reference manual gives the available options for each commands Tom-

mand has a large number of useful and interesting options. Most other commands have either no options or
only one or two options. It is hard to remember options of commands which are not used very frequently,
so mostuNix utilities perform only one or two functions rather than having a large number of hard to
remember options.

1.3. Output to files

Commands that normally read input or write output on the terminal can also be executed with this
input and/or output done to a file.

Thus suppose we wish to save the current date in a file called ‘now’. The command
date

will print the current date on our terminal. This is because our terminal is the defandard outpufor
the date command and the date command prints the date on its standard output. The shedblegstus
the standard outpubf a command through a notation using thetacharactet>" and the name of the file
where output is to be placed. Thus the command

date > now

runs thedate command such that its standard output is the file ‘now’ rather than the terminal. Thus this
command places the current date and time into the file ‘now’. It is important to know tlutézom-

mand was unaware that its output was going to a file rather than to the terminal. The shell performed this
redirectionbefore the command began executing.

One other thing to note here is that the file ‘now’ need not have existed befdegegbemmand was
executed; the shell would have created the file if it did not exist. And if the file did exist? If it had existed
previously these previous contents would have been discarded! A shell optiobberexists to prevent
this from happening accidentally; it is discussed in section 2.2.

The system normally keeps files which you create with ‘>’ and all other files. Thus the default is for
files to be permanent. If you wish to create a file which will be removed automatically, you can begin its
name with a ‘#' character, this ‘scratch’ character denotes the fact that the file will be a scratch file.* The
system will renove such files after a couple of days, or sooner if file space becomes very tight. Thus, in
running thedatecommand above, we don't really want to save the output forever, so we would more likely
do

date > #now

1.4. Metacharacters in the shell

The shell has a large number of special characters (like *>) which indicate special functions. We say
that these notations haggntacticandsemantianeaning to the shell. In general, most characters which are
neither letters nor digits have special meaning to the shell. We shall shortly learn a meaostdn

*Note that if your erase character is a ‘#, you will have to precede the ‘# with a ‘\'. The fact that the ‘# char-
acter is the old (prerT) standard erase character means that it seldom appears in a file name, and allows this
convention to be used for scratch files. If you are usimgrayour erase character should be a "H, as we
demonstrated in section 1.1 how this could be set up.

UsD:4-4 An Introduction to the C shell

which allows us to useetacharactersvithout the shell treating them in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need not worry
about placing shell metacharacters in a letter we are sendingpili@r when we are typing in text or data
to some other program. Note that the shell is only reading input when it has prompted with ‘% ’ (although
we can type our input even before it prompts).

1.5. Input from files; pipelines

We learned ative how toredirect the standard outpubf a command to a file. It is also possible to
redirect thestandard inputof a command from a file. This is not often necessary since most commands
will read from a file whose name is given as an argument. We can give the command

sort < data

to run thesort command with standard input, where the command normally reads its input, from the file
‘data’. We would more likely say

sort data

letting thesort command open the file ‘data’ for input itself since this is less to type.
We should note that if we just typed

sort

then the sort program would sort lines fromsiisndard input.Since we did notedirectthe standard input,
it would sort lines as we typed them on the terminal until we typed a "D to indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command with the stan-
dard input of another, i.e. to run the commands in a sequence knowpipetirze. For instance the com-
mand

Is —s

normally produces a list of the files in our directory with the size of each in blocks of 512 characters. If we
are interested in learning which of our files is largest we may wish to have this sorted by size rather than by
name, which is the default way in whithsorts. We could look at the many optionslofo see if there

was an option to do this but would eventually discover that there is not. Instead we can use a couple of sim-
ple options of thesortcommand, combining it witts to get what we want.

The—n option of sort specifies a numeric sort rather than an alphabetic sort. Thus
Is —s | sort —n

specifies that the output of tlecommand run with the optioss is to bepipedto the commandort run

with the numeric sort option. This would give us a sorted list of our files by size, but with the smallest first.
We could then use the reverse sort option and theadcommand in combination with the previous com-
mand doing

Is —s | sort —n —r | head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have run this to
the standard input of theort command asking it to sort numerically in reverse order (largest first). This
output has then been run into the commhbeddwhich gives us the first few lines. In this case we have
askedheadfor the first 5 lines. Thus this command gives us the names and sizes of our 5 largest files.

The notation introduced afse iscalled thepipe mechanism. Commands separated [bycharacters
are connected together by the shell and the standard output of each is run into the standard input of the next.
The leftmost command in a pipeline will normally take its standard input from the terminal and the right-
most will place its standard output on the terminal. Other examples of pipelines will be given later when
we discuss the history mechanism; one important use of pipes which is illustrated there is in the routing of
information to the line printer.

An Introduction to the C shell usD:4-5

1.6. Filenames

Many commands to be executed will need the names of files as argumentpathnamegonsist
of a number otomponentseparated by ‘/'. Each component except the last names a directory in which
the next component resides, in effect specifyingpiih of directories to follow to reach the file. Thus the
pathname

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory ofrdloé directory /. Within this directory

the file named is ‘motd’ which stands for ‘message of the dayyathnamehat begins with a slash is said

to be arabsolutepathname since it is specified from the absolute top of the entire directory hierarchy of the
system (theoot). Pathnamesvhich do not begin with ‘/ are interpreted as starting in the cumenking
directory, which is, by default, youhomedirectory and can be changed dynamically by ddehange
directory command. Such pathnames are said telbgve to the working directory since they are found

by starting in the working directory and descending to lower levels of directories focaapbnenof the
pathname. If the pathname contains no slashes at all then the file is contained in the working directory
itself and the pathname is merely the name of the file in this directory. Absolute pathnames have no rela-
tion to the working directory.

Most filenames consist of a number of alphanumeric characters and ‘.’s (periods). In fact, all printing
characters except /" (slash) may appear in filenames. It is inconvenient to have most non-alphabetic char-
acters in filenames because many of these have special meaning to the shell. The character ‘. (period) is
not a shell-metacharacter and is often used to separagxtdresionof a file name from the base of the
name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They sharbaseportion of a name (a base portion being that part of the name that is
left when a trailing ‘.’ and following characters which are not ‘.’ are stripped off). The file ‘prog.c’ might
be the source for a C program, the file ‘prog.o’ the corresponding object file, the file ‘prog.errs’ the errors
resulting from a compilation of the program and the file ‘prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation

prog.*

This expression is expanded by the shell, before the command to which it is an argument is executed, into a
list of names which begin with ‘prog.”. The character *’ here matches any sequence (including the empty
sequence) of characters in a file name. The names which match are alphabetically sorted and placed in the
argument lisof the command. Thus the command

echo prog.*
will echo the names
prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them abegho The
command receives four words as arguments, even though we only typed one word as an argument directly.
The four words were generatedfilgname expansioof the one input word.

Other notations fofilename expansioare also available. The character ‘?’ matches any single char-
acter in a filename. Thus

echo ? ?? ?7??
will echo a line of filenames; first those with one character names, then those with two character names,
and finally those with three character names. The names of each length will be independently sorted.

Another mechanism consists of a sequence of characters between ‘[and ‘J'. This metasequence
matches any single character from the enclosed set. Thus

USsD:4-6 An Introduction to the C shell

prog.[co]
will match

prog.c prog.o
in the example above. We can also place two characters around a ‘=’ in this notation to denote a range.
Thus
chap.[1-5]
might match files
chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. This is shorthand for
chap.[12345]

and otherwise equivalent.

An important point to note is that if a list of argument words to a commanargament list}con-
tains filename expansion syntax, and if this filename expansion syntax fails to match any existing file
names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character ‘.’ at the beginning are treated specially.
Neither **" or “?’ or the ‘[’ ' mechanism will match it. This prevents accidental matching of the filenames
‘’and “..” in the working directory which have special meaning to the system, as well as other files such as
.cshrcwhich are not normally visible. We will discuss the special role of thecElerclater.

Another filename expansion mechanism gives access to the pathnaméahtdirectory of other
users. This notation consists of the character “ (tilde) followed by another user’s login name. For instance
the word “bill" would map to the pathname ‘/ust/bill’ if the home directory for ‘bill’ was ‘/usr/bill’. Since,
on large systems, users may have login directories scattered over many different disk volumes with differ-
ent prefix directory names, this notation provides a convenient way of accessing the files of other users.

A special case of this notation consists of a ™" alone, e.g. “/mbox’. This notation is expanded by the
shell into the file ‘mbox’ in youhomedirectory, i.e. into ‘/usr/bill/mbox’ for me on Ernie Co-vax, the UCB
Computer Science Department VAX machine, where this document was prepared. This can be very useful
if you have usead to change to another directory and have found a file you wish to copyagsinfl
give the command

cp thatfile ~
the shell will expand this command to
cp thatfile /usr/bill

since my home directory is /ust/bill.

There also exists a mechanism using the characters {" and ‘}’ for abbreviating a set of words which
have common parts but cannot be abbreviated by tneahechanisms because they are not files, are the
names of files which do not yet exist, are not thus conveniently described. This mechanism will be
described much later, in section 4.2, as it is used less frequently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharacters pose a
problem in that we cannot use them directly as parts of words. Thus the command

echo *

will not echo the character **". It will either echo an sorted list of filenames in the cumenhking

An Introduction to the C shell usD:4-7

directory,or print the message ‘No match’ if there are no files in the working directory.
The recommended mechanism for placing characters which are neither numbers, digits, ‘/', *” or ‘-’
in an argument word to a command is to enclose it with single quotation characters *’, i.e.
echo ¥

There is one special character ‘" which is used byhiktory mechanism of the shell and which cannot be
escapedy placing it within *’ characters. It and the character ' itself can be preceded by a single \' to
prevent their special meaning. Thus

echo \'\!

prints
1

These two mechanisms suffice to place any printing character into a word which is an argument to a shell
command. They can be combined, as in

echo \""*

which prints

%
since the first '\’ escaped the first " and the *’ was enclosed between ’ characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are several ways
to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely to continue
for several minutes unless you stop it. You can send@RRUPTsignalto thecatcommand by typing "C

on your terminal.* Sinceat does not take any precautions to avoid or otherwise handle this signal the
INTERRUPTWiIll cause it to terminate. The shell notices tbathas terminated and prompts you again with
‘% ’. If you hit INTERRUPT again, the shell will just repeat its prompt since it hantl@srRRUPT signals

and chooses to continue to execute commands rather than terminaticat ke, which would have the
effect of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their standard
input. Thus themail program in the first example ae wasterminated when we typed a "D which gener-
ates an end-of-file from the standard input. The shell also terminates when it gets an end-of-file printing
‘logout’; UNIX then logs you off the system. Since this means that typing too many "D’s can accidentally
log us off, the shell has a mechanism for preventing this. ighgeeofoption will be discussed in section
2.2.

If a command has its standard input redirected from a file, then it will normally terminate when it
reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a "D. This is because it read to the end-of-file of our
file ‘prepared.text’ in which we placed a message for ‘bill' with an editor program. We could also have
done

cat prepared.text | mail bill

since thecat command would then have written the text through the pipe to the standard input of the mail
command. When theat command completed it would have terminated, closing down the pipeline and the

On some older Unix systems tbeL or RuBouT key has the same effect. "stty all" will tell you the INTR key
value.

uUsD:4-8 An Introduction to the C shell

mail command would have received an end-of-file from it and terminated. Using a pipe here is more com-
plicated than redirecting input so we would more likely use the first form. These commands could also
have been stopped by sendingNrERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with the possi-
bility of continuing execution later. This is done by sendingrap signal via typing a "Z. This signal
causes all commands running on the terminal (usually one but more if a pipeline is executing) to become
suspended. The shell notices that the command(s) have been suspended, types ‘Stopped’ and then prompts
for a new command. The previously executing command has been suspended, but otherwise unaffected by
the sTopsignal. Any other commands can be executed while the original command remains suspended.
The suspended command can be continued usinig tenmand with no arguments. The shell will then
retype the command to remind you which command is being continued, and cause the command to resume
execution. Unless any input files in use by the suspended command have been changed in the meantime,
the suspension has no effect whatsoever on the execution of the command. This feature can be very useful
during editing, when you need to look at another file before continuing. An example of command suspen-
sion follows.

% mail harold

Someone just copied a big file into my directory and its name is
Z

Stopped

% Is

funnyfile

prog.c

prog.o

% jobs

[1] + Stopped mail harold
% fg

mail harold

funnyfile. Do you know who did it?

EOT

%

In this example someone was sending a message to Harold and forgot the name of the file he wanted to
mention. The mail command was suspended by typing "Z. When the shell noticed that the mail program
was suspended, it typed ‘Stopped’ and prompted for a new command. THewrdhenand was typed to

find out the name of the file. Thebscommand was run to find out which command was suspended. At

this time thefg command was typed to continue execution of the mail program. Input to the mail program
was then continued and ended with a "D which indicated the end of the message at which time the mail pro-
gram typed EOT. Th@bscommand will show which commands are suspended. The “Z should only be
typed at the beginning of a line since everything typed on the current line is discarded when a signal is sent
from the keyboard. This also happensirERRUPT, andQUIT signals. More information on suspending

jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to stop them
somewhat ungracefully. This can be done by sending theumrasignal, sent by typing a "\. This will usu-
ally provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the running program’s state when
it terminated due to theuiT signal. You can examine this file yourself, or forward information to the
maintainer of the program telling him/her where ¢bee fileis.

If you run background commands (as explained in section 2.6) then these commands will ignore
INTERRUPTandQuIT signals at the terminal. To stop them you must us&itheommand. See section 2.6
for an example.

An Introduction to the C shell usD:4-9

If you want to examine the output of a command without havingitenoff the screen as the output
of the

cat /etc/passwd
command will, you can use the command
more /etc/passwd

Themoreprogram pauses after each complete screenful and types ‘-——More—-"at which point you can hit a
space to get another screenful, a return to get another line, a ‘?’ to get some help on other commands, or a
‘g’ to end themoreprogram. You can also use more as a filter, i.e.

cat /etc/passwd | more

works just like the more simple more command above.

For stopping output of commands not involvimgreyou can use the S key to stop the typeout. The
typeout will resume when you hit "Q or any other key, but "Q is normally used because it only restarts the
output and does not become input to the program which is running. This works well on low-speed termi-
nals, but at 9600 baud it is hard to type "S and "Q fast enough to paginate the output nicely, and a program
like moreis usually used.

An additional possibility is to use the "O flush output character; when this character is typed, all out-
put from the current command is thrown away (quickly) until the next input read occurs or until the next
shell prompt. This can be used to allow a command to complete without having to suffer through the out-
put on a slow terminal; "O is a toggle, so flushing can be turned off by typing "O again while output is being
flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way in which it
operates. The remaining sections will go yet further into the internals of the shell, but you will surely want
to try using the shell before you go any further. To try it you can log isnt® and type the following
command to the system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to get onto the
system. Thus | would use ‘chsh bill /bin/cshYou only have to do this once; it takes effect at next
login. You are now ready to try usinggsh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system is ‘/bin/sh’.
In fact, much of the alve discussion is applicable to ‘/bin/sh’. The next section will introduce many fea-
tures particular tashso you should change your shelkcghbefore you begin reading it.

USsD:4-10 An Introduction to the C shell

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login, the shell is started by the system in floaredirectory and begins by reading com-
mands from a filecshrcin this directory. All shells which you may start during your terminal session will
read from this file. We will later see what kinds of commands are usefully placed there. For now we need
not have this file and the shell does not complain about its absence.

A login shell executed after you login to the system, will, after it reads commandsdsbme,read
commands from a fildogin also in your home directory. This file contains commands which you wish to
do each time you login to thenix system. My.login file looks something like:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${promptlusers" ; users
alias ts\
“set noglob ; eval “tset —s —m dialup:c100rv4pna —m plugboard:?hp2621nl **;
ts; stty intr "C kill "U crt
set time=15 history=10
msgs —f
if (e $mail) then
echo "${prompt}mail"
mail
endif

This file contains several commands to be executaehbyeach time | login. The first issetcom-
mand which is interpreted directly by the shell. It sets the shell vaigimeseofwhich causes the shell to
not log me off if | hit "D. Rather, | use tHegoutcommand to log off of the system. By setting thail
variable, | ask the shell to watch for incoming mail to me. Every 5 minutes the shell looks for this file and
tells me if more mail has arrived there. An alternative to this is to put the command

biff y

in place of thisset; this will cause me to be notified immediately when mail arrives, and to be shown the
first few lines of the new message.

Next | set the shell variable ‘time’ to ‘15’ causing the shell to automatically print out statistics lines
for commands which execute for at least 15 secondswfime. The variable ‘history’ is set to 10 indicat-
ing that | want the shell to remember the last 10 commands | typehistisy list (described later).

| create aralias “ts” which executes aset(1) command setting up the modes of the terminal. The
parameters ttsetindicate the kinds of terminal which | usually use when not on a hardwired port. | then
execute “ts” and also use tretty command to change the interrupt character to "C and the line kill charac-
ter to "U.

| then run the ‘msgs’ program, which provides me with any system messages which | have not seen
before; the ‘—f" option here prevents it from telling me anything if there are no new messages. Finally, if
my mailbox file exists, then | run the ‘mail’ program to process my mail.

When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processindogin file and begin
reading commands from the terminal, prompting for each with ‘% '. When | log off (by givinigghat
command) the shell will print ‘logout’ and execute commands from the file ‘.logout’ if it exists in my home
directory. After that the shell will terminate andix will log me off the system. If the system is not going
down, | will receive a new login message. In any case, after the ‘logout’ message the shell is committed to
terminating and will take no further input from my terminal.

2.2. Shell variables

The shell maintains a set wdriables. We saw abovéhe variabledistoryandtimewhich had values
‘10’ and ‘15'. In fact, each shell variable has as value an array of zero osstriags. Shell variables may

An Introduction to the C shell usD:4-11

be assigned values by the set command. It has several forms, the most useful of which waegivemdab
is

set name=value

Shell variables may be used to store values which are to be used in commands later through a substi-
tution mechanism. The shell variables most commonly referenced are, however, those which the shell itself
refers to. By changing the values of these variables one can directly affect the behavior of the shell.

One of the most important variables is the varigialth. This variable contains a sequence of direc-
tory names where the shell searches for commandsséittemmand with no arguments shows the value
of all variables currently defined (we usually say)in the shell. The default value for path will be shown
by setto be

% set

argv 0

cwd Jusr/bill
home fusr/bill
path (- usr/ucb /bin /ustr/bin)
prompt %

shell /bin/csh
status 0

term c100rv4pna
user bill

%

This output indicates that the variable path points to the current directory ‘.’ and then ‘/usr/ucb’, ‘/bin’ and
‘lusr/bin’. Commands which you may write might be in ‘.’ (usually one of your directories). Commands
developed at Berkeley, live in ‘/usr/ucb’ while commands developed at Bell Laboratories live in ‘/bin” and
‘lusr/bin’.

A number of locally developed programs on the system live in the directory ‘/usr/local’. If we wish
that all shells which we invoke to have access to these new programs we can place the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)
in our file.cshrcin our home directory. Try doing this and then logging out and back in and do
set

again to see that the value assignepitithhas changed.

One thing you should be aware of is that the shell examines each directory which you insert into your
path and determines which commands are contained there. Except for the current directory ‘., which the
shell treats specially, this means that if commands are added to a directory in your search path after you
have started the shell, they will not necessarily be found by the shell. If you wish to use a command which
has been added in this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will find the
newly added command. Since the shell has to look in the current directory ‘. on each command, placing it
at the end of the path specification usually works equivalently and reduces overhead.

Other useful built in variables are the variabtamewhich shows your home directorgyd which
contains your current working directory, the variableoreeofwhich can be set in youloginfile to tell the
shell not to exit when it receives an end-of-file from a terminal (as described above). The variable
‘ignoreeof’ is one of several variables which the shell does not care about the value of, only whether they
aresetor unset. Thus to set this variable you simply do

T Another directory that might interest you is /usr/new, which contains many useful user-contributed pro-
grams provided with Berkeley Unix.

usD:4-12 An Introduction to the C shell

set ignoreeof
and to unset it do
unset ignoreeof

These give the variable ‘ignoreeof’ no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variablelebberandmail. The metasyn-
tax

> filename

which redirects the standard output of a command will overwrite and destroy the previous contents of the
named file. In this way you may accidentally overwrite a file which is valuable. If you would prefer that
the shell not overwrite files in this way you can

set noclobber

in your.loginfile. Then trying to do
date > now

would cause a diagnostic if ‘now’ existed already. You could type
date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>I' is a special metasyntax indicating that
clobbering the file is ok.T

2.3. The shell’s history list

The shell can maintainfastory listinto which it places the words of previous commands. It is pos-
sible to use a notation to reuse commands or words from commands in forming new commands. This
mechanism can be used to repeat previous commands or to correct minor typing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechanism of the
shell. In this example we have a very simple C program which has a bug (or two) in it in the file ‘bug.c’,
which we ‘cat’ out on our terminal. We then try to run the C compiler on it, referring to the file again as
‘1$’, meaning the last argument to the previous command. Here the ‘!" is the history mechanism invocation
metacharacter, and the ‘$’ stands for the last argument, by analogy to ‘$’ in the editor which stands for the
end of the line. The shell echoed the command, as it would have been typed without use of the history
mechanism, and then executed it. The compilation yielded error diagnostics so we now run the editor on
the file we were trying to compile, fix the bug, and run the C compiler again, this time referring to this com-
mand simply as ‘!c’, which repeats the last command which started with the letter ‘c’. If there were other
commands starting with ‘c’ done recently we could have said ‘lcc’ or even ‘lcc:p’ which would have
printed the last command starting with ‘cc’ without executing it.

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there still was a bug,
ran the editor again. After fixing the program we ran the C compiler again, but tacked onto the command
an extra ‘—o bug’ telling the compiler to place the resultant binary in the file ‘bug’ rather than ‘a.out’. In
general, the history mechanisms may be used anywhere in the formation of new commands and other char-
acters may be placed before and after the substituted commands.

We then ran the ‘size’ command to see how large the binary program images we have created were,
and then an ‘Is -I' command with the same argument list, denoting the argument list **’. Finally we ran the
program ‘bug’ to see that its output is indeed correct.

To make a numbered listing of the program we ran the ‘num’ command on the file ‘bug.c’. In order
to compress out blank lines in the output of ‘num’ we ran the output through the filter ‘ssp’, but misspelled
it as spp. To correct this we used a shell substitute, placing the old text and new text between ' characters.
This is similar to the substitute command in the editor. Finally, we repeated the same command with ‘1V",

1tThe space between the ‘" and the word ‘now’ is critical here, as ‘Inow’ would be an invocatiorhdttimg
mechanism, and have a totally different effect.

An Introduction to the C shell UsD:4-13

% cat bug.c
main()

{
}

%cc!$
cc bug.c
"bug.c", line 4: newline in string or char constant
"bug.c”, line 5: syntax error
% ed !$
ed bug.c
29
4s/);"&Ip
printf("hello");

printf("hello);

w
30
q
% lc
cc bug.c
% a.out
hello% le
ed bug.c
30
4s/lo/lo\\n/p
printf("hello\n");

w
32
q
% !c —o bug
cc bug.c —o bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% Is | I*
Is -l a.out bug
—rwxr—xr-x 1 bill 3932 Dec 19 09:41 a.out
—rwxr—xr=x 1 bill 3932 Dec 19 09:42 bug
% bug
hello
% num bug.c | spp
spp: Command not found.
% “spp”ssp
num bug.c | ssp

1 main()

3 {

4 printf("hello\n");

5}
% | lpr
num bug.c | ssp | Ipr
%

but sent its output to the line printer.

usD:4-14 An Introduction to the C shell

There are other mechanisms available for repeating commandshisitiey command prints out a
number of previous commands with numbers by which they can be referenced. There is a way to refer to a
previous command by searching for a string which appeared in it, and there are other, less useful, ways to
select arguments to include in a new command. A complete description of all these mechanisms is given in
the C shell manual pages in theix Programmer’s Manual.

2.4. Aliases

The shell has anlias mechanism which can be used to make transformations on input commands.
This mechanism can be used to simplify the commands you type, to supply default arguments to com-
mands, or to perform transformations on commands and their arguments. The alias facility is similar to a
macro facility. Some of the features obtained by aliasing can be obtained also using shell command files,
but these take place in another instance of the shell and cannot directly affect the current shells environment
or involve commands such adwhich must be done in the current shell.

As an example, suppose that there is a new version of the mail program on the system called ‘new-
mail’ you wish to use, rather than the standard mail program which is called ‘mail’. If you place the shell
command

alias mail newmail
in your.cshrcfile, the shell will transform an input line of the form
mail bill

into a call on ‘newmail’. More generally, suppose we wish the command ‘Is’ to always show sizes of files,
that is to always do ‘-s’. We can do

aliasIs Is —s
or even

alias dir Is —s
creating a new command syntax ‘dir’ which does an ‘Is —-s'. If we say

dir “bill
then the shell will translate this to

Is —s /mnt/bill

Thus thealias mechanism can be used to provide short names for commands, to provide default argu-

ments, and to define new short commands in terms of other commands. It is also possible to define aliases

which contain multiple commands or pipelines, showing where the arguments to the original command are
to be substituted using the facilities of the history mechanism. Thus the definition

alias cd ‘cd \I*; Is”

would do anls command after each change directod)command. We enclosed the entire alias definition

in ’ characters to prevent most substitutions from occurring and the character *;’ from being recognized as
a metacharacter. The ‘" here is escaped with a '\’ to prevent it from being interpreted when the alias com-
mand is typed in. The \!*' here substitutes the entire argument list to the pre-akasiogimand, with-

out giving an error if there were no arguments. The ‘;’ separating commands is used here to indicate that
one command is to be done and then the next. Similarly the definition

alias whois “grep \I" /etc/passwd’

defines a command which looks up its first argument in the password file.

Warning: The shell currently reads theshrcfile each time it starts up. If you place a large number
of commands there, shells will tend to start slowly. A mechanism for saving the shell environment after
reading thecshrcfile and quickly restoring it is under development, but for now you should try to limit the
number of aliases you have to a reasonable number... 10 or 15 is reasonable, 50 or 60 will cause a

An Introduction to the C shell USD:4-15

noticeable delay in starting up shells, and make the system seem sluggish when you execute commands
from within the editor and other programs.

2.5. More redirection; >> and >&
There are a few more notations useful to the terminal user which have not been introduced yet.

In addition to the standard output, commands also hagl@&gnostic outputwhich is normally
directed to the terminal even when the standard output is redirected to a file or a pipe. It is occasionally
desirable to direct the diagnostic output along with the standard output. For instance if you want to redirect
the output of a long running command into a file and wish to have a record of any error diagnostic it pro-
duces you can do

command >& file

The >&' here tells the shell to route both the diagnostic output and the standard output into ‘file’. Simi-
larly you can give the command

command | & Ipr

to route both standard and diagnostic output through the pipe to the line printer diaeinon
Finally, it is possible to use the form

command >> file

to place output at the end of an existing file.t

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands sepa-
rated by semicolons, a singlab is created by the shell consisting of these commands together as a unit.
Single commands without pipes or semicolons create the simplest jobs. Usually, every line typed to the
shell creates a job. Some lines that create jobs (one per line) are

sort < data
Is —s | sort —n | head -5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is starteackgraund
job. This means that the shell does not wait for it to complete but immediately prompts and is ready for
another command. The job ruirsthe backgroundt the same time that normal jobs, callectground
jobs, continue to be read and executed by the shell one at a time. Thus

du > usage &

would run thedu program, which reports on the disk usage of your working directory (as well as any direc-
tories below it), put the output into the file ‘usage’ and return immediately with a prompt for the next com-
mand without out waiting fodu to finish. Thedu program would continue executing in the background

until it finished, even though you can type and execute more commands in the mean time. When a back-
ground job terminates, a message is typed by the shell just before the next prompt telling you that the job
has completed. In the following example tthe job finishes sometime during the execution of rthesl
command and its completion is reported just before the prompt afteaiheb is finished.

+ A command of the form
command >&! file
exists, and is used wheoclobberis set andile already exists.
T If noclobberis set, then an error will resultfife does not exist, otherwise the shell will crefitif it doesn't
exist. A form
command >>! file
makes it not be an error for file to not exist wheklobberis set.

USD:4-16 An Introduction to the C shell

% du > usage &

[1] 503

% mail bill

How do you know when a background job is finished?
EOT

[1] - Done du > usage

%

If the job did not terminate normally the ‘Done’ message might say something else like ‘Killed’. If you
want the terminations of background jobs to be reported at the time they occur (possibly interrupting the
output of other foreground jobs), you can setrth#fy variable. In the previous example this would mean

that the ‘Done’ message might have come right in the middle of the message to Bill. Background jobs are
unaffected by any signals from the keyboard likesh@p, INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell remembers
the command names, arguments anchtbeess numbersf all commands in the job as well as the working
directory where the job was started. Each job in the table is either runrtimg foregroundvith the shell
waiting for it to terminate, running the backgroundor suspendedOnly one job can be running in the
foreground at one time, but several jobs can be suspended or running in the background at once. As each
job is started, it is assigned a small identifying number callejptheumberwhich can be used later to
refer to the job in the commands described below. Job numbers remain the same until the job terminates
and then are re-used.

When a job is started in the backgound using ‘&', its number, as well as the process numbers of all
its (top level) commands, is typed by the shell before prompting you for another command. For example,

% Is —s | sort —n > usage &
[2] 2034 2035
%

runs the ‘Is’ program with the ‘=s’ options, pipes this output into the ‘sort’ program with the ‘-—n’ option
which puts its output into the file ‘usage’. Since the ‘&’ was at the end of the line, these two programs
were started together as a background job. After starting the job, the shell prints the job number in brackets
(2 in this case) followed by the process number of each program started in the job. Then the shell immedi-
ates prompts for a new command, leaving the job running simultaneously.

As mentioned in section 1.8, foreground jobs becsmspendedy typing “Z which sends aToP
signal to the currently running foreground job. A background job can become suspended by s the
command described below. When jobs are suspended they merely stop any further progress until started
again, either in the foreground or the backgound. The shell notices when a job becomes stopped and
reports this fact, much like it reports the termination of background jobs. For foreground jobs this looks
like

% du > usage
Z

Stopped

%

‘Stopped’ message is typed by the shell when it notices thautheogram stopped. For background jobs,
using thestopcommand, it is

% sort usage &

[1] 2345

% stop %1

[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you are doing
(execute other commands) and then return to the suspended job. Also, foreground jobs can be suspended
and then continued as background jobs usingotheommand, allowing you to continue other work and

An Introduction to the C shell usD:4-17

stop waiting for the foreground job to finish. Thus

% du > usage
Z

Stopped

% bg

[1] du > usage &
%

starts ‘du’ in the foreground, stops it before it finishes, then continues it in the background allowing more
foreground commands to be executed. This is especially helpful when a foreground job ends up taking
longer than you expected and you wish you had started it in the backgound in the beginning.

All job controlcommands can take an argument that identifies a particular job. All job name argu-
ments begin with the character ‘%’, since some of the job control commands also accept process numbers
(printed by thepscommand.) The default job (when no argument is given) is callecutirentjob and is
identified by a '+’ in the output of thebscommand, which shows you which jobs you have. When only
one job is stopped or running in the background (the usual case) it is always the current job thus no argu-
ment is needed. If a job is stopped while running in the foreground it becomesritéet job and the
existing current job becomes theeviousjob — identified by a ‘=’ in the output ¢bbs. When the current
job terminates, the previous job becomes the current job. When given, the argument is either ‘%—’ (indicat-
ing the previous job); ‘%#’, where # is the job number; ‘Y%pref’ where pref is some unique prefix of the
command name and arguments of one of the jobs; or ‘%?’ followed by some string found in only one of the
jobs.

Thejobscommand types the table of jobs, giving the job number, commands and status (‘Stopped’ or
‘Running’) of each backgound or suspended job. With the ‘-I' option the process numbers are also typed.

% du > usage &

[1] 3398

% Is —s | sort —n > myfile &

[2] 3405

% mail bill

Z

Stopped

% jobs

[1] = Running du > usage
[2] Running Is —s | sort —n > myfile
[3] + Stopped mail bill

% fg %ls

Is —s | sort —n > myfile

% more myfile

Thefg command runs a suspended or background job in the foreground. It is used to restart a previ-
ously suspended job or change a background job to run in the foreground (allowing signals or input from
the terminal). In the alve xample we usedg to change the ‘Is’ job from the background to the fore-
ground since we wanted to wait for it to finish before looking at its output file.bltemmand runs a
suspended job in the background. It is usually used after stopping the currently running foreground job
with the sTopsignal. The combination of th&ropsignal and thddg command changes a foreground job
into a background job. Theopcommand suspends a background job.

Thekill command terminates a background or suspended job immediately. In addition to jobs, it may
be given process numbers as arguments, as printgsl. Gyhus, in the example above, the runnihgcom-
mand could have been terminated by the command

% kill %1
[1] Terminated du > usage
%

USD:4-18 An Introduction to the C shell

The notify command (not the variable mentioned earlier) indicates that the termination of a specific
job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically stopped.
When such a job is then run in the foreground, input can be given to the job. If desired, the job can be run
in the background again until it requests input again. This is illustrated in the following sequence where the
‘s’ command in the text editor might take a long time.

% ed bigfile
120000
1,$s/thisword/thatword/
Z
Stopped
% bg
[1] ed bigfile &
%
. some foreground commands
[1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000

q
%

So after the ‘s’ command was issued, the ‘ed’ job was stopped with “Z and then put in the background
usingbg. Some time later when the ‘s’ command was finisleedried to read another command and was
stopped because jobs in the backgound cannot read from the termindy cbmemand returned the ‘ed’

job to the foreground where it could once again accept commands from the terminal.

The command
stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to the terminal.
This prevents messages from background jobs from interrupting foreground job output and allows you to
run a job in the background without losing terminal output. It also can be used for interactive programs that
sometimes have long periods without interaction. Thus each time it outputs a prompt for more input it will
stop before the prompt. It can then be run in the foreground fgsimgpre input can be given and, if neces-

sary stopped and returned to the background. 3ttyscommand might be a good thing to put in your
Jogin file if you do not like output from background jobs interrupting your work. It also can reduce the
need for redirecting the output of background jobs if the output is not very big:

% stty tostop
% wc hugefile &
[1] 10387
% ed text
... some time later
q
[1] Stopped (tty output) wc hugefile
% fg wc
wc hugefile
13371 30123 302577
% stty —tostop

Thus after some time the ‘wc’ command, which counts the lines, words and characters in a file, had one
line of output. When it tried to write this to the terminal it stopped. By restarting it in the foreground we
allowed it to write on the terminal exactly when we were ready to look at its output. Programs which
attempt to change the mode of the terminal will also block, whether dostopis set, when they are not

An Introduction to the C shell UsD:4-19

in the foreground, as it would be very unpleasant to have a background job change the state of the terminal.

Since thgobs command only prints jobs started in the currently executing shell, it knows nothing
about background jobs started in other login sessions or within shell fileppsTha be used in this case
to find out about background jobs not started in the current shell.

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a partietdeking directory. The ‘change direc-
tory’ commandchdir (its short formcd may also be used) changes the working directory of the shell, that
is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files related to
that project in that directory. The ‘make directory’ commamédir, creates a new directory. Thevd
(‘print working directory’) command reports the absolute pathname of the working directory of the shell,
that is, the directory you are located in. Thus in the example below:

% pwd

{usr/bill

% mkdir newpaper
% chdir newpaper
% pwd
[usr/bill/newpaper
%

the user has created and moved to the directewpaper.where, for example, he might place a group of
related files.

No matter where you have moved to in a directory hierarchy, you can return to your ‘home’ login
directory by doing just

cd
with no arguments. The name ‘.." always means the directayedbe current one in the hierarchy, thus
cd ..

changes the shell’'s working directory to the one directtyvakhe current one. The name ‘.’ can be used
in any pathname, thus,

cd ../programs

means change to the directory ‘programs’ contained in the directowe #ie current one. If you have
several directories for different projects under, say, your home directory, this shorthand notation permits
you to switch easily between them.

The shell always remembers the pathname of its current working directory in the vanidblEhe
shell can also be requested to remember the previous directory when you change to a new working direc-
tory. If the ‘push directory’ commanpushdis used in place of thed command, the shell saves the name
of the current working directory ondarectory stackbefore changing to the new one. You can see this list
at any time by typing the ‘directories’ commaatics.

% pushd newpaper/references
“Inewpaper/references ~

% pushd /ustr/lib/tmac

/usrl/lib/tmac “/newpaper/references
% dirs

usr/lib/tmac “/newpaper/references ~
% popd

“Inewpaper/references ~

% popd

USsD:4-20 An Introduction to the C shell

%

The list is printed in a horizontal line, reading left to right, with a tilde (7) as shorthand for your home direc-
tory—in this case ‘/usr/bill’. The directory stack is printed whenever there is more than one entry on it and
it changes. It is also printed bydirs command. Dirs is usually faster and more informative thgwd

since it shows the current working directory as well as any other directories remembered in the stack.

The pushdcommand with no argument alternates the current directory with the first directory in the
list. The ‘pop directorypopdcommand without an argument returns you to the directory you were in prior
to the current one, discarding the previous current directory from the stack (forgetting it). Jgpdsgv-
eral times in a series takes you backward through the directories you had been in (changedgb) by
command. There are other optionpteshdandpopdto manipulate the contents of the directory stack and
to change to directories not at the top of the stack; semsktimanual page for details.

Since the shell remembers the working directory in which each job was started, it warns you when
you might be confused by restarting a job in the foreground which has a different working directory than
the current working directory of the shell. Thus if you start a background job, then change the shell's work-
ing directory and then cause the background job to run in the foreground, the shell warns you that the work-
ing directory of the currently running foreground job is different from that of the shell.

% dirs —I
/mnt/bill

% cd myproject
% dirs
“Imyproject

% ed prog.c
1143

Z

Stopped

% cd ..

% Is

myproject
textfile

% fg

ed prog.c (wd: “/myproject)

This way the shell warns you when there is an implied change of working directory, even though no cd
command was issued. In theocake example the ‘ed’ job was still in ‘/mnt/bill/project’ even though the
shell had changed to ‘/mnt/bill’. A similar warning is given when such a foreground job terminates or is
suspended (using tleFopsignal) since the return to the shell again implies a change of working directory.

% fg

ed prog.c (wd: “/myproject)
.. . after some editing

q

(wd now: ")

%

These messages are sometimes confusing if you use programs that change their own working directories,
since the shell only remembers which directory a job is started in, and assumes it stays there. The ‘-I
option ofjobswill type the working directory of suspended or background jobs when it is different from the
current working directory of the shell.

2.8. Useful built-in commands
We now give a few of the useful built-in commands of the shell describing how they are used.

The alias command described abe isused to assign new aliases and to show the existing aliases.
With no arguments it prints the current aliases. It may also be given only one argument such as

An Introduction to the C shell usD:4-21

alias Is

to show the current alias for, e.g., ‘Is’.

The echocommand prints its arguments. It is often usedhigll scriptsor as an interactive com-
mand to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with the history
events can be used to reference previous events which are difficult to reference using the contextual mecha-
nisms introduced above. There is also a shell variable gaitedpt. By placing a ‘' character in its value
the shell will there substitute the number of the current command in the history list. You can use this num-
ber to refer to this command in a history substitution. Thus you could

set prompt="\! %~
Note that the ‘' character had to bscapedere even within “’ characters.

Thelimit command is used to restrict use of resources. With no arguments it prints the current limi-
tations:

cputime unlimited
filesize unlimited
datasize 5616 kbytes
stacksize 512 kbytes

coredumpsize unlimited
Limits can be set, e.g.:
limit coredumpsize 128k

Most reasonable units abbreviations will work; seecfemanual page for more details.
Thelogoutcommand can be used to terminate a login shell whicighasseofset.

The rehashcommand causes the shell to recompute a table of where commands are located. This is
necessary if you add a command to a directory in the current shell’'s search path and wish the shell to find it,
since otherwise the hashing algorithm may tell the shell that the command wasn't in that directory when the
hash table was computed.

The repeatcommand can be used to repeat a command several times. Thus to make 5 copies of the
file onein the filefiveyou could do

repeat 5 cat one >> five

Thesetenncommand can be used to set variables in the environment. Thus
setenv TERM adm3a

will set the value of the environment varialolrm to ‘adm3a’. A user programrintenvexists which will
print out the environment. It might then show:

% printenv

HOME=/usr/hill

SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER=Dill

%

Thesourcecommand can be used to force the current shell to read commands from a file. Thus
source .cshrc

can be used after editing in a change tadkbrcfile which you wish to take effect right away.

uUsD:4-22 An Introduction to the C shell

The time command can be used to cause a command to be timed no matter howrRutiche it
takes. Thus

% time cp /etc/rc /usr/bill/rc
0.0u 0.1s 0:01 8% 2+1k 3+2io 1pf+Ow
% time wc /etc/rc /usr/bill/rc

52 178 1347 /etc/rc

52 178 1347 /usr/bill/rc

104 356 2694 total
0.1u 0.1s 0:00 13% 3+3k 5+3io0 7pf+0w
%

indicates that thep command used a negligible amount of user time (u) and about 1/10th of a system time
(s); the elapsed time was 1 second (0:01), there was an average memory usage of 2k bytes of program space
and 1k bytes of data space over the cpu time involved (2+1k); the program did three disk reads and two disk
writes (3+2i0), and took one page fault and was not swapped (1pf+Ow). The word count conmoand

the other hand used 0.1 seconds of user time and 0.1 seconds of system time in less than a second of
elapsed time. The percentage ‘13%’ indicates that over the period when it was active the command ‘wc’
used an average of 13 percent of the availablecycles of the machine.

The unalias and unsetcommands can be used to mm aliases and variable definitions from the
shell, andunsetenremoves variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more features of the
shell to be discussed here, and all features of the shell are discussed in its manual pages. One useful feature
which is discussed later is tliereachbuilt-in command which can be used to run the same command
sequence with a number of different arguments.

If you intend to us@Nix a lot you should look through the rest of this document and the csh manual
pages (sectionl) to become familiar with the other facilities which are available to you.

An Introduction to the C shell UsD:4-23

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and execute com-
mands from these files, which are calll scripts. We here detail those features of the shell useful to
the writers of such scripts.

3.2. Make

It is important to first note what shell scripts a@ useful for. There is a program calledtake
which is very useful for maintaining a group of related files or performing sets of operations on related
files. For instance a large program consisting of one or more files can have its dependencies described in a
makefilewhich contains definitions of the commands used to create these different files when changes
occur. Definitions of the means for printing listings, cleaning up the directory in which the files reside, and
installing the resultant programs are easily, and most appropriately placedrimak@8le. This format is
superior and preferable to maintaining a group of shell procedures to maintain these files.

Similarly when working on a documentnaakefilemay be created which defines how different ver-
sions of the document are to be created and which optionsfbbr troff are appropriate.

3.3. Invocation and the argv variable
A cshcommand script may be interpreted by saying

% csh script ...

wherescriptis the name of the file containing a groucsificommands and “..." is replaced by a sequence

of arguments. The shell places these arguments in the vasigvand then begins to read commands

from the script. These parameters are then available through the same mechanisms which are used to refer-
ence any other shell variables.

If you make the file ‘script’ executable by doing
chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a ‘#’ character) then a
‘/bin/csh’ will automatically be invoked to execute ‘script’ when you type

script

If the file does not begin with a ‘#’ then the standard shell ‘/bin/sh’ will be used to execute it. This allows
you to convert your older shell scripts to @sbat your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the input line is
parsed into distinct commands. Before each command is executed a mechanism\kariabkessubstitu-
tion is done on these words. Keyed by the character ‘$’ this substitution replaces the names of variables by
their values. Thus

echo $argv

when placed in a command script would cause the current value of the vargabte be echoed to the
output of the shell script. It is an error fgvto be unset at this point.

A number of notations are provided for accessing components and attributes of variables. The nota-
tion
$?name

expands to ‘1’ if name isetor to ‘0’ if name is noset. It is the fundamental mechanism used for checking
whether particular variables have been assigned values. All other forms of reference to undefined variables
cause errors.

uUsD:4-24 An Introduction to the C shell

The notation
$#tname
expands to the number of elements in the variasatee. Thus

% set argv=(a b c)
% echo $?argv

1

% echo $#argv

3

% unset argv

% echo $?argv

0

% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus
$argv[1]
gives the first component afgv or in the example adve‘a’. Similarly
$argv[$targv]
would give ‘c’, and
$argv[1-2]
would give ‘a b’. Other notations useful in shell scripts are
$n
wheren is an integer as a shorthand for
$argvjn]
then th parameter and
&
which is a shorthand for
$argv
The form
$$

expands to the process number of the current shell. Since this process number is unique in the system it can
be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell’s standard input (not the script it
is reading). This is useful for writing shell scripts that are interactive, reading commands from the terminal,
or even writing a shell script that acts as a filter, reading lines from its input file. Thus the sequence

echo 'yes or no?\c’

set a=($<)
would write out the prompt ‘yes or no?’ without a newline and then read the answer into the variable ‘a’.
In this case ‘$#a’ would be ‘0’ if either a blank line or end-of-file ("D) was typed.

One minor difference betweenn$and ‘$argvin] should be noted here. The form ‘$argy] will
yield an error ifn is not in the range ‘1-$#argv’ while ‘$n’ will never yield an out of range subscript error.

An Introduction to the C shell USD:4-25

This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form ‘n—’; if there are
less tham components of the given variable then no words are substituted. A range of the form ‘m-n’
likewise returns an empty vector without giving an error wineexceeds the number of elements of the
given variable, provided the subscnpis in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate expressions in
the shell based on the values of variables. In fact, all the arithmetic operations of the language C are avail-

able in the shell with the same precedence that they have in C. In particular, the operations ‘=="and ‘1=’
compare strings and the operators ‘&&’ and ‘| | implement the boolean and/or operations. The special
operators ‘=" and ‘I’ are similar to ‘=="and ‘=" except that the string on the right side can have pattern

matching characters (like *, ? or []) and the test is whether the string on the left matches the pattern on the
right.

The shell also allows file enquiries of the form
-7 filename
where ?’ is replace by a number of single characters. For instance the expression primitive
—e filename

tell whether the file ‘filename’ exists. Other primitives test for read, write and execute access to the file,
whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form ‘{ command
} which returns true, i.e. ‘1’ if the command succeeds exiting normally with exit status 0, or ‘0" if the com-
mand terminates abnormally or with exit status non-zero. If more detailed information about the execution
status of a command is required, it can be executed and the variable ‘$status’ examined in the next com-
mand. Since ‘$status’ is set by every command, it is very transient. It can be saved if it is inconvenient to
use it only in the single immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and some of its con-
trol structure follows:

USD:4-26 An Introduction to the C shell

% cat copyc

#

Copyc copies those C programs in the specified list
to the directory “/backup if they differ from the files
already in “/backup

#

set noglob

foreach i ($argv)

if ($i " *.c) continue # not a .c file so do nothing

if (! —r “/backup/$i:t) then
echo $i:t not in backup... not cp\'ed
continue

endif

cmp —s $i “/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp $i “/backup/$i:t
endif
end

This script makes use of thHereachcommand, which causes the shell to execute the commands
between thdoreachand the matchingndfor each of the values given between ‘(" and ‘)’ with the named
variable, in this case ‘i’ set to successive values in the list. Within this loop we may use the command
breakto stop executing the loop amdntinueto prematurely terminate one iteration and begin the next.
After theforeachloop the iteration variable {n this case) has the value at the last iteration.

We set the variablaoglob here to prevent filename expansion of the membeesg¥ This is a
good idea, in general, if the arguments to a shell script are filenames which have already been expanded or
if the arguments may contain filename expansion metacharacters. It is also possible to quote each use of a
‘$’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form
if (expression jhen
command
endif

The placement of the keywords heradt flexible due to the current implementation of the shell.t
The shell does have another form of the if statement of the form

if (expression fommand

which can be written
TThe following two formats are not currently acceptable to the shell:
if (expression) #Von't work!
then
command
endif

and

if (expression }hen commandendif # Won't work

An Introduction to the C shell uUsD:4-27

if (expression)\
command

Here we have escaped the newline for the sake of appearance. The command must not involve ‘|’, ‘&’ or
;" and must not be another control command. The second form requires the finairfkhedliately pre-
cede the end-of-line.

The more general statements ave also admit a sequence @fe-if pairs followed by a singlelse
and arendif,e.g.:

if (expression jhen
commands

else if(expression jhen
commands

else
commands
endif

Another important mechanism used in shell scripts is the *:" modifier. We can use the modifier “:r’
here to extract a root of a filename or ‘e’ to extractdkinsion. Thus if the variable has the value
‘‘mnt/foo.bar’ then

% echo $i $ir $ice
/mnt/foo.bar /mnt/foo bar
%

shows how the “:r' modifier strips off the trailing ‘.bar’ and the the “:e’ modifier leaves only the ‘bar'.
Other modifiers will take off the last component of a pathname leaving the head ‘:h’ or all but the last com-
ponent of a pathname leaving the tail “:t’. These modifiers are fully described éshtheanual pages in

the User’s Reference Manual. It is also possible to usedimmand substitutiomechanism described in

the next major section to perform modifications on strings to then reenter the shell's environment. Since
each usage of this mechanism involves the creation of a new process, it is much more expensive to use than
the modification mechanism.¥ Finally, we note that the character ‘#’ lexically introduces a shell com-
ment in shell scripts (but not from the terminal). All subsequent characters on the input line after a ‘#" are
discarded by the shell. This character can be quoted using “’ or ‘\' to place it in an argument word.

3.7. Other control structures
The shell also has control structurdsile andswitchsimilar to those of C. These take the forms

while (expression)
commands
end

and

T Itis also important to note that the current implementation of the shell limits the number of ‘' modifiers on a
‘$’ substitution to 1. Thus

% echo $i $i:h:t
la/blc /a/b:t
%

does not do what one would expect.

USD:4-28 An Introduction to the C shell

switch (word)

casestrl:
commands
breaksw

casestrn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual sectiondsh. C programmers should note that we bseakswto exit from a
switchwhile breakexits awhile or foreachloop. A common mistake to make @shscripts is to uséreak
rather tharbreakswin switches.

Finally, cshallows agotostatement, with labels looking like they do in C, i.e.:

loop:
commands
gotoloop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which is running
the script. This is different from previous shells running unuex. It allows shell scripts to fully partici-
pate in pipelines, but mandates extra notation for commands which are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an example,
consider this script which runs the editor to delete leading blanks from the lines in each argument file:

% cat deblank

deblank —— remveleading blanks
foreach i ($argv)

ed - $i << "EOF’

1,8s/ ¥

w

q

"EOF

end

%

The notation ‘<< "EOF"’ means that the standard input foetteommand is to come from the text in the

shell script file up to the next line consisting of exactly “EOF". The fact that the ‘EOF’ is enclosed in "’
characters, i.e. quoted, causes the shell to not perform variable substitution on the intervening lines. In gen-
eral, if any part of the word following the ‘<<’ which the shell uses to terminate the text to be given to the
command is quoted then these substitutions will not be performed. In this case since we used the form
‘1,$’ in our editor script we needed to insure that this ‘$’ was not variable substituted. We could also have
insured this by preceding the ‘$’ here with a ‘\', i.e.:

1\$s/ 1*//

but quoting the ‘EOF’ terminator is a more reliable way of achieving the same thing.

An Introduction to the C shell USsD:4-29

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script so
that we can clean up these files. We can then do

onintr label

wherelabelis a label in our program. If an interrupt is received the shell will do a ‘goto label’ and we can
removethe temporary files and then do exit command (which is built in to the shell) to exit from the
shell script. If we wish to exit with a non-zero status we can do

exit(1)

e.g. to exit with status ‘1’.

3.10. What else?

There are other features of the shell useful to writers of shell procedurescerfimseand echo
options and the relateely and—x command line options can be used to help trace the actions of the shell.
The —n option causes the shell only to read commands and not to execute them and may sometimes be of
use.

One other thing to note is theghwill not execute shell scripts which do not begin with the character
‘#', that is shell scripts that do not begin with a comment. Similarly, the ‘/bin/sh’ on your system may well
defer to ‘csh’ to interpret shell scripts which begin with ‘#’. This allows shell scripts for both shells to live
in harmony.

an

There is also another quotation mechanism using " which allows only some of the expansion mech-
anisms we have so far discussed to occur on the quoted string and serves to make this string into a single
word as ‘"’ does.

USD:4-30 An Introduction to the C shell

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use th@reachcontrol structure at the terminal to aid in performing a
number of similar commands. For instance, there were at one point three shells in use on thexCory
system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the number of persons using each shell
one could have issued the commands

% grep —c csh$ /etc/passwd
27

% grep —c nsh$ /etc/passwd
128

% grep —c -V sh$ /etc/passwd
430

%

Since these commands are very similar we carfiausachto do this more easily.

% foreach i ("sh$” “csh$” "-v sh$")
? grep —c $i /etc/passwd

? end

27

128

430

%

Note here that the shell prompts for input with *? * when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You can, for
example, do

% set a=('ls")
% echo $a
csh.n csh.rm
% ls

csh.n

csh.rm

% echo $#a
2

%

The setcommand here gave the variabla list of all the filenames in the current directory as value. We
can then iterate over these names to perform any chosen function.

The output of a command within ™ characters is converted by the shell to a list of words. You can
also place the "’ quoted string within """ characters to take each (non-empty) line as a component of the
variable; preventing the lines from being split into words at blanks and tabs. A modifier :x’ exists which
can be used later to expand each component of the variable into another variable splitting it into separate
words at embedded blanks and tabs.

4.2. Braces/{ ... } in argument expansion

Another form of filename expansion, alluded to before involves the characters ‘{" and ‘}. These
characters specify that the contained strings, separated by ‘, are to be consecutively substituted into the
containing characters and the results expanded left to right. Thus

A{strl,str2,...strn}B

expands to

An Introduction to the C shell uUsD:4-31

AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e. nested).
The results of each expanded string are sorted separately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are used. This means that this mecha-
nism can be used to generate arguments which are not filenames, but which have common parts.

A typical use of this would be
mkdir “/{hdrs,retrofit,csh}

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is most useful
when the common prefix is longer than in this example, i.e.

chown root /usr/{ucb/{ex,edit},lib/{ex?.?* how_ex}}

4.3. Command substitution

A command enclosed in ©’ characters is replaced, just before filenames are expanded, by the output
from that command. Thus it is possible to do

set pwd="pwd"
to save the current directory in the variajed or to do
ex ‘grep -I TRACE *.c’

to run the editorex supplying as arguments those files whose names end in ‘.c’ which have the string
‘TRACE’ in them.*

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of different sub-
stitutions performed by the shell. The exact meaning of certain combinations of quotations is also occa-
sionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in wriikgprograms, and
debugging shell scripts. See the csh(1) manual section for a list of these options.

*Command expansion also occurs in input redirected with ‘<<’ and within “” quotations. Refer to the shell
manual section for full details.

uUsD:4-32 An Introduction to the C shell

Appendix — Special characters

The following table lists the special characterssifand theunix system, giving for each the section(s) in
which it is discussed. A number of these characters also have special meaning in expressiongsisee the
manual section for a complete list.

Syntactic metacharacters

; 2.4 separates commands to be executed sequentially

| 1.5 separates commands in a pipeline

() 2236 brackets expressions and variable values

& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters

/ 1.6 separates components of a file’s pathname

? 1.6 expansion character matching any single character

* 1.6 expansion character matching any sequence of characters

[] 1.6 expansion sequence matching any single character from a set
~ 1.6 used at the beginning of a filename to indicate home directories
{} 4.2 used to specify groups of arguments with common parts

Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character
1.7 prevents meta-meaning of a group of characters
" 4.3 like ’, but allows variable and command expansion

Input/output metacharacters

< 1.5 indicates redirected input
> 1.3 indicates redirected output

Expansion/substitution metacharacters

$ 3.4 indicates variable substitution

! 2.3 indicates history substitution

: 3.6 precedes substitution modifiers

- 2.3 used in special forms of history substitution
: 4.3 indicates command substitution

Other metacharacters

1.3,3.6 begins scratch file names; indicates shell comments
- 1.2 prefixes option (flag) arguments to commands
% 2.6 prefixes job name specifications

An Introduction to the C shell USsD:4-33

Glossary

This glossary lists the most important terms introduced in the introduction to the shell and gives ref-
erences to sections of the shell document for further information about them. References of the form ‘pr
(1) indicate that the commarmt is in theunix User Reference manual in section 1. You can look at an
online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this manual.

Your current directory has the name ‘. as well as the name printed by the command
pwd; see alsdalirs. The current directory ‘. is usually the firsomponenof the search

path contained in the variabath, thus commands which are in ‘.’ are found first (2.2).
The character ‘. is also used in separatiegnponentsf filenames (1.6). The character

‘.’ at the beginning of a&omponenbf a pathnames treated specially and not matched

by thefilename expansiometacharacters *?’, **’, and ‘[' ']’ pairs (1.6).

Each directory has a file ‘.. in it which is a reference to its parent directory. After
changing into the directory witthdir, i.e.

chdir paper
you can return to the parent directory by doing
chdir ..

The current directory is printed fpyvd (2.7).

a.out Compilers which create executable images create them, by default, in aheufildor
historical reasons (2.3).

absolute pathname
A pathnamewhich begins with a ‘/ isabsolutesince it specifies thpath of directories
from the beginning of the entire directory system — calleddbedirectory. Pathname
which are notibsoluteare calledelative (see definition ofelative pathnamye(1.6).

alias Analias specifies a shorter or different name fasnax command, or a transformation
on a command to be performed in the shell. The shell has a conatresdhich estab-
lishesaliasesand can print their current values. The commanaliasis used to remove
aliases(2.4).

argument Commands imNIx receive a list oirgumentwords. Thus the command

echoabc

consists of theommand namicho’ and threargumentwords ‘a’, ‘b’ and ‘c’. The set
of argumentsafter thecommand name said to be thargument listof the command
(1.2).
argv The list of arguments to a command written in the shell language (a shell script or shell
procedure) is stored in a variable calldv within the shell. This name is taken from
the conventional name in the C programming language (3.4).

background Commands started without waiting for them to complete are baltkgroundcom-
mands (2.6).

base A filename is sometimes thought of as consistindatepart, before any ‘.’ character,
and arextension- the part after the . Seflenameandextension(1.6) and basename
).

bg Thebg command causessaspendegbb to continue execution in theckground2.6).

bin A directory containing binaries of programs and shell scripts to be executed is typically

called abin directory. The standard systeyin directories are ‘/bin’ containing the most
heavily used commands and ‘/usr/bin’ which contains most other user programs. Pro-
grams developed at UC Berkeley live in ‘/usr/ucb’, while locally written programs live in

USD:4-34

break

breaksw

builtin

case

cat

cd

chdir
chsh

cmp

command

command name

An Introduction to the C shell

‘lusr/local’. Games are kept in the directory ‘/usr/games’. You can place binaries in any
directory. If you wish to execute them often, the name of the directories should be a
componenbf the variablegpath

Breakis a builtin command used to exit from loops within the control structure of the
shell (3.7).

Theéoreakswbuiltin command is used to exit fronswitchcontrol structure, like areak
exits from loops (3.7).

A command executed directly by the shell is callédiétin command. Most commands
in UNIX are not built into the shell, but rather exist as filelsimndirectories. These com-
mands are accessible because the directories in which they reside are namedtim the
variable.

Acasecommand is used as a label isvaitchstatement in the shell’'s control structure,
similar to that of the language C. Details are given in the shell documentation ‘csh (1)’
(3.7).

Thecat program catenates a list of specified files onstiamdard output It is usually
used to look at the contents of a single file on the terminal, to ‘cat a file’ (1.8, 2.3).

The cd command is used to change tiwerking directory With no argumentsed
changes youwworking directoryto be youthomedirectory (2.4, 2.7).

Thechdir command is a synonym fod. Cdis usually used because it is easier to type.

Thechshcommand is used to change the shell which you usevon By default, you
use an different version of the shell which resides in ‘/bin/sh’. You can change your
shell to ‘/bin/csh’ by doing

chsh your-login-name /bin/csh
Thus | would do
chsh bill /bin/csh

It is only necessary to do this once. The next time you log imte after doing this
command, you will be usingshrather than the shell in ‘/bin/sh’ (1.9).

Cmpis a program which compares files. It is usually used on binary files, or to see if
two files are identical (3.6). For comparing text files the progidndescribed in ‘diff
(1) is used.
A function performed by the system, either by the shell (a lmgttimanglor by a pro-
gram residing in a file in a directory within th&ix system, is called @mmand1.1).

When a command is issued, it consists ebmmand namewhich is the first word of
the command, followed by arguments. The conventioanon is that the first word of a
command names the function to be performed (1.1).

command substitution

component

continue

control-

The replacement of a command enclosed in *’ characters by the text output by that com-
mand is calledommand substitutio@.3).

A part of pathnamebetween /' characters is calleccamponentf thatpathname A
variable which has multiple strings as value is said to have sex@rglonert; each
string is acomponenof the variable.

A builtin command which causes execution of the encldeiegchor while loop to

cycle prematurely. Similar to theontinuecommand in the programming language C
(3.6).

Certain special characters, calteuhtrol characters, are produced by holding down the
CONTROL key on your terminal and simultaneously pressing another character, much like
the SHIFT key is used to produce upper case characters. dt¢nisolc is produced by

An Introduction to the C shell USD:4-35

holding down thecONTROL key while pressing the ‘c’ key. UsuallyNix prints an caret
(") followed by the corresponding letter when you typsoatrol character (e.g. “C’ for
control-c (1.8).

core dump When a program terminates abnormally, the system places an image of its current state
in a file named ‘core’. Thisore dumpcan be examined with the system debugger ‘adb
(1) or ‘sdb (1)’ in order to determine what went wrong with the program (1.8). If the
shell produces a message of the form

lllegal instruction (core dumped)

(where ‘lllegal instruction’ is only one of several possible messages), you should report
this to the author of the program or a system administrator, saving the ‘core’ file.

cp Thecp (copy) program is used to copy the contents of one file into another file. It is one
of the most commonly usedix commands (1.6).

csh The name of the shell program that this document describes.

.cshrc The filecshrcin your homedirectory is read by each shell as it begins execution. It is

usually used to change the setting of the variphte and to sealias parameters which
are to take effect globally (2.1).

cwd Thecwdvariable in the shell holds trebsolute pathnamef the currentvorking direc-
tory. It is changed by the shell whenever your curnentking directorychanges and
should not be changed otherwise (2.2).

date Thedatecommand prints the current date and time (1.3).

debugging Debuggingis the process of correcting mistakes in programs and shell scripts. The shell
has several options and variables which may be used to aid idsbetjging4.4).

default: The labebefault: is used within shelswitch statements, as it is in the C language to
label the code to be executed if none of ¢hselabels matches the value switched on
(3.7).

DELETE TheDELETE or RUBOUT key on the terminal normally causes an interrupt to be sent to the
current job. Many users change the interrupt character to be "C.

detached A command that continues running inlhekgroundafter you logout is said to be
detached

diagnostic An error message produced by a program is often referred diaga@stic Most error

messages are not written to ttandard outpytsince that is often directed away from
the terminal (1.3, 1.5). Error messsages are instead written tdiggeostic output
which may be directed away from the terminal, but usually is not. diagsosticawill
usually appear on the terminal (2.5).

directory A structure which contains files. At any time you are in one partidiréastory whose
names can be printed by the commamel The chdir command will change you to
anotherirectory, and make the files in thdirectoryvisible. Thedirectoryin which you
are when you first login is yolmomedirectory (1.1, 2.7).

directory stack The shell saves the names of prewar&ing directoriesin the directory stackwhen
you change your curremtorking directoryvia thepushdcommand. Thelirectory stack
can be printed by using tltirs command, which includes your currembrking direc-
tory as the first directory name on the left (2.7).

dirs Thedirs command prints the shelkfirectory stack2.7).

du Thedu command is a program (described in ‘du (1)) which prints the number of disk
blocks is all directories below and including your currgatking directory(2.6).

echo Theechocommand prints its arguments (1.6, 3.6).
else Theelsecommand is part of the ‘if-then-else-endif’ control command construct (3.6).

USD:4-36

endif

EOF

escape

/etc/passwd

exit

exit status

expansion

expressions

extension

fg

An Introduction to the C shell

If anif statement is ended with the wdhen all lines following thef up to a line start-
ing with the wordendif or elseare executed if the condition between parentheses after
theif is true (3.6).

An endof-file is generated by the terminal by a control-d, and whenever a command
reads to the end of a file which it has been given as input. Commands receiving input
from a pipe receive anendof-file when the command sending them input completes.
Most commands terminate when they receiveeadof-file. The shell has an option to
ignoreendof-file from a terminal input which may help you keep from logging out acci-
dentally by typing too many control-d’s (1.1, 1.8, 3.8).

A character ‘\" used to prevent the special meaning of a metacharacter ieSzagdo
the character from its special meaning. Thus

echo *
will echo the character *’ while just
echo *

will echo the names of the file in the current directory. In this exam@scaps *’

(1.7). There is also a non-printing character cafledape usually labelledEsc or ALT-
MODE on terminal keyboards. Some oldemix systems use this character to indicate
that output is to bsuspended Most systems use control-s to stop the output and con-
trol-q to start it.

This file contains information about the accounts currently on the system. It consists of
a line for each account with fields separated by *:' characters (1.8). You can look at this
file by saying

cat /etc/passwd

The commandfingerandgrep are often used to search for information in this file. See
‘finger (1), ‘passwd(5)’, and ‘grep (1)’ for more details.

Theexitcommand is used to force termination of a shell script, and is built into the shell
(3.9).

A command which discovers a problem may reflect this back to the command (such as a
shell) which invoked (executed) it. It does this by returning a non-zero numbeexsi its
status a status of zero being considered ‘normal termination’. éditeommand can be
used to force a shell command script to give a nonadtstatuy3.6).

The replacement of strings in the shell input which contain metacharacters by other
strings is referred to as the procesexgansion Thus the replacement of the word *'
by a sorted list of files in the current directory is a ‘filename expansion’. Similarly the
replacement of the characters ‘I’ by the text of the last command is a ‘history expan-
sion’. Expansionsre also referred to asibstitutiong1.6, 3.4, 4.2).

Expressiongre used in the shell to control the conditional structures used in the writing
of shell scripts and in calculating values for these scripts. The operators available in
shellexpressionare those of the language C (3.5).

Filenames often consist dbasename and aextensiorseparated by the character ‘..
By convention, groups of related files often share the saagiemame. Thus if ‘prog.c’
were a C program, then the object file for this program would be stored in ‘prog.o’.
Similarly a paper written with the ‘-me’ nroff macro package might be stored in
‘paper.me’ while a formatted version of this paper might be kept in ‘paper.out’ and a list
of spelling errors in ‘paper.errs’ (1.6).

Thejob controlcommandfg is used to run &dackgroundor suspendegbb in thefore-
ground(1.8, 2.6).

An Introduction to the C shell uUsD:4-37

filename Each file iruNnix has a name consisting of up to 14 characters and not including the
character '/’ which is used ipathnamebuilding. Mostfilenamesdo not begin with the

character ‘’, and contain only letters and digits with perhaps a ‘.’ separatirizaskee
portion of thefilenamefrom anextensiorn(1.6).

filename expansion
Filename expansionses the metacharacters *, *?’ and ‘[and ‘T to provide a con-
venient mechanism for naming files. Usfilgname expansiom is easy to name all the
files in the current directory, or all files which have a commomtname. Othefilename
expansiommechanisms use the metacharacter " and allow files in other users’ directo-
ries to be named easily (1.6, 4.2).

flag ManyuNIx commands accept arguments which are not the names of files or other users
but are used to modify the action of the commands. These are referrdthtpopsions,
and by convention consist of one or more letters preceded by the character ‘=’ (1.2).
Thus thds (list files) command has an option ‘=s’ to list the sizes of files. This is speci-
fied

Is -s

foreach Thdoreachcommand is used in shell scripts and at the terminal to specify repetition of
a sequence of commands while the value of a certain shell variable ranges through a
specified list (3.6, 4.1).

foreground When commands are executing in the normal way such that the shell is waiting for them
to finish before prompting for another command they are said toréground jobsor
running in the foreground This is as opposed tmackground Foregroundjobs can be
stopped by signals from the terminal caused by typing different control characters at the
keyboard (1.8, 2.6).

goto The shell has a commagdto used in shell scripts to transfer control to a given label
(3.7).
grep Thegrepcommand searches through a list of argument files for a specified string. Thus

grep bill /etc/passwd

will print each line in the filéetc/passwavhich contains the string ‘bill’. Actuallygrep
scans forregular expressionin the sense of the editors ‘ed (1)’ and ‘ex (1%rep
stands for ‘globally findegular expressioand print’ (2.4).

head Théheadcommand prints the first few lines of one or more files. If you have a bunch of
files containing text which you are wondering about it is sometimes useful teeash
with these files as arguments. This will usually show enough of what is in these files to
let you decide which you are interested in (1.5).
Headis also used to describe the part giathnamebefore and including the last ‘/
character. Theail of apathnames the part after the last /. The :h’ and “:t' modifiers
allow theheador tail of apathnamestored in a shell variable to be used (3.6).

history Thehistory mechanism of the shell allows previous commands to be repeated, possibly
after modification to correct typing mistakes or to change the meaning of the command.
The shell has Aistory listwhere these commands are kept, ahéssory variable which
controls how large this list is (2.3).

home directory
Each user has bBome directory which is given in your entry in the password file,
letc/passwd This is the directory which you are placed in when you first login. cthe
or chdir command with no arguments takes you back to this directory, whose name is
recorded in the shell variabl®me You can also access theme directorie®f other
users in forming filenames usingfilename expansionotation and the character
(1.6).

USD:4-38

ignoreeof

input

interrupt

job

job control

job number

jobs
kill

Jogin

login shell

logout

Jlogout

An Introduction to the C shell

A conditional command within the shell, thE command is used in shell command
scripts to make decisions about what course of action to take next (3.6).

Normally, your shell will exit, printing ‘logout’ if you type a control-d at a prompt of ‘%

. This is the way you usually log off the system. You satthe ignoreeofvariable if

you wish in your.login file and then use the commalodoutto logout. This is useful if

you sometimes accidentally type too many control-d characters, logging yourself off
(2.2).

Many commands ouNix take information from the terminal or from files which they
then act on. This information is callétput Commands normally read forput from

their standard inputwhich is, by default, the terminal. Thi$andard inputcan be redi-
rected from a file using a shell metanotation with the character ‘<’. Many commands
will also read from a file specified as argument. Commands plagapelneswill read

from the output of the previous command in gigeline The leftmost command in a
pipelinereads from the terminal if you neither redirectifisut nor give it a filename to

use asstandard input Special mechanisms exist for supplying input to commands in
shell scripts (1.5, 3.8).

Aninterruptis a signal to a program that is generated by typing "C. (On older versions
of UNIX the RuBoUT or DELETE key were used for this purpose.) It causes most pro-
grams to stop execution. Certain programs, such as the shell and the editors, handle an
interrupt in special ways, usually by stopping what they are doing and prompting for
another command. While the shell is executing another command and waiting for it to
finish, the shell does not listen taterrupts. The shell often wakes up when you hit
interruptbecause many commands die when they receivatamupt (1.8, 3.9).

One or more commands typed on the same input line separated by ‘|’ or *;’ characters are
run together and are calledab. Simple commands run by themselves without any ‘|’

or ‘;’ characters are the simplgebs. Jobsare classified aforeground background or
suspended.6).

The builtin functions that control the execution of jobs are caltedontrolcommands.
These ardg, fg, stop, kil(2.6).

When each job is started it is assigned a small number cédlechamberwhich is
printed next to the job in the output of tflbs command. This number, preceded by a
‘%’ character, can be used as an argumejgbda@ontrolcommands to indicate a specific
job (2.6).

Thejobscommand prints a table showing jobs that are either running ivettiground
or aresuspende?.6).

A command which sends a signal to a job causing it to terminate (2.6).

The file.login in your homedirectory is read by the shell each time you logiutox
and the commands there are executed. There are a number of commands which are use-
fully placed here, especialfetcommands to the shell itself (2.1).

The shell that is started on your terminal when you login is calledogsarshell It is
different from other shells which you may run (e.g. on shell scripts) in that it reads the
.login file before reading commands from the terminal and it readdotpeut file after

you logout (2.1).

Thelogoutcommand causes a login shell to exit. Normally, a login shell will exit when
you hit control-d generating amdof-file, but if you have seignoreeofin you .login file
then this will not work and you must ugoutto log off theunix system (2.8).

When you log off obiNnix the shell will execute commands from the flgoutin your
homedirectory after it prints ‘logout’.

The commandpr is the line printer daemon. The standard inputpofspooled and
printed on theuNix line printer. You can also giver a list of flenames as arguments to
be printed. It is most common to upe as the last component op#peline(2.3).

An Introduction to the C shell USD:4-39

mail

make

makefile
manual

metacharacter

mkdir
modifier

more

noclobber

noglob

notify

onintr

output

Thels (list files) command is one of the most commonly useik commands. With no
argument filenames it prints the names of the files in the current directory. It has a num-
ber of usefulflag arguments, and can also be given the names of directories as argu-
ments, in which case it lists the names of the files in these directories (1.2).

Themail program is used to send and receive messages fromuotixeusers (1.1, 2.1),
whether they are logged on or not.

Themakecommand is used to maintain one or more related files and to organize func-
tions to be performed on these files. In many waggeis easier to use, and more help-
ful than shell command scripts (3.2).

The file containing commands foakeis calledmakefileor Makefile(3.2).

Themanualoften referred to is thesNix manual’. It contains 8 numbered sections with

a description of eactinix program (section 1), system call (section 2), subroutine (sec-
tion 3), device (section 4), special data structure (section 5), game (section 6), miscella-
neous item (section 7) and system administration program (section 8). There are also
supplementary documents (tutorials and reference guides) for individual programs which
require explanation in more detail. An online version of thanual is accessible
through themancommand. Its documentation can be obtained online via

man man

If you can’'t decide what manual page to look in, trydpeopogl) command. The sup-
plementary documents are in subdirectories of /usr/doc.

Many characters which are neither letters nor digits have special meaning either to the
shell or touNix. These characters are calil@tacharacters If it is necessary to place

these characters in arguments to commands without them having their special meaning
then they must bguoted An example of anetacharacteis the character >’ which is

used to indicate placement of output into a file. For the purposes bistbey mecha-

nism, most unquotethetacharacterdorm separate words (1.4). The appendix to this
user’'s manual lists thmetacharacterin groups by their function.

Themkdircommand is used to create a new directory.

Substitutions with théistory mechanism, keyed by the character ‘" or of variables
using the metacharacter ‘$’, are often subjected to modifications, indicated by placing
the character *:’ after the substitution and following this with tihadifier itself. The
command substitutiomechanism can also be used to perform modification in a similar
way, but this notation is less clear (3.6).

The prograrmorewrites a file on your terminal allowing you to control how much text

is displayed at a timeMore can nove through the file screenful by screenful, line by
line, search forward for a string, or start again at the beginning of the file. It is generally
the easiest way of viewing a file (1.8).

The shell has a variableclobberwhich may be set in the filéogin to prevent acciden-
tal destruction of files by the >’ output redirection metasyntax of the shell (2.2, 2.5).

The shell variableoglobis set to suppress tfilename expansioof arguments contain-

ing the metacharacters ™, *', *?’, ‘' and ‘]’ (3.6).

Thenotify command tells the shell to report on the termination of a spéeificground

job at the exact time it occurs as opposed to waiting until just before the next prompt to
report the termination. Theotify variable, if set, causes the shell to always report the
termination ofbackgroundobs exactly when they occur (2.6).

Theonintr command is built into the shell and is used to control the action of a shell
command script when anterrupt signal is received (3.9).

Many commands ioNix result in some lines of text which are called tloeitput. This
outputis usually placed on what is known as standard outputwhich is normally

USD:4-40

path

pathname

pipeline

popd

port

pr

printenv

process

An Introduction to the C shell

connected to the user’s terminal. The shell has a syntax using the metacharacter ‘>’ for
redirecting thestandard outpubf a command to a file (1.3). Using thge mechanism

and the metacharacter ‘|’ it is also possible fordtamdard outpubf one command to
become thestandard inputof another command (1.5). Certain commands such as the
line printer daemomp do not place their results on thndard outpubut rather in more
useful places such as on the line printer (2.3). Similarlyathiee command places its
output on another user’s terminal rather tharstésxdard outpu(2.3). Commands also
have adiagnostic outputvhere they write their error messages. Normally these go to the
terminal even if thestandard outpuhas been sent to a file or another command, but it is
possible to direct error diagnostics along vatandard outputising a special metanota-

tion (2.5).

The shell has a variabpath which gives the names of the directories in which it
searches for the commands which it is given. It always checks first to see if the com-
mand it is given is built into the shell. If it is, then it need not search for the command as
it can do it internally. If the command is not builtin, then the shell searches for a file
with the name given in each of the directories inghthvariable, left to right. Since the
normal definition of thgathvariable is

path (. /usr/ucb /bin /usr/bin)

the shell normally looks in the current directory, and then in the standard system directo-
ries ‘/usr/ucb’, ‘/bin’ and ‘/usr/bin’ for the named command (2.2). If the command can-
not be found the shell will print an error diagnostic. Scripts of shell commands will be
executed using another shell to interpret them if they have ‘execute’ permission set. This
is normally true because a command of the form

chmod 755 script

was executed to turn this execute permission on (3.3). If you add new commands to a
directory in thepath you should issue the commarmthash(2.2).

A list of names, separated by ‘/' characters, formatlename. Each component,
between successive '/’ characters, names a directory in which theampbnenfile
resides. Pathnamesvhich begin with the character /" are interpreted relative tadbe
directory in the filesystem. Othpathnamesre interpreted relative to the current direc-
tory as reported bpwd. The last component of @athnamemay name a directory, but
usually names a file.

A group of commands which are connected togethestémelard outpubf each con-
nected to thestandard inpubf the next, is called pipeline. The pipe mechanism used
to connect these commands is indicated by the shell metacharacter ‘| (1.5, 2.3).

Thepopd command changes the sheMgrking directoryto the directory you most
recently left using theushdcommand. It returns to the directory without having to type
its name, forgetting the name of the curneotking directorybefore doing so (2.7).

The part of a computer system to which each terminal is connected is qadie.d @dsu-

ally the system has a fixed humberpaofits, some of which are connected to telephone
lines for dial-up access, and some of which are permanently wired directly to specific
terminals.

Thepr command is used to prepare listings of the contents of files with headers giving
the name of the file and the date and time at which the file was last modified (2.3).

Theprintenvcommand is used to print the current setting of variables in the environment
(2.8).

An instance of a running program is callpbaesy2.6). UNIX assigns eacprocessa
unique number when it is started — called pnecess numberProcess numbersan be
used to stop individugdrocessesising thekill or stopcommands when therocessesare
part of a detachellackgroundob.

An Introduction to the C shell uUsD:4-41

program

prompt

pushd

ps

pwd
quit

guotation

redirection

rehash

Usually synonymous wittommang a binary file or shell command script which per-
forms a useful function is often calleghepgram

Many programs will print pgrompton the terminal when they expect input. Thus the
editor ‘ex (1)’ will print a " when it expects input. The shplomptsfor input with ‘%

" and occasionally with *? * when reading commands from the terminal (1.1). The shell
has a variabl@promptwhich may be set to a different value to change the shell's main
prompt This is mostly used when debugging the shell (2.8).

Thegpushdcommand, which means ‘push directory’, changes the sheifking direc-
tory and also remembers the curremrking directorybefore the change is made, allow-
ing you to return to the same directory via fegdcommand later without retyping its
name (2.7).

Thepscommand is used to show the processes you are currently running. Each process
is shown with its unique process number, an indication of the terminal name it is
attached to, an indication of the state of the process (whether it is running, stopped,
awaiting some event (sleeping), and whether it is swapped out), and the amoeunt of
time it has used so far. The command is identified by printing some of the words used
when it was invoked (2.6). Shells, such asdthbyou use to run thps command, are

not normally shown in the output.

Thepwd command prints the fufpathnameof the currentvorking directory Thedirs
builtin command is usually a better and faster choice.

Thequit signal, generated by a control-\, is used to terminate programs which are behav-
ing unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning, usually by
using the character “ in pairs, or by using the character V', is referredgoodation

.7).

The routing of input or output from or to a file is knowredgectionof input or output

(1.3).

Theehashcommand tells the shell to rebuild its internal table of which commands are
found in which directories in youpath This is necessary when a new program is
installed in one of these directories (2.8).

relative pathname

repeat

root

RUBOUT

scratch file

script

A pathnamewhich does not begin with a ‘/’ is calledralative pathnamesince it is
interpretedelativeto the currenworking directory The firstcomponenof such gpath-

namerefers to some file or directory in tleorking directory and subsequermompo-
nentsbetween ‘/' characters refer to directories belowtloeking directory Pathnames
that are notelativeare calledabsolute pathname4.6).

Theepeatcommand iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is calleabtrdirectory
since it is the ‘root’ of the entire tree structure of directories. The name ugadhin
namedo indicate theootis ‘/’. Pathnamestarting with ‘/" are said to babsolutesince
they start at theoot directory. Rootis also used as the part opathnamethat is left
after removing thextension Seefilenamefor a further explanation (1.6).

The RUBOUT or DELETE key is often used to erase the previously typed character; some
users prefer theackspPACE for this purpose. On older versionsuix this key served
as thaNTRr character.

Files whose names begin with a ‘# are referred soratch files since they are auto-
matically removed by the system after a couple of days of non-use, or more frequently if
disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell corsonigtsl It is
often possible to perform simple tasks using ttsesptswithout writing a program in a

USD:4-42

set

setenv

shell

shell script
signal

sort

source

An Introduction to the C shell

language such as C, by using the shell to selectively run other programs (3.3, 3.10).

The builtinsetcommand is used to assign new values to shell variables and to show the
values of the current variables. Many shell variables have special meaning to the shell
itself. Thus by using theetcommand the behavior of the shell can be affected (2.1).

Variables in the environment ‘environ (5)' can be changed by usirsgtdre/builtin
command (2.8). Thprintenvcommand can be used to print the value of the variables in
the environment.

A shellis a command language interpreter. It is possible to write and run your own
shell asshellsare no different than any other programs as far as the system is concerned.
This manual deals with the details of one particskeail calledcsh.

Sescript (3.3, 3.10).

Asignalin UNIX is a short message that is sent to a running program which causes some-
thing to happen to that procesSignalsare sent either by typing specgntrol charac-
ters on the keyboard or by using i or stopcommands (1.8, 2.6).

Thesort program sorts a sequence of lines in ways that can be controlled by argument
flags(1.5).

Thesourcecommand causes the shell to read commands from a specified file. It is most
useful for reading files such ashrcafter changing them (2.8).

special character

standard

status

stop
string

stty

substitution

suspended

switch

termination

then

Seemetacharacterand the appendix to this manual.

We refer often to tisgandard inputand standard outpubf commands. Semput and
output(1.3, 3.8).

A command normally returnst@tuswhen it finishes. By convention siatusof zero
indicates that the command succeeded. Commands may return natatesto indi-
cate that some abnormal event has occurred. The shell vasiatlsis set to thestatus
returned by the last command. It is most useful in shell commmand scripts (3.6).

Thestopcommand causesbackgroundob to becomeuspende?.6).

A sequential group of characters taken together is caldtdng. Stringscan contain
any printable characters (2.2).

Thestty program changes certain parameters ingid® which determine how your ter-
minal is handled. See ‘stty (1)’ for a complete description (2.6).

The shell implements a humbesulbstitutionsvhere sequences indicated by metachar-
acters are replaced by other sequences. Notable examples of this areshisstitytion
keyed by the metacharacter ‘" and variablébstitutionindicated by ‘$’. We also refer
to substitutionsaasexpansiong3.4).

A job becomssspendedafter asTopPsignal is sent to it, either by typingcantrolz at
the terminal (forforegroundjobs) or by using thetopcommand (fobackgroundobs).
Whensuspendeda job temporarily stops running until it is restarted by eitherfghor
bgcommand (2.6).

Theswitchcommand of the shell allows the shell to select one of a number of sequences
of commands based on an argument string. It is similar tewiiteh statement in the
language C (3.7).

When a command which is being executed finishes we say it undemoiestionor
terminates. Commands normally terminate when they readeadof-file from their
standard input It is also possible to terminate commands by sending theimtennupt

or quit signal (1.8). Theill program terminates specified jobs (2.6).

Thethen command is part of the shell’s ‘if-then-else-endif’ control construct used in
command scripts (3.6).

An Introduction to the C shell USD:4-43

time

tset

tty

unalias
UNIX

unset

Thetime command can be used to measure the amoutkwénd real time consumed
by a specified command as well as the amount of disk i/o, memory utilized, and number
of page faults and swaps taken by the command (2.1, 2.8).

Thetsetprogram is used to set standard erase and kill characters and to tell the system
what kind of terminal you are using. It is often invoked itogin file (2.1).

The wordstty is a historical abbreviation for ‘teletype’ which is frequently usednrx
to indicate theport to which a given terminal is connected. Tthecommand will print
the name of th#y or port to which your terminal is presently connected.

Thaunaliascommand removes aliases (2.8).

UNIX is an operating system on whickhruns. UNIX provides facilities which allovesh
to invoke other programs such as editors and text formatters which you may wish to use.

Thainsetcommand removes the definitions of shell variables (2.2, 2.8).

variable expansion

variables

verbose

wcC

while
word

Seevariablesandexpansion2.2, 3.4).

Variablesin cshhold one or more strings as value. The most common us&iablesis

in controlling the behavior of the shell. Spath noclobber andignoreeoffor exam-
ples. Variablessuch asargv are also used in writing shell programs (shell command
scripts) (2.2).

Thererboseshell variable can be set to cause commands to be echoed after they are his-
tory expanded. This is often useful in debugging shell scripts. v&Heosevariable is
set by the shell’sv command line option (3.10).

Thewc program calculates the number of characters, words, and lines in the files whose
names are given as arguments (2.6).

Thewhile builtin control construct is used in shell command scripts (3.7).

A sequence of characters which forms an argument to a command is caeited a
Many characters which are neither letters, digits, ‘=’, *." nor ‘/’ forrardsall by them-

selves even if they are not surrounded by blanks. Any sequence of characters may be
made into avord by surrounding it with *’ characters except for the characters " and

‘I which require special treatment (1.1). This process of placing special characters in
wordswithout their special meaning is callgdoting

working directory

write

At any given time you are in one particular directory, called ywarking directory
This directory’s name is printed by tipevd command and the files listed byare the
ones in this directory. You can changerking directoriesusingchdir.

The write command is an obsolete way of communicating with other users who are
logged in touNix (you have to take turns typing). If you are both using display termi-
nals, usealk(1), which is much more pleasant.

