Networking Implementation Notes
4.4BSD Edition

Samuel J. Leffler, William N. Joy, Robert S. Fabry, and Michael J. Karels

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

This report describes the internal structure of the networking facilities developed
for the 4.4BSD version of the UNIX* operating system for the VAXt. These facilities
are based on several central abstractions which structure the external (user) view of net-
work communication as well as the internal (system) implementation.

The report documents the internal structure of the networking system. The
“Berkeley Software Architecture Manual, 4.4BSD Edition” (PSD:5) provides a descrip-
tion of the user interface to the networking facilities.

Revised June 10, 1993

* UNIX is a trademark of Bell Laboratories.
T DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation.

SMM:18-2 Networking Implementation Notes

TABLE OF CONTENTS

1. Introduction

2. Overview

3. Goals

4. Internal address representation
5. Memory management

6. Internal layering

6.1. Socket layer

6.1.1. Socket state

6.1.2. Socket data queues

6.1.3. Socket connection queuing
6.2. Protocol layer(s)

6.3. Network-interface layer
6.3.1. UNIBUS interfaces

7. Socket/protocol interface

8. Protocol/protocol interface
8.1. pr_output

8.2. pr_input

8.3. pr_ctlinput

8.4. pr_ctloutput

9. Protocol/network-interface interface
9.1. Packet transmission
9.2. Packet reception

10. Gateways and routing issues
10.1. Routing tables

10.2. Routing table interface
10.3. User level routing policies

11. Raw sockets

11.1. Control blocks
11.2. Input processing
11.3. Output processing

12. Buffering and congestion control
12.1. Memory management

12.2. Protocol buffering policies
12.3. Queue limiting

12.4. Packet forwarding

13. Out of band data
14. Trailer protocols
Acknowledgements

References

Networking Implementation Notes SMM:18-3

1. Introduction

This report describes the internal structure of facilities added to the 4.2BSD version of the UNIX
operating system for the VAX, as modified in the 4.4BSD release. The system facilities provide a uniform
user interface to networking within UNIX. In addition, the implementation introduces a structure for net-
work communications which may be used by system implementors in adding new networking facilities.
The internal structure is not visible to the user, rather it is intended to aid implementors of communication
protocols and network services by providing a framework which promotes code sharing and minimizes
implementation effort.

The reader is expected to be familiar with the C programming language and system interface, as
described in th@&erkeley Software Architecture Manual, 4.4BSD Edifibny86]. Basic understanding of
network communication concepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding, when possi-
ble, those portions which are utilized only by the interprocess communication facilities.

2. Overview

If we consider the International Standards Organization’s (ISO) Open System Interconnection (OSlI)
model of network communication [ISO81] [Zimmermann80], the networking facilities described here cor-
respond to a portion of the session layer (layer 3) and all of the transport and network layers (layers 2 and
1, respectively).

The network layer provides possibly imperfect data transport services with minimal addressing struc-
ture. Addressing at this level is normally host to host, with implicit or explicit routing optionally supported
by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and service
addressing are normally included. Reliability is usually managed by explicit acknowledgement of data
delivered. Failure to acknowledge a transfer results in retransmission of the data. Sequencing may be han-
dled by tagging each message handed to the network layesdmuance numbeand maintaining state at
the endpoints of communication to utilize received sequence numbers in reordering data which arrives out
of order.

The session layer facilities may provide forms of addressing which are mapped into formats required
by the transport layer, service authentication and client authentication, etc. Various systems also provide
services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility routines,
then examine the internal layering. The contents of each layer and its interface are considered. Certain of
the interfaces are protocol implementation specific. For these cases examples have been drawn from the
Internet [Cerf78] protocol family. Later sections cover routing issues, the design of the raw socket interface
and other miscellaneous topics.

3. Goals

The networking system was designed with the goal of supporting muptiptecol familiesand
addressing styles. This required information to be “hidden” in common data structures which could be
manipulated by all the pieces of the system, but which required interpretation only by the protocols which
“controlled” it. The system described here attempts to minimize the use of shared data structures to those
kept by a suite of protocols faotocol family, and those used for rendezvous between “synchronous” and
“asynchronous” portions of the system (e.g. queues of data packets are filled at interrupt time and emptied
based on user requests).

A major goal of the system was to provide a framework within which new protocols and hardware
could be easily be supported. To this end, a great deal of effort has been extended to create utility routines
which hide many of the more complex and/or hardware dependent chores of networking. Later sections
describe the utility routines and the underlying data structures they manipulate.

SMM:18-4 Networking Implementation Notes

4. Internal address representation

Common to all portions of the system are two data structures. These structures are used to represent
addresses and various data objects. Addresses, internally are describesbloikabdrstructure,

struct sockaddr {
short sa_family; /* data format identifier */
char sa_data[14]; /* address */
¥
All addresses belong to one or maadress familiesvhich define their format and interpretation. The
sa_familyfield indicates the address family to which the address belongs, asal thegtafield contains the
actual data value. The size of the data field, 14 bytes, was selected based on a study of current address for-
mats.* Specific address formats use private structure definitions that define the format of the data field.
The system interface supports larger address structures, although address-family-independent support facili-
ties, for example routing and raw socket interfaces, provide only 14 bytes for address storage. Protocols
that do not use those facilities (e.g, the current Unix domain) may use larger data areas.

5. Memory management

A single mechanism is used for data storage: memory buffersbais. An mbuf is a structure of
the form:

struct mbuf {

struct mbuf *m_next; [* next buffer in chain */

u_long m_ off; /* offset of data */

short m_len; /* amount of data in this mbuf */
short m_type; /* mbuf type (accounting) */
u_char m_dat[MLEN]; /* data storage */

struct mbuf *m_act; /* link in higher-level mbuf list */

%
The m_nexffield is used to chain mbufs together on linked lists, whilenthactfield allows lists of mbuf
chains to be accumulated. By convention, the mbufs common to a single object (for example, a packet) are

chained together with then_nextfield, while groups of objects are linked via time actfield (possibly
when in a queue).

Each mbuf has a small data area for storing informationdat The m_lenfield indicates the
amount of data, while then_offfield is an offset to the beginning of the data from the base of the mbuf.
Thus, for example, the macmotod which converts a pointer to an mbuf to a pointer to the data stored in
the mbuf, has the form

#define mtodt) (®((int)(x) + (x)->m_off))
(note thet parametera C type cast, which is used to cast the resultant pointer for proper assignment).

In addition to storing data directly in the mbuf’s data area, data of page size may be also be stored in
a separate area of memory. The mbuf utility routines maintain a pool of pages for this purpose and manipu-
late a private page map for such pages. An mbuf with an external data area may be recognized by the larger
offset to the data area; this is formalized by the macro M_HA®¥; IWhich is true if the mbuf whose
address isn has an external page cluster. An array of reference counts on pages is also maintained so that
copies of pages may be made without core to core copying (copies are created simply by duplicating the
reference to the data and incrementing the associated reference counts for the pages). Separate data pages
are currently used only when copying data from a user process into the kernel, and when bringing data in at
the hardware level. Routines which manipulate mbufs are not normally aware whether data is stored
directly in the mbuf data array, or if it is kept in separate pages.

The following may be used to allocate and free mbufs:

* Later versions of the system may support variable length addresses.

Networking Implementation Notes SMM:18-5

m = m_get(wait, type);

MGET(m, wait, type);
The subroutinen_getand the macrdMGET each allocate an mbuf, placing its addressinThe
argumentvait is either M_WAIT or M_DONTWAIT according to whether allocation should block or
fail if no mbuf is available. Théypeis one of the predefined mbuf types for use in accounting of
mbuf allocation.

MCLGET(m);
This macro attempts to allocate an mbuf page cluster to associate with then.rmbséiccessful, the
length of the mbuf is set to CLSIZE, the size of the page cluster.

n =m_free(m);

MFREE(m,n);
The routinem_freeand the macréMFREE each free a single mbufy, and any associated external
storage area, placing a pointer to its successor in the chain it heads, ifrany, in

m_freem(m);
This routine frees an mbuf chain headedrby

The following utility routines are available for manipulating mbuf chains:

m = m_copy(mO, off, len);
Them_copyroutine create a copy of all, or part, of a list of the mbuf®@n Lenbytes of data, start-
ing off bytes from the front of the chain, are copied. Where possible, reference counts on pages are
used instead of core to core copies. The original mbuf chain must have afieattn bytes of
data. Iflenis specified as M_COPYALL, all the data present, offset as before, is copied.

m_cat(m, n);
The mbuf chainp, is appended to the endmof Where possible, compaction is performed.

m_adj(m, diff);
The mbuf chainm is adjusted in size bgiff bytes. Ifdiff is non-negativediff bytes are shaved off
the front of the mbuf chain. Wiff is negative, the alteration is performed from back to front. No
space is reclaimed in this operation; alterations are accomplished by changimgehand m_off
fields of mbufs.

m = m_pullup(mO, size);
After a successful call tm_pullup the mbuf at the head of the returned hstjs guaranteed to have
at leastsizebytes of data in contiguous memory within the data area of the mbuf (allowing access via
a pointer, obtained using tmtodmacro, and allowing the mbuf to be located from a pointer to the
data area usindtom defined below). If the original data was less tisare bytes long,len was
greater than the size of an mbuf data area (112 bytes), or required resources were unavil@ble,
and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For example, if

a packet is received and only 8 of the necessary 16 bytes required for a valid packet header are pre-
sent at the head of the list of mbufs representing the packet, the remaining 8 bytes may be “pulled
up” with a singlem_pullupcall. If the call fails the invalid packet will have been discarded.

By insuring that mbufs always reside on 128 byte boundaries, it is always possible to locate the mbuf
associated with a data area by masking off the low bits of the virtual address. This allows modules to store
data structures in mbufs and pass them around without concern for locating the original mbuf when it
comes time to free the structure. Note that this works only with objects stored in the internal data buffer of
the mbuf. Thedtommacro is used to convert a pointer into an mbuf’s data area to a pointer to the mbuf,

#define dtom(x) ((struct mbuf *)((int)x & “(MSIZE-1)))
Mbufs are used for dynamically allocated data structures such as sockets as well as memory allocated

for packets and headers. Statistics are maintained on mbuf usage and can be viewed by users using the
netstaf1) program.

SMM:18-6 Networking Implementation Notes

6. Internal layering

The internal structure of the network system is divided into three layers. These layers correspond to
the services provided by the socket abstraction, those provided by the communication protocols, and those
provided by the hardware interfaces. The communication protocols are normally layered into two or more
individual cooperating layers, though they are collectively viewed in the system as one layer providing ser-
vices supportive of the appropriate socket abstraction.

The following sections describe the properties of each layer in the system and the interfaces to which
each must conform.

6.1. Socket layer

The socket layer deals with the interprocess communication facilities provided by the system. A
socket is a bidirectional endpoint of communication which is “typed” by the semantics of communication
it supports. The system calls described inBeekeley Software Architecture Manydby86] are used to
manipulate sockets.

A socket consists of the following data structure:

struct socket {

short So_type; [* generic type */

short So_options; /* from socket call */

short so_linger; [* time to linger while closing */
short So_state; [* internal state flags */

caddr_t So_pcb; [* protocol control block */

struct protosw *so_proto; /* protocol handle */

struct socket *so_head; /* back pointer to accept socket */
struct socket *so_qO; /* queue of partial connections */
short so_qOlen; /* partials on so_q0 */

struct socket *so_q; [* queue of incoming connections */
short so_glen; /* number of connections on so_q */
short so_qlimit; /* max number queued connections */
struct sockbuf so_rcv; [* receive queue */

struct sockbuf so_snd; /* send queue */

short So_timeo; [* connection timeout */

u_short So_error; * error affecting connection */
u_short so_oobmark; [* chars to oob mark */

short SO_pgrp; [* pgrp for signals */

h

Each socket contains two data quesss,rcvandso_snd and a pointer to routines which provide
supporting services. The type of the socket,typds defined at socket creation time and used in selecting
those services which are appropriate to support it. The supporting protocol is selected at socket creation
time and recorded in the socket data structure for later use. Protocols are defined by a table of procedures,
the protoswstructure, which will be described in detail later. A pointer to a protocol-specific data structure,
the “protocol control block,” is also present in the socket structure. Protocols control this data structure,
which normally includes a back pointer to the parent socket structure to allow easy lookup when returning
information to a user (for example, placing an error number isdherrorfield). The other entries in the
socket structure are used in queuing connection requests, validating user requests, storing socket character-
istics (e.g. options supplied at the time a socket is created), and maintaining a socket’s state.

Processes “rendezvous at a socket” in many instances. For instance, when a process wishes to
extract data from a socket's receive queue and it is empty, or lacks sufficient data to satisfy the request, the
process blocks, supplying the address of the receive queue as a “wait channel’ to be used in notification.
When data arrives for the process and is placed in the socket’'s queue, the blocked process is identified by
the fact it is waiting “on the queue.”

Networking Implementation Notes SMM:18-7

6.1.1. Socket state
A socket’s state is defined from the following:

#define SS_NOFDREF 0x001 /* no file table ref any more */

#define SS_ISCONNECTED 0x002 /* socket connected to a peer */
#define SS_ISCONNECTING 0x004 /*in process of connecting to peer */
#define SS_ISDISCONNECTING 0x008 /*in process of disconnecting */
#define SS_CANTSENDMORE 0x010 /* can’t send more data to peer */
#define SS_CANTRCVMORE 0x020 /* can't receive more data from peer */

#define SS_RCVATMARK 0x040 /* at mark on input */
#define SS_PRIV 0x080 /* privileged */
#define SS_NBIO 0x100 /* non-blocking ops */
#define SS_ASYNC 0x200 /* async i/o notify */

The state of a socket is manipulated both by the protocols and the user (through system calls). When
a socket is created, the state is defined based on the type of socket. It may change as control actions are
performed, for example connection establishment. It may also change according to the type of input/output
the user wishes to perform, as indicated by options sefferith “Non-blocking” I/0O implies that a pro-
cess should never be blocked to await resources. Instead, any call which would block returns prematurely
with the error EWOULDBLOCK, or the service request may be partially fulfilled, e.g. a request for more
data than is present.

If a process requested “asynchronous” notification of events related to the socket, the SIGIO signal
is posted to the process when such events occur. An event is a change in the socket’s state; examples of
such occurrences are: space becoming available in the send queue, new data available in the receive queue,
connection establishment or disestablishment, etc.

A socket may be marked “privileged” if it was created by the super-user. Only privileged sockets
may bind addresses in privileged portions of an address space or use “raw” sockets to access lower levels
of the network.

6.1.2. Socket data queues

A socket’s data queue contains a pointer to the data stored in the queue and other entries related to
the management of the data. The following structure defines a data queue:

struct sockbuf {

u_short sb_cc; /* actual chars in buffer */
u_short sb_hiwat; /* max actual char count */
u_short sb_mbcnt; /* chars of mbufs used */
u_short sb_mbmax; /* max chars of mbufs to use */
u_short sb_lowat; /* low water mark */

short sb_timeo; [* timeout */

struct mbuf *sb_mb; /* the mbuf chain */

struct proc *sb_sel; /* process selecting read/write */
short sb_flags; /* flags, see below */

h

Data is stored in a queue as a chain of mbufs. The actual count of data characters as well as high and
low water marks are used by the protocols in controlling the flow of data. The amount of buffer space
(characters of mbufs and associated data pages) is also recorded along with the limit on buffer allocation.
The socket routines cooperate in implementing the flow control policy by blocking a process when it
requests to send data and the high water mark has been reached, or when it requests to receive data and less
than the low water mark is present (assuming non-blocking 1/0 has not been specified).*

* The low-water mark is always presumed to be 0 in the current implementation.

SMM:18-8 Networking Implementation Notes

When a socket is created, the supporting protocol “reserves” space for the send and receive queues
of the socket. The limit on buffer allocation is set somewhat higher than the limit on data characters to
account for the granularity of buffer allocation. The actual storage associated with a socket queue may
fluctuate during a socket’s lifetime, but it is assumed that this reservation will always allow a protocol to
acquire enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing various por-
tions of the interprocess communications facilities and will not be described here.

Data queued at a socket is stored in one of two styles. Stream-oriented sockets queue data with no
addresses, headers or record boundaries. The data are in mbufs linked thraughetéeld. Buffers
containing access rights may be present within the chain if the underlying protocol supports passage of
access rights. Record-oriented sockets, including datagram sockets, queue data as a list of packets; the sec-
tions of packets are distinguished by the types of the mbufs containing them. The mbufs which comprise a
record are linked through the_nextfield; records are linked from tha_actfield of the first mbuf of one
packet to the first mbuf of the next. Each packet begins with an mbuf containing the “from” address if the
protocol provides it, then any buffers containing access rights, and finally any buffers containing data. If a
record contains no data, no data buffers are required unless neither address nor access rights are present.

A socket queue has a number of flags used in synchronizing access to the data and in acquiring
resources:

#define SB_LOCK 0x01 /*lock on data queue (so_rcv only) */
#define SB_WANT 0x02 /* someone is waiting to lock */
#define SB_WAIT 0x04 /* someone is waiting for data/space */
#define SB_SEL 0x08 /* buffer is selected */

#define SB_COLL 0x10 /* collision selecting */

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection queuing

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two ends are considered dis-
tinct. One end is termedctive and generates connection requests. The other end is paistyeand
accepts connection requests.

From the passive side, a socket is marked with SO_ACCEPTCONN wis&ggnaall is made, creat-
ing two queues of socketso_qOfor connections in progress ard_qgfor connections already made and
awaiting user acceptance. As a protocol is preparing incoming connections, it creates a socket structure
gueued orso_qOby calling the routinsonewcon(). When the connection is established, the socket struc-
ture is then transferred sm_q making it available for aaccept

If an SO_ACCEPTCONN socket is closed with sockets on estbeqOor so_q these sockets are
dropped, with notification to the peers as appropriate.

6.2. Protocol layer(s)

Each socket is created in a communications domain, which usually implies both an addressing struc-
ture (address family) and a set of protocols which implement various socket types within the domain (pro-
tocol family). Each domain is defined by the following structure:

struct domain {

int dom_family; [* PF_xxx */

char *dom_name;

int (*dom_linit)(); /* initialize domain data structures */
int (*dom_externalize)(); /* externalize access rights */

int (*dom_dispose)(); /* dispose of internalized rights */

struct protosw *dom_protosw, *dom_protoswRO@TOSW,;
struct domain *dom_next;

Networking Implementation Notes SMM:18-9

At boot time, each domain configured into the kernel is added to a linked list of domain. The initial-
ization procedure of each domain is then called. After that time, the domain structure is used to locate pro-
tocols within the protocol family. It may also contain procedure references for externalization of access
rights at the receiving socket and the disposal of access rights that are not received.

Protocols are described by a set of entry points and certain socket-visible characteristics, some of
which are used in deciding which socket type(s) they may support.

An entry in the “protocol switch” table exists for each protocol module configured into the system.
It has the following form:

struct protosw {

short pr_type; [* socket type used for */
struct domain *pr_domain; /* domain protocol a member of */
short pr_protocol; [* protocol number */
short pr_flags; [* socket visible attributes */
[* protocol-protocol hooks */
int (*pr_input)(); /* input to protocol (from below) */
int (*pr_output)(); /* output to protocol (from above) */
int (*pr_ctlinput)(); /* control input (from below) */
int (*pr_ctloutput)(); /* control output (from above) */
[* user-protocol hook */
int (*pr_usrreq)(); [* user request */
[* utility hooks */
int (*pr_init)(); /* initialization routine */
int (*pr_fasttimo)(); /* fast timeout (200ms) */
int (*pr_slowtimo)(); /* slow timeout (500ms) */
int (*pr_drain)(); [* flush any excess space possible */

h

A protocol is called through thar_init entry before any other. Thereafter it is called every 200 mil-
liseconds through ther_fasttimoentry and every 500 milliseconds through fire slowtimofor timer
based actions. The system will call fire drain entry if it is low on space and this should throw away any
non-critical data.

Protocols pass data between themselves as chains of mbufs usprgitipeit and pr_outputrou-
tines. Pr_inputpasses data up (towards the user)@ndutputpasses it down (towards the network); con-
trol information passes up and down jn ctlinputandpr_ctloutput The protocol is responsible for the
space occupied by any of the arguments to these entries and must either pass it onward or dispose of it. (On
output, the lowest level reached must free buffers storing the arguments; on input, the highest level is
responsible for freeing buffers.)

Thepr_usrregroutine interfaces protocols to the socket code and is described below.
Thepr_flagsfield is constructed from the following values:

#define PR_ATOMIC 0x01 [* exchange atomic messages only */
#define PR_ADDR 0x02 [* addresses given with messages */
#define PR_CONNREQUIRED 0x04 [* connection required by protocol */
#define PR_WANTRCVD 0x08 /* want PRU_RCVD calls */

#define PR_RIGHTS 0x10 [* passes capabilities */

Protocols which are connection-based specify the PR_CONNREQUIRED flag so that the socket routines
will never attempt to send data before a connection has been established. If the PR_WANTRCVD flag is
set, the socket routines will notify the protocol when the user has removed data from the socket’s receive
gueue. This allows the protocol to implement acknowledgement on user receipt, and also update window-
ing information based on the amount of space available in the receive queue. The PR_ADDR field indi-
cates that any data placed in the socket’s receive queue will be preceded by the address of the sender. The
PR_ATOMIC flag specifies that eaakerrequest to send data must be performed in a sprgtecolsend

request; it is the protocol's responsibility to maintain record boundaries on data to be sent. The

SMM:18-10 Networking Implementation Notes

PR_RIGHTS flag indicates that the protocol supports the passing of capabilities; this is currently used only
by the protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table for the domain looking for an
appropriate protocol to support the type of socket being createdpr Ttypefield contains one of the pos-
sible socket types (e.g. SOCK_STREAM), while gredomainis a back pointer to the domain structure.
Thepr_protocolfield contains the protocol number of the protocol, normally a well-known value.

6.3. Network-interface layer

Each network-interface configured into a system defines a path through which packets may be sent
and received. Normally a hardware device is associated with this interface, though there is no requirement
for this (for example, all systems have a software “loopback” interface used for debugging and perfor-
mance analysis). In addition to manipulating the hardware device, an interface module is responsible for
encapsulation and decapsulation of any link-layer header information required to deliver a message to its
destination. The selection of which interface to use in delivering packets is a routing decision carried out at
a higher level than the network-interface layer. An interface may have addresses in one or more address
families. The address is set at boot time usingethon a socket in the appropriate domain; this operation
is implemented by the protocol family, after verifying the operation through the dewitentry.

An interface is defined by the following structure,

struct ifnet {

char *if_name; /* name, e.g. “en” or “lo” */

short if_unit; /* sub-unit for lower level driver */
short if _mtu; /* maximum transmission unit */
short if_flags; [* up/down, broadcast, etc. */
short if _timer; /* time 'til if_watchdog called */
struct ifaddr *if_addrlist; /* list of addresses of interface */
struct ifqueue if_snd; [* output queue */

int (*if_init)(); /* init routine */

int (*if_output)(); [* output routine */

int (*if_ioctl)(); [* ioctl routine */

int (*if_reset)(); /* bus reset routine */

int (*if_watchdog)(); /* timer routine */

int if_ipackets; [* packets received on interface */
int if_ierrors; [* input errors on interface */

int if_opackets; [* packets sent on interface */
int if_oerrors; /* output errors on interface */

int if_collisions; [* collisions on csma interfaces */

struct ifnet *if_next;
¥
Each interface address has the following form:

struct ifaddr {
struct sockaddr ifa_addr; /* address of interface */
union {
struct sockaddr ifu_broadaddr;
struct sockaddr ifu_dstaddr;
}ifa_ifu;
struct ifnet *ifa_ifp; /* back-pointer to interface */
struct ifaddr *ifa_next; /* next address for interface */
2
#define ifa_broadaddr ifa_ifu.ifu_broadaddr /* broadcast address */
#define ifa_dstaddr ifa_ifu.ifu_dstaddr [* other end of p-to-p link */

The protocol generally maintains this structure as part of a larger structure containing additional informa-
tion concerning the address.

Networking Implementation Notes SMM:18-11

Each interface has a send queue and routines used for initializitiom, and outputjf_output If
the interface resides on a system bus, the roiiftiresetwill be called after a bus reset has been performed.
An interface may also specify a timer routiifeywatchdog if if_timeris non-zero, it is decremented once
per second until it reaches zero, at which time the watchdog routine is called.

The state of an interface and certain characteristics are storedfirfligsfield. The following val-
ues are possible:

#define IFF_UP 0x1 /* interface is up */
#define IFF_BROADCAST 0x2 [* broadcast is possible */
#define IFF_DEBUG 0x4 /* turn on debugging */
#define IFF_LOOPBACK 0x8 /* is a loopback net */

#define IFF_POINTOPOINT 0x10 /*interface is point-to-point link */
#define IFF_NOTRAILERS 0x20 /* avoid use of trailers */

#define IFF_RUNNING 0x40 /*resources allocated */

#define IFF_NOARP 0x80 /* no address resolution protocol */

If the interface is connected to a network which supports transmissidmroaticast packets, the
IFF_BROADCAST flag will be set and tlita_broadaddrfield will contain the address to be used in send-

ing or accepting a broadcast packet. If the interface is associated with a point-to-point hardware link (for
example, a DEC DMR-11), the IFF_POINTOPOINT flag will be set daddstaddrwill contain the

address of the host on the other side of the connection. These addresses and the local address of the inter-
face,if _addr, are used in filtering incoming packets. The interface sets IFF_RUNNING after it has allo-
cated system resources and posted an initial read on the device it manages. This state bit is used to avoid
multiple allocation requests when an interface’s address is changed. The IFF_NOTRAILERS flag indicates
the interface should refrain from usingtrailer encapsulation on outgoing packets, or (where per-host
negotiation of trailers is possible) that trailer encapsulations should not be regtragerdprotocols are
described in section 14. The IFF_NOARP flag indicates the interface should not use an “address resolution
protocol” in mapping internetwork addresses to local network addresses.

Various statistics are also stored in the interface structure. These may be viewed by users using the
netstaf1) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFHAGS
SIOCSIFADDR is used initially to define each interface’s address; SIOGSIFFLAGS can be used to mark an
interface down and perform site-specific configuration. The destination address of a point-to-point link is
set with SIOCSIFDSTADDR. Corresponding operations exist to read each value. Protocol families may
also support operations to set and read the broadcast address. In addition, the SIOCGIstHIONF
retrieves a list of interface names and addresses for all interfaces and protocols on the host.

6.3.1. UNIBUS interfaces

All hardware related interfaces currently reside on the UNIBUS. Consequently a common set of util-
ity routines for dealing with the UNIBUS has been developed. Each UNIBUS interface utilizes a structure
of the following form:

struct ifubinfo {

short iff_uban; /* uba number */

short iff_hlen; [* local net header length */
struct uba_regs *iff_uba; [* uba regs, in vm */

short iff_flags; /* used during uballoc’s */

¥
Additional structures are associated with each receive and transmit buffer, normally one each per interface;
for read,

SMM:18-12 Networking Implementation Notes

struct ifrw {

caddr_t ifrw_addr; /* virt addr of header */
short ifrw_bdp; /* unibus bdp */
short ifrw_flags; /* type, etc. */

#define IFRW_W 0x01 [* is a transmit buffer */
int ifrw_info; [* value from ubaalloc */
int ifrw_proto; [* map register prototype */
struct pte *ifrw_mr; [* base of map registers */

h
and for write,

struct ifxmt {

struct ifrw ifrw;

caddr_t ifw_base; [* virt addr of buffer */

struct pte ifw_wmap[IF_MAXNUBAMRY]; /* base pages for output */
struct mbuf *ifw_xtofree; /* pages being dma’d out */
short ifw_xswapd; /* mask of clusters swapped */
short ifw_nmr; /* number of entries in wmap */

¥

#define ifw_addr ifrw.ifrw_addr
#define ifw_bdp ifrw.ifrw_bdp
#define ifw_flags ifrw.ifrw_flags
#define ifw_info ifrw.ifrw_info
#define ifw_proto ifrw.ifrw_proto
#define ifw_mr ifrw.ifrw_mr

One of each of these structures is conveniently packaged for interfaces with single buffers for each direc-
tion, as follows:

struct ifuba {

struct ifubinfo ifu_info;
struct ifrw ifu_r;
struct ifxmt ifu_xmt;

2

#define ifu_uban ifu_info.iff_uban
#define ifu_hlen ifu_info.iff_hlen
#define ifu_uba ifu_info.iff_uba
#define ifu_flags ifu_info.iff_flags
#define ifu_w ifu_xmt.ifrw
#define ifu_xtofree ifu_xmt.ifw_xtofree

The if_ubinfo structure contains the general information needed to characterize the 1/0-mapped
buffers for the device. In addition, there is a structure describing each buffer, including UNIBUS resources
held by the interface. Sufficient memory pages and bus map registers are allocated to each buffer upon ini-
tialization according to the maximum packet size and header length. The kernel virtual address of the
buffer is held inifrw_addr, and the map registers beginifatv_mr. UNIBUS map registeifrw_mr[-1]
maps the local network header ending on a page boundary. UNIBUS data paths are reserved for read and
for write, given byifrw_bdp. The prototype of the map registers for read and for write is saved in
ifrw_proto.

When write transfers are not at least half-full pages on page boundaries, the data are just copied into
the pages mapped on the UNIBUS and the transfer is started. If a write transfer is at least half a page long
and on a page boundary, UNIBUS page table entries are swapped to reference the pages, and then the initial
pages are remapped frofw_wmapwhen the transfer completes. The mbufs containing the mapped pages
are placed on thiéw_xtofreequeue to be freed after transmission.

Networking Implementation Notes SMM:18-13

When read transfers give at least half a page of data to be input, page frames are allocated from a net-
work page list and traded with the pages already containing the data, mapping the allocated pages to
replace the input pages for the next UNIBUS data input.

The following utility routines are available for use in writing network interface drivers; all use the
structures described above.

if _ubaminit(ifubinfo, uban, hlen, nmr, ifr, nr, ifx, nx);
if_ubainit(ifuba, uban, hlen, nmr);

if _ubaminitallocates resources on UNIBUS adapiban storing the information in thdubinfo,

ifrv and ifxmt structures referenced. Tlie andifx parameters are pointers to arraysfof and

ifxmt structures whose dimensions ameand nx, respectively.if ubainit is a simpler, backwards-
compatible interface used for hardware with single buffers of each type. They are called only at boot
time or after a UNIBUS reset. One data path (buffered or unbuffered, depending itin tlags

field) is allocated for each buffer. Thenr parameter indicates the number of UNIBUS mapping reg-
isters required to map a maximal sized packet onto the UNIBUS, hilbitespecifies the size of a

local network header, if any, which should be mapped separately from the data (see the description of
trailer protocols in chapter 14). Sufficient UNIBUS mapping registers and pages of memory are allo-
cated to initialize the input data path for an initial read. For the output data path, mapping registers
and pages of memory are also allocated and mapped onto the UNIBUS. The pages associated with
the output data path are held in reserve in the event a write requires copying non-page-aligned data
(seeif_wubaputbelow). If if_ubainit is called with memory pages already allocated, they will be
used instead of allocating new ones (this normally occurs after a UNIBUS reset). A 1 is returned
when allocation and initialization are successful, O otherwise.

m = if_ubaget(ifubinfo, ifr, totlen, off0, ifp);
m = if_rubaget(ifuba, totlen, off0, ifp);

if _ubagetandif_rubagetpull input data out of an interface receive buffer and into an mbuf chain.

The first interface passes pointers toitbbinfo structure for the interface and ttiewv structure for

the receive buffer; the second call may be used for single-buffered detattenspecifies the length

of data to be obtained, not counting the local network headeffOlfs non-zero, it indicates a byte

offset to a trailing local network header which should be copied into a separate mbuf and prepended
to the front of the resultant mbuf chain. When the data amount to at least a half a page, the previ-
ously mapped data pages are remapped into the mbufs and swapped with fresh pages, thus avoiding
any copy. The receiving interface is recordedf@sa pointer to arifnet structure, for the use of the
receiving network protocol. A O return value indicates a failure to allocate resources.

if wubaput(ifubinfo, ifx, m);

if wubaput(ifuba, m);
if _ubaputandif_wubaputmap a chain of mbufs onto a network interface in preparation for output.
The first interface is used by devices with multiple transmit buffers. The chain includes any local
network header, which is copied so that it resides in the mapped and aligned I/O space. Page-aligned
data that are page-aligned in the output buffer are mapped to the UNIBUS in place of the normal
buffer page, and the corresponding mbuf is placed on a queue to be freed after transmission. Any
other mbufs which contained non-page-sized data portions are copied to the 1/O space and then freed.
Pages mapped from a previous output operation (no longer needed) are unmapped.

SMM:18-14 Networking Implementation Notes

7. Socket/protocol interface

The interface between the socket routines and the communication protocols is thrquglusheq
routine defined in the protocol switch table. The following requests to a protocol module are possible:

#define PRU_ATTACH 0 [* attach protocol */

#define PRU_DETACH 1 /* detach protocol */

#define PRU_BIND 2 /* bind socket to address */
#define PRU_LISTEN 3 [* listen for connection */

#define PRU_CONNECT 4 /* establish connection to peer */
#define PRU_ACCEPT 5 /* accept connection from peer */
#define PRU_DISCONNECT 6 [* disconnect from peer */

#define PRU_SHUTDOWN 7 /* won't send any more data */
#define PRU_RCVD 8 /* have taken data; more room now */
#define PRU_SEND 9 /* send this data */

#define PRU_ABORT 10 [* abort (fast DISCONNECT, DETATCH) */
#define PRU_CONTROL 11 /* control operations on protocol */
#define PRU_SENSE 12 [* return status into m */

#define PRU_RCVOOB 13 [* retrieve out of band data */
#define PRU_SENDOOB 14 /* send out of band data */
#define PRU_SOCKADDR 15 [* fetch socket's address */
#define PRU_PEERADDR 16 [* fetch peer’s address */

#define PRU_CONNECT2 17 /* connect two sockets */

/* begin for protocols internal use */

#define PRU_FASTTIMO 18 /* 200ms timeout */

#define PRU_SLOWTIMO 19 /* 500ms timeout */

#define PRU_ROTORCV 20 [* receive from below */

#define PRU_ROTOSEND 21 /* send to below */
A call on the user request routine is of the form,

error = (*protosw[].pr_usrreq)(so, req, m, addr, rights);
int error; struct socket *so; int req; struct mbuf *m, *addr, *rights;

The mbuf data chaim is supplied for output operations and for certain other operations where it is to
receive a result. The addreaddr is supplied for address-oriented requests such as PRU_BIND and
PRU_CONNECT. Theights parameter is an optional pointer to an mbuf chain containing user-specified
capabilities (see theendmsgand recvmsgsystem calls). The protocol is responsible for disposal of the

data mbuf chains on output operations. A non-zero return value gives a UNIX error number which should

be passed to higher level software. The following paragraphs describe each of the requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with sheketsystem call) the protocol module is called with

this request. It is the responsibility of the protocol module to allocate any resources necessary. The
“attach” request will always precede any of the other requests, and should not occur more than once.

PRU_DETACH

This is the antithesis of the attach request, and is used at the time a socket is deleted. The protocol
module may deallocate any resources assigned to the socket.

PRU_BIND

When a socket is initially created it has no address bound to it. This request indicates that an address
should be bound to an existing socket. The protocol module must verify that the requested address is
valid and available for use.

PRU_LISTEN

The “listen” request indicates the user wishes to listen for incoming connection requests on the asso-
ciated socket. The protocol module should perform any state changes needed to carry out this
request (if possible). A “listen” request always precedes a request to accept a connection.

Networking Implementation Notes SMM:18-15

PRU_CONNECT
The “connect” request indicates the user wants to a establish an associatioaddrtparameter
supplied describes the peer to be connected to. The effect of a connect request may vary depending
on the protocol. Virtual circuit protocols, such as TCP [Postel81b], use this request to initiate estab-
lishment of a TCP connection. Datagram protocols, such as UDP [Postel80], simply record the
peer’'s address in a private data structure and use it to tag all outgoing packets. There are no restric-
tions on how many times a connect request may be used after an attach. If a protocol supports the
notion of multi-casting it is possible to use multiple connects to establish a multi-cast group. Alter-
natively, an association may be broken by a PRU_DISCONNECT request, and a new association cre-
ated with a subsequent connect request; all without destroying and creating a new socket.

PRU_ACCEPT
Following a successful PRU_LISTEN request and the arrival of one or more connections, this request
is made to indicate the user has accepted the first connection on the queue of pending connections.
The protocol module should fill in the supplied address buffer with the address of the connected
party.

PRU_DISCONNECT
Eliminate an association created with a PRU_CONNECT request.

PRU_SHUTDOWN
This call is used to indicate no more data will be sent and/or receivedd@nearameter indicates
the direction of the shutdown, as encoded insthghutdowrsystem call). The protocol may, at its
discretion, deallocate any data structures related to the shutdown and/or notify a connected peer of
the shutdown.

PRU_RCVD
This request is made only if the protocol entry in the protocol switch table includes the PR_WANTR-
CVD flag. When a user removes data from the receive queue this request will be sent to the protocol
module. It may be used to trigger acknowledgements, refresh windowing information, initiate data
transfer, etc.

PRU_SEND
Each user request to send data is translated into one or more PRU_SEND requests (a protocol may
indicate that a single user send request must be translated into a single PRU_SEND request by speci-
fying the PR_ATOMIC flag in its protocol description). The data to be sent is presented to the proto-
col as a list of mbufs and an address is, optionally, supplied iadiheparameter. The protocol is
responsible for preserving the data in the socket's send queue if it is not able to send it immediately,
or if it may need it at some later time (e.g. for retransmission).

PRU_ABORT
This request indicates an abnormal termination of service. The protocol should delete any existing
association(s).

PRU_CONTROL
The “control” request is generated when a user performs a Ubi#X system call on a socket (and
the ioctl is not intercepted by the socket routines). It allows protocol-specific operations to be pro-
vided outside the scope of the common socket interface.addirgparameter contains a pointer to a
static kernel data area where relevant information may be obtained or returneth pEnemeter
contains the actuabctl request code (note the non-standard calling convention) rigtts parame-
ter contains a pointer to adimet structure if thdoctl operation pertains to a particular network inter-
face.

PRU_SENSE
The “sense” request is generated when the user makéstatisystem call on a socket; it requests
status of the associated socket. This currently returns a stastdestiucture. It typically contains
only the optimal transfer size for the connection (based on buffer size, windowing information and
maximum packet size). Tha parameter contains a pointer to a static kernel data area where the sta-
tus buffer should be placed.

SMM:18-16 Networking Implementation Notes

PRU_RCVOOB
Any “out-of-band” data presently available is to be returned. An mbuf is passed to the protocol
module, and the protocol should either place data in the mbuf or attach new mbufs to the one sup-
plied if there is insufficient space in the single mbuf. An error may be returned if out-of-band data is
not (yet) available or has already been consumed.a@lleparameter contains any options such as
MSG_PEEK to examine data without consuming it.

PRU_SENDOOB
Like PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to it. The address (with protocol
specific format) is returned in tlaeldr parameter.

PRU_PEERADDR
The address of the peer to which the socket is connected is returned. The socket must be in a
SS_ISCONNECTED state for this request to be made to the protocol. The address format (protocol
specific) is returned in treddr parameter.

PRU_CONNECT2
The protocol module is supplied two sockets and requested to establish a connection between the two
without binding any addresses, if possible. This call is used in implementirsgpctketpaif2) sys-
tem call.

The following requests are used internally by the protocol modules and are never generated by the
socket routines. In certain instances, they are handed tor thisrregroutine solely for convenience in
tracing a protocol’s operation (e.g. PRU_SLOWTIMO).

PRU_FASTTIMO
A “fast timeout” has occurred. This request is made when a timeout occurs in the propoctd's-
timoroutine. Theaddr parameter indicates which timer expired.

PRU_SLOWTIMO
A “slow timeout” has occurred. This request is made when a timeout occurs in the protocol's
pr_slowtimoroutine. Theaddr parameter indicates which timer expired.

PRU_PRODRCV
This request is used in the protocol-protocol interface, not by the routines. It requests reception of
data destined for the protocol and not the user. No protocols currently use this facility.

PRU_PRODSEND
This request allows a protocol to send data destined for another protocol module, not a user. The
details of how data is marked “addressed to protocol” instead of “addressed to user” are left to the
protocol modules. No protocols currently use this facility.

8. Protocol/protocol interface

The interface between protocol modules is throughpthesrreq pr_input pr_output pr_ctlinput
andpr_ctloutputroutines. The calling conventions for all but fire usrregroutine are expected to be spe-
cific to the protocol modules and are not guaranteed to be consistent across protocol families. We will
examine the conventions used for some of the Internet protocols in this section as an example.

8.1. pr_output
The Internet protocol UDP uses the convention,

error = udp_output(inp, m);
int error; struct inpcb *inp; struct mbuf *m;

where theinp, “internetprotocol control block”, passed between modules conveys per connection state
information, and the mbuf chain contains the data to be sent. UDP performs consistency checks, appends
its header, calculates a checksum, etc. before passing the packet on. UDP is based on the Internet Protocol,
IP [Postel81a], as its transport. UDP passes a packet to the IP module for output as follows:

Networking Implementation Notes SMM:18-17

error = ip_output(m, opt, ro, flags);
int error; struct mbuf *m, *opt; struct route *ro; int flags;

The call to IP’s output routine is more complicated than that for UDP, as befits the additional work
the IP module must do. Tha parameter is the data to be sent, andofitgparameter is an optional list of
IP options which should be placed in the IP packet headerrol@ameter is is used in making routing
decisions (and passing them back to the caller for use in subsequent calls). The final péliegaeter;
tains flags indicating whether the user is allowed to transmit a broadcast packet and if routing is to be per-
formed. The broadcast flag may be inconsequential if the underlying hardware does not support the notion
of broadcasting.

All output routines return 0 on success and a UNIX error number if a failure occurred which could be
detected immediately (no buffer space available, no route to destination, etc.).

8.2. pr_input
Both UDP and TCP use the following calling convention,

(void) (*protosw(].pr_input)(m, ifp);
struct mbuf *m; struct ifnet *ifp;

Each mbuf list passed is a single packet to be processed by the protocol module. The interface from which
the packet was received is passed as the second parameter.

The IP input routine is a VAX software interrupt level routine, and so is not called with any parame-
ters. It instead communicates with network interfaces through a gpeusy, which is identical in struc-
ture to the queues used by the network interfaces for storing packets awaiting transmission. The software
interrupt is enabled by the network interfaces when they place input data on the input queue.

8.3. pr_ctlinput

This routine is used to ceay “control” information to a protocol module (i.e. information which
might be passed to the user, but is not data).

The common calling convention for this routine is,

(void) (*protosw(].pr_ctlinput)(req, addr);
int req; struct sockaddr *addr;

Thereqparameter is one of the following,

#define PRC_IFDOWN

#define PRC_ROUTEDEAD

#define PRC_QUENCH

#define PRC_MSGSIZE

#define PRC_HOSTDEAD

#define PRC_HOSTUNREACH
#define PRC_UNREACH_NET
#define PRC_UNREACH_HOST
#define PRC_UNREACH ROTOCOL 1

[* interface transition */
[* select new route if possible */
/* some said to slow down */
/* message size forced drop */
/* normally from IMP */
[* ditto */
/* no route to network */
/* no route to host */
[* dst says bad protocol */

Cpwow~wouhpr O

#define PRC_UNREACH_PORT 11 [* bad port # */

#define PRC_UNREACH_NEEDFRAG 12 [* 1P_DF caused drop */

#define PRC_UNREACH_SRCFAIL 13 [* source route failed */

#define PRC_REDIRECT_NET 14 [* net routing redirect */

#define PRC_REDIRECT_HOST 15 /* host routing redirect */

#define PRC_REDIRECT_TOSNET 14 [* redirect for type of service & net */
#define PRC_REDIRECT_TOSHOST 15 /* redirect for tos & host */

#define PRC_TIMXCEED_INTRANS 18 [* packet lifetime expired in transit */
#define PRC_TIMXCEED_REASS 19 [* lifetime expired on reass q */

#define PRC_PARAMPROB 20 /* header incorrect */

SMM:18-18 Networking Implementation Notes

while theaddr parameter is the address to which the condition applies. Many of the requests have obvi-
ously been derived from ICMP (the Internet Control Message Protocol [Postel81c]), and from error mes-
sages defined in the 1822 host/IMP convention [BBN78]. Mapping tables exist to convert control requests
to UNIX error codes which are delivered to a user.

8.4. pr_ctloutput

This is the routine that implements per-socket options at the protocol lewgdtimckopand set-
sockopt The calling convention is,

error = (*protosw[].pr_ctloutput)(op, so, level, optname, mp);
int op; struct socket *so; int level, optname; struct mbuf **mp;

whereop is one of PRCO_SETOPT or PRCO_GETOBdis the socket from whence the call originated,
and level and optnameare the protocol level and option name supplied by the user. The results of a
PRCO_GETOPT call are returned in an mbuf whose address is placeg before return. On a
PRCO_SETOPT calinp contains the address of an mbuf containing the option data; the mbuf should be
freed before return.

9. Protocol/network-interface interface

The lowest layer in the set of protocols which comprise a protocol family must interface itself to one
or more network interfaces in order to transmit and receive packets. It is assumed that any routing deci-
sions have been made before handing a packet to a network interface, in fact this is absolutely necessary in
order to locate any interface at all (unless, of course, one uses a single “hardwired” interface). There are
two cases with which to be concerned, transmission of a packet and receipt of a packet; each will be consid-
ered separately.

9.1. Packet transmission

Assuming a protocol has a handle on an interfifigea (struct ifnet *), it transmits a fully formatted
packet with the following call,

error = (*ifp->if_output)(ifp, m, dst)
int error; struct ifnet *ifp; struct mbuf *m; struct sockaddr *dst;

The output routine for the network interface transmits the pamketthedstaddress, or returns an error
indication (a UNIX error number). In reality transmission may not be immediate or successful; normally
the output routine simply queues the packet on its send queue and primes an interrupt driven routine to
actually transmit the packet. For unreliable media, such as the Ethernet, “successful” transmission simply
means that the packet has been placed on the cable without a collision. On the other hand, an 1822 inter-
face guarantees proper delivery or an error indication for each message transmitted. The model employed
in the networking system attaches no promises of delivery to the packets handed to a network interface, and
thus corresponds more closely to the Ethernet. Errors returned by the output routine are only those that can
be detected immediately, and are normally trivial in nature (no buffer space, address format not handled,
etc.). No indication is received if errors are detected after the call has returned.

9.2. Packet reception

Each protocol family must have one or more “lowest level” protocols. These protocols deal with
internetwork addressing and are responsible for the delivery of incoming packets to the proper protocol pro-
cessing modules. In the PUP model [Boggs78] these protocols are termed Level 1 protocols, in the ISO
model, network layer protocols. In this system each such protocol module has an input packet queue
assigned to it. Incoming packets received by a network interface are queued for the protocol module, and a
VAX software interrupt is posted to initiate processing.

Three macros are available for queuing and dequeuing packets:

IF_ENQUEUE(ifg, m)
This places the packetat the tail of the queudy.

Networking Implementation Notes SMM:18-19

IF_DEQUEUE(ifg, m)
This places a pointer to the packet at the head of géepire m and removes the packet from the
queue. A zero value will be returnednmif the queue is empty.

IF_DEQUEUEIF(ifg, m, ifp)
Like IF_DEQUEUE, this removes the next packet from the head of a queue and retunms i\in
pointer to the interface on which the packet was received is pladfpd @n(struct ifnet *).

IF_PREPEND(ifg, m)
This places the packetat the head of the queifg.

Each queue has a maximum length associated with it as a simple form of congestion control. The
macro IF_QFULL(ifq) returns 1 if the queue is filled, in which case the macro IF_DROP(ifq) should be
used to increment the count of the number of packets dropped, and the offending packet is dropped. For
example, the following code fragment is commonly found in a network interface’s input routine,

if (IF_QFULL(inq)) {
IF_DROP(ing);
m_freem(m);

} else
IF_ENQUEUE(ing, m);

10. Gateways and routing issues

The system has been designed with the expectation that it will be used in an internetwork environ-
ment. The “canonical” environment was envisioned to be a collection of local area networks connected at
one or more points through hosts with multiple network interfaces (one on each local area network), and
possibly a connection to a long haul network (for example, the ARPANET). In such an environment, issues
of gatewaying and packet routing become very important. Certain of these issues, such as congestion con-
trol, have been handled in a simplistic manner or specifically not addressed. Instead, where possible, the
network system attempts to provide simple mechanisms upon which more involved policies may be imple-
mented. As some of these problems become better understood, the solutions developed will be incorpo-
rated into the system.

This section will describe the facilities provided for packet routing. The simplistic mechanisms pro-
vided for congestion control are described in chapter 12.

10.1. Routing tables

The network system maintains a set of routing tables for selecting a network interface to use in deliv-
ering a packet to its destination. These tables are of the form:

struct rtentry {

u_long rt_hash; /* hash key for lookups */

struct sockaddr rt_dst; /* destination net or host */
struct sockaddr rt_gateway; /* forwarding agent */

short rt_flags; [* see below */

short rt_refcnt; /* no. of references to structure */
u_long rt_use; [* packets sent using route */
struct ifnet *rt_ifp; [* interface to give packet to */

h

The routing information is organized in two separate tables, one for routes to a host and one for
routes to a network. The distinction between hosts and networks is necessary so that a single mechanism
may be used for both broadcast and multi-drop type networks, and also for networks built from point-to-
point links (e.g DECnet [DECB80]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated by rou-
tines defined for each address family; one based on the destination being a host, and one assuming the tar-
get is the network portion of the address. Each hash value is used to locate a hash chain to search (by

SMM:18-20 Networking Implementation Notes

taking the value modulo the hash table size) and the entire 32-bit value is then used as a key in scanning the
list of routes. Lookups are applied first to the routing table for hosts, then to the routing table for networks.

If both lookups fail, a final lookup is made for a “wildcard” route (by convention, network 0). The first
appropriate route discovered is used. By doing this, routes to a specific host on a network may be present
as well as routes to the network. This also allows a “fall back” network route to be defined to a “smart”
gateway which may then perform more intelligent routing.

Each routing table entry contains a destination (the desired final destination), a gateway to which to
send the packet, and various flags which indicate the route’s status and type (host or network). A count of
the number of packets sent using the route is kept, along with a count of “held references” to the dynami-
cally allocated structure to insure that memory reclamation occurs only when the route is not in use.
Finally, a pointer to the a network interface is kept; packets sent using the route should be handed to this
interface.

Routes are typed in two ways: either as host or network, and as “direct” or “indirect”. The host/net-
work distinction determines how to compare thedstfield during lookup. If the route is to a network,
only a packet’s destination network is compared torthéstentry stored in the table. If the route is to a
host, the addresses must match bit for bit.

The distinction between “direct” and “indirect” routes indicates whether the destination is directly
connected to the source. This is needed when performing local network encapsulation. If a packet is des-
tined for a peer at a host or network which is not directly connected to the source, the internetwork packet
header will contain the address of the eventual destination, while the local network header will address the
intervening gateway. Should the destination be directly connected, these addresses are likely to be identi-
cal, or a mapping between the two exists. The RTF_GATEWAY flag indicates that the route is to an “indi-
rect” gateway agent, and that the local network header should be filled in froinghtewayfield instead
of from the final internetwork destination address.

It is assumed that multiple routes to the same destination will not be present; only one of multiple
routes, that most recently installed, will be used.

Routing redirect control messages are used to dynamically modify existing routing table entries as
well as dynamically create new routing table entries. On hosts where exhaustive routing information is too
expensive to maintain (e.g. work stations), the combination of wildcard routing entries and routing redirect
messages can be used to provide a simple routing management scheme without the use of a higher level
policy process. Current connections may be rerouted after notification of the protocols by means of their
pr_ctlinputentries. Statistics are kept by the routing table routines on the use of routing redirect messages
and their affect on the routing tables. These statistics may be viewecatsief1).

Status information other than routing redirect control messages may be used in the future, but at pre-
sent they are ignored. Likewise, more intelligent “metrics” may be used to describe routes in the future,
possibly based on bandwidth and monetary costs.

10.2. Routing table interface

A protocol accesses the routing tables through three routines, one to allocate a route, one to free a
route, and one to process a routing redirect control message. The rtalkieeperforms route allocation;
it is called with a pointer to the following structure containing the desired destination:

struct route {
struct rtentry *ro_rt;
struct sockaddr ro_dst;
¥
The route returned is assumed “held” by the caller until released wittifr@e call. Protocols which
implement virtual circuits, such as TCP, hold onto routes for the duration of the circuit’s lifetime, while
connection-less protocols, such as UDP, allocate and free routes whenever their destination address
changes.

The routinertredirectis called to process a routing redirect control message. It is called with a desti-
nation address, the new gateway to that destination, and the source of the redirect. Redirects are accepted

Networking Implementation Notes SMM:18-21

only from the current router for the destination. If a non-wildcard route exists to the destination, the gate-
way entry in the route is modified to point at the new gateway supplied. Otherwise, a new routing table
entry is inserted reflecting the information supplied. Routes to interfaces and routes to gateways which are
not directly accessible from the host are ignored.

10.3. User level routing policies

Routing policies implemented in user processes manipulate the kernel routing tables through two
ioctl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries, respectively; the
tables are read through the /dev/kmem device. The decision to place policy decisions in a user process
implies that routing table updates may lag a bit behind the identification of new routes, or the failure of
existing routes, but this period of instability is normally very small with proper implementation of the rout-
ing process. Advisory information, such as ICMP error messages and IMP diagnostic messages, may be
read from raw sockets (described in the next section).

Several routing policy processes have already been implemented. The system standard “routing dae-
mon” uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up-to-date rout-
ing tables in our local environment. Interaction with other existing routing protocols, such as the Internet
EGP (Exterior Gateway Protocol), has been accomplished using a similar process.

11. Raw sockets

A raw socket is an object which allows users direct access to a lower-level protocol. Raw sockets are
intended for knowledgeable processes which wish to take advantage of some protocol feature not directly
accessible through the normal interface, or for the development of new protocols built atop existing lower
level protocols. For example, a new version of TCP might be developed at the user level by utilizing a raw
IP socket for delivery of packets. The raw IP socket interface attempts to provide an identical interface to
the one a protocol would have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, (possibly) augmented by proto-
col-specific processing routines. This section will describe the core of the raw socket interface.

11.1. Control blocks
Every raw socket has a protocol control block of the following form:

struct rawcb {
struct rawchb *rcb_next; /* doubly linked list */
struct rawch *rcb_prev;
struct socket *rcb_socket; /* back pointer to socket */
struct sockaddrrcb_faddr; /* destination address */
struct sockaddrrcb_laddr; /* socket's address */
struct sockproto rcb_proto; /* protocol family, protocol */

caddr_t rcb_pcb; [* protocol specific stuff */
struct mbuf *rcb_options; /* protocol specific options */
struct route rcb_route; [* routing information */

short rcb_flags;

¥
All the control blocks are kept on a doubly linked list for performing lookups during packet dispatch.
Associations may be recorded in the control block and used by the output routine in preparing packets for
transmission. Thecb_proto structure contains the protocol family and protocol number with which the
raw socket is associated. The protocol, family and addresses are used to filter packets on input; this will be
described in more detail shortly. If any protocol-specific information is required, it may be attached to the
control block using thecb_pcbfield. Protocol-specific options for transmission in outgoing packets may
be stored incb_options

A raw socket interface is datagram oriented. That is, each send or receive on the socket requires a
destination address. This address may be supplied by the user or stored in the control block and automati-
cally installed in the outgoing packet by the output routine. Since it is not possible to determine whether an

SMM:18-22 Networking Implementation Notes

address is present or not in the control block, two flags, RAW_LADDR and RAW_FADDR, indicate if a
local and foreign address are present. Routing is expected to be performed by the underlying protocol if
necessary.

11.2. Input processing

Input packets are “assigned” to raw sockets based on a simple pattern matching scheme. Each net-
work interface or protocol gives unassigned packets to the raw input routine with the call:

raw_input(m, proto, src, dst)
struct mbuf *m; struct sockproto *proto, struct sockaddr *src, *dst;

The data packet then has a generic header prepended to it of the form

struct raw_header {

struct sockproto raw_proto;
struct sockaddr raw_dst;
struct sockaddr raw_src;

¥
and it is placed in a packet queue for the “raw input protocol” module. Packets taken from this queue are
copied into any raw sockets that match the header according to the following rules,

1) The protocol family of the socket and header agree.
2) Ifthe protocol number in the socket is non-zero, then it agrees with that found in the packet header.

3) If alocal address is defined for the socket, the address format of the local address is the same as the
destination address’s and the two addresses agree bit for bit.

4) Therules of 3) are applied to the socket’s foreign address and the packet’s source address.

A basic assumption is that addresses present in the control block and packet header (as constructed by the
network interface and any raw input protocol module) are in a canonical form which may be “block com-
pared”.

11.3. Output processing

On output the ravpr_usrregroutine passes the packet and a pointer to the raw control block to the
raw protocol output routine for any processing required before it is delivered to the appropriate network
interface. The output routine is normally the only code required to implement a raw socket interface.

12. Buffering and congestion control

One of the major factors in the performance of a protocol is the buffering policy used. Lack of a
proper buffering policy can force packets to be dropped, cause falsified windowing information to be emit-
ted by protocols, fragment host memory, degrade the overall host performance, etc. Due to problems such
as these, most systems allocate a fixed pool of memory to the networking system and impose a policy opti-
mized for “normal” network operation.

The networking system developed for UNIX is little different in this respect. At boot time a fixed
amount of memory is allocated by the networking system. At later times more system memory may be
requested as the need arises, but at no time is memory ever returned to the system. It is possible to garbage
collect memory from the network, but difficult. In order to perform this garbage collection properly, some
portion of the network will have to be “turned off” as data structures are updated. The interval over which
this occurs must kept small compared to the average inter-packet arrival time, or too much traffic may be
lost, impacting other hosts on the network, as well as increasing load on the interconnecting mediums. In
our environment we have not experienced a need for such compaction, and thus have left the problem unre-
solved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be given of
the allocation mechanisms, and policies used by the protocols in performing connection level buffering.

Networking Implementation Notes SMM:18-23

12.1. Memory management

The basic memory allocation routines manage a private page map, the size of which determines the
maximum amount of memory that may be allocated by the network. A small amount of memory is allo-
cated at boot time to initialize the mbuf and mbuf page cluster free lists. When the free lists are exhausted,
more memory is requested from the system memory allocator if space remains in the map. If memory can-
not be allocated, callers may block awaiting free memory, or the failure may be reflected to the caller
immediately. The allocator will not block awaiting free map entries, however, as exhaustion of the page
map usually indicates that buffers have been lost due to a “leak.” The private page table is used by the net-
work buffer management routines in remapping pages to be logically contiguous as the need arises. In
addition, an array of reference counts parallels the page table and is used when multiple references to a
page are present.

Mbufs are 128 byte structures, 8 fitting in a 1Kbyte page of memory. When data is placed in mbufs,
it is copied or remapped into logically contiguous pages of memory from the network page pool if possible.
Data smaller than half of the size of a page is copied into one or more 112 byte mbuf data areas.

12.2. Protocol buffering policies

Protocols reserve fixed amounts of buffering for send and receive queues at socket creation time.
These amounts define the high and low water marks used by the socket routines in deciding when to block
and unblock a process. The reservation of space does not currently result in any action by the memory
management routines.

Protocols which provide connection level flow control do this based on the amount of space in the
associated socket queues. That is, send windows are calculated based on the amount of free space in the
socket'’s receive queue, while receive windows are adjusted based on the amount of data awaiting transmis-
sion in the send queue. Care has been taken to avoid the “silly window syndrome” described in [Clark82]
at both the sending and receiving ends.

12.3. Queue limiting

Incoming packets from the network are always received unless memory allocation fails. However,
each Level 1 protocol input queue has an upper bound on the queue’s length, and any packets exceeding
that bound are discarded. It is possible for a host to be overwhelmed by excessive network traffic (for
instance a host acting as a gateway from a high bandwidth network to a low bandwidth network). As a
“defensive” mechanism the queue limits may be adjusted to throttle network traffic load on a host. Con-
sider a host willing to devote some percentage of its machine to handling network traffic. If the cost of han-
dling an incoming packet can be calculated so that an acceptable “packet handling rate” can be determined,
then input queue lengths may be dynamically adjusted based on a host’s network load and the number of
packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a problem such
as this (simply dropping packets is likely to increase the load on a network); the queue lengths were incor-
porated mainly as a safeguard mechanism.

12.4. Packet forwarding

When packets can not be forwarded because of memory limitations, the system attempts to generate a
“source quench” message. In addition, any other problems encountered during packet forwarding are also
reflected back to the sender in the form of ICMP packets. This helps hosts avoid unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early stage of net-
work development, broadcast packets were forwarded and a “routing loop” resulted in network saturation
and every host on the network crashing.

SMM:18-24 Networking Implementation Notes

13. Out of band data

Out of band data is a facility peculiar to the stream socket abstraction defined. Little agreement
appears to exist as to what its semantics should be. TCP defines the notion of “urgent data” as in-line,
while the NBS protocols [Burruss81] and numerous others provide a fully independent logical transmission
channel along which out of band data is to be sent. In addition, the amount of the data which may be sent
as an out of band message varies from protocol to protocol; everything from 1 bit to 16 bytes or more.

A stream socket’s notion of out of band data has been defined as the lowest reasonable common
denominator (at least reasonable in our minds); clearly this is subject to debate. Out of band data is
expected to be transmitted out of the normal sequencing and flow control constraints of the data stream. A
minimum of 1 byte of out of band data and one outstanding out of band message are expected to be sup-
ported by the protocol supporting a stream socket. It is a protocol’s prerogative to support larger-sized mes-
sages, or more than one outstanding out of band message at a time.

Out of band data is maintained by the protocol and is usually not stored in the socket’s receive queue.
A socket-level option, SO_OOBINLINE, is provided to force out-of-band data to be placed in the normal
receive queue when urgent data is received; this sometimes amelioriates problems due to loss of data when
multiple out-of-band segments are received before the first has been passed to the user. The
PRU_SENDOOB and PRU_RCVOOB requests tophaisrregroutine are used in sending and receiving
data.

14. Trailer protocols

Core to core copies can be expensive. Consequently, a great deal of effort was spent in minimizing
such operations. The VAX architecture provides virtual memory hardware organized in page units. To cut
down on copy operations, data is kept in page-sized units on page-aligned boundaries whenever possible.
This allows data to be moved in memory simply by remapping the page instead of copying. The mbuf and
network interface routines perform page table manipulations where needed, hiding the complexities of the
VAX virtual memory hardware from higher level code.

Data enters the system in two ways: from the user, or from the network (hardware interface). When
data is copied from the user’s address space into the system it is deposited in pages (if sufficient data is pre-
sent). This encourages the user to transmit information in messages which are a multiple of the system
page size.

Unfortunately, performing a similar operation when taking data from the network is very difficult.
Consider the format of an incoming packet. A packet usually contains a local network header followed by
one or more headers used by the high level protocols. Finally, the data, if any, follows these headers. Since
the header information may be variable length, DMAing the eventual data for the user into a page aligned
area of memory is impossible withaaitpriori knowledge of the format (e.g., by supporting only a single
protocol header format).

To allow variable length header information to be present and still ensure page alignment of data, a
special local network encapsulation may be used. This encapsulation, temaikst arotocol [Leffler84],
places the variable length header information after the data. A fixed size local network header is then
prepended to the resultant packet. The local network header contains the size of the data portion (in units
of 512 bytes), and a netnailer protocol headerinserted before the variable length information, contains
the size of the variable length header information. The following trailer protocol header is used to store
information regarding the variable length protocol header:

struct {
short protocol; [* original protocol no. */
short length; /* length of trailer */

h

The processing of the trailer protocol is very simple. On output, the local network header indicates
that a trailer encapsulation is being used. The header also includes an indication of the number of data
pages present before the trailer protocol header. The trailer protocol header is initialized to contain the
actual protocol identifier and the variable length header size, and is appended to the data along with the

Networking Implementation Notes SMM:18-25

variable length header information.

On input, the interface routines identify the trailer encapsulation by the protocol type stored in the
local network header, then calculate the number of pages of data to find the beginning of the trailer. The
trailing information is copied into a separate mbuf and linked to the front of the resultant packet.

Clearly, trailer protocols require cooperation between source and destination. In addition, they are
normally cost effective only when sizable packets are used. The current scheme works because the local
network encapsulation header is a fixed size, allowing DMA operations to be performed at a known offset
from the first data page being received. Should the local network header be variable length this scheme
fails.

Statistics collected indicate that as much as 200Kb/s can be gained by using a trailer protocol with
1Kbyte packets. The average size of the variable length header was 40 bytes (the size of a minimal TCP/IP
packet header). If hardware supports larger sized packets, even greater gains may be realized.

Acknowledgements

The internal structure of the system is patterned after the Xerox PUP architecture [Boggs79], while in
certain places the Internet protocol family has had a great deal of influence in the design. The use of soft-
ware interrupts for process invocation is based on similar facilities found in the VMS operating system.
Many of the ideas related to protocol modularity, memory management, and network interfaces are based
on Rob Gurwitz’s TCP/IP implementation for the 4.1BSD version of UNIX on the VAX [Gurwitz81]. Greg
Chesson explained his use of trailer encapsulations in Datakit, instigating their use in our system.

References

[Boggs79] Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M. MetcBIf#?: An Internetwork
Architecture Report CSL-79-10. XROX Palo Alto Research Center, July 1979.

[BBN78] Bolt Beranek and Newman; Specification for the Interconnection of Host and IMP.
BBN Technical Report 1822. May 1978.

[Cerf78] Cerf, V. G.; The Catenet Model for Internetworking. Internet Working Group,
IEN 48. July 1978.

[Clark82] Clark, D. D.; Window and Acknowledgement Strategy in TCP, RFC-813. Net-
work Information Center, SRI International. July 1982.

[DEC80] Digital Equipment CorporationDECnet DIGITAL Network Architecture — Gen-
eral Description Order No. AA-K179A-TK. October 1980.

[Gurwitz81] Gurwitz, R. F.; VAX-UNIX Networking Support Project — Implementation
Description. Internetwork Working Group, IEN 168. January 1981.

[1SO81] International Organization for Standardizatié®@0O Open Systems Interconnection
- Basic Reference ModelSO/TC 97/SC 16 N 719. August 1981.

[Joy86] Joy, W.; Fabry, R.; Leffler, S.; McKusick, M.; and Karels, M.; Berkeley Software
Architecture Manual, 4.4BSD EditiorlJNIX Programmer’s Supplementary Doc-
uments Vol. 1 (PSD:5). Computer Systems Research Group, University of Cali-
fornia, Berkeley. May, 1986.

[Leffler84] Leffler, S.J. and Karels, M.J.; Trailer Encapsulations, RFC-893. Network Infor-
mation Center, SRI International. April 1984.

[Postel80] Postel, J. User Datagram Protocol, RFC-768. Network Information Center, SRI
International. May 1980.

[Postel81a] Postel, J., ed. Internet Protocol, RFC-791. Network Information Center, SRI

International. September 1981.

SMM:18-26

[Postel81b]
[Postel81c]
[Xerox81]

[Zimmermann80]

Networking Implementation Notes

Postel, J., ed. Transmission Control Protocol, RFC-793. Network Information
Center, SRI International. September 1981.

Postel, J. Internet Control Message Protocol, RFC-792. Network Information
Center, SRI International. September 1981.

Xerox Corporation. Internet Transport Protocols Xerox System Integration
Standard 028112. December 1981.

Zimmermann, H. OSI Reference Model — The ISO Model of Architecture for
Open Systems InterconnectionlEEE Transactions on Communications
Com-28(4); 425-432. April 1980.

