Timed Installation and Operation Guide

Riccardo Gusella, Stefano Zatti, James M. Bloom

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

Kirk Smith

Engineering Computer Network
Department of Electrical Engineering
Purdue University
West Lafayette, IN 47906

Introduction

The clock synchronization service for the UNIX 4.3BSD operating system is composed of a collec-
tion of time daemonstined running on the machines in a local area network. The algorithms imple-
mented by the service is based on a master-slave scheme. The time daemons communicate with each other
using theTime Synchronization ProtocéTSP) which is built on the DARPA UDP protocol and described
in detail in [4].

A time daemon has a twofold function. First, it supports the synchronization of the clocks of the var-
ious hosts in a local area network. Second, it starts (or takes part in) the election that occurs among slave
time daemons when, for any reason, the master disappears. The synchronization mechanism and the elec-
tion procedure employed by the progréimedare described in other documents [1,2,3]. The next para-
graphs are a brief overview of how the time daemon works. This document is mainly concerned with the
administrative and technical issues of runrtingedat a particular site.

A master time daemameasures the time differences between the clock of the machine on which it is
running and those of all other machines. The master computasttherk timeas the average of the times
provided by nonfaulty clockslt then sends to eadiave time daemothe correction that should be per-
formed on the clock of its machine. This process is repeated periodically. Since the correction is expressed
as a time difference rather than an absolute time, transmission delays do not interfere with the accuracy of
the synchronization. When a machine comes up and joins the network, it starts a slave time daemon which
will ask the master for the correct time and will reset the machine’s clock before any user activity can
begin. The time daemons are able to maintain a single network time in spite of the drift of clocks away
from each other. The present implementation keeps processor clocks synchronized within 20 milliseconds.

To ensure that the service provided is continuous and reliable, it is necessary to implement an elec-
tion algorithm to elect a new master should the machine running the current master crash, the master termi-
nate (for example, because of a run-time error), or the network be partitioned. Under our algorithm, slaves
are able to realize when the master has stopped functioning and to elect a new master from among them-
selves. It is important to note that, since the failure of the master results only in a gradual divergence of

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Naval
Electronics Systems Command under contract No. NO0039-84-C-0089, and by the CSELT Corporation of ltaly.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Research Projects Agency, of the US
Government, or of CSELT.

1A clock is considered to be faulty when its value is more than a small specified interval apart from the
majority of the clocks of the other machines [1,2].

SMM:11-2 Timed Installation and Operation

clock values, the election need not occur immediately.

The machines that are gateways between distinct local area networks require particular care. A time
daemon on such machines may act astamaster This artifact depends on the current inability of trans-
mission protocols to broadcast a message on a network other than the one to which the broadcasting
machine is connected. The submaster appears as a slave on one network, and as a master on one or more of
the other networks to which it is connected.

A submaster classifies each network as one of three typatavA networks a network on which
the submaster acts as a slave. There can only be one slave netwoikstek networks a network on
which the submaster acts as a master.ighiored networks any other network which already has a valid
master. The submaster tries periodically to become master on an ignored network, but gives up immedi-
ately if a master already exists.

Guidelines

While the synchronization algorithm is quite general, the election one, requiring a broadcast mecha-
nism, puts constraints on the kind of network on which time daemons can run. The time daemon will only
work on networks with broadcast capability augmented with point-to-point links. Machines that are only
connected to point-to-point, non-broadcast networks may not use the time daemon.

If we exclude submasters, there will normally be, at most, one master time daemon in a local area
internetwork. During an election, only one of the slave time daemons will become the new master. How-
ever, because of the characteristics of its machine, a slave can be prevented from becoming the master.
Therefore, a subset of machines must be designated as potential master time daemons. A master time dae-
mon will require CPU resources proportional to the number of slaves, in general, more than a slave time
daemon, so it may be advisable to limit master time daemons to machines with more powerful processors
or lighter loads. Also, machines with inaccurate clocks should not be used as masters. This is a purely
administrative decision: an organization may well allow all of its machines to run master time daemons.

At the administrative level, a time daemon on a machine with multiple network interfaces, may be
told to ignore all but one network or to ignore one network. This is done withntinetworkand-i net-
work options respectively at start-up time. Typically, the time daemon would be instructed to ignore all but
the networks belonging to the local administrative control.

There are some limitations to the current implementation of the time daemon. It is expected that
these limitations will be removed in future releases. The constant NHOSTS in /usr/src/etc/timed/globals.h
limits the maximum number of machines that may be directly controlled by one master time daemon. The
current maximum is 29 (NHOSTS - 1). The constant must be changed and the program recompiled if a
site wishes to rutimedon a larger (inter)network.

In addition, there is pathological situatiorto be avoided at all costs, that might occur when time
daemons run on multiply-connected local area networks. In this case, as we have seen, time daemons run-
ning on gateway machines will be submasters and they will act on some of those networks as master time
daemons. Consider machines A and B that are both gateways between networks X and Y. If time daemons
were started on both A and B without constraints, it would be possible for submaster time daemon A to be a
slave on network X and the master on network Y, while submaster time daemon B is a slave on network Y
and the master on network X. Thigp of master time daemons will not function properly or guarantee a
unigue time on both networks, and will cause the submasters to use large amounts of system resources in
the form of network bandwidth and CPU time. In fact, this kintbop can also be generated with more
than two master time daemons, when several local area networks are interconnected.

Installation

In order to start the time daemon on a given machine, the following lines should be addédcal the
daemonsection in the fildetc/rc.local

if [-f /etc/timed]; then
/etc/timedflags& echo -n ' timed’ >/dev/console

Timed Installation and Operation SMM:11-3

fi

In any case, they must appear after the network is configured via ifconfig(8).
Also, the file/etc/serviceshould contain the following line:

timed 525/udp timeserver
Theflagsare:
-n network to consider the named network.
-i network to ignore the named network.
-t to place tracing information itusr/adm/timed.log
-M to allow this time daemon to become a master. A time daemon run without this option will

be forced in the state of slave during an election.

Daily Operation
Timedc(8)is used to control the operation of the time daemon. It may be used to:

. measure the differences between machines’ clocks,

. find the location where the mastenedis running,

. cause election timers on several machines to expire at the same time,
. enable or disable tracing of messages receivetintad

See the manual page timed(8) andtimedc(8) for more detailed information.

The date(1) command can be used to set the network date. In order to set the time on a single
machine, then flag can be given to date(1).

SMM:11-4 Timed Installation and Operation

References

1. R. Gusella and S. ZatiEMPO: A Network Time Controller for Distributed Berkeley UNIX System
USENIX Summer Conference Proceedings, Salt Lake City, June 1984.

2. R. Gusella and S. ZatiGlock Synchronization in a Local Area Netwpotkiiversity of California,
Berkeley, Technical Repoth appear

3. R. Gusella and S. Zatthn Election Algorithm for a Distributed Clock Synchronization Program
University of California, Berkeley, CS Technical Report #275, Dec. 1985.

4. R. Gusella and S. Zatlihe Berkeley UNIX 4.3BSD Time Synchronization Profa¢dIX Program-

mer’s Manual, 4.3 Berkeley Software Distribution, Volume 2c.

