
External Data Representation: Sun Technical Notes

This chapter contains technical notes on Sun’s implementation of the External Data Representation (XDR)
standard, a set of library routines that allow a C programmer to describe arbitrary data structures in a
machinex-independent fashion. For a formal specification of the XDR standard, see theExternal Data
Representation Standard: Protocol Specification. XDR is the backbone of Sun’s Remote Procedure Call
package, in the sense that data for remote procedure calls is transmitted using the standard. XDR library
routines should be used to transmit data that is accessed (read or written) by more than one type of
machine.1

This chapter contains a short tutorial overview of the XDR library routines, a guide to accessing currently
available XDR streams, and information on defining new streams and data types. XDR was designed to
work across different languages, operating systems, and machine architectures. Most users (particularly
RPC users) will only need the information in theNumber Filters, Floating Point Filters, andEnumeration
Filters sections. Programmers wishing to implement RPC and XDR on new machines will be interested in
the rest of the chapter, as well as theExternal Data Representaiton Standard: Protocol Specification, which
will be their primary reference.

Note: rpcgen can be used to write XDR routines even in cases where no RPC calls are being made.

On Sun systems, C programs that want to use XDR routines must include the file<rpc/rpc.h>, which con-
tains all the necessary interfaces to the XDR system. Since the C librarylibc.a contains all the XDR rou-
tines, compile as normal.

example%cc program.c

1. Justification

Consider the following two programs,writer:

#include <stdio.h>
main() /* writer.c */
{

long i;
for (i = 0; i < 8; i++) {

if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) {
fprintf(stderr, "failed!\n");
exit(1);

}
}
exit(0);

}

andreader:

1 For a compete specification of the system External Data Representation routines, see thexdr(3N) manual
page.

- 1 -

Page 2 External Data Representation: Sun Technical Notes

#include <stdio.h>
main() /* reader.c */
{

long i, j;
for (j = 0; j < 8; j++) {

if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {
fprintf(stderr, "failed!\n");
exit(1);

}
printf("%ld ", i);

}
printf("\n");
exit(0);

}

The two programs appear to be portable, because (a) they passlint checking, and (b) they exhibit the same
behavior when executed on two different hardware architectures, a Sun and a VAX.

Piping the output of thewriter program to thereaderprogram gives identical results on a Sun or a VAX.

sun% writer | reader
0 1 2 3 4 5 6 7
sun%

vax% writer | reader
0 1 2 3 4 5 6 7
vax%

With the advent of local area networks and 4.2BSD came the concept of “network pipes” — a process pro-
duces data on one machine, and a second process consumes data on another machine. A network pipe can
be constructed withwriter andreader. Here are the results if the first produces data on a Sun, and the sec-
ond consumes data on a VAX.

sun% writer | rsh vax reader
0 16777216 33554432 50331648 67108864 83886080 100663296
117440512
sun%

Identical results can be obtained by executingwriter on the VAX andreader on the Sun. These results
occur because the byte ordering of long integers differs between the VAX and the Sun, even though word
size is the same. Note that 16777216 is 224 — when four bytes are reversed, the 1 winds up in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for portable data. Programs can be
made data-portable by replacing theread() and write() calls with calls to an XDR library routine
xdr_long(), a filter that knows the standard representation of a long integer in its external form. Here are
the revised versions ofwriter:

External Data Representation: Sun Technical Notes Page 3

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc*/
main() /* writer.c */
{

XDR xdrs;
long i;
xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
for (i = 0; i < 8; i++) {

if (!xdr_long(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(1);

}
}
exit(0);

}

andreader:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc*/
main() /* reader.c */
{

XDR xdrs;
long i, j;
xdrstdio_create(&xdrs, stdin, XDR_DECODE);
for (j = 0; j < 8; j++) {

if (!xdr_long(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(1);

}
printf("%ld ", i);

}
printf("\n");
exit(0);

}

The new programs were executed on a Sun, on a VAX, and from a Sun to a VAX; the results are shown
below.

sun% writer | reader
0 1 2 3 4 5 6 7
sun%

vax% writer | reader
0 1 2 3 4 5 6 7
vax%

sun% writer | rsh vax reader
0 1 2 3 4 5 6 7
sun%

Note: Integers are just the tip of the portable-data iceberg. Arbitrary data structures present portability
problems, particularly with respect to alignment and pointers. Alignment on word boundaries may cause
the size of a structure to vary from machine to machine. And pointers, which are very convenient to use,
have no meaning outside the machine where they are defined.

Page 4 External Data Representation: Sun Technical Notes

2. A Canonical Standard

XDR’s approach to standardizing data representations iscanonical. That is, XDR defines a single byte
order (Big Endian), a single floating-point representation (IEEE), and so on. Any program running on any
machine can use XDR to create portable data by translating its local representation to the XDR standard
representations; similarly, any program running on any machine can read portable data by translating the
XDR standard representaions to its local equivalents. The single standard completely decouples programs
that create or send portable data from those that use or receive portable data. The advent of a new machine
or a new language has no effect upon the community of existing portable data creators and users. A new
machine joins this community by being “taught” how to convert the standard representations and its local
representations; the local representations of other machines are irrelevant. Conversely, to existing programs
running on other machines, the local representations of the new machine are also irrelevant; such programs
can immediately read portable data produced by the new machine because such data conforms to the canon-
ical standards that they already understand.

There are strong precedents for XDR’s canonical approach. For example, TCP/IP, UDP/IP, XNS, Ethernet,
and, indeed, all protocols below layer five of the ISO model, are canonical protocols. The advantage of any
canonical approach is simplicity; in the case of XDR, a single set of conversion routines is written once and
is never touched again. The canonical approach has a disadvantage, but it is unimportant in real-world data
transfer applications. Suppose two Little-Endian machines are transferring integers according to the XDR
standard. The sending machine converts the integers from Little-Endian byte order to XDR (Big-Endian)
byte order; the receiving machine performs the reverse conversion. Because both machines observe the
same byte order, their conversions are unnecessary. The point, however, is not necessity, but cost as com-
pared to the alternative.

The time spent converting to and from a canonical representation is insignificant, especially in networking
applications. Most of the time required to prepare a data structure for transfer is not spent in conversion but
in traversing the elements of the data structure. To transmit a tree, for example, each leaf must be visited
and each element in a leaf record must be copied to a buffer and aligned there; storage for the leaf may have
to be deallocated as well. Similarly, to receive a tree, storage must be allocated for each leaf, data must be
moved from the buffer to the leaf and properly aligned, and pointers must be constructed to link the leaves
together. Every machine pays the cost of traversing and copying data structures whether or not conversion
is required. In networking applications, communications overhead—the time required to move the data
down through the sender’s protocol layers, across the network and up through the receiver’s protocol lay-
ers—dwarfs conversion overhead.

3. The XDR Library

The XDR library not only solves data portability problems, it also allows you to write and read arbitrary C
constructs in a consistent, specified, well-documented manner. Thus, it can make sense to use the library
ev en when the data is not shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes), structures, unions, and
arrays, to name a few. Using more primitive routines, you can write your own specific XDR routines to
describe arbitrary data structures, including elements of arrays, arms of unions, or objects pointed at from
other structures. The structures themselves may contain arrays of arbitrary elements, or pointers to other
structures.

Let’s examine the two programs more closely. There is a family of XDR stream creation routines in which
each member treats the stream of bits differently. In our example, data is manipulated using standard I/O
routines, so we usexdrstdio_create(). The parameters to XDR stream creation routines vary according to
their function. In our example,xdrstdio_create()takes a pointer to an XDR structure that it initializes, a
pointer to aFILE that the input or output is performed on, and the operation. The operation may be
XDR_ENCODEfor serializing in thewriter program, orXDR_DECODEfor deserializing in thereader
program.

Note: RPC users never need to create XDR streams; the RPC system itself creates these streams, which are
then passed to the users.

External Data Representation: Sun Technical Notes Page 5

The xdr_long() primitive is characteristic of most XDR library primitives and all client XDR routines.
First, the routine returnsFALSE(0) if it fails, andTRUE(1) if it succeeds. Second, for each data type,xxx,
there is an associated XDR routine of the form:

xdr_xxx(xdrs, xp)
XDR *xdrs;
xxx *xp;

{
}

In our case,xxx is long, and the corresponding XDR routine is a primitive,xdr_long(). The client could
also define an arbitrary structurexxx in which case the client would also supply the routinexdr_xxx(),
describing each field by calling XDR routines of the appropriate type. In all cases the first parameter,xdrs
can be treated as an opaque handle, and passed to the primitive routines.

XDR routines are direction independent; that is, the same routines are called to serialize or deserialize data.
This feature is critical to software engineering of portable data. The idea is to call the same routine for
either operation — this almost guarantees that serialized data can also be deserialized. One routine is used
by both producer and consumer of networked data. This is implemented by always passing the address of
an object rather than the object itself — only in the case of deserialization is the object modified. This fea-
ture is not shown in our trivial example, but its value becomes obvious when nontrivial data structures are
passed among machines. If needed, the user can obtain the direction of the XDR operation. See theXDR
Operation Directionssection below for details.

Let’s look at a slightly more complicated example. Assume that a person’s gross assets and liabilities are to
be exchanged among processes. Also assume that these values are important enough to warrant their own
data type:

struct gnumbers {
long g_assets;
long g_liabilities;

};

The corresponding XDR routine describing this structure would be:

bool_t /* TRUE is success, FALSE is failure*/
xdr_gnumbers(xdrs, gp)

XDR *xdrs;
struct gnumbers *gp;

{
if (xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_liabilities))
return(TRUE);

return(FALSE);
}

Note that the parameterxdrs is never inspected or modified; it is only passed on to the subcomponent rou-
tines. It is imperative to inspect the return value of each XDR routine call, and to give up immediately and
returnFALSEif the subroutine fails.

This example also shows that the typebool_t is declared as an integer whose only values areTRUE(1) and
FALSE(0). This document uses the following definitions:

#define bool_t int
#define TRUE 1
#define FALSE 0

Keeping these conventions in mind,xdr_gnumbers()can be rewritten as follows:

Page 6 External Data Representation: Sun Technical Notes

xdr_gnumbers(xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;

{
return(xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_liabilities));
}

This document uses both coding styles.

4. XDR Library Primitives

This section gives a synopsis of each XDR primitive. It starts with basic data types and moves on to con-
structed data types. Finally, XDR utilities are discussed. The interface to these primitives and utilities is
defined in the include file<rpc/xdr.h>, automatically included by<rpc/rpc.h>.

4.1. Number Filters

The XDR library provides primitives to translate between numbers and their corresponding external repre-
sentations. Primitives cover the set of numbers in:

[signed, unsigned] * [short, int, long]

Specifically, the eight primitives are:

bool_t xdr_char(xdrs, cp)
XDR *xdrs;
char *cp;

bool_t xdr_u_char(xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

bool_t xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

bool_t xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

bool_t xdr_long(xdrs, lip)
XDR *xdrs;
long *lip;

bool_t xdr_u_long(xdrs, lup)
XDR *xdrs;
u_long *lup;

bool_t xdr_short(xdrs, sip)
XDR *xdrs;
short *sip;

bool_t xdr_u_short(xdrs, sup)
XDR *xdrs;
u_short *sup;

The first parameter,xdrs, is an XDR stream handle. The second parameter is the address of the number that
provides data to the stream or receives data from it. All routines returnTRUEif they complete successfully,
andFALSEotherwise.

4.2. Floating Point Filters

The XDR library also provides primitive routines for C’s floating point types:

External Data Representation: Sun Technical Notes Page 7

bool_t xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

bool_t xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

The first parameter,xdrs is an XDR stream handle. The second parameter is the address of the floating
point number that provides data to the stream or receives data from it. Both routines returnTRUE if they
complete successfully, andFALSEotherwise.

Note: Since the numbers are represented in IEEE floating point, routines may fail when decoding a valid
IEEE representation into a machine-specific representation, or vice-versa.

4.3. Enumeration Filters

The XDR library provides a primitive for generic enumerations. The primitive assumes that a Cenumhas
the same representation inside the machine as a C integer. The boolean type is an important instance of the
enum. The external representation of a boolean is alwaysTRUE(1) orFALSE(0).

#define bool_t int
#define FALSE 0
#define TRUE 1
#define enum_t int
bool_t xdr_enum(xdrs, ep)

XDR *xdrs;
enum_t *ep;

bool_t xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

The second parametersepandbp are addresses of the associated type that provides data to, or receives data
from, the streamxdrs.

4.4. No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when no data is passed or
required. The library provides such a routine:

bool_t xdr_void(); /* always returns TRUE*/

4.5. Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and perform more complicated
functions then the primitives discussed above. This section includes primitives for strings, arrays, unions,
and pointers to structures.

Constructed data type primitives may use memory management. In many cases, memory is allocated when
deserializing data withXDR_DECODETherefore, the XDR package must provide means to deallocate
memory. This is done by an XDR operation,XDR_FREETo review, the three XDR directional operations
areXDR_ENCODE, XDR_DECODEandXDR_FREE.

4.5.1. Strings

In C, a string is defined as a sequence of bytes terminated by a null byte, which is not considered when cal-
culating string length. However, when a string is passed or manipulated, a pointer to it is employed. There-
fore, the XDR library defines a string to be achar * and not a sequence of characters. The external repre-
sentation of a string is drastically different from its internal representation. Externally, strings are repre-
sented as sequences of ASCII characters, while internally, they are represented with character pointers.
Conversion between the two representations is accomplished with the routinexdr_string():

Page 8 External Data Representation: Sun Technical Notes

bool_t xdr_string(xdrs, sp, maxlength)
XDR *xdrs;
char **sp;
u_int maxlength;

The first parameterxdrs is the XDR stream handle. The second parametersp is a pointer to a string (type
char **. The third parametermaxlengthspecifies the maximum number of bytes allowed during encoding
or decoding. its value is usually specified by a protocol. For example, a protocol specification may say that
a file name may be no longer than 255 characters.

The routine returnsFALSEif the number of characters exceedsmaxlength, andTRUEif it doesn’t.

Keep maxlengthsmall. If it is too big you can blow the heap, sincexdr_string()will call malloc() for
space.

The behavior ofxdr_string() is similar to the behavior of other routines discussed in this section. The
directionXDR_ENCODEis easiest to understand. The parametersppoints to a string of a certain length; if
the string does not exceedmaxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming string is determined; it must
not exceedmaxlength. Next sp is dereferenced; if the the value isNULL, then a string of the appropriate
length is allocated and*sp is set to this string. If the original value of*sp is non-null, then the XDR pack-
age assumes that a target area has been allocated, which can hold strings no longer thanmaxlength. In
either case, the string is decoded into the target area. The routine then appends a null character to the
string.

In the XDR_FREEoperation, the string is obtained by dereferencingsp. If the string is notNULL, it is
freed and*sp is set toNULL. In this operation,xdr_string()ignores themaxlengthparameter.

4.5.2. Byte Arrays

Often variable-length arrays of bytes are preferable to strings. Byte arrays differ from strings in the follow-
ing three ways: 1) the length of the array (the byte count) is explicitly located in an unsigned integer, 2) the
byte sequence is not terminated by a null character, and 3) the external representation of the bytes is the
same as their internal representation. The primitivexdr_bytes()converts between the internal and external
representations of byte arrays:

bool_t xdr_bytes(xdrs, bpp, lp, maxlength)
XDR *xdrs;
char **bpp;
u_int *lp;
u_int maxlength;

The usage of the first, second and fourth parameters are identical to the first, second and third parameters of
xdr_string(), respectively. The length of the byte area is obtained by dereferencinglp when serializing;*lp
is set to the byte length when deserializing.

4.5.3. Arrays

The XDR library package provides a primitive for handling arrays of arbitrary elements. Thexdr_bytes()
routine treats a subset of generic arrays, in which the size of array elements is known to be 1, and the exter-
nal description of each element is built-in. The generic array primitive,xdr_array(), requires parameters
identical to those ofxdr_bytes()plus two more: the size of array elements, and an XDR routine to handle
each of the elements. This routine is called to encode or decode each element of the array.

External Data Representation: Sun Technical Notes Page 9

bool_t
xdr_array(xdrs, ap, lp, maxlength, elementsiz, xdr_element)

XDR *xdrs;
char **ap;
u_int *lp;
u_int maxlength;
u_int elementsiz;
bool_t (*xdr_element)();

The parameterap is the address of the pointer to the array. If*ap is NULL when the array is being deserial-
ized, XDR allocates an array of the appropriate size and sets*ap to that array. The element count of the
array is obtained from*lp when the array is serialized;*lp is set to the array length when the array is dese-
rialized. The parametermaxlengthis the maximum number of elements that the array is allowed to have;
elementsizis the byte size of each element of the array (the C functionsizeof()can be used to obtain this
value). Thexdr_element()routine is called to serialize, deserialize, or free each element of the array.

Before defining more constructed data types, it is appropriate to present three examples.

Example A:
A user on a networked machine can be identified by (a) the machine name, such askrypton: see thegethost-
nameman page; (b) the user’s UID: see thegeteuidman page; and (c) the group numbers to which the user
belongs: see thegetgroupsman page. A structure with this information and its associated XDR routine
could be coded like this:

struct netuser {
char *nu_machinename;
int nu_uid;
u_int nu_glen;
int *nu_gids;

};
#define NLEN 255 /* machine names < 256 chars*/
#define NGRPS 20 /* user can’t be in > 20 groups*/
bool_t
xdr_netuser(xdrs, nup)

XDR *xdrs;
struct netuser *nup;

{
return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&

xdr_int(xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen,
NGRPS, sizeof (int), xdr_int));

}

Example B:
A party of network users could be implemented as an array ofnetuserstructure. The declaration and its
associated XDR routines are as follows:

Page 10 External Data Representation: Sun Technical Notes

struct party {
u_int p_len;
struct netuser *p_nusers;

};
#define PLEN 500 /* max number of users in a party*/
bool_t
xdr_party(xdrs, pp)

XDR *xdrs;
struct party *pp;

{
return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,

sizeof (struct netuser), xdr_netuser));
}

Example C:
The well-known parameters tomain, argc andargv can be combined into a structure. An array of these
structures can make up a history of commands. The declarations and XDR routines might look like:

struct cmd {
u_int c_argc;
char **c_argv;

};
#define ALEN 1000 /* args cannot be > 1000 chars*/
#define NARGC 100 /* commands cannot have > 100 args*/

struct history {
u_int h_len;
struct cmd *h_cmds;

};
#define NCMDS 75 /* history is no more than 75 commands*/

bool_t
xdr_wrap_string(xdrs, sp)

XDR *xdrs;
char **sp;

{
return(xdr_string(xdrs, sp, ALEN));

}

bool_t
xdr_cmd(xdrs, cp)

XDR *xdrs;
struct cmd *cp;

{
return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,

sizeof (char *), xdr_wrap_string));
}

External Data Representation: Sun Technical Notes Page 11

bool_t
xdr_history(xdrs, hp)

XDR *xdrs;
struct history *hp;

{
return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

sizeof (struct cmd), xdr_cmd));
}

The most confusing part of this example is that the routinexdr_wrap_string()is needed to package the
xdr_string() routine, because the implementation ofxdr_array() only passes two parameters to the array
element description routine;xdr_wrap_string()supplies the third parameter toxdr_string().

By now the recursive nature of the XDR library should be obvious. Let’s continue with more constructed
data types.

4.5.4. Opaque Data

In some protocols, handles are passed from a server to client. The client passes the handle back to the
server at some later time. Handles are never inspected by clients; they are obtained and submitted. That is
to say, handles are opaque. Thexdr_opaque()primitive is used for describing fixed sized, opaque bytes.

bool_t xdr_opaque(xdrs, p, len)
XDR *xdrs;
char *p;
u_int len;

The parameterp is the location of the bytes;len is the number of bytes in the opaque object. By definition,
the actual data contained in the opaque object are not machine portable.

4.5.5. Fixed Sized Arrays

The XDR library provides a primitive,xdr_vector(), for fixed-length arrays.

#define NLEN 255 /* machine names must be < 256 chars*/
#define NGRPS 20 /* user belongs to exactly 20 groups*/
struct netuser {

char *nu_machinename;
int nu_uid;
int nu_gids[NGRPS];

};
bool_t
xdr_netuser(xdrs, nup)

XDR *xdrs;
struct netuser *nup;

{
int i;
if (!xdr_string(xdrs, &nup->nu_machinename, NLEN))

return(FALSE);
if (!xdr_int(xdrs, &nup->nu_uid))

return(FALSE);
if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int),

xdr_int)) {
return(FALSE);

}
return(TRUE);

}

Page 12 External Data Representation: Sun Technical Notes

4.5.6. Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is a C union and anenum_tvalue
that selects an “arm” of the union.

struct xdr_discrim {
enum_t value;
bool_t (*proc)();

};
bool_t xdr_union(xdrs, dscmp, unp, arms, defaultarm)

XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *arms;
bool_t (*defaultarm)(); /* may equal NULL*/

First the routine translates the discriminant of the union located at*dscmp. The discriminant is always an
enum_t. Next the union located at*unp is translated. The parameterarms is a pointer to an array of
xdr_discrimstructures. Each structure contains an ordered pair of[value,proc]. If the union’s discriminant
is equal to the associatedvalue, then theproc is called to translate the union. The end of thexdr_discrim
structure array is denoted by a routine of valueNULL (0). If the discriminant is not found in thearms
array, then thedefaultarmprocedure is called if it is non-null; otherwise the routine returnsFALSE.

Example D:Suppose the type of a union may be integer, character pointer (a string), or agnumbersstruc-
ture. Also, assume the union and its current type are declared in a structure. The declaration is:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };
struct u_tag {

enum utype utype; /* the union’s discriminant*/
union {

int ival;
char *pval;
struct gnumbers gn;

} uval;
};

The following constructs and XDR procedure (de)serialize the discriminated union:

struct xdr_discrim u_tag_arms[4] = {
{ INTEGER, xdr_int },
{ GNUMBERS, xdr_gnumbers }
{ STRING, xdr_wrap_string },
{ __dontcare__, NULL }
/* always terminate arms with a NULL xdr_proc*/

}
bool_t
xdr_u_tag(xdrs, utp)

XDR *xdrs;
struct u_tag *utp;

{
return(xdr_union(xdrs, &utp->utype, &utp->uval,

u_tag_arms, NULL));
}

The routinexdr_gnumbers()was presented above inThe XDR Librarysection. xdr_wrap_string()was pre-
sented in example C. The defaultarm parameter toxdr_union()(the last parameter) isNULL in this exam-
ple. Therefore the value of the union’s discriminant may legally take on only values listed in the
u_tag_armsarray. This example also demonstrates that the elements of the arm’s array do not need to be
sorted.

External Data Representation: Sun Technical Notes Page 13

It is worth pointing out that the values of the discriminant may be sparse, though in this example they are
not. It is always good practice to assign explicitly integer values to each element of the discriminant’s type.
This practice both documents the external representation of the discriminant and guarantees that different C
compilers emit identical discriminant values.

Exercise: Implementxdr_union()using the other primitives in this section.

4.5.7. Pointers

In C it is often convenient to put pointers to another structure within a structure. Thexdr_reference()primi-
tive makes it easy to serialize, deserialize, and free these referenced structures.

bool_t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int ssize;
bool_t (*proc)();

Parameterpp is the address of the pointer to the structure; parameterssizeis the size in bytes of the struc-
ture (use the C functionsizeof()to obtain this value); andproc is the XDR routine that describes the struc-
ture. When decoding data, storage is allocated if*pp is NULL.

There is no need for a primitivexdr_struct()to describe structures within structures, because pointers are
always sufficient.

Exercise: Implementxdr_reference()using xdr_array(). Warning: xdr_reference()and xdr_array() are
NOT interchangeable external representations of data.

Example E:Suppose there is a structure containing a person’s name and a pointer to agnumbersstructure
containing the person’s gross assets and liabilities. The construct is:

struct pgn {
char *name;
struct gnumbers *gnp;

};

The corresponding XDR routine for this structure is:

bool_t
xdr_pgn(xdrs, pp)

XDR *xdrs;
struct pgn *pp;

{
if (xdr_string(xdrs, &pp->name, NLEN) &&

xdr_reference(xdrs, &pp->gnp,
sizeof(struct gnumbers), xdr_gnumbers))

return(TRUE);
return(FALSE);

}

Pointer Semantics and XDR

In many applications, C programmers attach double meaning to the values of a pointer. Typically the value
NULL (or zero) means data is not needed, yet some application-specific interpretation applies. In essence,
the C programmer is encoding a discriminated union efficiently by overloading the interpretation of the
value of a pointer. For instance, in example E aNULL pointer value forgnpcould indicate that the person’s
assets and liabilities are unknown. That is, the pointer value encodes two things: whether or not the data is
known; and if it is known, where it is located in memory. Linked lists are an extreme example of the use of
application-specific pointer interpretation.

The primitivexdr_reference()cannot and does not attach any special meaning to a null-value pointer during
serialization. That is, passing an address of a pointer whose value isNULL to xdr_reference()when

Page 14 External Data Representation: Sun Technical Notes

serialing data will most likely cause a memory fault and, on the UNIX system, a core dump.

xdr_pointer()correctly handlesNULL pointers. For more information about its use, see theLinked Lists
topics below.

Exercise:After reading the section onLinked Lists, return here and extend example E so that it can cor-
rectly deal withNULL pointer values.

Exercise:Using thexdr_union(), xdr_reference()and xdr_void() primitives, implement a generic pointer
handling primitive that implicitly deals withNULL pointers. That is, implementxdr_pointer().

4.6. Non-filter Primitives

XDR streams can be manipulated with the primitives discussed in this section.

u_int xdr_getpos(xdrs)
XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

xdr_destroy(xdrs)
XDR *xdrs;

The routinexdr_getpos()returns an unsigned integer that describes the current position in the data stream.
Warning: In some XDR streams, the returned value ofxdr_getpos()is meaningless; the routine returns a −1
in this case (though −1 should be a legitimate value).

The routinexdr_setpos()sets a stream position topos. Warning: In some XDR streams, setting a position is
impossible; in such cases,xdr_setpos()will return FALSE. This routine will also fail if the requested posi-
tion is out-of-bounds. The definition of bounds varies from stream to stream.

The xdr_destroy()primitive destroys the XDR stream. Usage of the stream after calling this routine is
undefined.

4.7. XDR Operation Directions

At times you may wish to optimize XDR routines by taking advantage of the direction of the operation —
XDR_ENCODE XDR_DECODEor XDR_FREEThe valuexdrs->x_opalways contains the direction of the
XDR operation. Programmers are not encouraged to take advantage of this information. Therefore, no
example is presented here. However, an example in theLinked Liststopic below, demonstrates the useful-
ness of thexdrs->x_opfield.

4.8. XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine. These creation routines take argu-
ments that are tailored to the specific properties of the stream.

Streams currently exist for (de)serialization of data to or from standard I/OFILE streams, TCP/IP connec-
tions and UNIX files, and memory.

4.8.1. Standard I/O Streams

XDR streams can be interfaced to standard I/O using thexdrstdio_create()routine as follows:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr streams part of rpc*/
void
xdrstdio_create(xdrs, fp, x_op)

XDR *xdrs;
FILE *fp;
enum xdr_op x_op;

The routinexdrstdio_create()initializes an XDR stream pointed to byxdrs. The XDR stream interfaces to

External Data Representation: Sun Technical Notes Page 15

the standard I/O library. Parameterfp is an open file, andx_opis an XDR direction.

4.8.2. Memory Streams

Memory streams allow the streaming of data into or out of a specified area of memory:

#include <rpc/rpc.h>
void
xdrmem_create(xdrs, addr, len, x_op)

XDR *xdrs;
char *addr;
u_int len;
enum xdr_op x_op;

The routinexdrmem_create()initializes an XDR stream in local memory. The memory is pointed to by
parameteraddr; parameterlen is the length in bytes of the memory. The parametersxdrs and x_op are
identical to the corresponding parameters ofxdrstdio_create(). Currently, the UDP/IP implementation of
RPC usesxdrmem_create(). Complete call or result messages are built in memory before calling the
sendto()system routine.

4.8.3. Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record marking standard that is built on top of the
UNIX file or 4.2 BSD connection interface.

#include <rpc/rpc.h> /* xdr streams part of rpc*/
xdrrec_create(xdrs,

sendsize, recvsize, iohandle, readproc, writeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc)(), (*writeproc)();

The routinexdrrec_create()provides an XDR stream interface that allows for a bidirectional, arbitrarily
long sequence of records. The contents of the records are meant to be data in XDR form. The stream’s pri-
mary use is for interfacing RPC to TCP connections. However, it can be used to stream data into or out of
normal UNIX files.

The parameterxdrs is similar to the corresponding parameter described above. The stream does its own
data buffering similar to that of standard I/O. The parameterssendsizeand recvsizedetermine the size in
bytes of the output and input buffers, respectively; if their values are zero (0), then predetermined defaults
are used. When a buffer needs to be filled or flushed, the routinereadproc()or writeproc() is called, respec-
tively. The usage and behavior of these routines are similar to the UNIX system callsread() andwrite().
However, the first parameter to each of these routines is the opaque parameteriohandle. The other two
parametersbuf andnbytes) and the results (byte count) are identical to the system routines. Ifxxx is read-
proc()or writeproc(), then it has the following form:

/*
* returns the actual number of bytes transferred.
* -1 is an error
*/
int
xxx(iohandle, buf, len)

char *iohandle;
char *buf;
int nbytes;

The XDR stream provides means for delimiting records in the byte stream. The implementation details of
delimiting records in a stream are discussed in theAdvanced Topicstopic below. The primitives that are
specific to record streams are as follows:

Page 16 External Data Representation: Sun Technical Notes

bool_t
xdrrec_endofrecord(xdrs, flushnow)

XDR *xdrs;
bool_t flushnow;

bool_t
xdrrec_skiprecord(xdrs)

XDR *xdrs;
bool_t
xdrrec_eof(xdrs)

XDR *xdrs;

The routinexdrrec_endofrecord()causes the current outgoing data to be marked as a record. If the parame-
ter flushnowis TRUE, then the stream’swriteprocwill be called; otherwise,writeprocwill be called when
the output buffer has been filled.

The routinexdrrec_skiprecord()causes an input stream’s position to be moved past the current record
boundary and onto the beginning of the next record in the stream.

If there is no more data in the stream’s input buffer, then the routinexdrrec_eof()returnsTRUE. That is not
to say that there is no more data in the underlying file descriptor.

4.9. XDR Stream Implementation

This section provides the abstract data types needed to implement new instances of XDR streams.

4.9.1. The XDR Object

The following structure defines the interface to an XDR stream:

enum xdr_op { XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2 };
typedef struct {

enum xdr_op x_op; /* operation; fast added param*/
struct xdr_ops {

bool_t (*x_getlong)(); /* get long from stream*/
bool_t (*x_putlong)(); /* put long to stream*/
bool_t (*x_getbytes)(); /* get bytes from stream*/
bool_t (*x_putbytes)(); /* put bytes to stream*/
u_int (*x_getpostn)(); /* return stream offset*/
bool_t (*x_setpostn)(); /* reposition offset*/
caddr_t (*x_inline)(); /* ptr to buffered data*/
VOID (*x_destroy)(); /* free private area*/

} *x_ops;
caddr_t x_public; /* users’ data */
caddr_t x_private; /* pointer to private data*/
caddr_t x_base; /* private for position info*/
int x_handy; /* extra private word */

} XDR;

Thex_opfield is the current operation being performed on the stream. This field is important to the XDR
primitives, but should not affect a stream’s implementation. That is, a stream’s implementation should not
depend on this value. The fieldsx_private, x_base, and x_handyare private to the particular stream’s
implementation. The fieldx_public is for the XDR client and should never be used by the XDR stream
implementations or the XDR primitives.x_getpostn(), x_setpostn()andx_destroy()are macros for access-
ing operations. The operationx_inline() takes two parameters: an XDR *, and an unsigned integer, which
is a byte count. The routine returns a pointer to a piece of the stream’s internal buffer. The caller can then
use the buffer segment for any purpose. From the stream’s point of view, the bytes in the buffer segment
have been consumed or put. The routine may returnNULL if it cannot return a buffer segment of the
requested size. (Thex_inline() routine is for cycle squeezers. Use of the resulting buffer is not data-
portable. Users are encouraged not to use this feature.)

External Data Representation: Sun Technical Notes Page 17

The operationsx_getbytes()andx_putbytes()blindly get and put sequences of bytes from or to the underly-
ing stream; they returnTRUE if they are successful, andFALSEotherwise. The routines have identical
parameters (replacexxx):

bool_t
xxxbytes(xdrs, buf, bytecount)

XDR *xdrs;
char *buf;
u_int bytecount;

The operationsx_getlong()andx_putlong()receive and put long numbers from and to the data stream. It is
the responsibility of these routines to translate the numbers between the machine representation and the
(standard) external representation. The UNIX primitiveshtonl() andntohl() can be helpful in accomplish-
ing this. The higher-level XDR implementation assumes that signed and unsigned long integers contain the
same number of bits, and that nonnegative integers have the same bit representations as unsigned integers.
The routines returnTRUEif they succeed, andFALSEotherwise. They hav e identical parameters:

bool_t
xxxlong(xdrs, lp)

XDR *xdrs;
long *lp;

Implementors of new XDR streams must make an XDR structure (with new operation routines) available to
clients, using some kind of create routine.

5. Advanced Topics

This section describes techniques for passing data structures that are not covered in the preceding sections.
Such structures include linked lists (of arbitrary lengths). Unlike the simpler examples covered in the ear-
lier sections, the following examples are written using both the XDR C library routines and the XDR data
description language. TheExternal Data Representation Standard: Protocol Specificationdescribes this
language in complete detail.

5.1. Linked Lists

The last example in thePointerstopic earlier in this chapter presented a C data structure and its associated
XDR routines for a individual’s gross assets and liabilities. The example is duplicated below:

struct gnumbers {
long g_assets;
long g_liabilities;

};
bool_t
xdr_gnumbers(xdrs, gp)

XDR *xdrs;
struct gnumbers *gp;

{
if (xdr_long(xdrs, &(gp->g_assets)))

return(xdr_long(xdrs, &(gp->g_liabilities)));
return(FALSE);

}

Now assume that we wish to implement a linked list of such information. A data structure could be con-
structed as follows:

Page 18 External Data Representation: Sun Technical Notes

struct gnumbers_node {
struct gnumbers gn_numbers;
struct gnumbers_node *gn_next;

};

typedef struct gnumbers_node *gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the head is not merely a convenient
shorthand for a structure. Similarly thegn_nextfield is used to indicate whether or not the object has termi-
nated. Unfortunately, if the object continues, thegn_nextfield is also the address of where it continues. The
link addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive declaration ofgnumbers_list:

struct gnumbers {
int g_assets;
int g_liabilities;

};

struct gnumbers_node {
gnumbers gn_numbers;
gnumbers_node *gn_next;

};

In this description, the boolean indicates whether there is more data following it. If the boolean isFALSE,
then it is the last data field of the structure. If it isTRUE, then it is followed by a gnumbers structure and
(recursively) by agnumbers_list. Note that the C declaration has no boolean explicitly declared in it
(though thegn_nextfield implicitly carries the information), while the XDR data description has no pointer
explicitly declared in it.

Hints for writing the XDR routines for agnumbers_listfollow easily from the XDR description above.
Note how the primitivexdr_pointer()is used to implement the XDR union above.

bool_t
xdr_gnumbers_node(xdrs, gn)

XDR *xdrs;
gnumbers_node *gn;

{
return(xdr_gnumbers(xdrs, &gn->gn_numbers) &&

xdr_gnumbers_list(xdrs, &gp->gn_next));
}

bool_t
xdr_gnumbers_list(xdrs, gnp)

XDR *xdrs;
gnumbers_list *gnp;

{
return(xdr_pointer(xdrs, gnp,

sizeof(struct gnumbers_node),
xdr_gnumbers_node));

}

The unfortunate side effect of XDR’ing a list with these routines is that the C stack grows linearly with
respect to the number of node in the list. This is due to the recursion. The following routine collapses the
above two mutually recursive into a single, non-recursive one.

External Data Representation: Sun Technical Notes Page 19

bool_t
xdr_gnumbers_list(xdrs, gnp)

XDR *xdrs;
gnumbers_list *gnp;

{
bool_t more_data;
gnumbers_list *nextp;

for (;;) {
more_data = (*gnp != NULL);
if (!xdr_bool(xdrs, &more_data)) {

return(FALSE);
}
if (! more_data) {

break;
}
if (xdrs->x_op == XDR_FREE) {

nextp = &(*gnp)->gn_next;
}
if (!xdr_reference(xdrs, gnp,

sizeof(struct gnumbers_node), xdr_gnumbers)) {

return(FALSE);
}
gnp = (xdrs->x_op == XDR_FREE) ?

nextp : &(*gnp)->gn_next;
}
*gnp = NULL;
return(TRUE);

}

The first task is to find out whether there is more data or not, so that this boolean information can be serial-
ized. Notice that this statement is unnecessary in theXDR_DECODEcase, since the value of more_data is
not known until we deserialize it in the next statement.

The next statement XDR’s the more_data field of the XDR union. Then if there is truly no more data, we
set this last pointer toNULL to indicate the end of the list, and returnTRUEbecause we are done. Note that
setting the pointer toNULL is only important in theXDR_DECODEcase, since it is alreadyNULL in the
XDR_ENCODEand XDR_FREE cases.

Next, if the direction isXDR_FREE, the value ofnextpis set to indicate the location of the next pointer in
the list. We do this now because we need to dereference gnp to find the location of the next item in the list,
and after the next statement the storage pointed to bygnpwill be freed up and no be longer valid. We can’t
do this for all directions though, because in theXDR_DECODEdirection the value ofgnpwon’t be set until
the next statement.

Next, we XDR the data in the node using the primitivexdr_reference(). xdr_reference() is like
xdr_pointer()which we used before, but it does not send over the boolean indicating whether there is more
data. We use it instead ofxdr_pointer()because we have already XDR’d this information ourselves. Notice
that the xdr routine passed is not the same type as an element in the list. The routine passed isxdr_gnum-
bers(), for XDR’ing gnumbers, but each element in the list is actually of typegnumbers_node. We don’t
passxdr_gnumbers_node()because it is recursive, and instead usexdr_gnumbers()which XDR’s all of the
non-recursive part. Note that this trick will work only if thegn_numbersfield is the first item in each ele-
ment, so that their addresses are identical when passed toxdr_reference().

Finally, we updategnp to point to the next item in the list. If the direction isXDR_FREE, we set it to the
previously saved value, otherwise we can dereferencegnp to get the proper value. Though harder to under-
stand than the recursive version, this non-recursive routine is far less likely to blow the C stack. It will also

Page 20 External Data Representation: Sun Technical Notes

run more efficiently since a lot of procedure call overhead has been removed. Most lists are small though
(in the hundreds of items or less) and the recursive version should be sufficient for them.

