
PMake — A Tutorial

Adam de Boor

Berkeley Softworks
2150 Shattuck Ave, Penthouse

Berkeley, CA 94704
adam@bsw.uu.net
...!uunet!bsw!adam

1. Introduction

PMake is a program for creating other programs, or anything else you can think of for it to do. The basic
idea behind PMake is that, for any giv en system, be it a program or a document or whatever, there will be
some files that depend on the state of other files (on when they were last modified). PMake takes these
dependencies, which you must specify, and uses them to build whatever it is you want it to build.

PMake is almost fully-compatible with Make, with which you may already be familiar. PMake’s most
important feature is its ability to run several different jobs at once, making the creation of systems consider-
ably faster. It also has a great deal more functionality than Make. Throughout the text, whenever something
is mentioned that is an important difference between PMake and Make (i.e. something that will cause a
makefile to fail if you don’t do something about it), or is simply important, it will be flagged with a little
sign in the left margin, like this:NOTE

This tutorial is divided into three main sections corresponding to basic, intermediate and advanced PMake
usage. If you already know Make well, you will only need to skim chapter 2 (there are some aspects of
PMake that I consider basic to its use that didn’t exist in Make). Things in chapter 3 make life much easier,
while those in chapter 4 are strictly for those who know what they are doing. Chapter 5 has definitions for
the jargon I use and chapter 6 contains possible solutions to the problems presented throughout the tutorial.

2. The Basics of PMake

PMake takes as input a file that tells a) which files depend on which other files to be complete and b) what
to do about files that are ‘‘out-of-date.’’ This file is known as a ‘‘makefile’’ and is usually kept in the top-
most directory of the system to be built. While you can call the makefile anything you want, PMake will
look for Makefile andmakefile (in that order) in the current directory if you don’t tell it otherwise.
To specify a different makefile, use the−f flag (e.g. ‘‘pmake -f program.mk ’’).

A makefile has four different types of lines in it:

• File dependency specifications

• Creation commands

• Variable assignments

• Comments, include statements and conditional directives

Any line may be continued over multiple lines by ending it with a backslash. The backslash, following
newline and any initial whitespace on the following line are compressed into a single space before the input
line is examined by PMake.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appears in all copies. The University of Califor-
nia, Berkeley Softworks, and Adam de Boor make no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

PSD:12-2 PMake — A Tutorial

2.1. Dependency Lines

As mentioned in the introduction, in any system, there are dependencies between the files that make up the
system. For instance, in a program made up of several C source files and one header file, the C files will
need to be re-compiled should the header file be changed. For a document of several chapters and one
macro file, the chapters will need to be reprocessed if any of the macros changes. These are dependencies
and are specified by means of dependency lines in the makefile.

On a dependency line, there are targets and sources, separated by a one- or two-character operator. The tar-
gets ‘‘depend’’ on the sources and are usually created from them. Any number of targets and sources may
be specified on a dependency line. All the targets in the line are made to depend on all the sources. Targets
and sources need not be actual files, but every source must be either an actual file or another target in the
makefile. If you run out of room, use a backslash at the end of the line to continue onto the next one.

Any file may be a target and any file may be a source, but the relationship between the two (or however
many) is determined by the ‘‘operator’’ that separates them. Three types of operators exist: one specifies
that the datedness of a target is determined by the state of its sources, while another specifies other files (the
sources) that need to be dealt with before the target can be re-created. The third operator is very similar to
the first, with the additional condition that the target is out-of-date if it has no sources. These operations are
represented by the colon, the exclamation point and the double-colon, respectively, and are mutually exclu-
sive. Their exact semantics are as follows:

: If a colon is used, a target on the line is considered to be ‘‘out-of-date’’ (and in need of creation) if

• any of the sources has been modified more recently than the target, or

• the target doesn’t exist.

Under this operation, steps will be taken to re-create the target only if it is found to be out-of-date by
using these two rules.

! If an exclamation point is used, the target will always be re-created, but this will not happen until all
of its sources have been examined and re-created, if necessary.

:: If a double-colon is used, a target is out-of-date if:

• any of the sources has been modified more recently than the target, or

• the target doesn’t exist, or

• the target has no sources.

If the target is out-of-date according to these rules, it will be re-created. This operator also does
something else to the targets, but I’ll go into that in the next section (‘‘Shell Commands’’).

Enough words, now for an example. Take that C program I mentioned earlier. Say there are three C files
(a.c , b.c andc.c) each of which includes the filedefs.h . The dependencies between the files could
then be expressed as follows:

program : a.o b.o c.o
a.o b.o c.o : defs.h
a.o : a.c
b.o : b.c
c.o : c.c

You may be wondering at this point, wherea.o , b.o andc.o came in and whytheydepend ondefs.h
and the C files don’t. The reason is quite simple:program cannot be made by linking together .c files — it
must be made from .o files. Likewise, if you changedefs.h , it isn’t the .c files that need to be re-created,
it’s the .o files. If you think of dependencies in these terms — which files (targets) need to be created from
which files (sources) — you should have no problems.

An important thing to notice about the above example, is that all the .o files appear as targets on more than
one line. This is perfectly all right: the target is made to depend on all the sources mentioned on all the
dependency lines. E.g.a.o depends on bothdefs.h anda.c .

PMake — A Tutorial PSD:12-3

NOTE The order of the dependency lines in the makefile is important: the first target on the first dependency line
in the makefile will be the one that gets made if you don’t say otherwise. That’s whyprogram comes first
in the example makefile, above.

Both targets and sources may contain the standard C-Shell wildcard characters ({ , } , * , ?, [, and]), but
the non-curly-brace ones may only appear in the final component (the file portion) of the target or source.
The characters mean the following things:

{} These enclose a comma-separated list of options and cause the pattern to be expanded once for each
element of the list. Each expansion contains a different element. For example,src/{whif-
fle,beep,fish}.c expands to the three wordssrc/whiffle.c , src/beep.c , and
src/fish.c . These braces may be nested and, unlike the other wildcard characters, the resulting
words need not be actual files. All other wildcard characters are expanded using the files that exist
when PMake is started.

* This matches zero or more characters of any sort.src/*.c will expand to the same three words as
above aslong assrc contains those three files (and no other files that end in.c).

? Matches any single character.

[] This is known as a character class and contains either a list of single characters, or a series of charac-
ter ranges (a-z , for example means all characters between a and z), or both. It matches any single
character contained in the list. E.g.[A-Za-z] will match all letters, while[0123456789] will
match all numbers.

2.2. Shell Commands

‘‘Isn’t that nice,’’ you say to yourself, ‘‘but how are files actually ‘re-created,’ as he likes to spell it?’’ The
re-creation is accomplished by commands you place in the makefile. These commands are passed to the
Bourne shell (better known as ‘‘/bin/sh’’) to be executed and are expected to do what’s necessary to update
the target file (PMake doesn’t actually check to see if the target was created. It just assumes it’s there).

Shell commands in a makefile look a lot like shell commands you would type at a terminal, with one impor-
tant exception: each command in a makefilemustbe preceded by at least one tab.

Each target has associated with it a shell script made up of one or more of these shell commands. The cre-
ation script for a target should immediately follow the dependency line for that target. While any giv en tar-
get may appear on more than one dependency line, only one of these dependency lines may be followed by
a creation script, unless the ‘::’ operator was used on the dependency line.NOTE

If the double-colon was used, each dependency line for the target may be followed by a shell script. That
script will only be executed if the target on the associated dependency line is out-of-date with respect to the
sources on that line, according to the rules I gav e earlier. I’ll giv e you a good example of this later on.

To expand on the earlier makefile, you might add commands as follows:

program : a.o b.o c.o
cc a.o b.o c.o −o program

a.o b.o c.o : defs.h
a.o : a.c

cc −c a.c
b.o : b.c

cc −c b.c
c.o : c.c

cc −c c.c

Something you should remember when writing a makefile is, the commands will be executed if thetarget
on the dependency line is out-of-date, not the sources. In this example, the command ‘‘cc −c a.c ’’ will
be executed ifa.o is out-of-date. Because of the ‘:’ operator, this means that shoulda.c or defs.h have
been modified more recently thana.o , the command will be executed (a.o will be considered out-of-
date).

PSD:12-4 PMake — A Tutorial

Remember how I said the only difference between a makefile shell command and a regular shell command
was the leading tab? I lied. There is another way in which makefile commands differ from regular ones.
The first two characters after the initial whitespace are treated specially. If they are any combination of ‘@’
and ‘−’, they cause PMake to do different things.

In most cases, shell commands are printed before they’re actually executed. This is to keep you informed of
what’s going on. If an ‘@’ appears, however, this echoing is suppressed. In the case of anecho command,
say ‘‘echo Linking index ,’’ it would be rather silly to see

echo Linking index
Linking index

so PMake allows you to place an ‘@’ before the command (‘‘@echo Linking index ’’) to prevent the
command from being printed.

The other special character is the ‘−’. In case you didn’t know, shell commands finish with a certain ‘‘exit
status.’’ This status is made available by the operating system to whatever program invoked the command.
Normally this status will be 0 if everything went ok and non-zero if something went wrong. For this reason,
PMake will consider an error to have occurred if one of the shells it invokes returns a non-zero status.
When it detects an error, PMake’s usual action is to abort whatever it’s doing and exit with a non-zero sta-
tus itself (any other targets that were being created will continue being made, but nothing new will be
started. PMake will exit after the last job finishes). This behavior can be altered, however, by placing a ‘−’
at the front of a command (‘‘−mv index index.old ’’), certain command-line arguments, or doing
other things, to be detailed later. In such a case, the non-zero status is simply ignored and PMake keeps
chugging along.NOTE

Because all the commands are given to a single shell to execute, such things as setting shell variables,
changing directories, etc., last beyond the command in which they are found. This also allows shell com-
pound commands (likefor loops) to be entered in a natural manner. Since this could cause problems for
some makefiles that depend on each command being executed by a single shell, PMake has a−B flag (it
stands for backwards-compatible) that forces each command to be given to a separate shell. It also does
several other things, all of which I discourage since they are now old-fashioned. . . .NOTE

A target’s shell script is fed to the shell on its (the shell’s) input stream. This means that any commands,
such asci that need to get input from the terminal won’t work right — they’ll get the shell’s input, some-
thing they probably won’t find to their liking. A simple way around this is to give a command like this:

ci $(SRCS) < /dev/tty

This would force the program’s input to come from the terminal. If you can’t do this for some reason, your
only other alternative is to use PMake in its fullest compatibility mode. SeeCompatibility in chapter 4.

2.3. Variables

PMake, like Make before it, has the ability to save text in variables to be recalled later at your convenience.
Variables in PMake are used much like variables in the shell and, by tradition, consist of all upper-case let-
ters (you don’thaveto use all upper-case letters. In fact there’s nothing to stop you from calling a variable
@ˆ&$%$. Just tradition). Variables are assigned-to using lines of the form

VARIABLE = value

appended-to by

VARIABLE += value

conditionally assigned-to (if the variable isn’t already defined) by

VARIABLE ?= value

and assigned-to with expansion (i.e. the value is expanded (see below) before being assigned to the vari-
able—useful for placing a value at the beginning of a variable, or other things) by

PMake — A Tutorial PSD:12-5

VARIABLE := value

Any whitespace beforevalueis stripped off. When appending, a space is placed between the old value and
the stuff being appended.

The final way a variable may be assigned to is using

VARIABLE != shell-command

In this case,shell-commandhas all its variables expanded (see below) and is passed off to a shell to
execute. The output of the shell is then placed in the variable. Any newlines (other than the final one) are
replaced by spaces before the assignment is made. This is typically used to find the current directory via a
line like:

CWD != pwd

Note: this is intended to be used to execute commands that produce small amounts of output (e.g. ‘‘pwd’’).
The implementation is less than intelligent and will likely freeze if you execute something that produces
thousands of bytes of output (8 Kb is the limit on many UNIX systems).

The value of a variable may be retrieved by enclosing the variable name in parentheses or curly braces and
preceeding the whole thing with a dollar sign.

For example, to set the variable CFLAGS to the string ‘‘−I/sprite/src/lib/libc −O ,’’ you would
place a line

CFLAGS = −I/sprite/src/lib/libc −O

in the makefile and use the word$(CFLAGS) wherever you would like the string
−I/sprite/src/lib/libc −O to appear. This is called variable expansion.NOTE

Unlike Make, PMake will not expand a variable unless it knows the variable exists. E.g. if you have a${i}
in a shell command and you have not assigned a value to the variablei (the empty string is considered a
value, by the way), where Make would have substituted the empty string, PMake will leave the${i}
alone. To keep PMake from substituting for a variable it knows, precede the dollar sign with another dollar
sign. (e.g. to pass${HOME} to the shell, use$${HOME}). This causes PMake, in effect, to expand the$
macro, which expands to a single$. For compatibility, Make’s style of variable expansion will be used if
you invoke PMake with any of the compatibility flags (−V, −B or −M . The−V flag alters just the variable
expansion).

There are two different times at which variable expansion occurs: When parsing a dependency line, the
expansion occurs immediately upon reading the line. If any variable used on a dependency line is unde-
fined, PMake will print a message and exit. Variables in shell commands are expanded when the command
is executed. Variables used inside another variable are expanded whenever the outer variable is expanded
(the expansion of an inner variable has no effect on the outer variable. I.e. if the outer variable is used on a
dependency line and in a shell command, and the inner variable changes value between when the depen-
dency line is read and the shell command is executed, two different values will be substituted for the outer
variable).

Variables come in four flavors, though they are all expanded the same and all look about the same. They are
(in order of expanding scope):

• Local variables.

• Command-line variables.

• Global variables.

• Environment variables.

The classification of variables doesn’t matter much, except that the classes are searched from the top (local)
to the bottom (environment) when looking up a variable. The first one found wins.

PSD:12-6 PMake — A Tutorial

2.3.1. Local Variables

Each target can have as many as sev en local variables. These are variables that are only ‘‘visible’’ within
that target’s shell script and contain such things as the target’s name, all of its sources (from all its depen-
dency lines), those sources that were out-of-date, etc. Four local variables are defined for all targets. They
are:

.TARGET
The name of the target.

.OODATE
The list of the sources for the target that were considered out-of-date. The order in the list is
not guaranteed to be the same as the order in which the dependencies were given.

.ALLSRC
The list of all sources for this target in the order in which they were given.

.PREFIX
The target without its suffix and without any leading path. E.g. for the target
../../lib/compat/fsRead.c , this variable would containfsRead .

Three other local variables are set only for certain targets under special circumstances. These are the
‘‘.IMPSRC,’’ ‘‘.ARCHIVE,’’ and ‘‘.MEMBER’’ variables. When they are set and how they are used is
described later.

Four of these variables may be used in sources as well as in shell scripts. These are ‘‘.TARGET’’, ‘‘.PRE-
FIX’’, ‘‘.ARCHIVE’’ and ‘‘.MEMBER’’. The variables in the sources are expanded once for each target on
the dependency line, providing what is known as a ‘‘dynamic source,’’ allowing you to specify several
dependency lines at once. For example,

$(OBJS) : $(.PREFIX).c

will create a dependency between each object file and its corresponding C source file.

2.3.2. Command-line Variables

Command-line variables are set when PMake is first invoked by giving a variable assignment as one of the
arguments. For example,

pmake "CFLAGS = -I/sprite/src/lib/libc -O"

would makeCFLAGSbe a command-line variable with the given value. Any assignments toCFLAGSin the
makefile will have no effect, because once it is set, there is (almost) nothing you can do to change a com-
mand-line variable (the search order, you see). Command-line variables may be set using any of the four
assignment operators, though only= and?= behave as you would expect them to, mostly because assign-
ments to command-line variables are performed before the makefile is read, thus the values set in the make-
file are unavailable at the time.+= is the same as=, because the old value of the variable is sought only in
the scope in which the assignment is taking place (for reasons of efficiency that I won’t get into here).:=
and?= will work if the only variables used are in the environment.!= is sort of pointless to use from the
command line, since the same effect can no doubt be accomplished using the shell’s own command substi-
tution mechanisms (backquotes and all that).

2.3.3. Global Variables

Global variables are those set or appended-to in the makefile. There are two classes of global variables:
those you set and those PMake sets. As I said before, the ones you set can have any name you want them to
have, except they may not contain a colon or an exclamation point. The variables PMake sets (almost)
always begin with a period and always contain upper-case letters, only. The variables are as follows:

.PMAKE
The name by which PMake was invoked is stored in this variable. For compatibility, the name
is also stored in the MAKE variable.

PMake — A Tutorial PSD:12-7

.MAKEFLAGS
All the relevant flags with which PMake was invoked. This does not include such things as−f
or variable assignments. Again for compatibility, this value is stored in the MFLAGS variable
as well.

Tw o other variables, ‘‘.INCLUDES’’ and ‘‘.LIBS,’’ are covered in the section on special targets in chapter
3.

Global variables may be deleted using lines of the form:

#undef variable

The ‘#’ must be the first character on the line. Note that this may only be done on global variables.

2.3.4. Environment Variables

Environment variables are passed by the shell that invoked PMake and are given by PMake to each shell it
invokes. They are expanded like any other variable, but they cannot be altered in any way.

One special environment variable,PMAKE, is examined by PMake for command-line flags, variable assign-
ments, etc., it should always use. This variable is examined before the actual arguments to PMake are. In
addition, all flags given to PMake, either through thePMAKEvariable or on the command line, are placed in
this environment variable and exported to each shell PMake executes. Thus recursive inv ocations of PMake
automatically receive the same flags as the top-most one.

Using all these variables, you can compress the sample makefile even more:

OBJS = a.o b.o c.o
program : $(OBJS)

cc $(.ALLSRC) −o $(.TARGET)
$(OBJS) : defs.h
a.o : a.c

cc −c a.c
b.o : b.c

cc −c b.c
c.o : c.c

cc −c c.c

2.4. Comments

Comments in a makefile start with a ‘#’ character and extend to the end of the line. They may appear any-
where you want them, except in a shell command (though the shell will treat it as a comment, too). If, for
some reason, you need to use the ‘#’ in a variable or on a dependency line, put a backslash in front of it.
PMake will compress the two into a single ‘#’ (Note: this isn’t true if PMake is operating in full-compati-
bility mode).

2.5. ParallelismNOTE

PMake was specifically designed to re-create several targets at once, when possible. You do not have to do
anything special to cause this to happen (unless PMake was configured to not act in parallel, in which case
you will have to make use of the−L and−J flags (see below)), but you do have to be careful at times.

There are several problems you are likely to encounter. One is that some makefiles (and programs) are writ-
ten in such a way that it is impossible for two targets to be made at once. The programxstr , for example,
always modifies the filesstrings andx.c . There is no way to change it. Thus you cannot run two of
them at once without something being trashed. Similarly, if you have commands in the makefile that always
send output to the same file, you will not be able to make more than one target at once unless you change
the file you use. You can, for instance, add a$$$$ to the end of the file name to tack on the process ID of
the shell executing the command (each$$ expands to a single$, thus giving you the shell variable$$).
Since only one shell is used for all the commands, you’ll get the same file name for each command in the
script.

PSD:12-8 PMake — A Tutorial

The other problem comes from improperly-specified dependencies that worked in Make because of its
sequential, depth-first way of examining them. While I don’t want to go into depth on how PMake works
(look in chapter 4 if you’re interested), I will warn you that files in two different ‘‘levels’’ of the depen-
dency tree may be examined in a different order in PMake than they were in Make. For example, given the
makefile

a : b c
b : d

PMake will examine the targets in the orderc , d, b, a. If the makefile’s author expected PMake to abort
before makingc if an error occurred while makingb, or if b needed to exist beforec was made, s/he will
be sorely disappointed. The dependencies are incomplete, since in both these cases,c would depend onb.
So watch out.

Another problem you may face is that, while PMake is set up to handle the output from multiple jobs in a
graceful fashion, the same is not so for input. It has no way to regulate input to different jobs, so if you use
the redirection from/dev/tty I mentioned earlier, you must be careful not to run two of the jobs at once.

2.6. Writing and Debugging a Makefile

Now you know most of what’s in a makefile, what do you do next? There are two choices: (1) use one of
the uncommonly-available makefile generators or (2) write your own makefile (I leave out the third choice
of ignoring PMake and doing everything by hand as being beyond the bounds of common sense).

When faced with the writing of a makefile, it is usually best to start from first principles: just whatare you
trying to do? What do you want the makefile finally to produce?

To begin with a somewhat traditional example, let’s say you need to write a makefile to create a program,
expr , that takes standard infix expressions and converts them to prefix form (for no readily apparent rea-
son). You’ve got three source files, in C, that make up the program:main.c , parse.c , andoutput.c .
Harking back to my pithy advice about dependency lines, you write the first line of the file:

expr : main.o parse.o output.o

because you rememberexpr is made from.o files, not.c files. Similarly for the.o files you produce the
lines:

main.o : main.c
parse.o : parse.c
output.o : output.c
main.o parse.o output.o : defs.h

Great. You’ve now got the dependencies specified. What you need now is commands. These commands,
remember, must produce the target on the dependency line, usually by using the sources you’ve listed. You
remember about local variables? Good, so it should come to you as no surprise when you write

expr : main.o parse.o output.o
cc -o $(.TARGET) $(.ALLSRC)

Why use the variables? If your program grows to produce postfix expressions too (which, of course,
requires a name change or two), it is one fewer place you have to change the file. You cannot do this for the
object files, however, because they depend on their corresponding source filesand defs.h , thus if you
said

cc -c $(.ALLSRC)

you’d get (formain.o):

cc -c main.c defs.h

which is wrong. So you round out the makefile with these lines:

PMake — A Tutorial PSD:12-9

main.o : main.c
cc -c main.c

parse.o : parse.c
cc -c parse.c

output.o : output.c
cc -c output.c

The makefile is now complete and will, in fact, create the program you want it to without unnecessary com-
pilations or excessive typing on your part. There are two things wrong with it, however (aside from it being
altogether too long, something I’ll address in chapter 3):

1) The string ‘‘main.o parse.o output.o ’’ is repeated twice, necessitating two changes when
you add postfix (you were planning on that, weren’t you?). This is in direct violation of de Boor’s
First Rule of writing makefiles:

Anything that needs to be written more than once should be placed in a variable.

I cannot emphasize this enough as being very important to the maintenance of a makefile and its pro-
gram.

2) There is no way to alter the way compilations are performed short of editing the makefile and making
the change in all places. This is evil and violates de Boor’s Second Rule, which follows directly from
the first:

Any flags or programs used inside a makefile should be placed in a variable so they may be
changed, temporarily or permanently, with the greatest ease.

The makefile should more properly read:

OBJS = main.o parse.o output.o
expr : $(OBJS)

$(CC) $(CFLAGS) -o $(.TARGET) $(.ALLSRC)
main.o : main.c

$(CC) $(CFLAGS) -c main.c
parse.o : parse.c

$(CC) $(CFLAGS) -c parse.c
output.o : output.c

$(CC) $(CFLAGS) -c output.c
$(OBJS) : defs.h

Alternatively, if you like the idea of dynamic sources mentioned in section 2.3.1, you could write it like
this:

OBJS = main.o parse.o output.o
expr : $(OBJS)

$(CC) $(CFLAGS) -o $(.TARGET) $(.ALLSRC)
$(OBJS) : $(.PREFIX).c defs.h

$(CC) $(CFLAGS) -c $(.PREFIX).c

These two rules and examples lead to de Boor’s First Corollary:

Variables are your friends.

Once you’ve written the makefile comes the sometimes-difficult task of making sure the darn thing works.
Your most helpful tool to make sure the makefile is at least syntactically correct is the−n flag, which allows
you to see if PMake will choke on the makefile. The second thing the−n flag lets you do is see what PMake
would do without it actually doing it, thus you can make sure the right commands would be executed were
you to give PMake its head.

When you find your makefile isn’t behaving as you hoped, the first question that comes to mind (after
‘‘What time is it, anyway?’’) is ‘‘Why not?’’ In answering this, two flags will serve you well: ‘‘-d m ’’ and
‘‘ -p 2 .’’ The first causes PMake to tell you as it examines each target in the makefile and indicate why it
is deciding whatever it is deciding. You can then use the information printed for other targets to see where

PSD:12-10 PMake — A Tutorial

you went wrong. The ‘‘-p 2 ’’ flag makes PMake print out its internal state when it is done, allowing you
to see that you forgot to make that one chapter depend on that file of macros you just got a new version of.
The output from ‘‘-p 2 ’’ is intended to resemble closely a real makefile, but with additional information
provided and with variables expanded in those commands PMake actually printed or executed.

Something to be especially careful about is circular dependencies. E.g.

a : b
b : c d
d : a

In this case, because of how PMake works,c is the only thing PMake will examine, becaused anda will
effectively fall off the edge of the universe, making it impossible to examineb (or them, for that matter).
PMake will tell you (if run in its normal mode) all the targets involved in any cycle it looked at (i.e. if you
have two cycles in the graph (naughty, naughty), but only try to make a target in one of them, PMake will
only tell you about that one. You’ll have to try to make the other to find the second cycle). When run as
Make, it will only print the first target in the cycle.

2.7. Invoking PMake

PMake comes with a wide variety of flags to choose from. They may appear in any order, interspersed with
command-line variable assignments and targets to create. The flags are as follows:

−d what
This causes PMake to spew out debugging information that may prove useful to you. If you can’t fig-
ure out why PMake is doing what it’s doing, you might try using this flag. Thewhat parameter is a
string of single characters that tell PMake what aspects you are interested in. Most of what I describe
will make little sense to you, unless you’ve dealt with Make before. Just remember where this table is
and come back to it as you read on. The characters and the information they produce are as follows:

a Archive searching and caching.

c Conditional evaluation.

d The searching and caching of directories.

j Various snippets of information related to the running of the multiple shells. Not particularly
interesting.

m The making of each target: what target is being examined; when it was last modified; whether
it is out-of-date; etc.

p Makefile parsing.

r Remote execution.

s The application of suffix-transformation rules. (See chapter 3)

t The maintenance of the list of targets.

v Variable assignment.

Of these all, themands letters will be most useful to you. If the−d is the final argument or the argu-
ment from which it would get these key letters (see below for a note about which argument would be
used) begins with a−, all of these debugging flags will be set, resulting in massive amounts of output.

−f makefile
Specify a makefile to read different from the standard makefiles (Makefile or makefile). If
makefile is ‘‘−’’, PMake uses the standard input. This is useful for making quick and dirty
makefiles. . .

−h Prints out a summary of the various flags PMake accepts. It can also be used to find out what level of
concurrency was compiled into the version of PMake you are using (look at−J and−L) and various
other information on how PMake was configured.

−i If you give this flag, PMake will ignore non-zero status returned by any of its shells. It’s like placing
a ‘−’ before all the commands in the makefile.

PMake — A Tutorial PSD:12-11

−k This is similar to−i in that it allows PMake to continue when it sees an error, but unlike−i, where
PMake continues blithely as if nothing went wrong,−k causes it to recognize the error and only con-
tinue work on those things that don’t depend on the target, either directly or indirectly (through
depending on something that depends on it), whose creation returned the error. The ‘k’ is for ‘‘keep
going’’. . .

−l PMake has the ability to lock a directory against other people executing it in the same directory (by
means of a file called ‘‘LOCK.make’’ that it creates and checks for in the directory). This is a Good
Thing because two people doing the same thing in the same place can be disastrous for the final prod-
uct (too many cooks and all that). Whether this locking is the default is up to your system adminis-
trator. If locking is on,−l will turn it off, and vice versa. Note that this locking will not preventyou
from invoking PMake twice in the same place — if you own the lock file, PMake will warn you
about it but continue to execute.

−m directory
Tells PMake another place to search for included makefiles via the <...> style. Several−m options
can be given to form a search path. If this construct is used the default system makefile search path is
completely overridden. To be explained in chapter 3, section 3.2.

−n This flag tells PMake not to execute the commands needed to update the out-of-date targets in the
makefile. Rather, PMake will simply print the commands it would have executed and exit. This is
particularly useful for checking the correctness of a makefile. If PMake doesn’t do what you expect it
to, it’s a good chance the makefile is wrong.

−p number
This causes PMake to print its input in a reasonable form, though not necessarily one that would
make immediate sense to anyone but me. Thenumberis a bitwise-or of 1 and 2 where 1 means it
should print the input before doing any processing and 2 says it should print it after everything has
been re-created. Thus−p 3 would print it twice—once before processing and once after (you might
find the difference between the two interesting). This is mostly useful to me, but you may find it
informative in some bizarre circumstances.

−q If you give PMake this flag, it will not try to re-create anything. It will just see if anything is out-of-
date and exit non-zero if so.

−r When PMake starts up, it reads a default makefile that tells it what sort of system it’s on and gives it
some idea of what to do if you don’t tell it anything. I’ll tell you about it in chapter 3. If you give this
flag, PMake won’t read the default makefile.

−s This causes PMake to not print commands before they’re executed. It is the equivalent of putting an
‘@’ before every command in the makefile.

−t Rather than try to re-create a target, PMake will simply ‘‘touch’’ it so as to make it appear up-to-date.
If the target didn’t exist before, it will when PMake finishes, but if the target did exist, it will appear
to have been updated.

−v This is a mixed-compatibility flag intended to mimic the System V version of Make. It is the same as
giving −B, and−V as well as turning off directory locking. Targets can still be created in parallel,
however. This is the mode PMake will enter if it is invoked either as ‘‘smake’’ or ‘‘ vmake’’.

−x This tells PMake it’s ok to export jobs to other machines, if they’re available. It is used when running
in Make mode, as exporting in this mode tends to make things run slower than if the commands were
just executed locally.

−B Forces PMake to be as backwards-compatible with Make as possible while still being itself. This
includes:

• Executing one shell per shell command

• Expanding anything that looks even vaguely like a variable, with the empty string replacing any
variable PMake doesn’t know.

• Refusing to allow you to escape a ‘#’ with a backslash.

PSD:12-12 PMake — A Tutorial

• Permitting undefined variables on dependency lines and conditionals (see below). Normally this
causes PMake to abort.

−C This nullifies any and all compatibility mode flags you may have giv en or implied up to the time the
−C is encountered. It is useful mostly in a makefile that you wrote for PMake to avoid bad things
happening when someone runs PMake as ‘‘make’’ or has things set in the environment that tell it to
be compatible.−C is not placed in thePMAKEenvironment variable or the.MAKEFLAGSor
MFLAGSglobal variables.

−D variable
Allows you to define a variable to have ‘‘1’’ as its value. The variable is a global variable, not a com-
mand-line variable. This is useful mostly for people who are used to the C compiler arguments and
those using conditionals, which I’ll get into in section 4.3

−I directory
Tells PMake another place to search for included makefiles. Yet another thing to be explained in
chapter 3 (section 3.2, to be precise).

−J number
Gives the absolute maximum number of targets to create at once on both local and remote machines.

−L number
This specifies the maximum number of targets to create on the local machine at once. This may be 0,
though you should be wary of doing this, as PMake may hang until a remote machine becomes avail-
able, if one is not available when it is started.

−M This is the flag that provides absolute, complete, full compatibility with Make. It still allows you to
use all but a few of the features of PMake, but it is non-parallel. This is the mode PMake enters if you
call it ‘‘ make.’’

−P When creating targets in parallel, several shells are executing at once, each wanting to write its own
two cent’s-worth to the screen. This output must be captured by PMake in some way in order to pre-
vent the screen from being filled with garbage even more indecipherable than you usually see. PMake
has two ways of doing this, one of which provides for much cleaner output and a clear separation
between the output of different jobs, the other of which provides a more immediate response so one
can tell what is really happpening. The former is done by notifying you when the creation of a target
starts, capturing the output and transferring it to the screen all at once when the job finishes. The lat-
ter is done by catching the output of the shell (and its children) and buffering it until an entire line is
received, then printing that line preceded by an indication of which job produced the output. Since I
prefer this second method, it is the one used by default. The first method will be used if you give the
−P flag to PMake.

−V As mentioned before, the−V flag tells PMake to use Make’s style of expanding variables, substitut-
ing the empty string for any variable it doesn’t know.

−W There are several times when PMake will print a message at you that is only a warning, i.e. it can
continue to work in spite of your having done something silly (such as forgotten a leading tab for a
shell command). Sometimes you are well aware of silly things you have done and would like PMake
to stop bothering you. This flag tells it to shut up about anything non-fatal.

−X This flag causes PMake to not attempt to export any jobs to another machine.

Several flags may follow a single ‘−’. Those flags that require arguments take them from successive param-
eters. E.g.

pmake -fDnI server.mk DEBUG /chip2/X/server/include

will cause PMake to readserver.mk as the input makefile, define the variableDEBUGas a global vari-
able and look for included makefiles in the directory/chip2/X/server/include .

2.8. Summary

A makefile is made of four types of lines:

PMake — A Tutorial PSD:12-13

• Dependency lines

• Creation commands

• Variable assignments

• Comments, include statements and conditional directives

A dependency line is a list of one or more targets, an operator (‘: ’, ‘ :: ’, or ‘! ’), and a list of zero or more
sources. Sources may contain wildcards and certain local variables.

A creation command is a regular shell command preceded by a tab. In addition, if the first two characters
after the tab (and other whitespace) are a combination of ‘@’ or ‘ - ’, PMake will cause the command to not
be printed (if the character is ‘@’) or errors from it to be ignored (if ‘- ’). A blank line, dependency line or
variable assignment terminates a creation script. There may be only one creation script for each target with
a ‘: ’ or ‘ ! ’ operator.

Variables are places to store text. They may be unconditionally assigned-to using the ‘=’ operator,
appended-to using the ‘+=’ operator, conditionally (if the variable is undefined) assigned-to with the ‘?=’
operator, and assigned-to with variable expansion with the ‘:= ’ operator. The output of a shell command
may be assigned to a variable using the ‘!= ’ operator. Variables may be expanded (their value inserted) by
enclosing their name in parentheses or curly braces, prceeded by a dollar sign. A dollar sign may be
escaped with another dollar sign. Variables are not expanded if PMake doesn’t know about them. There are
seven local variables:.TARGET, .ALLSRC, .OODATE, .PREFIX , .IMPSRC, .ARCHIVE, and .MEM-
BER. Four of them (.TARGET, .PREFIX , .ARCHIVE, and.MEMBER) may be used to specify ‘‘dynamic
sources.’’ Variables are good. Know them. Love them. Live them.

Debugging of makefiles is best accomplished using the−n, −d m, and−p 2 flags.

2.9. Exercises
TBA

3. Short-cuts and Other Nice Things

Based on what I’ve told you so far, you may have gotten the impression that PMake is just a way of storing
aw ay commands and making sure you don’t forget to compile something. Good. That’s just what it is.
However, the ways I’ve described have been inelegant, at best, and painful, at worst. This chapter contains
things that make the writing of makefiles easier and the makefiles themselves shorter and easier to modify
(and, occasionally, simpler). In this chapter, I assume you are somewhat more familiar with Sprite (or
UNIX, if that’s what you’re using) than I did in chapter 2, just so you’re on your toes. So without further
ado...

3.1. Transformation Rules

As you know, a file’s name consists of two parts: a base name, which gives some hint as to the contents of
the file, and a suffix, which usually indicates the format of the file. Over the years, asUNIX® has devel-
oped, naming conventions, with regard to suffixes, have also developed that have become almost as incon-
trovertible as Law. E.g. a file ending in.c is assumed to contain C source code; one with a.o suffix is
assumed to be a compiled, relocatable object file that may be linked into any program; a file with a.ms
suffix is usually a text file to be processed by Troff with the −ms macro package, and so on. One of the best
aspects of both Make and PMake comes from their understanding of how the suffix of a file pertains to its
contents and their ability to do things with a file based soley on its suffix. This ability comes from some-
thing known as a transformation rule. A transformation rule specifies how to change a file with one suffix
into a file with another suffix.

A transformation rule looks much like a dependency line, except the target is made of two known suffixes
stuck together. Suffixes are made known to PMake by placing them as sources on a dependency line whose
target is the special target.SUFFIXES . E.g.

PSD:12-14 PMake — A Tutorial

.SUFFIXES : .o .c

.c.o :
$(CC) $(CFLAGS) -c $(.IMPSRC)

The creation script attached to the target is used to transform a file with the first suffix (in this case,.c) into
a file with the second suffix (here,.o). In addition, the target inherits whatever attributes have been applied
to the transformation rule. The simple rule given above says that to transform a C source file into an object
file, you compile it usingcc with the−c flag. This rule is taken straight from the system makefile. Many
transformation rules (and suffixes) are defined there, and I refer you to it for more examples (type ‘‘pmake
-h ’’ to find out where it is).

There are several things to note about the transformation rule given above:

1) The.IMPSRC variable. This variable is set to the ‘‘implied source’’ (the file from which the
target is being created; the one with the first suffix), which, in this case, is the .c file.

2) TheCFLAGSvariable. Almost all of the transformation rules in the system makefile are set up
using variables that you can alter in your makefile to tailor the rule to your needs. In this case,
if you want all your C files to be compiled with the−g flag, to provide information fordbx ,
you would set theCFLAGSvariable to contain-g (‘‘ CFLAGS = -g ’’) and PMake would take
care of the rest.

To giv e you a quick example, the makefile in 2.3.4 could be changed to this:

OBJS = a.o b.o c.o
program : $(OBJS)

$(CC) -o $(.TARGET) $(.ALLSRC)
$(OBJS) : defs.h

The transformation rule I gav e above takes the place of the 6 lines1

a.o : a.c
cc -c a.c

b.o : b.c
cc -c b.c

c.o : c.c
cc -c c.c

Now you may be wondering about the dependency between the.o and.c files — it’s not mentioned any-
where in the new makefile. This is because it isn’t needed: one of the effects of applying a transformation
rule is the target comes to depend on the implied source. That’s why it’s called the impliedsource.

For a more detailed example. Say you have a makefile like this:

a.out : a.o b.o
$(CC) $(.ALLSRC)

and a directory set up like this:

total 4
-rw-rw-r-- 1 deboor 34 Sep 7 00:43 Makefile
-rw-rw-r-- 1 deboor 119 Oct 3 19:39 a.c
-rw-rw-r-- 1 deboor 201 Sep 7 00:43 a.o
-rw-rw-r-- 1 deboor 69 Sep 7 00:43 b.c

While just typing ‘‘pmake’’ will do the right thing, it’s much more informative to type ‘‘pmake -d s ’’.
This will show you what PMake is up to as it processes the files. In this case, PMake prints the following:

1 This is also somewhat cleaner, I think, than the dynamic source solution presented in 2.6

PMake — A Tutorial PSD:12-15

Suff_FindDeps (a.out)
using existing source a.o
applying .o -> .out to "a.o"

Suff_FindDeps (a.o)
trying a.c...got it
applying .c -> .o to "a.c"

Suff_FindDeps (b.o)
trying b.c...got it
applying .c -> .o to "b.c"

Suff_FindDeps (a.c)
trying a.y...not there
trying a.l...not there
trying a.c,v...not there
trying a.y,v...not there
trying a.l,v...not there

Suff_FindDeps (b.c)
trying b.y...not there
trying b.l...not there
trying b.c,v...not there
trying b.y,v...not there
trying b.l,v...not there

--- a.o ---
cc -c a.c
--- b.o ---
cc -c b.c
--- a.out ---
cc a.o b.o

Suff_FindDeps is the name of a function in PMake that is called to check for implied sources for a tar-
get using transformation rules. The transformations it tries are, naturally enough, limited to the ones that
have been defined (a transformation may be defined multiple times, by the way, but only the most recent
one will be used). You will notice, however, that there is a definite order to the suffixes that are tried. This
order is set by the relative positions of the suffixes on the.SUFFIXES line — the earlier a suffix appears,
the earlier it is checked as the source of a transformation. Once a suffix has been defined, the only way to
change its position in the pecking order is to remove all the suffixes (by having a.SUFFIXES dependency
line with no sources) and redefine them in the order you want. (Previously-defined transformation rules will
be automatically redefined as the suffixes they inv olve are re-entered.)

Another way to affect the search order is to make the dependency explicit. In the above example,a.out
depends ona.o andb.o . Since a transformation exists from.o to .out , PMake uses that, as indicated
by the ‘‘using existing source a.o ’’ message.

The search for a transformation starts from the suffix of the target and continues through all the defined
transformations, in the order dictated by the suffix ranking, until an existing file with the same base (the tar-
get name minus the suffix and any leading directories) is found. At that point, one or more transformation
rules will have been found to change the one existing file into the target.

For example, ignoring what’s in the system makefile for now, say you have a makefile like this:

PSD:12-16 PMake — A Tutorial

.SUFFIXES : .out .o .c .y .l

.l.c :
lex $(.IMPSRC)
mv lex.yy.c $(.TARGET)

.y.c :
yacc $(.IMPSRC)
mv y.tab.c $(.TARGET)

.c.o :
cc -c $(.IMPSRC)

.o.out :
cc -o $(.TARGET) $(.IMPSRC)

and the single filejive.l . If you were to type ‘‘pmake -rd ms jive.out ,’’ you would get the fol-
lowing output forjive.out :

Suff_FindDeps (jive.out)
trying jive.o...not there
trying jive.c...not there
trying jive.y...not there
trying jive.l...got it
applying .l -> .c to "jive.l"
applying .c -> .o to "jive.c"
applying .o -> .out to "jive.o"

and this is why: PMake starts with the targetjive.out , figures out its suffix (.out) and looks for things
it can transform to a.out file. In this case, it only finds.o , so it looks for the filejive.o . It fails to find
it, so it looks for transformations into a.o file. Again it has only one choice:.c . So it looks forjive.c
and, as you know, fails to find it. At this point it has two choices: it can create the.c file from either a.y
file or a.l file. Since.y came first on the.SUFFIXES line, it checks forjive.y first, but can’t find it,
so it looks forjive.l and, lo and behold, there it is. At this point, it has defined a transformation path as
follows: .l → .c → .o → .out and applies the transformation rules accordingly. For completeness, and
to give you a better idea of what PMake actually did with this three-step transformation, this is what PMake
printed for the rest of the process:

Suff_FindDeps (jive.o)
using existing source jive.c
applying .c -> .o to "jive.c"

Suff_FindDeps (jive.c)
using existing source jive.l
applying .l -> .c to "jive.l"

Suff_FindDeps (jive.l)
Examining jive.l...modified 17:16:01 Oct 4, 1987...up-to-date
Examining jive.c...non-existent...out-of-date
--- jive.c ---
lex jive.l
. . . meaningless lex output deleted . . .
mv lex.yy.c jive.c
Examining jive.o...non-existent...out-of-date
--- jive.o ---
cc -c jive.c
Examining jive.out...non-existent...out-of-date
--- jive.out ---
cc -o jive.out jive.o

One final question remains: what does PMake do with targets that have no known suffix? PMake simply
pretends it actually has a known suffix and searches for transformations accordingly. The suffix it chooses
is the source for the.NULL target mentioned later. In the system makefile,.out is chosen as the ‘‘null

PMake — A Tutorial PSD:12-17

suffix’’ because most people use PMake to create programs. You are, however, free and welcome to change
it to a suffix of your own choosing. The null suffix is ignored, however, when PMake is in compatibility
mode (see chapter 4).

3.2. Including Other Makefiles

Just as for programs, it is often useful to extract certain parts of a makefile into another file and just include
it in other makefiles somehow. Many compilers allow you say something like

#include "defs.h"

to include the contents ofdefs.h in the source file. PMake allows you to do the same thing for makefiles,
with the added ability to use variables in the filenames. An include directive in a makefile looks either like
this:

#include <file>

or this

#include "file"

The difference between the two is where PMake searches for the file: the first way, PMake will look for the
file only in the system makefile directory (or directories) (to find out what that directory is, give PMake the
−h flag). The system makefile directory search path can be overridden via the−m option. For files in dou-
ble-quotes, the search is more complex:

1) The directory of the makefile that’s including the file.

2) The current directory (the one in which you invoked PMake).

3) The directories given by you using−I flags, in the order in which you gav e them.

4) Directories given by.PATH dependency lines (see chapter 4).

5) The system makefile directory.

in that order.

You are free to use PMake variables in the filename—PMake will expand them before searching for the file.
You must specify the searching method with either angle brackets or double-quotesoutsideof a variable
expansion. I.e. the following

SYSTEM = <command.mk>

#include $(SYSTEM)

won’t work.

3.3. Saving Commands

There may come a time when you will want to save certain commands to be executed when everything else
is done. For instance: you’re making several different libraries at one time and you want to create the mem-
bers in parallel. Problem is,ranlib is another one of those programs that can’t be run more than once in
the same directory at the same time (each one creates a file called__.SYMDEF into which it stuffs infor-
mation for the linker to use. Two of them running at once will overwrite each other’s file and the result will
be garbage for both parties). You might want a way to save the ranlib commands til the end so they can be
run one after the other, thus keeping them from trashing each other’s file. PMake allows you to do this by
inserting an ellipsis (‘‘. . .’’) as a command between commands to be run at once and those to be run later.

So for theranlib case above, you might do this:

PSD:12-18 PMake — A Tutorial

lib1.a : $(LIB1OBJS)
rm -f $(.TARGET)
ar cr $(.TARGET) $(.ALLSRC)
...
ranlib $(.TARGET)

lib2.a : $(LIB2OBJS)
rm -f $(.TARGET)
ar cr $(.TARGET) $(.ALLSRC)
...
ranlib $(.TARGET)

This would save both

ranlib $(.TARGET)

commands until the end, when they would run one after the other (using the correct value for the.TARGET
variable, of course).

Commands saved in this manner are only executed if PMake manages to re-create everything without an
error.

3.4. Target Attributes

PMake allows you to give attributes to targets by means of special sources. Like everything else PMake
uses, these sources begin with a period and are made up of all upper-case letters. There are various reasons
for using them, and I will try to give examples for most of them. Others you’ll have to find uses for your-
self. Think of it as ‘‘an exercise for the reader.’’ By placing one (or more) of these as a source on a depen-
dency line, you are ‘‘marking the target(s) with that attribute.’’ That’s just the way I phrase it, so you know.

Any attributes given as sources for a transformation rule are applied to the target of the transformation rule
when the rule is applied.

.DONTCARE
If a target is marked with this attribute and PMake can’t figure out how to create it, it will
ignore this fact and assume the file isn’t really needed or actually exists and PMake just
can’t find it. This may prove wrong, but the error will be noted later on, not when PMake
tries to create the target so marked. This attribute also prevents PMake from attempting to
touch the target if it is given the−t flag.

.EXEC This attribute causes its shell script to be executed while having no effect on targets that
depend on it. This makes the target into a sort of subroutine. An example. Say you have
some LISP files that need to be compiled and loaded into a LISP process. To do this, you
echo LISP commands into a file and execute a LISP with this file as its input when every-
thing’s done. Say also that you have to load other files from another system before you can
compile your files and further, that you don’t want to go through the loading and dumping
unless one ofyour files has changed. Your makefile might look a little bit like this (remem-
ber, this is an educational example, and don’t worry about theCOMPILErule, all will soon
become clear, grasshopper):

PMake — A Tutorial PSD:12-19

system : init a.fasl b.fasl c.fasl
for i in $(.ALLSRC);
do

echo -n ’(load "’ >> input
echo -n ${i} >> input
echo ’")’ >> input

done
echo ’(dump "$(.TARGET)")’ >> input
lisp < input

a.fasl : a.l init COMPILE
b.fasl : b.l init COMPILE
c.fasl : c.l init COMPILE
COMPILE : .USE

echo ’(compile "$(.ALLSRC)")’ >> input
init : .EXEC

echo ’(load-system)’ > input

.EXEC sources, don’t appear in the local variables of targets that depend on them (nor are
they touched if PMake is giv en the−t flag). Note that all the rules, not just that forsys-
tem , includeinit as a source. This is because none of the other targets can be made until
init has been made, thus they depend on it.

.EXPORT This is used to mark those targets whose creation should be sent to another machine if at all
possible. This may be used by some exportation schemes if the exportation is expensive. You
should ask your system administrator if it is necessary.

.EXPORTSAME
Tells the export system that the job should be exported to a machine of the same architecture
as the current one. Certain operations (e.g. running text throughnroff) can be performed
the same on any architecture (CPU and operating system type), while others (e.g. compiling
a program withcc) must be performed on a machine with the same architecture. Not all
export systems will support this attribute.

.IGNORE Giving a target the.IGNORE attribute causes PMake to ignore errors from any of the tar-
get’s commands, as if they all had ‘−’ before them.

.INVISIBLE This allows you to specify one target as a source for another without the one affecting the
other’s local variables. Useful if, say, you have a makefile that creates two programs, one of
which is used to create the other, so it must exist before the other is created. You could say

prog1 : $(PROG1OBJS) prog2 MAKEINSTALL
prog2 : $(PROG2OBJS) .INVISIBLE MAKEINSTALL

whereMAKEINSTALLis some complex .USE rule (see below) that depends on the.ALL-
SRCvariable containing the right things. Without the.INVISIBLE attribute forprog2 ,
the MAKEINSTALLrule couldn’t be applied. This is not as useful as it should be, and the
semantics may change (or the whole thing go away) in the not-too-distant future.

.JOIN This is another way to avoid performing some operations in parallel while permitting every-
thing else to be done so. Specifically it forces the target’s shell script to be executed only if
one or more of the sources was out-of-date. In addition, the target’s name, in both its.TAR-
GETvariable and all the local variables of any target that depends on it, is replaced by the
value of its.ALLSRC variable. As an example, suppose you have a program that has four
libraries that compile in the same directory along with, and at the same time as, the program.
You again have the problem withranlib that I mentioned earlier, only this time it’s more
severe: you can’t just put the ranlib off to the end since the program will need those libraries
before it can be re-created. You can do something like this:

PSD:12-20 PMake — A Tutorial

program : $(OBJS) libraries
cc -o $(.TARGET) $(.ALLSRC)

libraries : lib1.a lib2.a lib3.a lib4.a .JOIN
ranlib $(.OODATE)

In this case, PMake will re-create the$(OBJS) as necessary, along withlib1.a ,
lib2.a , lib3.a and lib4.a . It will then executeranlib on any library that was
changed and setprogram ’s .ALLSRC variable to contain what’s in$(OBJS) followed by
‘‘ lib1.a lib2.a lib3.a lib4.a .’’ In case you’re wondering, it’s called.JOIN
because it joins together different threads of the ‘‘input graph’’ at the target marked with the
attribute. Another aspect of the .JOIN attribute is it keeps the target from being created if
the−t flag was given.

.MAKE The .MAKE attribute marks its target as being a recursive inv ocation of PMake. This forces
PMake to execute the script associated with the target (if it’s out-of-date) even if you gav e
the−n or −t flag. By doing this, you can start at the top of a system and type

pmake -n

and have it descend the directory tree (if your makefiles are set up correctly), printing what it
would have executed if you hadn’t included the−n flag.

.NOEXPORT
If possible, PMake will attempt to export the creation of all targets to another machine (this
depends on how PMake was configured). Sometimes, the creation is so simple, it is pointless
to send it to another machine. If you give the target the.NOEXPORTattribute, it will be run
locally, even if you’ve giv en PMake the−L 0 flag.

.NOTMAIN Normally, if you do not specify a target to make in any other way, PMake will take the first
target on the first dependency line of a makefile as the target to create. That target is known
as the ‘‘Main Target’’ and is labeled as such if you print the dependencies out using the−p
flag. Giving a target this attribute tells PMake that the target is definitelynot the Main Tar-
get. This allows you to place targets in an included makefile and have PMake create some-
thing else by default.

.PRECIOUS When PMake is interrupted (you type control-C at the keyboard), it will attempt to clean up
after itself by removing any half-made targets. If a target has the.PRECIOUS attribute,
however, PMake will leave it alone. An additional side effect of the ‘::’ operator is to mark
the targets as.PRECIOUS.

.SILENT Marking a target with this attribute keeps its commands from being printed when they’re
executed, just as if they had an ‘@’ in front of them.

.USE By giving a target this attribute, you turn it into PMake’s equivalent of a macro. When the
target is used as a source for another target, the other target acquires the commands, sources
and attributes (except.USE) of the source. If the target already has commands, the.USE
target’s commands are added to the end. If more than one .USE-marked source is given to a
target, the rules are applied sequentially.

The typical .USE rule (as I call them) will use the sources of the target to which it is applied
(as stored in the.ALLSRC variable for the target) as its ‘‘arguments,’’ if you will. For
example, you probably noticed that the commands for creatinglib1.a andlib2.a in the
example in section 3.3 were exactly the same. You can use the.USE attribute to eliminate
the repetition, like so:

PMake — A Tutorial PSD:12-21

lib1.a : $(LIB1OBJS) MAKELIB
lib2.a : $(LIB2OBJS) MAKELIB

MAKELIB : .USE
rm -f $(.TARGET)
ar cr $(.TARGET) $(.ALLSRC)
...
ranlib $(.TARGET)

Several system makefiles (not to be confused with The System Makefile) make use of these
.USE rules to make your life easier (they’re in the default, system makefile directory...take a
look). Note that the .USE rule source itself (MAKELIB) does not appear in any of the tar-
gets’s local variables. There is no limit to the number of times I could use theMAKELIB
rule. If there were more libraries, I could continue with ‘‘lib3.a : $(LIB3OBJS)
MAKELIB’’ and so on and so forth.

3.5. Special Targets

As there were in Make, so there are certain targets that have special meaning to PMake. When you use one
on a dependency line, it is the only target that may appear on the left-hand-side of the operator. As for the
attributes and variables, all the special targets begin with a period and consist of upper-case letters only. I
won’t describe them all in detail because some of them are rather complex and I’ll describe them in more
detail than you’ll want in chapter 4. The targets are as follows:

.BEGIN Any commands attached to this target are executed before anything else is done. You can use it
for any initialization that needs doing.

.DEFAULT
This is sort of a .USE rule for any target (that was used only as a source) that PMake can’t fig-
ure out any other way to create. It’s only ‘‘sort of’’ a .USE rule because only the shell script
attached to the.DEFAULT target is used. The.IMPSRC variable of a target that inherits
.DEFAULT’s commands is set to the target’s own name.

.END This serves a function similar to.BEGIN , in that commands attached to it are executed once
ev erything has been re-created (so long as no errors occurred). It also serves the extra function
of being a place on which PMake can hang commands you put off to the end. Thus the script
for this target will be executed before any of the commands you save with the ‘‘. . .’’.

.EXPORT The sources for this target are passed to the exportation system compiled into PMake. Some
systems will use these sources to configure themselves. You should ask your system adminis-
trator about this.

.IGNORE This target marks each of its sources with the.IGNORE attribute. If you don’t giv e it any
sources, then it is like giving the−i flag when you invoke PMake — errors are ignored for all
commands.

.INCLUDES
The sources for this target are taken to be suffixes that indicate a file that can be included in a
program source file. The suffix must have already been declared with.SUFFIXES (see
below). Any suffix so marked will have the directories on its search path (see.PATH, below)
placed in the.INCLUDES variable, each preceded by a−I flag. This variable can then be used
as an argument for the compiler in the normal fashion. The.h suffix is already marked in this
way in the system makefile. E.g. if you have

.SUFFIXES : .bitmap

.PATH.bitmap : /usr/local/X/lib/bitmaps

.INCLUDES : .bitmap

PMake will place ‘‘-I/usr/local/X/lib/bitmaps ’’ in the .INCLUDES variable and
you can then say

PSD:12-22 PMake — A Tutorial

cc $(.INCLUDES) -c xprogram.c

(Note: the.INCLUDES variable is not actually filled in until the entire makefile has been
read.)

.INTERRUPT
When PMake is interrupted, it will execute the commands in the script for this target, if it
exists.

.LIBS This does for libraries what.INCLUDES does for include files, except the flag used is−L , as
required by those linkers that allow you to tell them where to find libraries. The variable used
is .LIBS . Be forewarned that PMake may not have been compiled to do this if the linker on
your system doesn’t accept the−L flag, though the.LIBS variable will always be defined
once the makefile has been read.

.MAIN If you didn’t giv e a target (or targets) to create when you invoked PMake, it will take the
sources of this target as the targets to create.

.MAKEFLAGS
This target provides a way for you to always specify flags for PMake when the makefile is
used. The flags are just as they would be typed to the shell (except you can’t use shell variables
unless they’re in the environment), though the−f and−r flags have no effect.

.NULL This allows you to specify what suffix PMake should pretend a file has if, in fact, it has no
known suffix. Only one suffix may be so designated. The last source on the dependency line is
the suffix that is used (you should, however, only give one suffix. . .).

.PATH If you give sources for this target, PMake will take them as directories in which to search for
files it cannot find in the current directory. If you give no sources, it will clear out any directo-
ries added to the search path before. Since the effects of this all get very complex, I’ll leave it
til chapter four to give you a complete explanation.

.PATHsuffix
This does a similar thing to.PATH, but it does it only for files with the given suffix. The suffix
must have been defined already. Look atSearch Paths(section 4.1) for more information.

.PRECIOUS
Similar to .IGNORE, this gives the.PRECIOUS attribute to each source on the dependency
line, unless there are no sources, in which case the.PRECIOUS attribute is given to every tar-
get in the file.

.RECURSIVE
This target applies the.MAKE attribute to all its sources. It does nothing if you don’t giv e it
any sources.

.SHELL PMake is not constrained to only using the Bourne shell to execute the commands you put in
the makefile. You can tell it some other shell to use with this target. Check outA Shell is a
Shell is a Shell(section 4.4) for more information.

.SILENT When you use.SILENT as a target, it applies the.SILENT attribute to each of its sources. If
there are no sources on the dependency line, then it is as if you gav e PMake the−s flag and no
commands will be echoed.

.SUFFIXES
This is used to give new file suffixes for PMake to handle. Each source is a suffix PMake
should recognize. If you give a.SUFFIXES dependency line with no sources, PMake will for-
get about all the suffixes it knew (this also nukes the null suffix). For those targets that need to
have suffixes defined, this is how you do it.

In addition to these targets, a line of the form

attribute : sources

applies theattributeto all the targets listed assources.

PMake — A Tutorial PSD:12-23

3.6. Modifying Variable Expansion

Variables need not always be expanded verbatim. PMake defines several modifiers that may be applied to a
variable’s value before it is expanded. You apply a modifier by placing it after the variable name with a
colon between the two, like so:

${ VARIABLE: modifier}

Each modifier is a single character followed by something specific to the modifier itself. You may apply as
many modifiers as you want — each one is applied to the result of the previous and is separated from the
previous by another colon.

There are seven ways to modify a variable’s expansion, most of which come from the C shell variable mod-
ification characters:

Mpattern
This is used to select only those words (a word is a series of characters that are neither spaces
nor tabs) that match the givenpattern. The pattern is a wildcard pattern like that used by the
shell, where* means 0 or more characters of any sort;? is any single character;[abcd]
matches any single character that is either ‘a’, ‘b’, ‘c’ or ‘d’ (there may be any number of char-
acters between the brackets);[0-9] matches any single character that is between ‘0’ and ‘9’
(i.e. any digit. This form may be freely mixed with the other bracket form), and ‘\’ is used to
escape any of the characters ‘*’, ‘?’, ‘[’ or ‘:’, leaving them as regular characters to match
themselves in a word. For example, the system makefile<makedepend.mk> uses
‘‘ $(CFLAGS:M-[ID]*) ’’ to extract all the−I and−D flags that would be passed to the C
compiler. This allows it to properly locate include files and generate the correct dependencies.

Npattern
This is identical to:M except it substitutes all words that don’t match the given pattern.

S/search-string/replacement-string/[g]
Causes the first occurrence ofsearch-stringin the variable to be replaced byreplacement-
string, unless theg flag is given at the end, in which case all occurences of the string are
replaced. The substitution is performed on each word in the variable in turn. Ifsearch-string
begins with â , the string must match starting at the beginning of the word. Ifsearch-string
ends with a$, the string must match to the end of the word (these two may be combined to
force an exact match). If a backslash preceeds these two characters, however, they lose their
special meaning. Variable expansion also occurs in the normal fashion inside both thesearch-
string and thereplacement-string, exceptthat a backslash is used to prevent the expansion of a
$, not another dollar sign, as is usual. Note thatsearch-stringis just a string, not a pattern, so
none of the usual regular-expression/wildcard characters have any special meaning saveˆ and
$. In the replacement string, the& character is replaced by thesearch-stringunless it is pre-
ceded by a backslash. You are allowed to use any character except colon or exclamation point
to separate the two strings. This so-called delimiter character may be placed in either string by
preceeding it with a backslash.

T Replaces each word in the variable expansion by its last component (its ‘‘tail’’). For example,
given

OBJS = ../lib/a.o b /usr/lib/libm.a
TAILS = $(OBJS:T)

the variableTAILS would expand to ‘‘a.o b libm.a .’’

H This is similar to:T , except that every word is replaced by everything but the tail (the
‘‘head’’). Using the same definition ofOBJS, the string ‘‘$(OBJS:H) ’’ would expand to
‘‘ ../lib /usr/lib .’’ Note that the final slash on the heads is removed and anything with-
out a head is replaced by the empty string.

E :E replaces each word by its suffix (‘‘extension’’). So ‘‘$(OBJS:E) ’’ would give you ‘‘.o
.a .’’

PSD:12-24 PMake — A Tutorial

R This replaces each word by everything but the suffix (the ‘‘root’’ of the word).
‘‘ $(OBJS:R) ’’ expands to ‘‘../lib/a b /usr/lib/libm .’’

In addition, the System V style of substitution is also supported. This looks like:

$(VARIABLE: search-string=replacement)

It must be the last modifier in the chain. The search is anchored at the end of each word, so only suffixes or
whole words may be replaced.

3.7. More on Debugging

3.8. More Exercises

(3.1) You’ve got a set programs, each of which is created from its own assembly-language source file (suf-
fix .asm). Each program can be assembled into two versions, one with error-checking code assem-
bled in and one without. You could assemble them into files with different suffixes (.eobj and
.obj , for instance), but your linker only understands files that end in.obj . To top it all off, the
final executablesmusthave the suffix.exe . How can you still use transformation rules to make
your life easier (Hint: assume the error-checking versions haveec tacked onto their prefix)?

(3.2) Assume, for a moment or two, you want to perform a sort of ‘‘indirection’’ by placing the name of a
variable into another one, then you want to get the value of the first by expanding the second some-
how. Unfortunately, PMake doesn’t allow constructs like

$($(FOO))

What do you do? Hint: no further variable expansion is performed after modifiers are applied, thus if
you cause a $ to occur in the expansion, that’s what will be in the result.

4. PMake for Gods

This chapter is devoted to those facilities in PMake that allow you to do a great deal in a makefile with very
little work, as well as do some things you couldn’t do in Make without a great deal of work (and perhaps
the use of other programs). The problem with these features, is they must be handled with care, or you will
end up with a mess.

Once more, I assume a greater familiarity withUNIX or Sprite than I did in the previous two chapters.

4.1. Search Paths

PMake supports the dispersal of files into multiple directories by allowing you to specify places to look for
sources with.PATH targets in the makefile. The directories you give as sources for these targets make up a
‘‘search path.’’ Only those files used exclusively as sources are actually sought on a search path, the
assumption being that anything listed as a target in the makefile can be created by the makefile and thus
should be in the current directory.

There are two types of search paths in PMake: one is used for all types of files (including included make-
files) and is specified with a plain.PATH target (e.g. ‘‘.PATH : RCS ’’), while the other is specific to a
certain type of file, as indicated by the file’s suffix. A specific search path is indicated by immediately fol-
lowing the.PATH with the suffix of the file. For instance

.PATH.h : /sprite/lib/include /sprite/att/lib/include

would tell PMake to look in the directories /sprite/lib/include and
/sprite/att/lib/include for any files whose suffix is.h .

The current directory is always consulted first to see if a file exists. Only if it cannot be found there are the
directories in the specific search path, followed by those in the general search path, consulted.

A search path is also used when expanding wildcard characters. If the pattern has a recognizable suffix on
it, the path for that suffix will be used for the expansion. Otherwise the default search path is employed.

PMake — A Tutorial PSD:12-25

When a file is found in some directory other than the current one, all local variables that would have con-
tained the target’s name (.ALLSRC, and .IMPSRC) will instead contain the path to the file, as found by
PMake. Thus if you have a file../lib/mumble.c and a makefile

.PATH.c : ../lib
mumble : mumble.c

$(CC) -o $(.TARGET) $(.ALLSRC)

the command executed to createmumble would be ‘‘cc -o mumble ../lib/mumble.c .’’ (As an
aside, the command in this case isn’t strictly necessary, since it will be found using transformation rules if it
isn’t giv en. This is because.out is the null suffix by default and a transformation exists from.c to .out .
Just thought I’d throw that in.)

If a file exists in two directories on the same search path, the file in the first directory on the path will be the
one PMake uses. So if you have a large system spread over many directories, it would behoove you to fol-
low a naming convention that avoids such conflicts.

Something you should know about the way search paths are implemented is that each directory is read, and
its contents cached, exactly once — when it is first encountered — so any changes to the directories while
PMake is running will not be noted when searching for implicit sources, nor will they be found when
PMake attempts to discover when the file was last modified, unless the file was created in the current direc-
tory. While people have suggested that PMake should read the directories each time, my experience sug-
gests that the caching seldom causes problems. In addition, not caching the directories slows things down
enormously because of PMake’s attempts to apply transformation rules through non-existent files — the
number of extra file-system searches is truly staggering, especially if many files without suffixes are used
and the null suffix isn’t changed from.out .

4.2. Archives and Libraries

UNIX and Sprite allow you to merge files into an archive using thear command. Further, if the files are
relocatable object files, you can runranlib on the archive and get yourself a library that you can link into
any program you want. The main problem with archives is they double the space you need to store the
archived files, since there’s one copy in the archive and one copy out by itself. The problem with libraries is
you usually think of them as-lm rather than/usr/lib/libm.a and the linker thinks they’re out-of-
date if you so much as look at them.

PMake solves the problem with archives by allowing you to tell it to examine the files in the archives (so
you can remove the individual files without having to regenerate them later). To handle the problem with
libraries, PMake adds an additional way of deciding if a library is out-of-date:

• If the table of contents is older than the library, or is missing, the library is out-of-date.

A library is any target that looks like ‘‘−l name’’ or that ends in a suffix that was marked as a library using
the.LIBS target. .a is so marked in the system makefile.

Members of an archive are specified as ‘‘archive(member[member...])’’. Thus ‘‘’ libdix.a(win-
dow.o) ’’ specifies the filewindow.o in the archivelibdix.a . You may also use wildcards to specify
the members of the archive. Just remember that most the wildcard characters will only findexistingfiles.

A file that is a member of an archive is treated specially. If the file doesn’t exist, but it is in the archive, the
modification time recorded in the archive is used for the file when determining if the file is out-of-date.
When figuring out how to make an archived member target (not the file itself, but the file in the archive —
thearchive(member) target), special care is taken with the transformation rules, as follows:

• archive(member) is made to depend onmember.

• The transformation from themember’s suffix to thearchive’s suffix is applied to thearchive(member) tar-
get.

• Thearchive(member)’s .TARGET variable is set to the name of thememberif memberis actually a tar-
get, or the path to the member file ifmemberis only a source.

• The.ARCHIVE variable for thearchive(member) target is set to the name of thearchive.

PSD:12-26 PMake — A Tutorial

• The .MEMBERvariable is set to the actual string inside the parentheses. In most cases, this will be the
same as the.TARGETvariable.

• Thearchive(member)’s place in the local variables of the targets that depend on it is taken by the value of
its .TARGETvariable.

Thus, a program library could be created with the following makefile:

.o.a :
...
rm -f $(.TARGET:T)

OBJS = obj1.o obj2.o obj3.o
libprog.a : libprog.a($(OBJS))

ar cru $(.TARGET) $(.OODATE)
ranlib $(.TARGET)

This will cause the three object files to be compiled (if the corresponding source files were modified after
the object file or, if that doesn’t exist, the archived object file), the out-of-date ones archived in
libprog.a , a table of contents placed in the archive and the newly-archived object files to be removed.

All this is used in themakelib.mk system makefile to create a single library with ease. This makefile
looks like this:

PMake — A Tutorial PSD:12-27

#

Rules for making libraries. The object files that make up the library are

removed once they are archived.

#

To make several libararies in parallel, you should define the variable

"many_libraries". This will serialize the invocations of ranlib.

#

To use, do something like this:

#

OBJECTS = <files in the library>

#

fish.a: fish.a($(OBJECTS)) MAKELIB

#

#

#ifndef _MAKELIB_MK

_MAKELIB_MK =

#include <po.mk>

.po.a .o.a :

...

rm -f $(.MEMBER)

ARFLAGS ?= crl

#

Re-archive the out-of-date members and recreate the library’s table of

contents using ranlib. If many_libraries is defined, put the ranlib off

til the end so many libraries can be made at once.

#

MAKELIB : .USE .PRECIOUS

ar $(ARFLAGS) $(.TARGET) $(.OODATE)

#ifndef no_ranlib

ifdef many_libraries

...

endif many_libraries

ranlib $(.TARGET)

#endif no_ranlib

#endif _MAKELIB_MK

4.3. On the Condition...

Like the C compiler before it, PMake allows you to configure the makefile, based on the current environ-
ment, using conditional statements. A conditional looks like this:

#if boolean expression
lines
#elif another boolean expression
more lines
#else
still more lines
#endif

They may be nested to a maximum depth of 30 and may occur anywhere (except in a comment, of course).

PSD:12-28 PMake — A Tutorial

The ‘‘#’’ must the very first character on the line.

Eachboolean expressionis made up of terms that look like function calls, the standard C boolean operators
&&, || , and! , and the standard relational operators==, != , >, >=, <, and<=, with == and!= being over-
loaded to allow string comparisons as well.&& represents logical AND;|| is logical OR and! is logical
NOT. The arithmetic and string operators take precedence over all three of these operators, while NOT
takes precedence over AND, which takes precedence over OR. This precedence may be overridden with
parentheses, and an expression may be parenthesized to your heart’s content. Each term looks like a call on
one of four functions:

make The syntax ismake(target) wheretarget is a target in the makefile. This is true if the given tar-
get was specified on the command line, or as the source for a.MAIN target (note that the
sources for.MAIN are only used if no targets were given on the command line).

defined The syntax isdefined(variable) and is true ifvariable is defined. Certain variables are
defined in the system makefile that identify the system on which PMake is being run.

exists The syntax isexists(file) and is true if the file can be found on the global search path (i.e.
that defined by.PATH targets, not by.PATHsuffixtargets).

empty This syntax is much like the others, except the string inside the parentheses is of the same form
as you would put between parentheses when expanding a variable, complete with modifiers and
ev erything. The function returns true if the resulting string is empty (NOTE: an undefined vari-
able in this context will cause at the very least a warning message about a malformed condi-
tional, and at the worst will cause the process to stop once it has read the makefile. If you want
to check for a variable being defined or empty, use the expression ‘‘!defined(var) ||
empty(var) ’’ as the definition of|| will prevent theempty() from being evaluated and
causing an error, if the variable is undefined). This can be used to see if a variable contains a
given word, for example:

#if !empty(var:Mword)

The arithmetic and string operators may only be used to test the value of a variable. The lefthand side must
contain the variable expansion, while the righthand side contains either a string, enclosed in double-quotes,
or a number. The standard C numeric conventions (except for specifying an octal number) apply to both
sides. E.g.

#if $(OS) == 4.3

#if $(MACHINE) == "sun3"

#if $(LOAD_ADDR) < 0xc000

are all valid conditionals. In addition, the numeric value of a variable can be tested as a boolean as follows:

#if $(LOAD)

would see ifLOADcontains a non-zero value and

#if !$(LOAD)

would test ifLOADcontains a zero value.

In addition to the bare ‘‘#if ,’’ there are other forms that apply one of the first two functions to each term.
They are as follows:

ifdef defined
ifndef !defined
ifmake make
ifnmake !make

There are also the ‘‘else if’’ forms:elif , elifdef , elifndef , elifmake , andelifnmake .

PMake — A Tutorial PSD:12-29

For instance, if you wish to create two versions of a program, one of which is optimized (the production
version) and the other of which is for debugging (has symbols for dbx), you have two choices: you can cre-
ate two makefiles, one of which uses the−g flag for the compilation, while the other uses the−O flag, or
you can use another target (call itdebug) to create the debug version. The construct below will take care
of this for you. I have also made it so defining the variableDEBUG(say withpmake -D DEBUG) will also
cause the debug version to be made.

#if defined(DEBUG) || make(debug)
CFLAGS += -g
#else
CFLAGS += -O
#endif

There are, of course, problems with this approach. The most glaring annoyance is that if you want to go
from making a debug version to making a production version, you have to remove all the object files, or
you will get some optimized and some debug versions in the same program. Another annoyance is you have
to be careful not to make two targets that ‘‘conflict’’ because of some conditionals in the makefile. For
instance

#if make(print)
FORMATTER = ditroff -Plaser_printer
#endif
#if make(draft)
FORMATTER = nroff -Pdot_matrix_printer
#endif

would wreak havok if you tried ‘‘pmake draft print ’’ since you would use the same formatter for
each target. As I said, this all gets somewhat complicated.

4.4. A Shell is a Shell is a Shell

In normal operation, the Bourne Shell (better known as ‘‘sh ’’) is used to execute the commands to re-create
targets. PMake also allows you to specify a different shell for it to use when executing these commands.
There are several things PMake must know about the shell you wish to use. These things are specified as
the sources for the.SHELL target by keyword, as follows:

path=path
PMake needs to know where the shell actually resides, so it can execute it. If you specify this and
nothing else, PMake will use the last component of the path and look in its table of the shells it
knows and use the specification it finds, if any. Use this if you just want to use a different version of
the Bourne or C Shell (yes, PMake knows how to use the C Shell too).

name=name
This is the name by which the shell is to be known. It is a single word and, if no other keywords are
specified (other thanpath), it is the name by which PMake attempts to find a specification for it (as
mentioned above). You can use this if you would just rather use the C Shell than the Bourne Shell
(‘‘ .SHELL: name=csh ’’ will do it).

quiet=echo-off command
As mentioned before, PMake actually controls whether commands are printed by introducing com-
mands into the shell’s input stream. This keyword, and the next two, control what those commands
are. Thequiet keyword is the command used to turn echoing off. Once it is turned off, echoing is
expected to remain off until the echo-on command is given.

echo=echo-on command
The command PMake should give to turn echoing back on again.

filter= printed echo-off command
Many shells will echo the echo-off command when it is given. This keyword tells PMake in what for-
mat the shell actually prints the echo-off command. Wherever PMake sees this string in the shell’s
output, it will delete it and any following whitespace, up to and including the next newline. See the

PSD:12-30 PMake — A Tutorial

example at the end of this section for more details.

echoFlag=flag to turn echoing on
Unless a target has been marked.SILENT , PMake wants to start the shell running with echoing on.
To do this, it passes this flag to the shell as one of its arguments. If either this or the next flag begins
with a ‘−’, the flags will be passed to the shell as separate arguments. Otherwise, the two will be con-
catenated (if they are used at the same time, of course).

errFlag=flag to turn error checking on
Likewise, unless a target is marked.IGNORE, PMake wishes error-checking to be on from the very
start. To this end, it will pass this flag to the shell as an argument. The same rules for an initial ‘−’
apply as for theechoFlag.

check=command to turn error checking on
Just as for echo-control, error-control is achieved by inserting commands into the shell’s input
stream. This is the command to make the shell check for errors. It also serves another purpose if the
shell doesn’t hav e error-control as commands, but I’ll get into that in a minute. Again, once error
checking has been turned on, it is expected to remain on until it is turned off again.

ignore=command to turn error checking off
This is the command PMake uses to turn error checking off. It has another use if the shell doesn’t do
error-control, but I’ll tell you about that. . . now.

hasErrCtl= yes or no
This takes a value that is eitheryesor no. Now you might think that the existence of thecheckand
ignore keywords would be enough to tell PMake if the shell can do error-control, but you’d be
wrong. If hasErrCtl is yes, PMake uses the check and ignore commands in a straight-forward man-
ner. If this isno, howev er, their use is rather different. In this case, the check command is used as a
template, in which the string%s is replaced by the command that’s about to be executed, to produce
a command for the shell that will echo the command to be executed. The ignore command is also
used as a template, again with%s replaced by the command to be executed, to produce a command
that will execute the command to be executed and ignore any error it returns. When these strings are
used as templates, you must provide newline(s) (‘‘\n ’’) in the appropriate place(s).

The strings that follow these keywords may be enclosed in single or double quotes (the quotes will be
stripped off) and may contain the usual C backslash-characters (\n is newline, \r is return, \b is backspace, \’
escapes a single-quote inside single-quotes, \" escapes a double-quote inside double-quotes). Now for an
example.

This is actually the contents of the<shx.mk> system makefile, and causes PMake to use the Bourne Shell
in such a way that each command is printed as it is executed. That is, if more than one command is given on
a line, each will be printed separately. Similarly, each time the body of a loop is executed, the commands
within that loop will be printed, etc. The specification runs like this:

#
This is a shell specification to have the bourne shell echo
the commands just before executing them, rather than when it reads
them. Useful if you want to see how variables are being expanded, etc.
#
.SHELL : path=/bin/sh \

quiet="set -" \
echo="set -x" \
filter="+ set - " \
echoFlag=x \
errFlag=e \
hasErrCtl=yes \
check="set -e" \
ignore="set +e"

PMake — A Tutorial PSD:12-31

It tells PMake the following:

• The shell is located in the file/bin/sh . It need not tell PMake that the name of the shell issh as
PMake can figure that out for itself (it’s the last component of the path).

• The command to stop echoing isset - .

• The command to start echoing isset -x .

• When the echo off command is executed, the shell will print+ set - (The ‘+’ comes from using the
−x flag (rather than the−v flag PMake usually uses)). PMake will remove all occurences of this string
from the output, so you don’t notice extra commands you didn’t put there.

• The flag the Bourne Shell will take to start echoing in this way is the−x flag. The Bourne Shell will only
take its flag arguments concatenated as its first argument, so neither this nor theerrFlag specification
begins with a −.

• The flag to use to turn error-checking on from the start is−e.

• The shell can turn error-checking on and off, and the commands to do so areset +e andset -e ,
respectively.

I should note that this specification is for Bourne Shells that are not part of BerkeleyUNIX, as shells from
Berkeley don’t do error control. You can get a similar effect, however, by changing the last three lines to be:

hasErrCtl=no \
check="echo \"+ %s\"\n" \
ignore="sh -c ’%s || exit 0\n"

This will cause PMake to execute the two commands

echo "+ cmd"
sh -c ’ cmd || true’

for each command for which errors are to be ignored. (In case you are wondering, the thing forignore
tells the shell to execute another shell without error checking on and always exit 0, since the|| causes the
exit 0 to be executed only if the first command exited non-zero, and if the first command exited zero, the
shell will also exit zero, since that’s the last command it executed).

4.5. Compatibility

There are three (well, 31⁄2) lev els of backwards-compatibility built into PMake. Most makefiles will need
none at all. Some may need a little bit of work to operate correctly when run in parallel. Each level encom-
passes the previous levels (e.g.−B (one shell per command) implies−V) The three levels are described in
the following three sections.

4.5.1. DEFCON 3 — Variable Expansion

As noted before, PMake will not expand a variable unless it knows of a value for it. This can cause prob-
lems for makefiles that expect to leave variables undefined except in special circumstances (e.g. if more
flags need to be passed to the C compiler or the output from a text processor should be sent to a different
printer). If the variables are enclosed in curly braces (‘‘${PRINTER} ’’), the shell will let them pass. If they
are enclosed in parentheses, however, the shell will declare a syntax error and the make will come to a
grinding halt.

You hav e two choices: change the makefile to define the variables (their values can be overridden on the
command line, since that’s where they would have been set if you used Make, anyway) or always give the
−V flag (this can be done with the.MAKEFLAGStarget, if you want).

4.5.2. DEFCON 2 — The Number of the Beast

Then there are the makefiles that expect certain commands, such as changing to a different directory, to not
affect other commands in a target’s creation script. You can solve this is either by going back to executing
one shell per command (which is what the−B flag forces PMake to do), which slows the process down a
good bit and requires you to use semicolons and escaped newlines for shell constructs, or by changing the

PSD:12-32 PMake — A Tutorial

makefile to execute the offending command(s) in a subshell (by placing the line inside parentheses), like so:

install :: .MAKE
(cd src; $(.PMAKE) install)
(cd lib; $(.PMAKE) install)
(cd man; $(.PMAKE) install)

This will always execute the three makes (even if the−n flag was given) because of the combination of the
‘‘::’’ operator and the.MAKE attribute. Each command will change to the proper directory to perform the
install, leaving the main shell in the directory in which it started.

4.5.3. DEFCON 1 — Imitation is the Not the Highest Form of Flattery

The final category of makefile is the one where every command requires input, the dependencies are incom-
pletely specified, or you simply cannot create more than one target at a time, as mentioned earlier. In addi-
tion, you may not have the time or desire to upgrade the makefile to run smoothly with PMake. If you are
the conservative sort, this is the compatibility mode for you. It is entered either by giving PMake the−M
flag (for Make), or by executing PMake as ‘‘make.’’ In either case, PMake performs things exactly like
Make (while still supporting most of the nice new features PMake provides). This includes:

• No parallel execution.

• Targets are made in the exact order specified by the makefile. The sources for each target are made in
strict left-to-right order, etc.

• A single Bourne shell is used to execute each command, thus the shell’s$$ variable is useless, changing
directories doesn’t work across command lines, etc.

• If no special characters exist in a command line, PMake will break the command into words itself and
execute the command directly, without executing a shell first. The characters that cause PMake to execute
a shell are:#, =, | , ˆ , (,) , { , } , ; , &, <, >, * , ?, [,] , : , $, ‘ , and\ . You should notice that these are
all the characters that are given special meaning by the shell (except’ and , which PMake deals with
all by its lonesome).

• The use of the null suffix is turned off.

4.6. The Way Things Work

When PMake reads the makefile, it parses sources and targets into nodes in a graph. The graph is directed
only in the sense that PMake knows which way is up. Each node contains not only links to all its parents
and children (the nodes that depend on it and those on which it depends, respectively), but also a count of
the number of its children that have already been processed.

The most important thing to know about how PMake uses this graph is that the traversal is breadth-first and
occurs in two passes.

After PMake has parsed the makefile, it begins with the nodes the user has told it to make (either on the
command line, or via a.MAIN target, or by the target being the first in the file not labeled with the.NOT-
MAIN attribute) placed in a queue. It continues to take the node off the front of the queue, mark it as some-
thing that needs to be made, pass the node toSuff_FindDeps (mentioned earlier) to find any implicit
sources for the node, and place all the node’s children that have yet to be marked at the end of the queue. If
any of the children is a.USE rule, its attributes are applied to the parent, then its commands are appended
to the parent’s list of commands and its children are linked to its parent. The parent’s unmade children
counter is then decremented (since the.USE node has been processed). You will note that this allows a
.USE node to have children that are.USE nodes and the rules will be applied in sequence. If the node has
no children, it is placed at the end of another queue to be examined in the second pass. This process contin-
ues until the first queue is empty.

At this point, all the leaves of the graph are in the examination queue. PMake removes the node at the head
of the queue and sees if it is out-of-date. If it is, it is passed to a function that will execute the commands
for the node asynchronously. When the commands have completed, all the node’s parents have their
unmade children counter decremented and, if the counter is then 0, they are placed on the examination

PMake — A Tutorial PSD:12-33

queue. Likewise, if the node is up-to-date. Only those parents that were marked on the downward pass are
processed in this way. Thus PMake traverses the graph back up to the nodes the user instructed it to create.
When the examination queue is empty and no shells are running to create a target, PMake is finished.

Once all targets have been processed, PMake executes the commands attached to the.END target, either
explicitly or through the use of an ellipsis in a shell script. If there were no errors during the entire process
but there are still some targets unmade (PMake keeps a running count of how many targets are left to be
made), there is a cycle in the graph. PMake does a depth-first traversal of the graph to find all the targets
that weren’t made and prints them out one by one.

5. Answers to Exercises

(3.1) This is something of a trick question, for which I apologize. The trick comes from the UNIX defini-
tion of a suffix, which PMake doesn’t necessarily share. You will have noticed that all the suffixes
used in this tutorial (and in UNIX in general) begin with a period (.ms , .c , etc.). Now, PMake’s idea
of a suffix is more like English’s: it’s the characters at the end of a word. With this in mind, one pos-
sible solution to this problem goes as follows:

.SUFFIXES : ec.exe .exe ec.obj .obj .asm
ec.objec.exe .obj.exe :

link -o $(.TARGET) $(.IMPSRC)
.asmec.obj :

asm -o $(.TARGET) -DDO_ERROR_CHECKING $(.IMPSRC)
.asm.obj :

asm -o $(.TARGET) $(.IMPSRC)

(3.2) The trick to this one lies in the ‘‘:=’’ variable-assignment operator and the ‘‘:S’’ variable-expansion
modifier. Basically what you want is to take the pointer variable, so to speak, and transform it into an
invocation of the variable at which it points. You might try something like

$(PTR:S/ˆ/\$(/:S/$/))

which places ‘‘$(’’ at the front of the variable name and ‘‘) ’’ at the end, thus transforming ‘‘VAR,’’
for example, into ‘‘$(VAR) ,’’ which is just what we want. Unfortunately (as you know if you’ve
tried it), since, as it says in the hint, PMake does no further substitution on the result of a modified
expansion, that’sall you get. The solution is to make use of ‘‘:=’’ to place that string into yet another
variable, then invoke the other variable directly:

*PTR := $(PTR:S/ˆ/\$(/:S/$/)/)

You can then use ‘‘$(*PTR) ’’ to your heart’s content.

6. Glossary of Jargon

attribute: A property given to a target that causes PMake to treat it differently.

command script: The lines immediately following a dependency line that specify commands to execute to
create each of the targets on the dependency line. Each line in the command script must begin with a
tab.

command-line variable: A variable defined in an argument when PMake is first executed. Overrides all
assignments to the same variable name in the makefile.

conditional: A construct much like that used in C that allows a makefile to be configured on the fly based
on the local environment, or on what is being made by that invocation of PMake.

creation script: Commands used to create a target. See ‘‘command script.’’

dependency:The relationship between a source and a target. This comes in three flavors, as indicated by
the operator between the target and the source. ‘:’ gives a straight time-wise dependency (if the target
is older than the source, the target is out-of-date), while ‘!’ provides simply an ordering and always
considers the target out-of-date. ‘::’ is much like ‘:’, save it creates multiple instances of a target each
of which depends on its own list of sources.

PSD:12-34 PMake — A Tutorial

dynamic source:This refers to a source that has a local variable invocation in it. It allows a single depen-
dency line to specify a different source for each target on the line.

global variable: Any variable defined in a makefile. Takes precedence over variables defined in the envi-
ronment, but not over command-line or local variables.

input graph: What PMake constructs from a makefile. Consists of nodes made of the targets in the make-
file, and the links between them (the dependencies). The links are directed (from source to target) and
there may not be any cycles (loops) in the graph.

local variable: A variable defined by PMake visible only in a target’s shell script. There are seven local
variables, not all of which are defined for every target:.TARGET, .ALLSRC, .OODATE, .PREFIX ,
.IMPSRC, .ARCHIVE, and.MEMBER. .TARGET, .PREFIX , .ARCHIVE, and.MEMBERmay be
used on dependency lines to create ‘‘dynamic sources.’’

makefile: A file that describes how a system is built. If you don’t know what it is after reading this
tutorial. . . .

modifier: A letter, following a colon, used to alter how a variable is expanded. It has no effect on the vari-
able itself.

operator: What separates a source from a target (on a dependency line) and specifies the relationship
between the two. There are three: ‘: ’, ‘ :: ’, and ‘! ’.

search path:A list of directories in which a file should be sought. PMake’s view of the contents of directo-
ries in a search path does not change once the makefile has been read. A file is sought on a search
path only if it is exclusively a source.

shell: A program to which commands are passed in order to create targets.

source:Anything to the right of an operator on a dependency line. Targets on the dependency line are usu-
ally created from the sources.

special target:A target that causes PMake to do special things when it’s encountered.

suffix: The tail end of a file name. Usually begins with a period,.c or .ms , e.g.

target: A word to the left of the operator on a dependency line. More generally, any file that PMake might
create. A file may be (and often is) both a target and a source (what it is depends on how PMake is
looking at it at the time — sort of like the wav e/particle duality of light, you know).

transformation rule: A special construct in a makefile that specifies how to create a file of one type from a
file of another, as indicated by their suffixes.

variable expansion:The process of substituting the value of a variable for a reference to it. Expansion may
be altered by means of modifiers.

variable: A place in which to store text that may be retrieved later. Also used to define the local environ-
ment. Conditionals exist that test whether a variable is defined or not.

PMake — A Tutorial PSD:12-35

Table of Contents

1. Introduction . 1
2. The Basics of PMake . 1
2.1. Dependency Lines . 2
2.2. Shell Commands . 3
2.3. Variables . 4
2.3.1. Local Variables . 6
2.3.2. Command-line Variables 6
2.3.3. Global Variables . 6
2.3.4. Environment Variables . 7
2.4. Comments. 7
2.5. Parallelism . 7
2.6. Writing and Debugging a Makefile 8
2.7. Invoking PMake . 10
2.8. Summary . 12
2.9. Exercises . 13
3. Short-cuts and Other Nice Things. 13
3.1. Transformation Rules . 13
3.2. Including Other Makefiles 17
3.3. Saving Commands. 17
3.4. Target Attributes . 18
3.5. Special Targets . 21
3.6. Modifying Variable Expansion 23
3.7. More on Debugging . 24
3.8. More Exercises . 24
4. PMake for Gods. 24
4.1. Search Paths . 24
4.2. Archives and Libraries. 25
4.3. On the Condition... 27
4.4. A Shell is a Shell is a Shell. 29
4.5. Compatibility . 31
4.5.1. DEFCON 3 — Variable Expansion. 31
4.5.2. DEFCON 2 — The Number of the Beast. 31
4.5.3. DEFCON 1 — Imitation is the Not the Highest Form of Flattery. 32
4.6. The Way Things Work . 32
5. Answers to Exercises . 33
6. Glossary of Jargon . 33

