The Release Engineering of 485D

Marshall Kirk McKusick
Michael J. Karels
Keith Bostic

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This paper describes an approach used by a small group of people to develop and
integrate a large software system. It details the development and release engineering
strategy used during the preparation of tha&d3version of the UNIXt operating sys-
tem. Each release cycle is divided into an initial development phase followed by a release
engineering phase. The release engineering of the distribution is done in three steps. The
first step has an informal control policy for tracking modifications; it results in an alpha
distribution. The second step has more rigid change mechanisms in place; it results in a
beta release. During the final step changes are tracked very closely; the result is the final
distribution.

1. Introduction

The Computer Systems Research GraL®R@G has always been a small group of software develop-
ers. This resource limitation requires careful software-engineering management as well as careful coordi-
nation of bothCSRGpersonnel and the members of the general community who contribute to the develop-
ment of the system.

Releases from Berkeley alternate between those that introduce major new facilities and those that
provide bug fixes and efficiency improvements. This alternation allows timely releases, while providing for
refinement, tuning, and correction of the new facilities. The timely followup of “cleanup” releases reflects
the importanceCSRG places on providing a reliable and robust system on which its user community can
depend.

The development of the Berkeley Software DistributiB8) illustrates aradvantageof having a
few principal developers: the developers all understand the entire system thoroughly enough to be able to
coordinate their own work with that of other people to produce a coherent final system. Companies with
large development organizations find this result difficult to duplicate. This paper describes the process by
which the development effort for £3D was managed. design and implementation

2. System Development

The first phase of each Berkeley system is its developn@SRGmaintains a continuously evolving
list of projects that are candidates for integration into the system. Some of these are prompted by emerging
ideas from the research world, such as the availability of a new technology, while other additions are sug-
gested by the commercial world, such as the introduction of new standard=O® and still other

TUNIX is a registered trademark of AT&T in the US and other countries.



projects are emergency responses to situations like the Internet Worm.

These projects are ordered based on the perceived benefit of the project as opposed to its difficulty;
the most important are selected for inclusion in each new release. Often there is a prototype available from
a group outsid€SRG Because of the limited staff @&SRG this prototype is obtained to use as a starting
base for integration into tH&SD system. Only if no prototype is available is the project begun in-house. In
either case, the design of the facility is forced to conform t€8rGstyle.

Unlike other development groups, the staflQfRGspecializes by projects rather than by particular
parts of the system; a staff person will be responsible for all aspects of a project. This responsibility starts
at the associated kernel device drivers; it proceeds up through the rest of the kernel, through the C library
and system utility programs, ending at the user application layer. This staff person is also responsible for
related documentation, including manual pages. Many projects proceed in parallel, interacting with other
projects as their paths cross.

All source code, documentation, and auxiliary files are kept under a source code control system.
During development, this control system is critical for notifying people when they are colliding with other
ongoing projects. Even more important, however, is the audit trail maintained by the control system that is
critical to the release engineering phase of the project described in the next section.

Much of the development &SD is done by personnel that are located at other institutions. Many of
these people not only have interim copies of the release running on their own machines, but also have user
accounts on the main development machine at Berkeley. Such users are commonly found logged in at
Berkeley over the Internet, or sometimes via telephone dialup, from places as far away as Massachusetts or
Maryland, as well as from closer places, such as Stanford. For B38D4.8lease, certain users had per-
mission to modify the master copy of the system source directly. People given access to the master sources
are carefully screened beforehand, but are not closely supervised. Their work is checked at the end of the
beta-test period bgSRG personnel who back out inappropriate changes. Several facilities, including the
Fortran and C compilers, as well as important system programs, for extetrgeandftp, include signifi-
cant contributions from people who did not work directly @8RG One important exception to this
approach is that changes to the kernel are made onysB% personnel, although the changes are often
suggested by the larger community.

The development phase continues u@BRG decides that it is appropriate to make a release. The
decision to halt development and transition to release mode is driven by several factors. The most impor-
tant is that enough projects have been completed to make the system significantly superior to the previously
released version of the system. For exampleBgD3was released primarily because of the need for the
improved networking capabilities and the markedly improved system performance. Of secondary impor-
tance is the issue of timing. If the releases are too infrequentC8R@will be inundated with requests
for interim releases. Conversely, if systems are released too frequently, the integration cost for many ven-
dors will be too high, causing them to ignore the releases. Finally, the process of release engineering is
long and tedious. Frequent releases slow the rate of development and cause undue tedium to the staff.

3. System Release

Once the decision has been made to halt development and begin release engineering, all currently
unfinished projects are evaluated. This evaluation involves computing the time required to complete the
project as opposed to how important the project is to the upcoming release. Projects that are not selected
for completion are removed from the distribution branch of the source code control system and saved on
branch deltas so they can be retrieved, completed, and merged into a future release; the remaining unfin-
ished projects are brought to orderly completion.

Developments fron€CSRGare released in three steps: alpha, beta, and final. Alpha and beta releases
are not true distributions—they are test systems. Alpha releases are normally available to only a few sites,
usually those working closely withSRG More sites are given beta releases, as the system is closer to
completion, and needs wider testing to find more obscure problems. For exan®$® dljgha was dis-
tributed to about fifteen sites, while BSD beta ran at more than a hundred.



3.1. Alpha Distribution Development

The first step in creating an alpha distribution is to evaluate the existing state of the system and to
decide what software should be included in the release. This decision process includes not only deciding
what software should be added, but also what obsolete software ought to be retired from the distribution.
The new software includes the successful projects that have been comptssedand elsewhere, as well
as some portion of the vast quantity of contributed software that has been offered during the development
period.

Once an initial list has been created, a prototype filesystem corresponding to the distribution is con-
structed, typically namefgihbsd. This prototype will eventually turn into the master source tree for the final
distribution. During the period that the alpha distribution is being creatbdd is mounted read-write,
and is highly fluid. Programs are created and deleted, old versions of programs are completely replaced,
and the correspondence between the sources and binaries is only loosely tracked. PeopleS®@side
who are helping with the distribution are free to change their parts of the distribution at will.

During this period the newly forming distribution is checked for interoperability. For example, in
4.3SD the output of context differences fradiff was changed to merge overlapping sections. Unfortu-
nately, this change broke tlpatch program which could no longer interpret the outpudifff. Since the
change tdliff and thepatch program had originated outside BerkelegRGhad to coordinate the efforts
of the respective authors to make the programs work together harmoniously.

Once the sources have stabilized, an attempt is made to compile the entire source tree. Often this
exposes errors caused by changed header files, or use of obsoleted C library interfaces. If the incompatibil-
ities affect too many programs, or require excessive amounts of change in the programs that are affected,
the incompatibility is backed out or some backward-compatible interface is provided. The incompatibilities
that are found and left in are noted in a list that is later incorporated into the release notes. Thus, users
upgrading to the new system can anticipate problems in their own software that will require change.

Once the source tree compiles completely, it is installed and becomes the running sysGSRe&hat
uses on its main development machine. Once in day-to-day use, other interoperability problems become
apparent and are resolved. When all known problems have been resolved, and the system has been stable
for some period of time, an alpha distribution tape is made from the conténipsaf

The alpha distribution is sent out to a small set of test sites. These test sites are selected as having a
sophisticated user population, not only capable of finding bugs, but also of determining their cause and
developing a fix for the problem. These sites are usually composed of groups that are contributing software
to the distribution or groups that have a particular expertise with some portion of the system.

3.2. Beta Distribution Development

After the alpha tape is created, the distribution filesystem is mounted read-only. Further changes are
requested in a change log rather than being made directly to the distribution. The change requests are
inspected and implemented byC8RGstaff person, followed by a compilation of the affected programs to
ensure that they still build correctly. Once the alpha tape has been cut, changes to the distribution are no
longer made by people outsi@SRG

As the alpha sites install and begin running the alpha distribution, they monitor the problems that
they encounter. For minor bugs, they typically report back the bug along with a suggested fix. Since many
of the alpha sites are selected from among the people working closelgS&ith they often have accounts
on, and access to, the prima&gRGdevelopment machine. Thus, they are able to directly install the fix
themselves, and simply noti§SRGwhen they have fixed the problem. After verifying the fix, the affected
files are added to the list to be updatednsd.

The more important task of the alpha sites is to test out the new facilities that have been added to the
system. The alpha sites often find major design flaws or operational shortcomings of the facilities. When
such problems are found, the person in charge of that facility is responsible for resolving the problem.
Occasionally this requires redesigning and reimplementing parts of the affected facility. For example, in
4.2BSD, the alpha release of the networking system did not have connection queueing. This shortcoming
prevented the network from handling many connections to a single server. The result was that the network-
ing interface had to be redesigned to provide this functionality.



The alpha sites are also responsible for ferreting out interoperability problems between different utili-
ties. The user populations of the test sites differ from the user populat@rRgtand, as a result, the util-
ities are exercised in ways that differ from the ways that they are uesiik@t These differences in usage
patterns turn up problems that do not occur in our initial test environment.

The alpha sites frequently redistribute the alpha tape to several of their own alpha sites that are partic-
ularly interested in parts of the new system. These additional sites are responsible for reporting problems
back to the site from which they received the distribution, n@SRG Often these redistribution sites are
less sophisticated than the direct alpha sites, so their reports need to be filtered to avoid spurious, or site
dependent, bug reports. The direct alpha sites sift through the reports to find those that are relevant, and
usually verify the suggested fix if one is given, or develop a fix if none is provided. This hierarchical test-
ing process forces bug reports, fixes, and new software to be collected, evaluated, and checked for inaccura-
cies by first-level sites before being forwarded8RG allowing the developers @iSRGto concentrate on
tracking the changes being made to the system rather than sifting through information (often voluminous)
from every alpha-test site.

Once the major problems have been attended to, the focus turns to getting the documentation syn-
chronized with the code that is being shipped. The manual pages need to be checked to be sure that they
accurately reflect any changes to the programs that they describe. Usually the manual pages are kept up to
date as the program they describe evolves. However, the supporting documents frequently do not get
changed, and must be edited to bring them up to date. During this review, the need for other documents
becomes evident. For example, it was during this phase B$@ Bat it was decided to add a tutorial doc-
ument on how to use the socket interprocess communication primitives.

Another task during this period is to contact the people that have contributed complete software pack-
ages (such aRCS or MH) in previous releases to see if they wish to make any revisions to their software.
For those who do, the new software has to be obtained, and tested to verify that it compiles and runs cor-
rectly on the system to be released. Again, this integration and testing can often be done by the contribu-
tors themselves by logging directly into the master machine.

After the stream of bug reports has slowed down to a reasonabledgrR&begins a careful review
of all the changes to the system since the previous release. The review is done by running ad#étursive
of the entire source tree—here,/nbsd with 4.2BSD. All the changes are checked to ensure that they are
reasonable, and have been properly documented. The process often turns up questionable changes. When
such a questionable change is found, the source code control system log is examined to find out who made
the change and what their explanation was for the change. If the log does not resolve the problem, the per-
son responsible for the change is asked for an explanation of what they were trying to accomplish. If the
reason is not compelling, the change is backed out. Facilities deemed inappropriagsihidcBuded
new options to the directory-listing command and a changed return value fee¢k¢ library routine; the
changes were removed from the source before final distribution. Although this process is long and tedious,
it forces the developers to obtain a coherent picture of the entire set of changes to the system. This exercise
often turns up inconsistencies that would otherwise never be found.

The outcome of the comparison results in a pair of documents detailing changes to every user-level
command Bug Fixes and Changes and to every kernel source file. Changes to the Kernel These documents
are delivered with the final distribution. A user can look up any command by name and see immediately
what has changed, and a developer can similarly look up any kernel file by name and get a summary of the
changes to that file.

Having completed the review of the entire system, the preparation of the beta distribution is started.
Unlike the alpha distribution, where pieces of the system may be unfinished and the documentation incom-
plete, the beta distribution is put together as if it were going to be the final distribution. All known prob-
lems are fixed, and any remaining development is completed. Once the beta tape has been prepared, no fur-
ther changes are permitted/tdosd without careful review, as spurious changes made after the system has
beendiff ed are unlikely to be caught.



3.3. Final Distribution Development

The beta distribution goes to more sites than the alpha distribution for three main reasons. First, as it
is closer to the final release, more sites are willing to run it in a production environment without fear of
catastrophic failures. Second, more commercial sites delivB8bederived systems are interested in get-
ting a preview of the upcoming changes in preparation for merging them into their own systems. Finally,
because the beta tape has fewer problems, it is beneficial to offer it to more sites in hopes of finding as
many of the remaining problems as possible. Also, by handing the system out to less sophisticated sites,
issues that would be ignored by the users of the alpha sites become apparent.

The anticipation is that the beta tape will not require extensive changes to either the programs or the
documentation. Most of the work involves sifting through the reported bugs to find those that are relevant
and devising the minimal reasonable set of changes to fix them. After throughly testing the fix, it is listed
in the update log folnbsd. One person atSRGis responsible for doing the update/misd and ensuring
that everything affected by the change is rebuilt and tested. Thus, a change to a C library routine requires
that the entire system be rebuilt.

During this period, the documentation is all printed and proofread. As minor changes are made to the
manual pages and documentation, the affected pages must be reprinted.

The final step in the release process is to check the distribution tree to ensure that it is in a consistent
state. This step includes verification that every file and directory on the distribution has the proper owner,
group, and modes. All source files must be checked to be sure that they have appropriate copyright notices
and source code control system headers. Any extraneous files must be removed. Finally, the installed bina-
ries must be checked to ensure that they correspond exactly to the sources and libraries that are on the dis-
tribution.

This checking is a formidable task given that there are over 20,000 files on a typical distribution.
Much of the checking can be done by a set of programs set to scan over the distribution tree. Unfortu-
nately, the exception list is long, and requires hours of tedious hand checking; this hasCeRGéal
develop even more comprehensive validation programs for use in our next release.

Once the final set of checks has been run, the master tape can be made, and the official distribution
started. As for the staff @SRG we usually take a brief vacation before plunging back into a new develop-
ment phase.



