
Berkeley Pascal PX Implementation Notes
Version 2.0 − January, 1979

William N. Joy†

M. Kirk McKusick‡

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

Introduction

ThesePX Implementation Noteshave been updated from the originalPDP 11/70implementation notes
to reflect the interpreter that runs on theVAX 11/780. These notes consist of four major parts. The first part
outlines the general organization ofpx. Section 2 describes the operations (instructions) of the interpreter
while section 3 focuses on input/output related activity. A final section gives conclusions about the viabil-
ity of an interpreter based approach to language implementation for instruction.

Related Berkeley Pascal documents

ThePXP Implementation Notesgive details of the internals of the execution profilerpxp; parts of the
interpreter related topxp are discussed in section 2.10. A paper describing the syntactic error recovery
mechanism used inpi was presented at the ACM Conference on Compiler Construction in Boulder Col-
orado in August, 1979.

Acknowledgements

This version ofpx is a PDP 11/70to VAX 11/780 opcode mapping of the originalpx that was designed
and implemented by Ken Thompson, with extensive modifications and additions by William Joy and
Charles Haley. Without their work, this Berkeley Pascal system would never hav e existed. These notes
were first written by William Joy for thePDP 11/70implementation. We would also like to thank our faculty
advisor Susan L. Graham for her encouragement, her helpful comments and suggestions relating to Berke-
ley Pascal and her excellent editorial assistance.

† The financial support of the National Science Foundation under grants MCS74-07644-A03 and
MCS78-07291 and of anIBM Graduate Fellowship are gratefully acknowledged.

‡ The financial support of a Howard Hughes Graduate Fellowship is gratefully acknowledged.

-2-

1. Organization

Most ofpx is written in theVAX 11/780 assembly language, using theUNIX® assembleras. Portions of
px are also written in theUNIX systems programming language C.Px consists of a main procedure that
reads in the interpreter code, a main interpreter loop that transfers successively to various code segments
implementing the abstract machine operations, built-in procedures and functions, and several routines that
support the implementation of the Pascal input-output environment.

The interpreter runs at a fraction of the speed of equivalent compiled C code, with this fraction vary-
ing from 1/5 to 1/15. The interpreter occupies 18.5K bytes of instruction space, shared among all processes
executing Pascal, and has 4.6K bytes of data space (constants, error messages, etc.) a copy of which is allo-
cated to each executing process.

1.1. Format of the object file

Px normally interprets the code left in an object file by a run of the Pascal translatorpi. The file
where the translator puts the object originally, and the most commonly interpreted file, is calledobj. In
order that all persons usingpx share a common text image, this executable file is a small process that coor-
dinates with the interpreter to start execution. The interpreter code is placed at the end of a special
‘‘header’’ file and the size of the initialized data area of this header file is expanded to include this code, so
that during execution it is located at an easily determined address in its data space. When executed, the
object process creates apipe, creates another process by doing afork, and arranges that the resulting parent
process becomes an instance ofpx. The child process then writes the interpreter code through the pipe that
it has to the interpreter process parent. When this process is complete, the child exits.

The real advantage of this approach is that it does not require modifications to the shell, and that the
resultant objects are ‘‘true objects’’ not requiring special treatment. A simpler mechanism would be to
determine the name of the file that was executed and pass this to the interpreter. Howev er it is not possible
to determine this name in all cases.‡

1.2. General features of object code

Pascal object code is relocatable as all addressing references for control transfers within the code are
relative. The code consists of instructions interspersed with inline data. All instructions have a length that
is an even number of bytes. No variables are kept in the object code area.

The first byte of a Pascal interpreter instruction contains an operation code. This allows a total of
256 major operation codes, and 232 of these are in use in the currentpx. The second byte of each inter-
preter instruction is called the ‘‘sub-operation code’’, or more commonly thesub-opcode.It contains a
small integer that may, for example, be used as a block-structure level for the associated operation. If the
instruction can take a longword constant, this constant is often packed into the sub-opcode if it fits into 8
bits and is not zero. A sub-opcode value of zero specifies that the constant would not fit and therefore fol-
lows in the next word. This is a space optimization, the value of zero for flagging the longer case being
convenient because it is easy to test.

Other instruction formats are used. The branching instructions take an offset in the following word,
operators that load constants onto the stack take arbitrarily long inline constant values, and many operations
deal exclusively with data on the interpreter stack, requiring no inline data.

1.3. Stack structure of the interpreter

The interpreter emulates a stack-structured Pascal machine. The ‘‘load’’ instructions put values onto
the stack, where all arithmetic operations take place. The ‘‘store’’ instructions take values off the stack and
place them in an address that is also contained on the stack. The only way to move data or to compute in

‡ For instance, if thepxref program is placed in the directory ‘/usr/bin’ then when the user types ‘‘pxref pro-
gram.p’’ the first argument to the program, nominally the programs name, is ‘‘pxref.’’ While it would be possi-
ble to search in the standard place, i.e. the current directory, and the system directories ‘/bin’ and ‘/usr/bin’ for a
corresponding object file, this would be expensive and not guaranteed to succeed. Several shells exist that allow
other directories to be searched for commands, and there is, in general, no way to determine what these directo-
ries are.

-3-

the machine is with the stack.

To make the interpreter operations more powerful and to thereby increase the interpreter speed, the
arithmetic operations in the interpreter are ‘‘typed’’. That is, length conversion of arithmetic values occurs
when they are used in an operation. This eliminates interpreter cycles for length conversion and the associ-
ated overhead. For example, when adding an integer that fits in one byte to one that requires four bytes to
store, no ‘‘conversion’’ operators are required. The one byte integer is loaded onto the stack, followed by
the four byte integer, and then an adding operator is used that has, implicit in its definition, the sizes of the
arguments.

1.4. Data types in the interpreter

The interpreter deals with several different fundamental data types. In the memory of the machine, 1,
2, and 4 byte integers are supported, with only 2 and 4 byte integers being present on the stack. The inter-
preter always converts to 4 byte integers when there is a possibility of overflowing the shorter formats.
This corresponds to the Pascal language definition of overflow in arithmetic operations that requires that the
result be correct if all partial values lie within the bounds of the base integer type: 4 byte integer values.

Character constants are treated similarly to 1 byte integers for most purposes, as are Boolean values.
All enumerated types are treated as integer values of an appropriate length, usually 1 byte. The interpreter
also has real numbers, occupying 8 bytes of storage, and sets and strings of varying length. The appropriate
operations are included for each data type, such as set union and intersection and an operation to write a
string.

No specialpackeddata formats are supported by the interpreter. The smallest unit of storage occu-
pied by any variable is one byte. The built-inspackandunpackthus degenerate to simple memory to mem-
ory transfers with no special processing.

1.5. Runtime environment

The interpreter runtime environment uses a stack data area and a heap data area, that are kept at
opposite ends of memory and grow tow ards each other. All global variables and variables local to proce-
dures and functions are kept in the stack area. Dynamically allocated variables and buffers for input/output
are allocated in the heap.

The addressing of block structured variables is done by using a fixed display that contains the address
of its stack frame for each statically active block.† This display is referenced by instructions that load and
store variables and maintained by the operations for block entry and exit, and for non-localgoto statements.

1.6. Dp, lc, loop

Three ‘‘global’’ variables in the interpreter, in addition to the ‘‘display’’, are thedp, lc,and theloop.
Thedp is a pointer to the display entry for the current block; thelc is the abstract machine location counter;
and theloop is a register that holds the address of the main interpreter loop so that returning to the loop to
fetch the next instruction is a fast operation.

1.7. The stack frame structure

Each active block has a stack frame consisting of three parts: a block mark, local variables, and tem-
porary storage for partially evaluated expressions. The stack in the interpreter grows from the high
addresses in memory to the low addresses, so that those parts of the stack frame that are ‘‘on the top’’ of the
stack have the most negative offsets from the display entry for the block. The major parts of the stack
frame are represented in Figure 1.1. Note that the local variables of each block have neg ative offsets from
the corresponding display entry, the ‘‘first’’ local variable having offset ‘−2’.

1.8. The block mark

The block mark contains the saved information necessary to restore the environment when the current
block exits. It consists of two parts. The first and top-most part is saved by theCALL instruction in the

† Here ‘‘block’’ is being used to mean anyprocedure, functionor the main program.

-4-

Base of stack frame

Block mark Positive offsets

← Display entry points here

Local
variables

Negative offsets
Temporary
expression

space

Top of stack frame

Figure 1.1 − Structure of stack frame

interpreter. This information is not present for the main program as it is never ‘‘called’’. The second part
of the block mark is created by theBEG begin block operator that also allocates and clears the local variable
storage. The format of these blocks is represented in Figure 1.2.

Created byCALL

Saved lino

Saved lc

Saved dp

Created byBEG

Saved dp contents

Pointer to current
entry line and
section name

Current file name
and buffer

Top of stack reference

Figure 1.2 − Block mark structure

The data saved by theCALL operator includes the line numberlino of the point of call, that is printed
if the program execution ends abnormally; the location counterlc giving the return address; and the current
display entry addressdpat the time of call.

-5-

The BEG begin operator saves the previous display contents at the level of this block, so that the dis-
play can be restored on block exit. A pointer to the beginning line number and the name of this block is
also saved. This information is stored in the interpreter object code in-line after theBEG operator. It is used
in printing a post-mortem backtrace. The saved file name and buffer reference are necessary because of the
input/output structure (this is discussed in detail in sections 3.3 and 3.4). The top of stack reference gives
the value the stack pointer should have when there are no expression temporaries on the stack. It is used for
a consistency check in theLINO line number operators in the interpreter, that occurs before each statement
executed. This helps to catch bugs in the interpreter, that often manifest themselves by leaving the stack
non-empty between statements.

Note that there is no explicit static link here. Thus to set up the display correctly after a non-local
gotostatement one must ‘‘unwind’’ through all the block marks on the stack to rebuild the display.

1.9. Arguments and return values

A function returns its value into a space reserved by the calling block. Arguments to afunction are
placed on top of this return area. For bothprocedure andfunction calls, arguments are placed at the end
of the expression evaluation area of the caller. When afunction completes, expression evaluation can con-
tinue after popping the arguments to thefunction off the stack, exactly as if the function value had been
‘‘loaded’’. The arguments to aprocedure are also popped off the stack by the caller after its execution
ends.

As a simple example consider the following stack structure for a call to a functionf, of the form
‘‘f(a)’’.

Space for
value returned

from f

Value of a

Block Mark

Figure 1.3 − Stack structure on function call ‘f(a)’

If we suppose thatf returns areal and thata is an integer, the calling sequence for this function would
be:

PUSH −8
RV4:l a
CALL: l f
POP 4

Here we use the operatorPUSH to clear space for the return value, loada on the stack with a ‘‘right
value’’ operator, call the function, pop off the argumenta, and can then complete evaluation of the contain-
ing expression. The operations used here will be explained in section 2.

If the functionf were given by

10 function f(i: integer): real;
11begin
12 f := i
13end;

thenf would have code sequence:

-6-

BEG:2 0
11
"f"

LV : l 40
RV4:l 32
AS48

END

Here theBEG operator takes 9 bytes of inline data. The first byte specifies the length of the function
name. The second longword specifies the amount of local variable storage, here none. The succeeding two
lines give the line number of thebegin and the name of the block for error traceback. TheBEG operator
places a name pointer in the block mark. The body of thefunction first takes an address of thefunction
result variablef using the address of operatorLV a. The next operation in the interpretation of this function
is the loading of the value ofi. I is at the level of thefunction f, here symbolicallyl, and the first variable
in the local variable area. Thefunction completes by assigning the 4 byte integer on the stack to the 8 byte
return location, hence theAS48 assignment operator, and then uses theEND operator to exit the current
block.

1.10. The main interpreter loop

The main interpreter loop is simply:

iloop:
caseb (lc)+,$0,$255
<table of opcode interpreter addresses>

The main opcode is extracted from the first byte of the instruction and used to index into the table of
opcode interpreter addresses. Control is then transferred to the specified location. The sub-opcode may be
used to index the display, as a small constant, or to specify one of several relational operators. In the cases
where a constant is needed, but it is not small enough to fit in the byte sub-operator, a zero is placed there
and the constant follows in the next word. Zero is easily tested for, as the instruction that fetches the sub-
opcode sets the condition code flags. A construction like:

_OPER:
cvtbl (lc)+,r0
bneq L1
cvtwl (lc)+,r0

L1: ...

is all that is needed to effect this packing of data. This technique saves space in the Pascalobj object code.

The address of the instruction atiloop is always contained in the register variableloop. Thus a return
to the main interpreter is simply:

jmp (loop)

that is both quick and occupies little space.

1.11. Errors

Errors during interpretation fall into three classes:

1) Interpreter detected errors.
2) Hardware detected errors.
3) External events.

Interpreter detected errors include I/O errors and built-in function errors. These errors cause a sub-
routine call to an error routine with a single parameter indicating the cause of the error. Hardware errors
such as range errors and overflows are fielded by a special routine that determines the opcode that caused
the error. It then calls the error routine with an appropriate error parameter. External events include

-7-

interrupts and system limits such as available memory. They generate a call to the error routine with an
appropriate error code. The error routine processes the error condition, printing an appropriate error mes-
sage and usually a backtrace from the point of the error.

2. Operations

2.1. Naming conventions and operation summary

Table 2.1 outlines the opcode typing convention. The expression ‘‘a above b’’ means that ‘a’ is on
top of the stack with ‘b’ below it. Table 2.3 describes each of the opcodes. The character ‘∗’ at the end of a
name specifies that all operations with the root prefix before the ‘∗’ are summarized by one entry. Table 2.2
gives the codes used to describe the type inline data expected by each instruction.

Table 2.1 − Operator Suffixes

Unary operator suffixes

Suffix Example Argument type
2 NEG2 Short integer (2 bytes)
4 SQR4 Long integer (4 bytes)
8 ABS8 Real (8 bytes)

Binary operator suffixes

Suffix Example Argument type
2 ADD2 Tw o short integers

24 MUL24 Short above long integer
42 REL42 Long above short integer
4 DIV4 Tw o long integers

28 DVD28 Short integer above real
48 REL48 Long integer above real
82 SUB82 Real above short integer
84 MUL84 Real above long integer
8 ADD8 Tw o reals

Other Suffixes

Suffix Example Argument types
T ADDT Sets
G RELG Strings

-8-

Table 2.2 − Inline data type codes

Code Description

a An address offset is given in the word following the
instruction.

A An address offset is given in the four bytes following the instruction.

l An index into the display
is given in the sub-opcode.

r A relational operator is encoded in the sub-opcode. (see section 2.3)

s A small integer is
placed in the sub-opcode, or in the next word
if it is zero or too large.

v Variable length inline data.

w A word value in the following word.

W A long value in the following four bytes.

" An inline constant string.

-9-

Table 2.3 − Machine operations

Mnemonic Reference Description

ABS∗ 2.7 Absolute value
ADD∗ 2.7 Addition
AND 2.4 Boolean and
ARGC 2.14 Returns number of arguments to current process
ARGV 2.14 Copy specified process argument into char array
AS∗ 2.5 Assignment operators
ASRT 2.12 Asserttrue to continue
AT AN 2.13 Returns arctangent of argument
BEG s,W,w," 2.2,1.8 Write second part of block mark, enter block
BUFF 3.11 Specify buffering for file "output"
CALL l,A 2.2,1.8 Procedure or function call
CARD s 2.11 Cardinality of set
CASEOP∗ 2.9 Case statements
CHR∗ 2.15 Returns integer to ascii mapping of argument
CLCK 2.14 Returns user time of program
CON∗ v 2.5 Load constant operators
COS 2.13 Returns cos of argument
COUNT w 2.10 Count a statement count point
CTTOT s,w,w 2.11 Construct set
DATE 2.14 Copy date into char array
DEFNAME 3.11 Attach file name forprogram statement files
DISPOSE 2.15 Dispose of a heap allocation
DIV∗ 2.7 Fixed division
DVD∗ 2.7 Floating division
END 2.2,1.8 End block execution
EOF 3.10 Returnstrue if end of file
EOLN 3.10 Returnstrue if end of line on input text file
EXP 2.13 Returns exponential of argument
EXPO 2.13 Returns machine representation of real exponent
FILE 3.9 Push descriptor for active file
FLUSH 3.11 Flush a file
FNIL 3.7 Check file initialized, not eof, synced
FOR∗ a 2.12 For statements
GET 3.7 Get next record from a file
GOTO l,A 2.2,1.8 Non-local goto statement
HALT 2.2 Produce control flow backtrace
IF a 2.3 Conditional transfer
IN s,w,w 2.11 Set membership
INCT 2.11 Membership in a constructed set
IND∗ 2.6 Indirection operators
INX∗ s,w,w 2.6 Subscripting (indexing) operator
ITOD 2.12 Convert integer to real
ITOS 2.12 Convert integer to short integer
LINO s 2.2 Set line number, count statements
LLIMIT 2.14 Set linelimit for output text file
LLV l,W 2.6 Address of operator
LN 2.13 Returns natural log of argument
LRV∗ l,A 2.5 Right value (load) operators
LV l,w 2.6 Address of operator
MAX s,w 3.8 Maximum of top of stack andw
MESSAGE 3.6 Write to terminal

-10-

Table 2.3 − Machine operations

Mnemonic Reference Description

MIN s 3.8 Minimum of top of stack ands
MOD∗ 2.7 Modulus
MUL∗ 2.7 Multiplication
NAM A 3.8 Convert enumerated type value to print format
NEG∗ 2.7 Negation
NEW s 2.15 Allocate a record on heap, set pointer to it
NIL 2.6 Assert non-nil pointer
NODUMP s,W,w," 2.2 BEG main program, suppress dump
NOT 2.4 Boolean not
ODD∗ 2.15 Returnstrue if argument is odd,falseif even
OFF s 2.5 Offset address, typically used for field reference
OR 2.4 Boolean or
PA CK s,w,w,w 2.15 Convert and copy from unpacked to packed
PA GE 3.8 Output a formfeed to a text file
POP s 2.2,1.9 Pop (arguments) off stack
PRED∗ 2.7 Returns predecessor of argument
PUSH s 2.2,1.9 Clear space (for function result)
PUT 3.8 Output a record to a file
PXPBUF w 2.10 Initializepxpcount buffer
RANDOM 2.13 Returns random number
RANG∗ v 2.8 Subrange checking
READ∗ 3.7 Read a record from a file
REL∗ r 2.3 Relational test yielding Boolean result
REMOVE 3.11 Remove a file
RESET 3.11 Open file for input
REWRITE 3.11 Open file for output
ROUND 2.13 ReturnsTRUNC(argument+ 0.5)
RV∗ l,a 2.5 Right value (load) operators
SCLCK 2.14 Returns system time of program
SDUP 2.2 Duplicate top stack word
SEED 2.13 Set random seed, return old seed
SIN 2.13 Returns sin of argument
SQR∗ 2.7 Squaring
SQRT 2.13 Returns square root of argument
STLIM 2.14 Set program statement limit
STOD 2.12 Convert short integer to real
STOI 2.12 Convert short to long integer
SUB∗ 2.7 Subtraction
SUCC∗ 2.7 Returns successor of argument
TIME 2.14 Copy time into char array
TRA a 2.2 Short control transfer (local branching)
TRA4 A 2.2 Long control transfer
TRACNT w,A 2.10 Count a procedure entry
TRUNC 2.13 Returns integer part of argument
UNDEF 2.15 Returnsfalse
UNIT∗ 3.10 Set active file
UNPACK s,w,w,w 2.15 Convert and copy from packed to unpacked
WCLCK 2.14 Returns current time stamp
WRITEC 3.8 Character unformatted write
WRITEF l 3.8 General formatted write
WRITES l 3.8 String unformatted write

-11-

Table 2.3 − Machine operations

Mnemonic Reference Description

WRITLN 3.8 Output a newline to a text file

-12-

2.2. Basic control operations

HALT

Corresponds to the Pascal procedurehalt; causes execution to end with a post-mortem backtrace as if
a run-time error had occurred.

BEG s,W,w,"

Causes the second part of the block mark to be created, andW bytes of local variable space to be
allocated and cleared to zero. Stack overflow is detected here.w is the first line of the body of this
section for error traceback, and the inline string (length s) the character representation of its name.

NODUMP s,W,w,"

Equivalent toBEG, and used to begin the main program when the ‘‘p’’ option is disabled so that the
post-mortem backtrace will be inhibited.

END

Complementary to the operatorsCALL andBEG, exits the current block, calling the procedurepclose
to flush buffers for and release any local files. Restores the environment of the caller from the block
mark. If this is the end for the main program, all files areflushed,and the interpreter is exited.

CALL l,A

Saves the current line number, return address, and active display entry pointerdp in the first part of
the block mark, then transfers to the entry point given by the relative addressA, that is the beginning
of aprocedureor function at levell.

PUSH s

Clearss bytes on the stack. Used to make space for the return value of afunction just before calling
it.

POP s

Pops bytes off the stack. Used after afunction or procedure returns to remove the arguments from
the stack.

TRA a

Transfer control to relative addressa as a localgotoor part of a structured statement.

TRA4 A

Transfer control to an absolute address as part of a non-localgoto or to branch over procedure bod-
ies.

LINO s

Set current line number tos. For consistency, check that the expression stack is empty as it should be
(as this is the start of a statement.) This consistency check will fail only if there is a bug in the inter-
preter or the interpreter code has somehow been damaged. Increment the statement count and if it
exceeds the statement limit, generate a fault.

GOTO l,A

Transfer control to addressA that is in the block at levell of the display. This is a non-localgoto.
Causes each block to be exited as if withEND, flushing and freeing files withpclose,until the current
display entry is at levell.

-13-

SDUP∗∗
Duplicate the word or long on the top of the stack. This is used mostly for constructing sets. See
section 2.11.

2.3. If and relational operators

IF a

The interpreter conditional transfers all take place using this operator that examines the Boolean
value on the top of the stack. If the value istrue, the next code is executed, otherwise control trans-
fers to the specified address.

REL∗∗ r

These take two arguments on the stack, and the sub-operation code specifies the relational operation
to be done, coded as follows with ‘a’ above ‘b’ on the stack:

Code Operation
0 a= b
2 a <> b
4 a < b
6 a > b
8 a <= b
10 a >= b

Each operation does a test to set the condition code appropriately and then does an indexed branch
based on the sub-operation code to a test of the condition here specified, pushing a Boolean value on
the stack.

Consider the statement fragment:

if a = b then

If a andb are integers this generates the following code:

RV4:l a
RV4:l b
REL4 =
IF Else part offset

... Then part code ...

2.4. Boolean operators

The Boolean operatorsAND, OR, andNOT manipulate values on the top of the stack. All Boolean val-
ues are kept in single bytes in memory, or in single words on the stack. Zero represents a Booleanfalse,
and one a Booleantrue.

2.5. Right value, constant, and assignment operators

LRV ∗∗ l,A
RV∗∗ l,a

The right value operators load values on the stack. They take a block number as a sub-opcode and
load the appropriate number of bytes from that block at the offset specified in the following word
onto the stack. As an example, considerLRV4:

-14-

_LRV4:
cvtbl (lc)+,r0 #r0 has display index
addl3 _display(r0),(lc)+,r1 #r1 has variable address
pushl (r1) #put value on the stack
jmp (loop)

Here the interpreter places the display level in r0. It then adds the appropriate display value to the
inline offset and pushes the value at this location onto the stack. Control then returns to the main
interpreter loop. TheRV∗ operators have short inline data that reduces the space required to address
the first 32K of stack space in each stack frame. The operatorsRV14 andRV24 provide explicit con-
version to long as the data is pushed. This saves the generation ofSTOI to align arguments toC sub-
routines.

CON∗∗ r

The constant operators load a value onto the stack from inline code. Small integer values are con-
densed and loaded by theCON1operator, that is given by

_CON1:
cvtbw (lc)+,−(sp)
jmp (loop)

Here note that little work was required as the required constant was available at (lc)+. For longer
constants,lc must be incremented before moving the constant. The operatorCON takes a length spec-
ification in the sub-opcode and can be used to load strings and other variable length data onto the
stack. The operatorsCON14andCON24provide explicit conversion to long as the constant is pushed.

AS∗∗
The assignment operators are similar to arithmetic and relational operators in that they take two
operands, both in the stack, but the lengths given for them specify first the length of the value on the
stack and then the length of the target in memory. The target address in memory is under the value to
be stored. Thus the statement

i := 1

wherei is a full-length, 4 byte, integer, will generate the code sequence

LV : l i
CON1:1

AS24

HereLV will load the address ofi, that is really given as a block number in the sub-opcode and an off-
set in the following word, onto the stack, occupying a single word.CON1, that is a single word
instruction, then loads the constant 1, that is in its sub-opcode, onto the stack. Since there are not one
byte constants on the stack, this becomes a 2 byte, single word integer. The interpreter then assigns a
length 2 integer to a length 4 integer usingAS24. The code sequence forAS24 is given by:

_AS24:
incl lc
cvtwl (sp)+,∗(sp)+
jmp (loop)

Thus the interpreter gets the single word off the stack, extends it to be a 4 byte integer gets the target
address off the stack, and finally stores the value in the target. This is a typical use of the constant
and assignment operators.

-15-

2.6. Addressing operations

LLV l,W
LV l,w

The most common operation done by the interpreter is the ‘‘left value’’ or ‘‘address of’’ operation. It
is given by:

_LLV:
cvtbl (lc)+,r0 #r0 has display index
addl3 _display(r0),(lc)+,−(sp) #push address onto the stack
jmp (loop)

It calculates an address in the block specified in the sub-opcode by adding the associated display
entry to the offset that appears in the following word. TheLV operator has a short inline data that
reduces the space required to address the first 32K of stack space in each call frame.

OFF s

The offset operator is used in field names. Thus to get the address of

p↑.f1

pi would generate the sequence

RV :l p
OFF f1

where theRV loads the value ofp, given its block in the sub-opcode and offset in the following word,
and the interpreter then adds the offset of the fieldf1 in its record to get the correct address.OFF

takes its argument in the sub-opcode if it is small enough.

NIL

The example above isincomplete, lacking a check for anil pointer. The code generated would be

RV :l p
NIL

OFF f1

where theNIL operation checks for anil pointer and generates the appropriate runtime error if it is.

LVCON s,"

A pointer to the specified length inline data is pushed onto the stack. This is primarily used forprintf
type strings used byWRITEF. (see sections 3.6 and 3.8)

INX ∗∗ s,w,w

The operatorsINX2 andINX4 are used for subscripting. For example, the statement

a[i] := 2.0

with i an integer anda an ‘‘array [1..1000] of real’’ would generate

-16-

LV : l a
RV4:l i
INX4:8 1,999
CON8 2.0
AS8

Here theLV operation takes the address ofa and places it on the stack. The value ofi is then placed
on top of this on the stack. The array address is indexed by the length 4 index (a length 2 index
would useINX2) where the individual elements have a size of 8 bytes. The code forINX4 is:

_INX4:
cvtbl (lc)+,r0
bneq L1
cvtwl (lc)+,r0 #r0 has size of records

L1:
cvtwl (lc)+,r1 #r1 has lower bound
movzwl (lc)+,r2 #r2 has upper-lower bound
subl3 r1,(sp)+,r3 #r3 has base subscript
cmpl r3,r2 #check for out of bounds
bgtru esubscr
mull2 r0,r3 #calculate byte offset
addl2 r3,(sp) #calculate actual address
jmp (loop)

esubscr:
movw $ESUBSCR,_perrno
jbr error

Here the lower bound is subtracted, and range checked against the upper minus lower bound. The
offset is then scaled to a byte offset into the array and added to the base address on the stack. Multi-
dimension subscripts are translated as a sequence of single subscriptings.

IND∗∗
For indirect references throughvar parameters and pointers, the interpreter has a set of indirection
operators that convert a pointer on the stack into a value on the stack from that address. differentIND

operators are necessary because of the possibility of different length operands. TheIND14 andIND24

operators do conversions to long as they push their data.

2.7. Arithmetic operators

The interpreter has many arithmetic operators. All operators produce results long enough to prevent
overflow unless the bounds of the base type are exceeded. The basic operators available are

Addition: ADD∗, SUCC∗
Subtraction: SUB∗, PRED∗
Multiplication: MUL∗, SQR∗
Division: DIV∗, DVD∗, MOD∗
Unary: NEG∗, ABS∗

2.8. Range checking

The interpreter has several range checking operators. The important distinction among these opera-
tors is between values whose legal range begins at zero and those that do not begin at zero, for example a
subrange variable whose values range from 45 to 70. For those that begin at zero, a simpler ‘‘logical’’ com-
parison against the upper bound suffices. For others, both the low and upper bounds must be checked inde-
pendently, requiring two comparisons. On theVAX 11/780 both checks are done using a single index instruc-
tion so the only gain is in reducing the inline data.

-17-

2.9. Case operators

The interpreter includes three operators forcasestatements that are used depending on the width of
thecaselabel type. For each width, the structure of the case data is the same, and is represented in figure
2.4.

CASEOP

No. of cases

Case
transfer
table

Array of case
label values

Figure 2.4 − Case data structure

The CASEOPcase statement operators do a sequential search through the case label values. If they
find the label value, they take the corresponding entry from the transfer table and cause the interpreter to
branch to the specified statement. If the specified label is not found, an error results.

The CASE operators take the number of cases as a sub-opcode if possible. Three different operators
are needed to handle single byte, word, and long case transfer table values. For example, theCASEOP1oper-
ator has the following code sequence:

_CASEOP1:
cvtbl (lc)+,r0
bneq L1
cvtwl (lc)+,r0 #r0 has length of case table

L1:
movaw (lc)[r0],r2 #r2 has pointer to case labels
movzwl (sp)+,r3 #r3 has the element to find
locc r3,r0,(r2) #r0 has index of located element
beql caserr #element not found
mnegl r0,r0 #calculate new lc
cvtwl (r2)[r0],r1 #r1 has lc offset
addl2 r1,lc
jmp (loop)

caserr:
movw $ECASE,_perrno
jbr error

Here the interpreter first computes the address of the beginning of the case label value area by adding
twice the number of case label values to the address of the transfer table, since the transfer table entries are
2 byte address offsets. It then searches through the label values, and generates an ECASE error if the label
is not found. If the label is found, the index of the corresponding entry in the transfer table is extracted and
that offset is added to the interpreter location counter.

2.10. Operations supporting pxp

The following operations are defined to do execution profiling.

-18-

PXPBUF w

Causes the interpreter to allocate a count buffer withw four byte counters and to clear them to zero.
The count buffer is placed within an image of thepmon.outfile as described in thePXP Implementa-
tion Notes.The contents of this buffer are written to the filepmon.outwhen the program ends.

COUNT w

Increments the counter specified byw.

TRACNT w,A

Used at the entry point to procedures and functions, combining a transfer to the entry point of the
block with an incrementing of its entry count.

2.11. Set operations

The set operations: unionADDT, intersectionMULT, element removalSUBT, and the set relationals
RELT are straightforward. The following operations are more interesting.

CARD s

Takes the cardinality of a set of sizes bytes on top of the stack, leaving a 2 byte integer count.CARD

uses theffs opcode to successively count the number of set bits in the set.

CTTOT s,w,w

Constructs a set. This operation requires a non-trivial amount of work, checking bounds and setting
individual bits or ranges of bits. This operation sequence is slow, and motivates the presence of the
operatorINCT below. The arguments toCTTOT include the number of elementss in the constructed
set, the lower and upper bounds of the set, the twow values, and a pair of values on the stack for each
range in the set, single elements in constructed sets being duplicated withSDUP to form degenerate
ranges.

IN s,w,w

The operatorin for sets. The values specifies the size of the set, the twow values the lower and
upper bounds of the set. The value on the stack is checked to be in the set on the stack, and a
Boolean value oftrueor falsereplaces the operands.

INCT

The operatorin on a constructed set without constructing it. The left operand ofin is on top of the
stack followed by the number of pairs in the constructed set, and then the pairs themselves, all as sin-
gle word integers. Pairs designate runs of values and single values are represented by a degenerate
pair with both value equal. This operator is generated in grammatical constructs such as

if characterin [`+´, ´−´, ∗̀´, `/´]

or

if characterin [`a´..`z´, `$´, ` ´]

These constructs are common in Pascal, andINCT makes them run much faster in the interpreter, as if
they were written as an efficient series ofif statements.

2.12. Miscellaneous

Other miscellaneous operators that are present in the interpreter areASRT that causes the program to
end if the Boolean value on the stack is nottrue, andSTOI, STOD, ITOD, andITOS that convert between dif-
ferent length arithmetic operands for use in aligning the arguments inprocedure and function calls, and
with some untyped built-ins, such asSIN andCOS.

-19-

Finally, if the program is run with the run-time testing disabled, there are special operators forfor
statements and special indexing operators for arrays that have individual element size that is a power of 2.
The code can run significantly faster using these operators.

2.13. Mathematical Functions

The transcendental functionsSIN, COS, AT AN, EXP, LN, SQRT, SEED, andRANDOM are taken from the
standard UNIX mathematical package. These functions take double precision floating point values and
return the same.

The functionsEXPO, TRUNC, andROUND take a double precision floating point number.EXPO returns
an integer representing the machine representation of its argument’s exponent,TRUNC returns the integer
part of its argument, andROUND returns the rounded integer part of its argument.

2.14. System functions and procedures

LLIMIT

A line limit and a file pointer are passed on the stack. If the limit is non-negative the line limit is set
to the specified value, otherwise it is set to unlimited. The default is unlimited.

STLIM

A statement limit is passed on the stack. The statement limit is set as specified. The default is
500,000. No limit is enforced when the ‘‘p’’ option is disabled.

CLCK
SCLCK

CLCK returns the number of milliseconds of user time used by the program;SCLCK returns the num-
ber of milliseconds of system time used by the program.

WCLCK

The number of seconds since some predefined time is returned. Its primary usefulness is in determin-
ing elapsed time and in providing a unique time stamp.

The other system time procedures areDATE andTIME that copy an appropriate text string into a pascal string
array. The functionARGC returns the number of command line arguments passed to the program. The pro-
cedureARGV takes an index on the stack and copies the specified command line argument into a pascal
string array.

2.15. Pascal procedures and functions

PA CK s,w,w,w
UNPACK s,w,w,w

They function as a memory to memory move with several semantic checks. They do no ‘‘unpack-
ing’’ or ‘‘packing’’ in the true sense as the interpreter supports no packed data types.

NEW s
DISPOSE s

An LV of a pointer is passed.NEW allocates a record of a specified size and puts a pointer to it into
the pointer variable.DISPOSEdeallocates the record pointed to by the pointer and sets the pointer to
NIL.

The functionCHR∗ converts a suitably small integer into an ascii character. Its primary purpose is to do a
range check. The functionODD∗ returnstrue if its argument is odd and returnsfalseif its argument is even.

-20-

The functionUNDEF always returns the valuefalse.

3. Input/output

3.1. The files structure

Each file in the Pascal environment is represented by a pointer to afilesstructure in the heap. At the
location addressed by the pointer is the element in the file’s window variable. Behind this window variable
is information about the file, at the following offsets:

−108 FNAME Text name of associated UNIX file
−30 LCOUNT Current count of lines output
−26 LLIMIT Maximum number of lines permitted
−22 FBUF UNIX FILE pointer
−18 FCHAIN Chain to next file
−14 FLEV Pointer to associated file variable
−10 PFNAME Pointer to name of file for error messages
−6 FUNIT File status flags
−4 FSIZE Size of elements in the file

0 File window element

HereFBUF is a pointer to the system FILE block for the file. The standard system I/O library is used
that provides block buffered input/output, with 1024 characters normally transferred at each read or write.

The files in the Pascal environment, are all linked together on a single file chain through theFCHAIN

links. For each file theFLEV pointer gives its associated file variable. These are used to free files at block
exit as described in section 3.3 below.

The FNAME and PFNAME give the associated file name for the file and the name to be used when
printing error diagnostics respectively. Although these names are usually the same,input andoutputusu-
ally have no associated file name so the distinction is necessary.

The FUNIT word contains a set of flags. whose representations are:

EOF 0x0100 At end-of-file
EOLN 0x0200 At end-of-line (text files only)
SYNC 0x0400 File window is out of sync
TEMP 0x0800 File is temporary
FREAD 0x1000 File is open for reading
FWRITE 0x2000 File is open for writing
FTEXT 0x4000 File is a text file; process EOLN
FDEF 0x8000 File structure created, but file not opened

The EOF and EOLN bits here reflect the associated built-in function values. TEMP specifies that the
file has a generated temporary name and that it should therefore be removed when its block exits. FREAD
and FWRITE specify thatresetandre write respectively have been done on the file so that input or output
operations can be done. FTEXT specifies the file is a text file so that EOLN processing should be done,
with newline characters turned into blanks, etc.

The SYNC bit, when true, specifies that there is no usable image in the file buffer window. As dis-
cussed in theBerkeley Pascal User’s Manual,the interactive environment necessitates having ‘‘inputˆ’’
undefined at the beginning of execution so that a program may print a prompt before the user is required to
type input. The SYNC bit implements this. When it is set, it specifies that the element in the window must
be updated before it can be used. This is never done until necessary.

3.2. Initialization of files

All the variables in the Pascal runtime environment are cleared to zero on block entry. This is neces-
sary for simple processing of files. If a file is unused, its pointer will benil. All references to an inactive
file are thus references through anil pointer. If the Pascal system did not clear storage to zero before

-21-

execution it would not be possible to detect inactive files in this simple way; it would probably be necessary
to generate (possibly complicated) code to initialize each file on block entry.

When a file is first mentioned in aresetor re writecall, a buffer of the form described above isassoci-
ated with it, and the necessary information about the file is placed in this buffer. The file is also linked into
the active file chain. This chain is kept sorted by block mark address, the FLEV entries.

3.3. Block exit

When block exit occurs the interpreter must free the files that are in use in the block and their associ-
ated buffers. This is simple and efficient because the files in the active file chain are sorted by increasing
block mark address. This means that the files for the current block will be at the front of the chain. For
each file that is no longer accessible the interpreter first flushes the files buffer if it is an output file. The
interpreter then returns the file buffer and the files structure and window to the free space in the heap and
removes the file from the active file chain.

3.4. Flushing

Flushing all the file buffers at abnormal termination, or on a call to the procedureflushor messageis
done by flushing each file on the file chain that has the FWRITE bit set in its flags word.

3.5. The active file

For input-output,px maintains a notion of an active file. Each operation that references a file makes
the file it will be using the active file and then does its operation. A subtle point here is that one may do a
procedure call towrite that involves a call to a function that references another file, thereby destroying the
active file set up before thewrite. Thus the active file is saved at block entry in the block mark and restored
at block exit.†

3.6. File operations

Files in Pascal can be used in two distinct ways: as the object ofread, write, get,andput calls, or
indirectly as though they were pointers. The second use as pointers must be careful not to destroy the
active file in a reference such as

write(output, input↑)

or the system would incorrectly write on the input device.

The fundamental operator related to the use of a file isFNIL. This takes the file variable, as a pointer,
insures that the pointer is notnil, and also that a usable image is in the file window, by forcing theSYNC bit
to be cleared.

A simple example that demonstrates the use of the file operators is given by

writeln(f)

that produces

RV :l f
UNIT

WRITLN

3.7. Read operations

GET

Advance the active file to the next input element.

† It would probably be better to dispense with the notion of active file and use another mechanism that did not
involve extra overhead on each procedure and function call.

-22-

FNIL

A file pointer is on the stack. Insure that the associated file is active and that the file is synced so that
there is input available in the window.

READ∗∗
If the file is a text file, read a block of text and convert it to the internal type of the specified operand.
If the file is not a text file then do an unformatted read of the next record. The procedureREADLN

reads upto and including the next end of line character.

READE A

The operatorREADE reads a string name of an enumerated type and converts it to its internal value.
READE takes a pointer to a data structure as shown in figure 3.2.

No. of cases

offsets
of element

names

Array of
null terminated
element names

Figure 3.2 − Enumerated type conversion structure

See the description ofNAM in the next section for an example.

3.8. Write operations

PUT

Output the element in the active file window.

WRITEF s

The argument(s) on the stack are output by thefprintf standardI/O library routine. The sub-opcodes
specifies the number of longword arguments on the stack.

WRITEC

The character on the top of the stack is output without formatting. Formatted characters must be out-
put withWRITEF.

WRITES

The string specified by the pointer on the top of the stack is output by thefwrite standardI/O library
routine. All characters including nulls are printed.

WRITLN

A linefeed is output to the active file. The line-count for the file is incremented and checked against
the line limit.

-23-

PA GE

A formfeed is output to the active file.

NAM A

The value on the top of the stack is converted to a pointer to an enumerated type string name. The
addressA points to an enumerated type structure identical to that used byREADE. An error is raised if
the value is out of range. The form of this structure for the predefined typebooleanis shown in fig-
ure 3.3.

bool: 2

6

12

17

"false"

"true"

Figure 3.3 − Boolean type conversion structure

The code forNAM is

_NAM:
incl lc
addl3 (lc)+,ap,r6 #r6 points to scalar name list
movl (sp)+,r3 #r3 has data value
cmpw r3,(r6)+ #check value out of bounds
bgequ enamrng
movzwl (r6)[r3],r4 #r4 has string index
pushab (r6)[r4] #push string pointer
jmp (loop)

enamrng:
movw $ENAMRNG,_perrno
jbr error

The address of the table is calculated by adding the base address of the interpreter code,ap to the off-
set pointed to bylc. The first word of the table gives the number of records and provides a range
check of the data to be output. The pointer is then calculated as

tblbase= ap+ A;
size= ∗tblbase++;
return(tblbase+ tblbase[value]);

MAX s,w

The sub-opcodes is subtracted from the integer on the top of the stack. The maximum of the result
and the second argument,w, replaces the value on the top of the stack. This function verifies that
variable specified width arguments are non-negative, and meet certain minimum width requirements.

MIN s

The minimum of the value on the top of the stack and the sub-opcode replaces the value on the top of
the stack.

The uses of files and the file operations are summarized in an example which outputs a real variable (r) with
a variable width field (i).

−24−

writeln(´r =´,r:i,´ ´,true);

that generates the code

UNITOUT

FILE

CON14:1

CON14:3

LVCON:4 "r ="
WRITES

RV8:l r
RV4:l i
MAX:8 1
RV4:l i
MAX:1 1
LVCON:8 " %∗.∗E"
FILE

WRITEF:6

CONC4 ´ ´
WRITEC

CON14:1

NAM bool
LVCON:4 "%s"
FILE

WRITEF:3

WRITLN

Here the operatorUNITOUT is an abbreviated form of the operatorUNIT that is used when the file to be
made active isoutput. A file descriptor, record count, string size, and a pointer to the constant string ‘‘r=’’
are pushed and then output byWRITES. Next the value ofr is pushed on the stack and the precision size is
calculated by taking seven less than the width, but not less than one. This is followed by the width that is
reduced by one to leave space for the required leading blank. If the width is too narrow, it is expanded by
fprintf. A pointer to the format string is pushed followed by a file descriptor and the operatorWRITEF that
prints outr. The value of six onWRITEF comes from two longs forr and a long each for the precision,
width, format string pointer, and file descriptor. The operatorCONC4pushes theblankcharacter onto a long
on the stack that is then printed out byWRITEC. The internal representation fortrue is pushed as a long
onto the stack and is then replaced by a pointer to the string ‘‘true’’ by the operatorNAM using the table
bool for conversion. This string is output by the operatorWRITEF using the format string ‘‘%s’’. Finally the
operatorWRITLN appends a newline to the file.

3.9. File activation and status operations

UNIT ∗∗
The file pointed to by the file pointer on the top of the stack is converted to be the active file. The
opcodesUNITINP and UNITOUT imply standard input and output respectively instead of explicitly
pushing their file pointers.

FILE

The standardI/O library file descriptor associated with the active file is pushed onto the stack.

EOF

The file pointed to by the file pointer on the top of the stack is checked for end of file. A boolean is
returned withtrue indicating the end of file condition.

-25-

EOLN

The file pointed to by the file pointer on the top of the stack is checked for end of line. A boolean is
returned withtrue indicating the end of line condition. Note that only text files can check for end of
line.

3.10. File housekeeping operations

DEFNAME

Four data items are passed on the stack; the size of the data type associated with the file, the maxi-
mum size of the file name, a pointer to the file name, and a pointer to the file variable. A file record
is created with the specified window size and the file variable set to point to it. The file is marked as
defined but not opened. This allowsprogram statement association of file names with file variables
before their use by aRESETor aREWRITE.

BUFF s

The sub-opcode is placed in the external variable_bufoptto specify the amount of I/O buffering that
is desired. The current options are:

0 − character at a time buffering
1 − line at a time buffering
2 − block buffering

The default value is 1.

RESET
REWRITE

Four data items are passed on the stack; the size of the data type associated with the file, the maxi-
mum size of the name (possibly zero), a pointer to the file name (possibly null), and a pointer to the
file variable. If the file has never existed it is created as inDEFNAME. If no file name is specified and
no previous name exists (for example one created byDEFNAME) then a system temporary name is
created.RESETthen opens the file for input, whileREWRITEopens the file for output.

The three remaining file operations areFLUSH that flushes the active file,REMOVE that takes the
pointer to a file name and removes the specified file, andMESSAGEthat flushes all the output files and sets
the standard error file to be the active file.

4. Conclusions

It is appropriate to consider, giv en the amount of time invested in rewriting the interpreter, whether
the time was well spent, or whether a code-generator could have been written with an equivalent amount of
effort. The Berkeley Pascal system is being modified to interface to the code generator of the portable C
compiler with not much more work than was involved in rewrittingpx. Howev er this compiler will proba-
bly not supercede the interpreter in an instructional environment as the necessary loading and assembly
processes will slow the compilation process to a noticeable degree. This effect will be further exaggerated
because student users spend more time in compilation than in execution. Measurements over the course of
a quarter at Berkeley with a mixture of students from beginning programming to upper division compiler
construction show that the amount of time in compilation exceeds the amount of time spent in the inter-
preter, the ratio being approximately 60/40.

A more promising approach might have been a throw-away code generator such as was done for the
WA TFIV system. However the addition of high-quality post-mortem and interactive debugging facilities
become much more difficult to provide than in the interpreter environment.

