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There are some constraints inherent in the NFS™∈ protocol
that result in performance limitations for high performance workstation environments.
This paper discusses an NFS-like protocol named Not Quite NFS (NQNFS), designed to
address some of these limitations. This protocol provides full cache consistency during
normal operation, while permitting more effective client-side caching in an effort to
improve performance. There are also a variety of minor protocol changes, in order to
resolve various NFS issues. The emphasis is on observed performance of a preliminary
implementation of the protocol, in order to show how well this design works and to sug-
gest possible areas for further improvement.

1. Introduction

It has been observed that overall workstation performance has not been scaling with processor speed
and that file system I/O is a limiting factor [Ousterhout90]. Ousterhout notes that a principal challenge for
operating system developers is the decoupling of system calls from their underlying I/O operations, in order
to improve average system call response times. For distributed file systems, every synchronous Remote
Procedure Call (RPC) takes a minimum of a few milliseconds and, as such, is analogous to an underlying
I/O operation. This suggests that client caching with a very good hit ratio for read type operations, along
with asynchronous writing, is required in order to avoid delays waiting for RPC replies. However, the NFS

protocol requires that the server be stateless1 and does not provide any explicit mechanism for client cache
consistency, putting constraints on how the client may cache data. This paper describes an NFS-like proto-
col that includes a cache consistency component designed to enhance client caching performance. It does
provide full consistency under normal operation, but without requiring that hard state information be main-
tained on the server. Design tradeoffs were made towards simplicity and high performance over cache con-
sistency under abnormal conditions. The protocol design uses a variation of Leases [Gray89] to provide
state on the server that does not need to be recovered after a crash.

The protocol also includes changes designed to address other limitations of NFS in a modern work-
station environment. The use of TCP transport is optionally available to avoid the pitfalls of Sun RPC over
UDP transport when running across an internetwork [Nowicki89]. Kerberos [Steiner88] support is avail-
able to do proper user authentication, in order to provide improved security and arbitrary client to server
user ID mappings. There are also a variety of other changes to accommodate large file systems, such as
64bit file sizes and offsets, as well as lifting the 8Kbyte I/O size limit. The remainder of this paper gives an
overview of the protocol, highlighting performance related components, followed by an evaluation of resul-
tant performance for the 4.4BSD implementation.

2. Distributed File Systems and Caching

Clients using distributed file systems cache recently-used data in order to reduce the number of syn-
chronous server operations, and therefore improve average response times for system calls. Unfortunately,
maintaining consistency between these caches is a problem whenever write sharing occurs; that is, when a
process on a client writes to a file and one or more processes on other client(s) read the file. If the writer

1The server must not require any state that may be lost due to a crash, to function correctly.



closes the file before any reader(s) open the file for reading, this is called sequential write sharing. Both the
Andrew ITC file system [Howard88] and NFS [Sandberg85] maintain consistency for sequential write shar-
ing by requiring the writer to push all the writes through to the server on close and having readers check to
see if the file has been modified upon open. If the file has been modified, the client throws away all cached
data for that file, as it is now stale. NFS implementations typically detect file modification by checking a
cached copy of the file’s modification time; since this cached value is often several seconds out of date and
only has a resolution of one second, an NFS client often uses stale cached data for some time after the file
has been updated on the server.

A more difficult case is concurrent write sharing, where write operations are intermixed with read
operations. Consistency for this case, often referred to as "full cache consistency," requires that a reader
always receives the most recently written data. Neither NFS nor the Andrew ITC file system maintain con-
sistency for this case. The simplest mechanism for maintaining full cache consistency is the one used by
Sprite [Nelson88], which disables all client caching of the file whenever concurrent write sharing might
occur. There are other mechanisms described in the literature [Kent87a, Burrows88], but they appeared to
be too elaborate for incorporation into NQNFS (for example, Kent’s requires specialized hardware).
NQNFS differs from Sprite in the way it detects write sharing. The Sprite server maintains a list of files
currently open by the various clients and detects write sharing when a file open request for writing is
received and the file is already open for reading (or vice versa). This list of open files is hard state informa-
tion that must be recovered after a server crash, which is a significant problem in its own right [Mogul93,
Welch90].

The approach used by NQNFS is a variant of the Leases mechanism [Gray89]. In this model, the
server issues to a client a promise, referred to as a "lease," that the client may cache a specific object with-
out fear of conflict. A lease has a limited duration and must be renewed by the client if it wishes to con-
tinue to cache the object. In NQNFS, clients hold short-term (up to one minute) leases on files for reading
or writing. The leases are analogous to entries in the open file list, except that they expire after the lease
term unless renewed by the client. As such, one minute after issuing the last lease there are no current
leases and therefore no lease records to be recovered after a crash, hence the term "soft server state."

A related design consideration is the way client writing is done. Synchronous writing requires that
all writes be pushed through to the server during the write system call. This is the simplest variant, from a
consistency point of view, since the server always has the most recently written data. It also permits any
write errors, such as "file system out of space" to be propagated back to the client’s process via the write
system call return. Unfortunately this approach limits the client write rate, based on server write perfor-
mance and client/server RPC round trip time (RTT).

An alternative to this is delayed writing, where the write system call returns as soon as the data is
cached on the client and the data is written to the server sometime later. This permits client writing to
occur at the rate of local storage access up to the size of the local cache. Also, for cases where file trunca-
tion/deletion occurs shortly after writing, the write to the server may be avoided since the data has already
been deleted, reducing server write load. There are some obvious drawbacks to this approach. For any
Sprite-like system to maintain full consistency, the server must "callback" to the client to cause the delayed
writes to be written back to the server when write sharing is about to occur. There are also problems with
the propagation of errors back to the client process that issued the write system call. The reason for this is
that the system call has already returned without reporting an error and the process may also have already
terminated. As well, there is a risk of the loss of recently written data if the client crashes before the data is
written back to the server.

A compromise between these two alternatives is asynchronous writing, where the write to the server
is initiated during the write system call but the write system call returns before the write completes. This
approach minimizes the risk of data loss due to a client crash, but negates the possibility of reducing server
write load by throwing writes away when a file is truncated or deleted.

NFS implementations usually do a mix of asynchronous and delayed writing but push all writes to
the server upon close, in order to maintain open/close consistency. Pushing the delayed writes on close
negates much of the performance advantage of delayed writing, since the delays that were avoided in the



write system calls are observed in the close system call. Akin to Sprite, the NQNFS protocol does delayed
writing in an effort to achieve good client performance and uses a callback mechanism to maintain full
cache consistency.

3. Related Work

There has been a great deal of effort put into improving the performance and consistency of the NFS
protocol. This work can be put in two categories. The first category are implementation enhancements for
the NFS protocol and the second involve modifications to the protocol.

The work done on implementation enhancements have attacked two problem areas, NFS server write
performance and RPC transport problems. Server write performance is a major problem for NFS, in part
due to the requirement to push all writes to the server upon close and in part due to the fact that, for writes,
all data and meta-data must be committed to non-volatile storage before the server replies to the write RPC.
The Prestoserve™† [Moran90] system uses non-volatile RAM as a buffer for recently written data on the
server, so that the write RPC replies can be returned to the client before the data is written to the disk sur-
face. Write gathering [Juszczak94] is a software technique used on the server where a write RPC request is
delayed for a short time in the hope that another contiguous write request will arrive, so that they can be
merged into one write operation. Since the replies to all of the merged writes are not returned to the client
until the write operation is completed, this delay does not violate the protocol. When write operations are
merged, the number of disk writes can be reduced, improving server write performance. Although either of
the above reduces write RPC response time for the server, it cannot be reduced to zero, and so, any client
side caching mechanism that reduces write RPC load or client dependence on server RPC response time
should still improve overall performance. Good client side caching should be complementary to these
server techniques, although client performance improvements as a result of caching may be less dramatic
when these techniques are used.

In NFS, each Sun RPC request is packaged in a UDP datagram for transmission to the server. A timer
is started, and if a timeout occurs before the corresponding RPC reply is received, the RPC request is
retransmitted. There are two problems with this model. First, when a retransmit timeout occurs, the RPC
may be redone, instead of simply retransmitting the RPC request message to the server. A recent-request
cache can be used on the server to minimize the negative impact of redoing RPCs [Juszczak89]. The sec-
ond problem is that a large UDP datagram, such as a read request or write reply, must be fragmented by IP
and if any one IP fragment is lost in transit, the entire UDP datagram is lost [Kent87]. Since entire requests
and replies are packaged in a single UDP datagram, this puts an upper bound on the read/write data size (8
kbytes).

Adjusting the retransmit timeout (RTT) interval dynamically and applying a congestion window on
outstanding requests has been shown to be of some help [Nowicki89] with the retransmission problem. An
alternative to this is to use TCP transport to delivery the RPC messages reliably [Macklem90] and one of
the performance results in this paper shows the effects of this further.

Srinivasan and Mogul [Srinivasan89] enhanced the NFS protocol to use the Sprite cache consistency
algorithm in an effort to improve performance and to provide full client cache consistency. This experi-
mental implementation demonstrated significantly better performance than NFS, but suffered from a lack of
crash recovery support. The NQNFS protocol design borrowed heavily from this work, but differed from
the Sprite algorithm by using Leases instead of file open state to detect write sharing. The decision to use
Leases was made primarily to avoid the crash recovery problem. More recent work by the Sprite group
[Baker91] and Mogul [Mogul93] have addressed the crash recovery problem, making this design tradeoff
more questionable now.

Sun has recently updated the NFS protocol to Version 3 [SUN93], using some changes similar to
NQNFS to address various issues. The Version 3 protocol uses 64bit file sizes and offsets, provides a Read-
dir_and_Lookup RPC and an access RPC. It also provides cache hints, to permit a client to be able to
determine whether a file modification is the result of that client’s write or some other client’s write. It
would be possible to add either Spritely NFS or NQNFS support for cache consistency to the NFS Version
3 protocol.



4. NQNFS Consistency Protocol and Recovery

The NQNFS cache consistency protocol uses a somewhat Sprite-like [Nelson88] mechanism, but is
based on Leases [Gray89] instead of hard server state information about open files. The basic principle is
that the server disables client caching of files whenever concurrent write sharing could occur, by perform-
ing a server-to-client callback, forcing the client to flush its caches and to do all subsequent I/O on the file
with synchronous RPCs. A Sprite server maintains a record of the open state of files for all clients and uses
this to determine when concurrent write sharing might occur. Thisopen stateinformation might also be
referred to as an infinite-term lease for the file, with explicit lease cancellation. NQNFS, on the other hand,
uses a short-term lease that expires due to timeout after a maximum of one minute, unless explicitly
renewed by the client. The fundamental difference is that an NQNFS client must keep renewing a lease to
use cached data whereas a Sprite client assumes the data is valid until canceled by the server or the file is
closed. Using leases permits the server to remain "stateless," since the soft state information, which con-
sists of the set of current leases, is moot after one minute, when all the leases expire.

Whenever a client wishes to access a file’s data it must hold one of three types of lease: read-caching,
write-caching or non-caching. The latter type requires that all file operations be done synchronously with
the server via the appropriate RPCs.

A read-caching lease allows for client data caching but no modifications may be done. It may, how-
ev er, be shared between multiple clients. Diagram 1 shows a typical read-caching scenario. The vertical
solid black lines depict the lease records. Note that the time lines are nowhere near to scale, since a
client/server interaction will normally take less than one hundred milliseconds, whereas the normal lease
duration is thirty seconds. Every lease includes amodrevvalue, which changes upon every modification of
the file. It may be used to check to see if data cached on the client is still current.

A write-caching lease permits delayed write caching, but requires that all data be pushed to the server
when the lease expires or is terminated by an eviction callback. When a write-caching lease has almost
expired, the client will attempt to extend the lease if the file is still open, but is required to push the delayed
writes to the server if renewal fails (as depicted by diagram 2). The writes may not arrive at the server until
after the write lease has expired on the client, but this does not result in a consistency problem, so long as
the write lease is still valid on the server. Note that, in diagram 2, the lease record on the server remains
current after the expiry time, due to the conditions mentioned in section 5. If a write RPC is done on the
server after the write lease has expired on the server, this could be considered an error since consistency
could be lost, but it is not handled as such by NQNFS.

Diagram 3 depicts how read and write leases are replaced by a non-caching lease when there is the
potential for write sharing. A write-caching lease is not used in the Stanford V Distributed System
[Gray89], since synchronous writing is always used. A side effect of this change is that the five to ten sec-
ond lease duration recommended by Gray was found to be insufficient to achieve good performance for the
write-caching lease. Experimentation showed that thirty seconds was about optimal for cases where the
client and server are connected to the same local area network, so thirty seconds is the default lease dura-
tion for NQNFS. A maximum of twice that value is permitted, since Gray showed that for some network
topologies, a larger lease duration functions better. Although there is an explicit get_lease RPC defined for
the protocol, most lease requests are piggybacked onto the other RPCs to minimize the additional overhead
introduced by leasing.

4.1. Rationale

Leasing was chosen over hard server state information for the following reasons:

1. The server must maintain state information about all current client leases. Since at most one lease is
allocated for each RPC and the leases expire after their lease term, the upper bound on the number of
current leases is the product of the lease term and the server RPC rate. In practice, it has been
observed that less than 10% of RPCs request new leases and since most leases have a term of thirty
seconds, the following rule of thumb should estimate the number of server lease records:

Number of Server Lease Records= 0.1 * 30 * RPC rate
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Since each lease record occupies 64 bytes of server memory, storing the lease records should not be a
serious problem. If a server has exhausted lease storage, it can simply wait a few seconds for a lease



to expire and free up a record. On the other hand, a Sprite-like server must store records for all files
currently open by all clients, which can require significant storage for a large, heavily loaded server.
In [Mogul93], it is proposed that a mechanism vaguely similar to paging could be used to deal with
this for Spritely NFS, but this appears to introduce a fair amount of complexity and may limit the
usefulness of open records for storing other state information, such as file locks.

2. After a server crashes it must recover lease records for the current outstanding leases, which actually
implies that if it waits until all leases have expired, there is no state to recover. The server must wait
for the maximum lease duration of one minute, and it must serve all outstanding write requests result-
ing from terminated write-caching leases before issuing new leases. The one minute delay can be
overlapped with file system consistency checking (eg. fsck). Because no state must be recovered, a
lease-based server, like an NFS server, avoids the problem of state recovery after a crash.

There can, however, be problems during crash recovery because of a potentially large number of
write backs due to terminated write-caching leases. One of these problems is a "recovery storm"
[Baker91], which could occur when the server is overloaded by the number of write RPC requests.
The NQNFS protocol deals with this by replying with a return status code called try_again_later to
all RPC requests (except write) until the write requests subside. At this time, there has not been suffi-
cient testing of server crash recovery while under heavy server load to determine if the
try_again_later reply is a sufficient solution to the problem. The other problem is that consistency
will be lost if other RPCs are performed before all of the write backs for terminated write-caching
leases have completed. This is handled by only performing write RPCs until no write RPC requests
arrive for write_slack seconds, where write_slack is set to several times the client timeout retransmit
interval, at which time it is assumed all clients have had an opportunity to send their writes to the
server.

3. Another advantage of leasing is that, since leases are required at times when other I/O operations
occur, lease requests can almost always be piggybacked on other RPCs, avoiding some of the over-
head associated with the explicit open and close RPCs required by a Sprite-like system. Compared
with Sprite cache consistency, this can result in a significantly lower RPC load (see table #1).

5. Limitations of the NQNFS Protocol

There is a serious risk when leasing is used for delayed write caching. If the server is simply too
busy to service a lease renewal before a write-caching lease terminates, the client will not be able to push
the write data to the server before the lease has terminated, resulting in inconsistency. Note that the danger
of inconsistency occurs when the server assumes that a write-caching lease has terminated before the client
has had the opportunity to write the data back to the server. In an effort to avoid this problem, the NQNFS
server does not assume that a write-caching lease has terminated until three conditions are met:

1 - clock time > (expiry time + clock skew)
2 - there is at least one server daemon (nfsd) waiting for an RPC request
3 - no write RPCs received for leased file within write_slack after the corrected expiry time

The first condition ensures that the lease has expired on the client. The clock_skew, by default three sec-
onds, must be set to a value larger than the maximum time-of-day clock error that is likely to occur during
the maximum lease duration. The second condition attempts to ensure that the client is not waiting for
replies to any writes that are still queued for service by an nfsd. The third condition tries to guarantee that
the client has transmitted all write requests to the server, since write_slack is set to several times the client’s
timeout retransmit interval.

There are also certain file system semantics that are problematic for both NFS and NQNFS, due to
the lack of state information maintained by the server. If a file is unlinked on one client while open on
another it will be removed from the file server, resulting in failed file accesses on the client that has the file
open. If the file system on the server is out of space or the client user’s disk quota has been exceeded, a
delayed write can fail long after the write system call was successfully completed. With NFS this error will



be detected by the close system call, since the delayed writes are pushed upon close. With NQNFS how-
ev er, the delayed write RPC may not occur until after the close system call, possibly even after the process
has exited. Therefore, if a process must check for write errors, a system call such asfsyncmust be used.

Another problem occurs when a process on one client is running an executable file and a process on
another client starts to write to the file. The read lease on the first client is terminated by the server, but the
client has no recourse but to terminate the process, since the process is already in progress on the old
executable.

The NQNFS protocol does not support file locking, since a file lock would have to inv olve hard,
recovered after a crash, state information.

6. Other NQNFS Protocol Features

NQNFS also includes a variety of minor modifications to the NFS protocol, in an attempt to address
various limitations. The protocol uses 64bit file sizes and offsets in order to handle large files. TCP trans-
port may be used as an alternative to UDP for cases where UDP does not perform well. Transport mecha-
nisms such as TCP also permit the use of much larger read/write data sizes, which might improve perfor-
mance in certain environments.

The NQNFS protocol replaces the Readdir RPC with a Readdir_and_Lookup RPC that returns the
file handle and attributes for each file in the directory as well as name and file id number. This additional
information may then be loaded into the lookup and file-attribute caches on the client. Thus, for cases such
as "ls -l", thestatsystem calls can be performed locally without doing any lookup or getattr RPCs. Another
additional RPC is the Access RPC that checks for file accessibility against the server. This is necessary
since in some cases the client user ID is mapped to a different user on the server and doing the access check
locally on the client using file attributes and client credentials is not correct. One case where this becomes
necessary is when the NQNFS mount point is using Kerberos authentication, where the Kerberos authenti-
cation ticket is translated to credentials on the server that are mapped to the client side user id. For further
details on the protocol, see [Macklem93].

7. Performance

In order to evaluate the effectiveness of the NQNFS protocol, a benchmark was used that was
designed to typify real work on the client workstation. Benchmarks, such as Laddis [Wittle93], that per-
form server load characterization are not appropriate for this work, since it is primarily client caching effi-
ciency that needs to be evaluated. Since these tests are measuring overall client system performance and
not just the performance of the file system, each sequence of runs was performed on identical hardware and
operating system in order to factor out the system components affecting performance other than the file sys-
tem protocol.

The equipment used for the all the benchmarks are members of the DECstation™† family of work-
stations using the MIPS™§ RISC architecture. The operating system running on these systems was a pre-
release version of 4.4BSD Unix™‡. For all benchmarks, the file server was a DECstation 2100 (10 MIPS)
with 8Mbytes of memory and a local RZ23 SCSI disk (27msec average access time). The clients range in
speed from DECstation 2100s to a DECstation 5000/25, and always run with six block I/O daemons and a
4Mbyte buffer cache, except for the test runs where the buffer cache size was the independent variable. In

all cases /tmp is mounted on the local SCSI disk2, all machines were attached to the same uncongested Eth-
ernet, and ran in single user mode during the benchmarks. Unless noted otherwise, test runs used UDP
RPC transport and the results given are the average values of four runs.

The benchmark used is the Modified Andrew Benchmark (MAB) [Ousterhout90], which is a slightly
modified version of the benchmark used to characterize performance of the Andrew ITC file system

2Testing using the 4.4BSD MFS [McKusick90] resulted in slightly degraded performance, probably since the machines only
had 16Mbytes of memory, and so paging increased.



[Howard88]. The MAB was set up with the executable binaries in the remote mounted file system and the
final load step was commented out, due to a linkage problem during testing under 4.4BSD. Therefore,
these results are not directly comparable to other reported MAB results. The MAB is made up of five dis-
tinct phases:

1. Makes five directories (no significant cost)

2. Copy a file system subtree to a working directory

3. Get file attributes (stat) of all the working files

4. Search for strings (grep) in the files

5. Compile a library of C sources and archive them

Of the five phases, the fifth is by far the largest and is the one affected most by client caching mechanisms.
The results for phase #1 are invariant over all the caching mechanisms.

7.1. Buffer Cache Size Tests

The first experiment was done to see what effect changing the size of the buffer cache would have on
client performance. A single DECstation 5000/25 was used to do a series of runs of MAB with different
buffer cache sizes for four variations of the file system protocol. The four variations are as follows:

Case 1: NFS - The NFS protocol as implemented in 4.4BSD

Case 2: Leases - The NQNFS protocol using leases for cache consistency

Case 3: Leases, Rdirlookup - The NQNFS protocol using leases for cache consistency and with the
readdir RPC replaced by Readdir_and_Lookup

Case 4: Leases, Attrib leases, Rdirlookup - The NQNFS protocol using leases for cache consistency,
with the readdir RPC replaced by the Readdir_and_Lookup, and requiring a valid lease not
only for file-data access, but also for file-attribute access.

As can be seen in figure 1, the buffer cache achieves about optimal performance for the range of two to ten
megabytes in size. At eleven meg abytes in size, the system pages heavily and the runs did not complete in a
reasonable time. Even at 64Kbytes, the buffer cache improves performance over no buffer cache by a sig-
nificant margin of 136-148 seconds versus 239 seconds. This may be due, in part, to the fact that the Com-
pile Phase of the MAB uses a rather small working set of file data. All variants of NQNFS achieve about
the same performance, running around 30% faster than NFS, with a slightly larger difference for large
buffer cache sizes. Based on these results, all remaining tests were run with the buffer cache size set to
4Mbytes. Although I do not know what causes the local peak in the curves between 0.5 and 2 megabytes,
there is some indication that contention for buffer cache blocks, between the update process (which pushes
delayed writes to the server every thirty seconds) and the I/O system calls, may be involved.

7.2. Multiple Client Load Tests

During preliminary runs of the MAB, it was observed that the server RPC counts were reduced sig-
nificantly by NQNFS as compared to NFS (table 1). (Spritely NFS and Ultrix™4.3/NFS numbers were
taken from [Mogul93] and are not directly comparable, due to numerous differences in the experimental
setup including deletion of the load step from phase 5.) This suggests that the NQNFS protocol might scale
better with respect to the number of clients accessing the server. The experiment described in this section
ran the MAB on from one to ten clients concurrently, to observe the effects of heavier server load. The
clients were started at roughly the same time by pressing all the <return> keys together and, although not
synchronized beyond that point, all clients would finish the test run within about two seconds of each other.
This was not a realistic load of N active clients, but it did result in a reproducible increasing client load on
the server. The results for the four variants are plotted in figures 2-5.
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Table #1: MAB RPC Counts
RPC Getattr Read Write Lookup Other GetLease/Open-Close Total

BSD/NQNFS 277 139 306 575 294 127 1718
BSD/NFS 1210 506 451 489 238 0 2894
Spritely NFS 259 836 192 535 306 1467 3595
Ultrix4.3/NFS 1225 1186 476 810 305 0 4002

For the MAB benchmark, the NQNFS protocol reduces the RPC counts significantly, but with a min-
imum of extra overhead (the GetLease/Open-Close count).
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In figure 2, where a subtree of seventy small files is copied, the difference between the protocol vari-
ants is minimal, with the NQNFS variants performing slightly better. For this case, the Read-
dir_and_Lookup RPC is a slight hindrance under heavy load, possibly because it results in larger directory
blocks in the buffer cache.

In figure 3, for the phase that gets file attributes for a large number of files, the leasing variants take
about 50% longer, indicating that there are performance problems in this area. For the case where valid cur-
rent leases are required for every file when attributes are returned, the performance is significantly worse
than when the attributes are allowed to be stale by a few seconds on the client. I hav e not been able to
explain the oscillation in the curves for the Lease cases.

For the string searching phase depicted in figure 4, the leasing variants that do not require valid leases
for files when attributes are returned appear to scale better with server load than NFS. However, the effect
appears to be negligible until the server load is fairly heavy.

Most of the time in the MAB benchmark is spent in the compilation phase and this is where the dif-
ferences between caching methods are most pronounced. In figure 5 it can be seen that any protocol variant
using Leases performs about a factor of two better than NFS at a load of ten clients. This indicates that the
use of NQNFS may allow servers to handle significantly more clients for this type of workload.

Table 2 summarizes the MAB run times for all phases for the single client DECstation 5000/25. The
Leasescase refers to using leases, whereas theLeases, Rdirlcase uses the Readdir_and_Lookup RPC as
well and theBCache Onlycase uses leases, but only the buffer cache and not the attribute or name caches.
The No Cachingcases does not do any client side caching, performing all system calls via synchronous
RPCs to the server.

Table #2: Single DECstation 5000/25 Client Elapsed Times (sec)
Phase 1 2 3 4  5 Total % Improvement

No Caching 6 35 41 40 258 380 -93
NFS 5 24 15 20 133 197 0
BCache Only 5 20 24 23 116 188 5
Leases, Rdirl 5 20 21 20 105 171 13
Leases 5 19 21 21 99 165 16



7.3. Processor Speed Tests

An important goal of client-side file system caching is to decouple the I/O system calls from the
underlying distributed file system, so that the client’s system performance might scale with processor speed.
In order to test this, a series of MAB runs were performed on three DECstations that are similar except for
processor speed. In addition to the four protocol variants used for the above tests, runs were done with the
client caches turned off, for worst case performance numbers for caching mechanisms with a 100% miss
rate. The CPU utilization was measured, as an indicator of how much the processor was blocking for I/O
system calls. Note that since the systems were running in single user mode and otherwise quiescent, almost
all CPU activity was directly related to the MAB run. The results are presented in table 3. The CPU time
is simply the product of the CPU utilization and elapsed running time and, as such, is the optimistic bound
on performance achievable with an ideal client caching scheme that never blocks for I/O. As can be seen in
the table, any caching mechanism achieves significantly better performance than when caching is disabled,
roughly doubling the CPU utilization with a corresponding reduction in run time. For NFS, the CPU uti-
lization is dropping with increase in CPU speed, which would suggest that it is not scaling with CPU speed.
For the NQNFS variants, the CPU utilization remains at just below 90%, which suggests that the caching
mechanism is working well and scaling within this CPU range. Note that for this benchmark, the ratio of
CPU times for the DECstation 3100 and DECstation 5000/25 are quite different than the Dhrystone MIPS
ratings would suggest.

Overall, the results seem encouraging, although it remains to be seen whether or not the caching pro-
vided by NQNFS can continue to scale with CPU performance. There is a good indication that NQNFS
permits a server to scale to more clients than does NFS, at least for workloads akin to the MAB compile
phase. A more difficult question is "What if the server is much faster doing write RPCs?" as a result of
some technology such as Prestoserve or write gathering. Since a significant part of the difference between
NFS and NQNFS is the synchronous writing, it is difficult to predict how much a server capable of fast
write RPCs will negate the performance improvements of NQNFS. At the very least, table 1 indicates that
the write RPC load on the server has decreased by approximately 30%, and this reduced write load should
still result in some improvement.

Indications are that the Readdir_and_Lookup RPC has not improved performance for these tests and
may in fact be degrading performance slightly. The results in figure 3 indicate some problems, possibly
with handling of the attribute cache. It seems logical that the Readdir_and_Lookup RPC should be permit
priming of the attribute cache improving hit rate, but the results are counter to that.

7.4. Internetwork Delay Tests

This experimental setup was used to explore how the different protocol variants might perform over
internetworks with larger RPC RTTs. The server was moved to a separate Ethernet, using a MicroVAXII™
as an IP router to the other Ethernet. The 4.3Reno BSD Unix system running on the MicroVAXII was mod-
ified to delay IP packets being forwarded by a tunable N millisecond delay. The implementation was rather
crude and did not try to simulate a distribution of delay times nor was it programmed to drop packets at a

Table #3: MAB Phase 5 (compile)
DS2100 (10.5 MIPS) DS3100 (14.0 MIPS) DS5000/25 (26.7 MIPS)

Elapsed CPU CPU Elapsed CPU CPU Elapsed CPU CPU
time Util(%) time time Util(%) time time Util(%) time

Leases 143 89 127 113 87 98 99 89 88
Leases, Rdirl 150 89 134 110 91 100 105 88 92
BCache Only 169 85 144 129 78 101 116 75 87
NFS 172 77 132 135 74 100 133 71 94
No Caching 330 47 155 256 41 105 258 39 101



given rate, but it served as a simple emulation of a long, fat network3 [Jacobson88]. The MAB was run
using both UDP and TCP RPC transports for a variety of RTT delays from five to two hundred millisec-
onds, to observe the effects of RTT delay on RPC transport. It was found that, due to a high variability
between runs, four runs was not suffice, so eight runs at each value was done. The results in figure 6 and
table 4 are the average for the eight runs.

I found these results somewhat surprising, since I had assumed that stability across an internetwork
connection would be a function of RPC transport protocol. Looking at the standard deviations observed
between the eight runs, there is an indication that the NQNFS protocol plays a larger role in maintaining
stability than the underlying RPC transport protocol. It appears that NFS over TCP transport is the least
stable variant tested. It should be noted that the TCP implementation used was roughly at 4.3BSD Tahoe
release and that the 4.4BSD TCP implementation was far less stable and would fail intermittently, due to a
bug I was not able to isolate. It would appear that some of the recent enhancements to the 4.4BSD TCP
implementation have a detrimental effect on the performance of RPC-type traffic loads, which intermix
small and large data transfers in both directions. It is obvious that more exploration of this area is needed
before any conclusions can be made beyond the fact that over a local area network, TCP transport provides

0

100

200

300

400

500

0 50 100 150 200

Time (sec)

Round Trip Delay (msec)

Figure #6: MAB Phase 5 (compile)

Leases,UDP
Leases,TCP

NFS,UDP
NFS,TCP

Table #4: MAB Phase 5 (compile) for Internetwork Delays
NFS,UDP NFS,TCP Leases,UDP Leases,TCP

Delay Elapsed Standard Elapsed Standard Elapsed Standard Elapsed Standard
(msec) time (sec) Deviation time (sec) Deviation time (sec) Deviation time (sec) Deviation

5 139 2.9 139 2.4 112 7.0 108 6.0
40 175 5.1 208 44.5 150 23.8 139 4.3
80 207 3.9 213 4.7 180 7.7 210 52.9
120 276 29.3 273 17.1 221 7.7 238 5.8
160 304 7.2 328 77.1 275 21.5 274 10.1
200 372 35.0 506 235.1 338 25.2 379 69.2

3Long fat networks refer to network interconnections with a Bandwidth X RTT product > 105 bits.



performance comparable to UDP.

8. Lessons Learned

Evaluating the performance of a distributed file system is fraught with difficulties, due to the many
software and hardware factors involved. The limited benchmarking presented here took a considerable
amount of time and the results gained by the exercise only give indications of what the performance might
be for a few scenarios.

The IP router with delay introduction proved to be a valuable tool for protocol debugging4, and may
be useful for a more extensive study of performance over internetworks if enhanced to do a better job of
simulating internetwork delay and packet loss.

The Leases mechanism provided a simple model for the provision of cache consistency and did seem
to improve performance for various scenarios. Unfortunately, it does not provide the server state informa-
tion that is required for file system semantics, such as locking, that many software systems demand. In pro-
duction environments on my campus, the need for file locking and the correct generation of the ETXTBSY
error code are far more important that full cache consistency, and leasing does not satisfy these needs.
Another file system semantic that requires hard server state is the delay of file removal until the last close
system call. Although Spritely NFS did not support this semantic either, it is logical that the open file state
maintained by that system would facilitate the implementation of this semantic more easily than would the
Leases mechanism.

9. Further Work

The current implementation uses a fixed, moderate sized buffer cache designed for the local UFS
[McKusick84] file system. The results in figure 1 suggest that this is adequate so long as the cache is of an
appropriate size. However, a mechanism permitting the cache to vary in size has been shown to outperform
fixed sized buffer caches [Nelson90], and could be beneficial. It could also be useful to allow the buffer
cache to grow very large by making use of local backing store for cases where server performance is lim-
ited. A very large buffer cache size would in turn permit experimentation with much larger read/write data
sizes, facilitating bulk data transfers across long fat networks, such as will characterize the Internet of the
near future. A careful redesign of the buffer cache mechanism to provide support for these features would
probably be the next implementation step.

The results in figure 3 indicate that the mechanics of caching file attributes and maintaining the
attribute cache’s consistency needs to be looked at further. There also needs to be more work done on the
interaction between a Readdir_and_Lookup RPC and the name and attribute caches, in an effort to reduce
Getattr and Lookup RPC loads.

The NQNFS protocol has never been used in a production environment and doing so would provide
needed insight into how well the protocol saisfies the needs of real workstation environments. It is hoped
that the distribution of the implementation in 4.4BSD will facilitate use of the protocol in production envi-
ronments elsewhere.

The big question that needs to be resolved is whether Leases are an adequate mechanism for cache
consistency or whether hard server state is required. Given the work presented here and in the papers
related to Sprite and Spritely NFS, there are clear indications that a cache consistency algorithm can
improve both performance and file system semantics. As yet, however, it is unclear what the best approach
to maintain consistency is. It would appear that hard state information is required for file locking and other
mechanisms and, if so, it seems appropriate to use it for cache consistency as well.

4It exposed two bugs in the 4.4BSD networking, one a problem in the Lance chip driver for the DECstation and the other a TCP
window sizing problem that I was not able to isolate.
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