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ABSTRACT

This paper describes how thprof profiler accounts for the running time of called
routines in the running time of the routines that call them. It then explains how to config-
ure a profiling kernel on the 4.2 Berkeley Software Distributioorok® for the VAXE
and discusses tradeoffs in techniques for collecting profile dapaof identifies prob-
lems that severely affects the overall performance of the kernel. Once a potential prob-
lem areas is identified benchmark programs are devised to highlight the bottleneck.
These benchmarks verify that the problem exist and provide a metric against which to
validate proposed solutions. Two caches are added to the kernel to alleviate the bottle-
neck andyprofis used to validates their effectiveness.

T VAXis a trademark of Digital Equipment Corporation.
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1. Introduction

The purpose of this paper is to describe the tools and techniques that are available for improving the
performance of the kernel. The primary tool used to measure the kernel is the hierarchicalgprofiler
The profiler enables the user to measure the cost of the abstractions that the kernel provides to the user.
Once the expensive abstractions are identified, optimizations are postulated to heye thegr perfor-
mance. These optimizations are each individually verified to insure that they are producing a measurable
improvement.

2. Thegprof Profiler

The purpose of thgprof profiling tool is to help the user evaluate alternative implementations of
abstractions. Thegprof design takes advantage of the fact that the kernel though large, is structured and
hierarchical. We provide a profile in which the execution time for a set of routines that implement an
abstraction is collected and charged to that abstraction. The profile can be used to compare and assess the
costs of various implementations [Graham82] [Graham83].

2.1. Data presentation

The data is presented to the user in two different formats. The first presentation simply lists the rou-
tines without regard to the amount of time their descendants use. The second presentation incorporates the
call graph of the kernel.

2.1.1. The Flat Profile

The flat profile consists of a list of all the routines that are called during execution of the kernel, with
the count of the number of times they are called and the number of seconds of execution time for which
they are themselves accountable. The routines are listed in decreasing order of execution time. A list of the
routines that are never called during execution of the kernel is also available to verify that nothing impor-
tant is omitted by this profiling run. The flat profile gives a quick overview of the routines that are used,
and shows the routines that are themselves responsible for large fractions of the execution time. In practice,
this profile usually shows that no single function is overwhelmingly responsible for the total time of the
kernel. Notice that for this profile, the individual times sum to the total execution time.

2.1.2. The Call Graph Profile

Ideally, we would like to print the call graph of the kernel, but we are limited by the two-dimensional
nature of our output devices. We cannot assume that a call graph is planar, and even if it is, that we can
print a planar version of it. Instead, we choose to list each routine, together with information about the rou-
tines that are its direct parents and children. This listing presents a window into the call graph. Based on
our experience, both parent information and child information is important, and should be available without
searching through the output. Figure 1 shows a sagmptd entry.

called/total parents
index %time  self descendants called+self name index
called/total children
0.20 1.20 4/10 CALLER1 [7]
0.30 1.80 6/10 CALLER2 [1]
[2] 41.5 0.50 3.00 10+4 EXAMPLE [2]
1.50 1.00 20/40 SUB1<cyclel> [4]
0.00 0.50 1/5 SUB2 [9]
0.00 0.00 0/5 SUB3 [11]

Figure 1. Profile entry faEXAMPLE.

The major entries of the call graph profile are the entries from the flat profile, augmented by the time
propagated to each routine from its descendants. This profile is sorted by the sum of the time for the rou-
tine itself plus the time inherited from its descendants. The profile shows which of the higher level routines
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spend large portions of the total execution time in the routines that they call. For each routine, we show the
amount of time passed by each child to the routine, which includes time for the child itself and for the
descendants of the child (and thus the descendants of the routine). We also show the percentage these times
represent of the total time accounted to the child. Similarly, the parents of each routine are listed, along
with time, and percentage of total routine time, propagated to each one.

Cycles are handled as single entities. The cycle as a whole is shown as though it were a single rou-
tine, except that members of the cycle are listed in place of the children. Although the number of calls of
each member from within the cycle are shown, they do not affect time propagation. When a child is a
member of a cycle, the time shown is the appropriate fraction of the time for the whole cycle. Self-recur-
sive routines have their calls broken down into calls from the outside and self-recursive calls. Only the out-
side calls affect the propagation of time.

The example shown in Figure 2 is the fragment of a call graph corresponding to the entry in the call
graph profile listing shown in Figure 1.

\ \ \

Figure 2. Example call graph fragment.

The entry is for routinEXAMPLE, which has the Caller routines as its parents, and the Sub routines
as its children. The reader should keep in mind that all information is witlemespect t&EXAMPLE The
index in the first column shows thBEXAMPLE is the second entry in the profile listing. TBEAMPLE
routine is called ten times, four times BYALLER1, and six times byCALLER2. Consequently 40% of
EXAMPLE's time is propagated tGALLER1, and 60% OfEXAMPLE’s time is propagated tGALLER2.
The self and descendant fields of the parents show the amount of self and descené@xMiPiE prop-
agates to them (but not the time used by the parents directly). Noex#aPLE calls itself recursively
four times. The routinEEXAMPLE calls routineSUB1 twenty times,SUB2 once, and never callBUB3
SinceSUB2is called a total of five times, 20% of its self and descendant time is propagatesMBLE’s
descendant time field. BecauseB1lis a member ofycle 1 the self and descendant times and call count
fraction are those for the cycle as a whole. Since cycle 1 is called a total of forty times (not counting calls
among members of the cycle), it propagates 50% of the cycle’s self and descendantElABIROQE’'S
descendant time field. Finally each name is followed by an index that shows where on the listing to find the
entry for that routine.

2.2. Profiling the Kernel

It is simple to build a 4.2BSD kernel that will automatically collect profiling information as it oper-
ates simply by specifying thep option toconfig(8) when configuring a kernel. The program counter sam-
pling can be driven by the system clock, or by an alternate real time clock. The latter is highly recom-
mended as use of the system clock results in statistical anomalies in accounting for the time spent in the
kernel clock routine.

Once a profiling system has been booted statistic gathering is handtgchbg(8). Kgmonallows
profiling to be started and stopped and the internal state of the profiling buffers to be diigymed.can
also be used to reset the state of the internal buffers to allow multiple experiments to be run without reboot-
ing the machine. The profiling data can then be processedymitifi(1) to obtain information regarding

May 21, 1984 McKusick



4.2BSD Performance -3- Thyprof Profiler

the system’s operation.

A profiled system is about 5-10% larger in its text space because of the calls to count the subroutine
invocations. When the system executes, the profiling data is stored in a buffer that is 1.2 times the size of
the text space. All the information is summarized in memory, it is not necessary to have a trace file being
continuously dumped to disk. The overhead for running a profiled system varies; under normal load we see
anywhere from 5-25% of the system time spent in the profiling code. Thus the system is noticeably slower
than an unprofiled system, yet is not so bad that it cannot be used in a production environment. This is
important since it allows us to gather data in a real environment rather than trying to devise synthetic work
loads.

3. Techniques for Improving Performance

This section gives several hints on general optimization techniques. It then proceeds with an example
of how they can be applied to the 4.2BSD kernel to awgits performance.

3.1. Using the Profiler

The profiler is a useful tool for improving a set of routines that implement an abstraction. It can be
helpful in identifying poorly coded routines, and in evaluating the new algorithms and code that replace
them. Taking full advantage of the profiler requires a careful examination of the call graph profile, and a
thorough knowledge of the abstractions underlying the kernel.

The easiest optimization that can be performed is a small change to a control construct or data struc-
ture. An obvious starting point is to expand a small frequently called routine inline. The drawback to
inline expansion is that the data abstractions in the kernel may become less parameterized, hence less
clearly defined. The profiling will also become less useful since the loss of routines will make its output
more granular.

Further potential for optimization lies in routines that implement data abstractions whose total execu-
tion time is long. If the data abstraction function cannot easily be speeded up, it may be advantageous to
cache its results, and eliminate the need to rerun it for identical inputs. These and other ideas for program
improvement are discussed in [Bentley81].

This tool is best used in an iterative approach: profiling the kernel, eliminating one bottleneck, then
finding some other part of the kernel that begins to dominate execution time.

A completely different use of the profiler is to analyze the control flow of an unfamiliar section of the
kernel. By running an example that exercises the unfamiliar section of the kernel, and thgprogiggu
can get a view of the control structure of the unfamiliar section.

3.2. An Example of Tuning

The first step is to come up with a method for generating profile data. We prefer to run a profiling
system for about a one day period on one of our general timesharing machines. While this is not as repro-
ducible as a synthetic workload, it certainly represents a realistic test. We have run one day profiles on sev-
eral occasions over a three month period. Despite the long period of time that elapsed between the test runs
the shape of the profiles, as measured by the number of times each system call entry point was called, were
remarkably similar.

A second alternative is to write a small benchmark program to repeated exercise a suspected bottle-
neck. While these benchmarks are not useful as a long term profile they can give quick feedback on
whether a hypothesized improvement is really having an effect. It is important to realize that the only real
assurance that a change has a beneficial effect is through long term measurements of general timesharing.
We have numerous examples where a benchmark program suggests vast improvements while the change in
the long term system performance is negligible, and conversely examples in which the benchmark program
run more slowly, but the long term system performance improves significantly.

An investigation of our long term profiling showed that the single most expensive function performed
by the kernel is path name translation. We find that our general time sharing systems do about 500,000
name translations per day. The cost of doing name translation in the original 4.2BSD is 24.2 milliseconds,
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representing 40% of the time processing system calls, which is 19% of the total cycles in the kernel, or 11%
of all cycles executed on the machine. The times are shown in Figure 3.

part time % of kerne
self 14.3 ms/call 11.3%
child 9.9 ms/call 7.99
total 24.2 ms/call 19.2%

Figure 3. Call times fonamei

The system measurements collected showed the pathname translation nautiepwas clearly
worth optimizing. An inspection afameishows that it consists of two nested loops. The outer loop is tra-
versed once per pathname component. The inner loop performs a linear search through a directory looking
for a particular pathname component.

Our first idea was to observe that many programs step through a directory performing an operation on
each entry in turn. This caused us to modifyneito cache the directory offset of the last pathname com-
ponent looked up by a process. The cached offset is then used as the point at which a search in the same
directory begins. Changing directories invalidates the cache, as does modifying the directory. For pro-
grams that step sequentially through a directory Witliies, search time decreases fraN2) to O(N).

The cost of the cache is about 20 lines of code (about 0.2 kilobytes) and 16 bytes per process, with
the cached data stored in a process&rvector.

As a quick benchmark to verify the effectiveness of the cache we ran “Is —I” on a directory contain-
ing 600 files. Before the per-process cache this command used 22.3 seconds of system time. After adding
the cache the program used the same amount of user time, but the system time dropped to 3.3 seconds.

This change prompted our rerunning a profiled system on a machine containing themawlhe
results showed that the timenameidropped by only 2.6 ms/call and still accounted for 36% of the system
call time, 18% of the kernel, or about 10% of all the machine cycles. This amounted to a drop in system
time from 57% to about 55%. The results are shown in Figure 4.

part time % of kerne

self 11.0 ms/call 9.2%
child  10.6 ms/call 8.9%
total 21.6 ms/call 18.1%

Figure 4. Call times fonameiwith per-process cache.

The small performance improvement was caused by a low cache hit ratio. Although the cache was
90% effective when hit, it was only usable on about 25% of the names being translated. An additional rea-
son for the small improvement was that although the amount of time spearaiitself decreased sub-
stantially, more time was spent in the routines that it called since each directory had to be accessed twice;
once to search from the middle to the end, and once to search from the beginning to the middle.

Most missed names were caused by path name components other than the last. Thus Robert Elz
introduced a system wide cache of most recent name translations. The cache is keyed on a name and the
inode and device number of the directory that contains it. Associated with each entry is a pointer to the cor-
responding entry in the inode table. This has the effect of short circuiting the outer Inamaif For
each path name componenameifirst looks in its cache of recent translations for the needed name. If it
exists, the directory search can be completely eliminated. If the name is not recognized, then the per-pro-
cess cache may still be useful in reducing the directory search time. The two cacheing schemes comple-
ment each other well.

The cost of the name cache is about 200 lines of code (about 1.2 kilobytes) and 44 bytes per cache
entry. Depending on the size of the system, about 200 to 1000 entries will normally be configured, using
10-44 kilobytes of physical memory. The name cache is resident in memory at all times.
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After adding the system wide name cache we reran “Is —I” on the same directory. The user time
remained the same, however the system time rose slightly to 3.7 seconds. This was not surpesieg as
now had to maintain the cache, but was never able to make any use of it.

Another profiled system was created and measurements were collected over a one day period. These
measurements showed a 6 ms/call decreasarimej with nameiaccounting for only 31% of the system
call time, 16% of the time in the kernel, or about 7% of all the machine cycles. System time dropped from
55% to about 49%. The results are shown in Figure 5.

part time % of kerne
self 9.5 ms/call 9.6%
child 6.1 ms/call 6.19
total 15.6 ms/call 15.7%

Figure 5. Call times fonameiwith both caches.

Statistics on the performance of both caches show the large performance improvement is caused by
the high hit ratio. On the profiled system a 60% hit rate was observed in the system wide cache. This, cou-
pled with the 25% hit rate in the per-process offset cache yielded an effective cache hit rate of 85%. While
the system wide cache reduces both the amount of time in the routineartieitalls as well aniamei
itself (since fewer directories need to be accessed or searched), it is interesting to note that the actual per-
centage of system time spentiameiitself increases even though the actual time per call decreases. This
is because less total time is being spent in the kernel, hence a smaller absolute time becomes a larger total
percentage.

4. Conclusions

We have created a profiler that aids in the evaluation of the kernel. For each routine in the kernel, the
profile shows the extent to which that routine helps support various abstractions, and how that routine uses
other abstractions. The profile assesses the cost of routines at all levels of the kernel decomposition. The
profiler is easily used, and can be compiled into the kernel. It adds only five to thirty percent execution
overhead to the kernel being profiled, produces no additional output while the kernel is running and allows
the kernel to be measured in its real environment. Kernel profiles can be used to identify bottlenecks in per-
formance. We have shown how to irope performance by caching recently calculated name translations.

The combined caches added to the name translation process reduce the average cost of translating a path-
name to an inode by 35%. These changes reduce the percentage of time spent running in the system by
nearly 9%.
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