std/path.rs
1//! Cross-platform path manipulation.
2//!
3//! This module provides two types, [`PathBuf`] and [`Path`] (akin to [`String`]
4//! and [`str`]), for working with paths abstractly. These types are thin wrappers
5//! around [`OsString`] and [`OsStr`] respectively, meaning that they work directly
6//! on strings according to the local platform's path syntax.
7//!
8//! Paths can be parsed into [`Component`]s by iterating over the structure
9//! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
10//! correspond to the substrings between path separators (`/` or `\`). You can
11//! reconstruct an equivalent path from components with the [`push`] method on
12//! [`PathBuf`]; note that the paths may differ syntactically by the
13//! normalization described in the documentation for the [`components`] method.
14//!
15//! ## Case sensitivity
16//!
17//! Unless otherwise indicated path methods that do not access the filesystem,
18//! such as [`Path::starts_with`] and [`Path::ends_with`], are case sensitive no
19//! matter the platform or filesystem. An exception to this is made for Windows
20//! drive letters.
21//!
22//! ## Simple usage
23//!
24//! Path manipulation includes both parsing components from slices and building
25//! new owned paths.
26//!
27//! To parse a path, you can create a [`Path`] slice from a [`str`]
28//! slice and start asking questions:
29//!
30//! ```
31//! use std::path::Path;
32//! use std::ffi::OsStr;
33//!
34//! let path = Path::new("/tmp/foo/bar.txt");
35//!
36//! let parent = path.parent();
37//! assert_eq!(parent, Some(Path::new("/tmp/foo")));
38//!
39//! let file_stem = path.file_stem();
40//! assert_eq!(file_stem, Some(OsStr::new("bar")));
41//!
42//! let extension = path.extension();
43//! assert_eq!(extension, Some(OsStr::new("txt")));
44//! ```
45//!
46//! To build or modify paths, use [`PathBuf`]:
47//!
48//! ```
49//! use std::path::PathBuf;
50//!
51//! // This way works...
52//! let mut path = PathBuf::from("c:\\");
53//!
54//! path.push("windows");
55//! path.push("system32");
56//!
57//! path.set_extension("dll");
58//!
59//! // ... but push is best used if you don't know everything up
60//! // front. If you do, this way is better:
61//! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
62//! ```
63//!
64//! [`components`]: Path::components
65//! [`push`]: PathBuf::push
66
67#![stable(feature = "rust1", since = "1.0.0")]
68#![deny(unsafe_op_in_unsafe_fn)]
69
70use core::clone::CloneToUninit;
71
72use crate::borrow::{Borrow, Cow};
73use crate::collections::TryReserveError;
74use crate::error::Error;
75use crate::ffi::{OsStr, OsString, os_str};
76use crate::hash::{Hash, Hasher};
77use crate::iter::FusedIterator;
78use crate::ops::{self, Deref};
79use crate::rc::Rc;
80use crate::str::FromStr;
81use crate::sync::Arc;
82use crate::sys::path::{MAIN_SEP_STR, is_sep_byte, is_verbatim_sep, parse_prefix};
83use crate::{cmp, fmt, fs, io, sys};
84
85////////////////////////////////////////////////////////////////////////////////
86// GENERAL NOTES
87////////////////////////////////////////////////////////////////////////////////
88//
89// Parsing in this module is done by directly transmuting OsStr to [u8] slices,
90// taking advantage of the fact that OsStr always encodes ASCII characters
91// as-is. Eventually, this transmutation should be replaced by direct uses of
92// OsStr APIs for parsing, but it will take a while for those to become
93// available.
94
95////////////////////////////////////////////////////////////////////////////////
96// Windows Prefixes
97////////////////////////////////////////////////////////////////////////////////
98
99/// Windows path prefixes, e.g., `C:` or `\\server\share`.
100///
101/// Windows uses a variety of path prefix styles, including references to drive
102/// volumes (like `C:`), network shared folders (like `\\server\share`), and
103/// others. In addition, some path prefixes are "verbatim" (i.e., prefixed with
104/// `\\?\`), in which case `/` is *not* treated as a separator and essentially
105/// no normalization is performed.
106///
107/// # Examples
108///
109/// ```
110/// use std::path::{Component, Path, Prefix};
111/// use std::path::Prefix::*;
112/// use std::ffi::OsStr;
113///
114/// fn get_path_prefix(s: &str) -> Prefix<'_> {
115/// let path = Path::new(s);
116/// match path.components().next().unwrap() {
117/// Component::Prefix(prefix_component) => prefix_component.kind(),
118/// _ => panic!(),
119/// }
120/// }
121///
122/// # if cfg!(windows) {
123/// assert_eq!(Verbatim(OsStr::new("pictures")),
124/// get_path_prefix(r"\\?\pictures\kittens"));
125/// assert_eq!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")),
126/// get_path_prefix(r"\\?\UNC\server\share"));
127/// assert_eq!(VerbatimDisk(b'C'), get_path_prefix(r"\\?\c:\"));
128/// assert_eq!(DeviceNS(OsStr::new("BrainInterface")),
129/// get_path_prefix(r"\\.\BrainInterface"));
130/// assert_eq!(UNC(OsStr::new("server"), OsStr::new("share")),
131/// get_path_prefix(r"\\server\share"));
132/// assert_eq!(Disk(b'C'), get_path_prefix(r"C:\Users\Rust\Pictures\Ferris"));
133/// # }
134/// ```
135#[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
136#[stable(feature = "rust1", since = "1.0.0")]
137pub enum Prefix<'a> {
138 /// Verbatim prefix, e.g., `\\?\cat_pics`.
139 ///
140 /// Verbatim prefixes consist of `\\?\` immediately followed by the given
141 /// component.
142 #[stable(feature = "rust1", since = "1.0.0")]
143 Verbatim(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
144
145 /// Verbatim prefix using Windows' _**U**niform **N**aming **C**onvention_,
146 /// e.g., `\\?\UNC\server\share`.
147 ///
148 /// Verbatim UNC prefixes consist of `\\?\UNC\` immediately followed by the
149 /// server's hostname and a share name.
150 #[stable(feature = "rust1", since = "1.0.0")]
151 VerbatimUNC(
152 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
153 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
154 ),
155
156 /// Verbatim disk prefix, e.g., `\\?\C:`.
157 ///
158 /// Verbatim disk prefixes consist of `\\?\` immediately followed by the
159 /// drive letter and `:`.
160 #[stable(feature = "rust1", since = "1.0.0")]
161 VerbatimDisk(#[stable(feature = "rust1", since = "1.0.0")] u8),
162
163 /// Device namespace prefix, e.g., `\\.\COM42`.
164 ///
165 /// Device namespace prefixes consist of `\\.\` (possibly using `/`
166 /// instead of `\`), immediately followed by the device name.
167 #[stable(feature = "rust1", since = "1.0.0")]
168 DeviceNS(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
169
170 /// Prefix using Windows' _**U**niform **N**aming **C**onvention_, e.g.
171 /// `\\server\share`.
172 ///
173 /// UNC prefixes consist of the server's hostname and a share name.
174 #[stable(feature = "rust1", since = "1.0.0")]
175 UNC(
176 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
177 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
178 ),
179
180 /// Prefix `C:` for the given disk drive.
181 #[stable(feature = "rust1", since = "1.0.0")]
182 Disk(#[stable(feature = "rust1", since = "1.0.0")] u8),
183}
184
185impl<'a> Prefix<'a> {
186 #[inline]
187 fn len(&self) -> usize {
188 use self::Prefix::*;
189 fn os_str_len(s: &OsStr) -> usize {
190 s.as_encoded_bytes().len()
191 }
192 match *self {
193 Verbatim(x) => 4 + os_str_len(x),
194 VerbatimUNC(x, y) => {
195 8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }
196 }
197 VerbatimDisk(_) => 6,
198 UNC(x, y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 },
199 DeviceNS(x) => 4 + os_str_len(x),
200 Disk(_) => 2,
201 }
202 }
203
204 /// Determines if the prefix is verbatim, i.e., begins with `\\?\`.
205 ///
206 /// # Examples
207 ///
208 /// ```
209 /// use std::path::Prefix::*;
210 /// use std::ffi::OsStr;
211 ///
212 /// assert!(Verbatim(OsStr::new("pictures")).is_verbatim());
213 /// assert!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
214 /// assert!(VerbatimDisk(b'C').is_verbatim());
215 /// assert!(!DeviceNS(OsStr::new("BrainInterface")).is_verbatim());
216 /// assert!(!UNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
217 /// assert!(!Disk(b'C').is_verbatim());
218 /// ```
219 #[inline]
220 #[must_use]
221 #[stable(feature = "rust1", since = "1.0.0")]
222 pub fn is_verbatim(&self) -> bool {
223 use self::Prefix::*;
224 matches!(*self, Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(..))
225 }
226
227 #[inline]
228 fn is_drive(&self) -> bool {
229 matches!(*self, Prefix::Disk(_))
230 }
231
232 #[inline]
233 fn has_implicit_root(&self) -> bool {
234 !self.is_drive()
235 }
236}
237
238////////////////////////////////////////////////////////////////////////////////
239// Exposed parsing helpers
240////////////////////////////////////////////////////////////////////////////////
241
242/// Determines whether the character is one of the permitted path
243/// separators for the current platform.
244///
245/// # Examples
246///
247/// ```
248/// use std::path;
249///
250/// assert!(path::is_separator('/')); // '/' works for both Unix and Windows
251/// assert!(!path::is_separator('❤'));
252/// ```
253#[must_use]
254#[stable(feature = "rust1", since = "1.0.0")]
255pub fn is_separator(c: char) -> bool {
256 c.is_ascii() && is_sep_byte(c as u8)
257}
258
259/// The primary separator of path components for the current platform.
260///
261/// For example, `/` on Unix and `\` on Windows.
262#[stable(feature = "rust1", since = "1.0.0")]
263#[cfg_attr(not(test), rustc_diagnostic_item = "path_main_separator")]
264pub const MAIN_SEPARATOR: char = crate::sys::path::MAIN_SEP;
265
266/// The primary separator of path components for the current platform.
267///
268/// For example, `/` on Unix and `\` on Windows.
269#[stable(feature = "main_separator_str", since = "1.68.0")]
270pub const MAIN_SEPARATOR_STR: &str = crate::sys::path::MAIN_SEP_STR;
271
272////////////////////////////////////////////////////////////////////////////////
273// Misc helpers
274////////////////////////////////////////////////////////////////////////////////
275
276// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
277// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
278// `iter` after having exhausted `prefix`.
279fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
280where
281 I: Iterator<Item = Component<'a>> + Clone,
282 J: Iterator<Item = Component<'b>>,
283{
284 loop {
285 let mut iter_next = iter.clone();
286 match (iter_next.next(), prefix.next()) {
287 (Some(ref x), Some(ref y)) if x == y => (),
288 (Some(_), Some(_)) => return None,
289 (Some(_), None) => return Some(iter),
290 (None, None) => return Some(iter),
291 (None, Some(_)) => return None,
292 }
293 iter = iter_next;
294 }
295}
296
297////////////////////////////////////////////////////////////////////////////////
298// Cross-platform, iterator-independent parsing
299////////////////////////////////////////////////////////////////////////////////
300
301/// Says whether the first byte after the prefix is a separator.
302fn has_physical_root(s: &[u8], prefix: Option<Prefix<'_>>) -> bool {
303 let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
304 !path.is_empty() && is_sep_byte(path[0])
305}
306
307// basic workhorse for splitting stem and extension
308fn rsplit_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
309 if file.as_encoded_bytes() == b".." {
310 return (Some(file), None);
311 }
312
313 // The unsafety here stems from converting between &OsStr and &[u8]
314 // and back. This is safe to do because (1) we only look at ASCII
315 // contents of the encoding and (2) new &OsStr values are produced
316 // only from ASCII-bounded slices of existing &OsStr values.
317 let mut iter = file.as_encoded_bytes().rsplitn(2, |b| *b == b'.');
318 let after = iter.next();
319 let before = iter.next();
320 if before == Some(b"") {
321 (Some(file), None)
322 } else {
323 unsafe {
324 (
325 before.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
326 after.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
327 )
328 }
329 }
330}
331
332fn split_file_at_dot(file: &OsStr) -> (&OsStr, Option<&OsStr>) {
333 let slice = file.as_encoded_bytes();
334 if slice == b".." {
335 return (file, None);
336 }
337
338 // The unsafety here stems from converting between &OsStr and &[u8]
339 // and back. This is safe to do because (1) we only look at ASCII
340 // contents of the encoding and (2) new &OsStr values are produced
341 // only from ASCII-bounded slices of existing &OsStr values.
342 let i = match slice[1..].iter().position(|b| *b == b'.') {
343 Some(i) => i + 1,
344 None => return (file, None),
345 };
346 let before = &slice[..i];
347 let after = &slice[i + 1..];
348 unsafe {
349 (
350 OsStr::from_encoded_bytes_unchecked(before),
351 Some(OsStr::from_encoded_bytes_unchecked(after)),
352 )
353 }
354}
355
356/// Checks whether the string is valid as a file extension, or panics otherwise.
357fn validate_extension(extension: &OsStr) {
358 for &b in extension.as_encoded_bytes() {
359 if is_sep_byte(b) {
360 panic!("extension cannot contain path separators: {extension:?}");
361 }
362 }
363}
364
365////////////////////////////////////////////////////////////////////////////////
366// The core iterators
367////////////////////////////////////////////////////////////////////////////////
368
369/// Component parsing works by a double-ended state machine; the cursors at the
370/// front and back of the path each keep track of what parts of the path have
371/// been consumed so far.
372///
373/// Going front to back, a path is made up of a prefix, a starting
374/// directory component, and a body (of normal components)
375#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
376enum State {
377 Prefix = 0, // c:
378 StartDir = 1, // / or . or nothing
379 Body = 2, // foo/bar/baz
380 Done = 3,
381}
382
383/// A structure wrapping a Windows path prefix as well as its unparsed string
384/// representation.
385///
386/// In addition to the parsed [`Prefix`] information returned by [`kind`],
387/// `PrefixComponent` also holds the raw and unparsed [`OsStr`] slice,
388/// returned by [`as_os_str`].
389///
390/// Instances of this `struct` can be obtained by matching against the
391/// [`Prefix` variant] on [`Component`].
392///
393/// Does not occur on Unix.
394///
395/// # Examples
396///
397/// ```
398/// # if cfg!(windows) {
399/// use std::path::{Component, Path, Prefix};
400/// use std::ffi::OsStr;
401///
402/// let path = Path::new(r"c:\you\later\");
403/// match path.components().next().unwrap() {
404/// Component::Prefix(prefix_component) => {
405/// assert_eq!(Prefix::Disk(b'C'), prefix_component.kind());
406/// assert_eq!(OsStr::new("c:"), prefix_component.as_os_str());
407/// }
408/// _ => unreachable!(),
409/// }
410/// # }
411/// ```
412///
413/// [`as_os_str`]: PrefixComponent::as_os_str
414/// [`kind`]: PrefixComponent::kind
415/// [`Prefix` variant]: Component::Prefix
416#[stable(feature = "rust1", since = "1.0.0")]
417#[derive(Copy, Clone, Eq, Debug)]
418pub struct PrefixComponent<'a> {
419 /// The prefix as an unparsed `OsStr` slice.
420 raw: &'a OsStr,
421
422 /// The parsed prefix data.
423 parsed: Prefix<'a>,
424}
425
426impl<'a> PrefixComponent<'a> {
427 /// Returns the parsed prefix data.
428 ///
429 /// See [`Prefix`]'s documentation for more information on the different
430 /// kinds of prefixes.
431 #[stable(feature = "rust1", since = "1.0.0")]
432 #[must_use]
433 #[inline]
434 pub fn kind(&self) -> Prefix<'a> {
435 self.parsed
436 }
437
438 /// Returns the raw [`OsStr`] slice for this prefix.
439 #[stable(feature = "rust1", since = "1.0.0")]
440 #[must_use]
441 #[inline]
442 pub fn as_os_str(&self) -> &'a OsStr {
443 self.raw
444 }
445}
446
447#[stable(feature = "rust1", since = "1.0.0")]
448impl<'a> PartialEq for PrefixComponent<'a> {
449 #[inline]
450 fn eq(&self, other: &PrefixComponent<'a>) -> bool {
451 self.parsed == other.parsed
452 }
453}
454
455#[stable(feature = "rust1", since = "1.0.0")]
456impl<'a> PartialOrd for PrefixComponent<'a> {
457 #[inline]
458 fn partial_cmp(&self, other: &PrefixComponent<'a>) -> Option<cmp::Ordering> {
459 PartialOrd::partial_cmp(&self.parsed, &other.parsed)
460 }
461}
462
463#[stable(feature = "rust1", since = "1.0.0")]
464impl Ord for PrefixComponent<'_> {
465 #[inline]
466 fn cmp(&self, other: &Self) -> cmp::Ordering {
467 Ord::cmp(&self.parsed, &other.parsed)
468 }
469}
470
471#[stable(feature = "rust1", since = "1.0.0")]
472impl Hash for PrefixComponent<'_> {
473 fn hash<H: Hasher>(&self, h: &mut H) {
474 self.parsed.hash(h);
475 }
476}
477
478/// A single component of a path.
479///
480/// A `Component` roughly corresponds to a substring between path separators
481/// (`/` or `\`).
482///
483/// This `enum` is created by iterating over [`Components`], which in turn is
484/// created by the [`components`](Path::components) method on [`Path`].
485///
486/// # Examples
487///
488/// ```rust
489/// use std::path::{Component, Path};
490///
491/// let path = Path::new("/tmp/foo/bar.txt");
492/// let components = path.components().collect::<Vec<_>>();
493/// assert_eq!(&components, &[
494/// Component::RootDir,
495/// Component::Normal("tmp".as_ref()),
496/// Component::Normal("foo".as_ref()),
497/// Component::Normal("bar.txt".as_ref()),
498/// ]);
499/// ```
500#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
501#[stable(feature = "rust1", since = "1.0.0")]
502pub enum Component<'a> {
503 /// A Windows path prefix, e.g., `C:` or `\\server\share`.
504 ///
505 /// There is a large variety of prefix types, see [`Prefix`]'s documentation
506 /// for more.
507 ///
508 /// Does not occur on Unix.
509 #[stable(feature = "rust1", since = "1.0.0")]
510 Prefix(#[stable(feature = "rust1", since = "1.0.0")] PrefixComponent<'a>),
511
512 /// The root directory component, appears after any prefix and before anything else.
513 ///
514 /// It represents a separator that designates that a path starts from root.
515 #[stable(feature = "rust1", since = "1.0.0")]
516 RootDir,
517
518 /// A reference to the current directory, i.e., `.`.
519 #[stable(feature = "rust1", since = "1.0.0")]
520 CurDir,
521
522 /// A reference to the parent directory, i.e., `..`.
523 #[stable(feature = "rust1", since = "1.0.0")]
524 ParentDir,
525
526 /// A normal component, e.g., `a` and `b` in `a/b`.
527 ///
528 /// This variant is the most common one, it represents references to files
529 /// or directories.
530 #[stable(feature = "rust1", since = "1.0.0")]
531 Normal(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
532}
533
534impl<'a> Component<'a> {
535 /// Extracts the underlying [`OsStr`] slice.
536 ///
537 /// # Examples
538 ///
539 /// ```
540 /// use std::path::Path;
541 ///
542 /// let path = Path::new("./tmp/foo/bar.txt");
543 /// let components: Vec<_> = path.components().map(|comp| comp.as_os_str()).collect();
544 /// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
545 /// ```
546 #[must_use = "`self` will be dropped if the result is not used"]
547 #[stable(feature = "rust1", since = "1.0.0")]
548 pub fn as_os_str(self) -> &'a OsStr {
549 match self {
550 Component::Prefix(p) => p.as_os_str(),
551 Component::RootDir => OsStr::new(MAIN_SEP_STR),
552 Component::CurDir => OsStr::new("."),
553 Component::ParentDir => OsStr::new(".."),
554 Component::Normal(path) => path,
555 }
556 }
557}
558
559#[stable(feature = "rust1", since = "1.0.0")]
560impl AsRef<OsStr> for Component<'_> {
561 #[inline]
562 fn as_ref(&self) -> &OsStr {
563 self.as_os_str()
564 }
565}
566
567#[stable(feature = "path_component_asref", since = "1.25.0")]
568impl AsRef<Path> for Component<'_> {
569 #[inline]
570 fn as_ref(&self) -> &Path {
571 self.as_os_str().as_ref()
572 }
573}
574
575/// An iterator over the [`Component`]s of a [`Path`].
576///
577/// This `struct` is created by the [`components`] method on [`Path`].
578/// See its documentation for more.
579///
580/// # Examples
581///
582/// ```
583/// use std::path::Path;
584///
585/// let path = Path::new("/tmp/foo/bar.txt");
586///
587/// for component in path.components() {
588/// println!("{component:?}");
589/// }
590/// ```
591///
592/// [`components`]: Path::components
593#[derive(Clone)]
594#[must_use = "iterators are lazy and do nothing unless consumed"]
595#[stable(feature = "rust1", since = "1.0.0")]
596pub struct Components<'a> {
597 // The path left to parse components from
598 path: &'a [u8],
599
600 // The prefix as it was originally parsed, if any
601 prefix: Option<Prefix<'a>>,
602
603 // true if path *physically* has a root separator; for most Windows
604 // prefixes, it may have a "logical" root separator for the purposes of
605 // normalization, e.g., \\server\share == \\server\share\.
606 has_physical_root: bool,
607
608 // The iterator is double-ended, and these two states keep track of what has
609 // been produced from either end
610 front: State,
611 back: State,
612}
613
614/// An iterator over the [`Component`]s of a [`Path`], as [`OsStr`] slices.
615///
616/// This `struct` is created by the [`iter`] method on [`Path`].
617/// See its documentation for more.
618///
619/// [`iter`]: Path::iter
620#[derive(Clone)]
621#[must_use = "iterators are lazy and do nothing unless consumed"]
622#[stable(feature = "rust1", since = "1.0.0")]
623pub struct Iter<'a> {
624 inner: Components<'a>,
625}
626
627#[stable(feature = "path_components_debug", since = "1.13.0")]
628impl fmt::Debug for Components<'_> {
629 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
630 struct DebugHelper<'a>(&'a Path);
631
632 impl fmt::Debug for DebugHelper<'_> {
633 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
634 f.debug_list().entries(self.0.components()).finish()
635 }
636 }
637
638 f.debug_tuple("Components").field(&DebugHelper(self.as_path())).finish()
639 }
640}
641
642impl<'a> Components<'a> {
643 // how long is the prefix, if any?
644 #[inline]
645 fn prefix_len(&self) -> usize {
646 self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
647 }
648
649 #[inline]
650 fn prefix_verbatim(&self) -> bool {
651 self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
652 }
653
654 /// how much of the prefix is left from the point of view of iteration?
655 #[inline]
656 fn prefix_remaining(&self) -> usize {
657 if self.front == State::Prefix { self.prefix_len() } else { 0 }
658 }
659
660 // Given the iteration so far, how much of the pre-State::Body path is left?
661 #[inline]
662 fn len_before_body(&self) -> usize {
663 let root = if self.front <= State::StartDir && self.has_physical_root { 1 } else { 0 };
664 let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() { 1 } else { 0 };
665 self.prefix_remaining() + root + cur_dir
666 }
667
668 // is the iteration complete?
669 #[inline]
670 fn finished(&self) -> bool {
671 self.front == State::Done || self.back == State::Done || self.front > self.back
672 }
673
674 #[inline]
675 fn is_sep_byte(&self, b: u8) -> bool {
676 if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep_byte(b) }
677 }
678
679 /// Extracts a slice corresponding to the portion of the path remaining for iteration.
680 ///
681 /// # Examples
682 ///
683 /// ```
684 /// use std::path::Path;
685 ///
686 /// let mut components = Path::new("/tmp/foo/bar.txt").components();
687 /// components.next();
688 /// components.next();
689 ///
690 /// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
691 /// ```
692 #[must_use]
693 #[stable(feature = "rust1", since = "1.0.0")]
694 pub fn as_path(&self) -> &'a Path {
695 let mut comps = self.clone();
696 if comps.front == State::Body {
697 comps.trim_left();
698 }
699 if comps.back == State::Body {
700 comps.trim_right();
701 }
702 unsafe { Path::from_u8_slice(comps.path) }
703 }
704
705 /// Is the *original* path rooted?
706 fn has_root(&self) -> bool {
707 if self.has_physical_root {
708 return true;
709 }
710 if let Some(p) = self.prefix {
711 if p.has_implicit_root() {
712 return true;
713 }
714 }
715 false
716 }
717
718 /// Should the normalized path include a leading . ?
719 fn include_cur_dir(&self) -> bool {
720 if self.has_root() {
721 return false;
722 }
723 let mut iter = self.path[self.prefix_remaining()..].iter();
724 match (iter.next(), iter.next()) {
725 (Some(&b'.'), None) => true,
726 (Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
727 _ => false,
728 }
729 }
730
731 // parse a given byte sequence following the OsStr encoding into the
732 // corresponding path component
733 unsafe fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
734 match comp {
735 b"." if self.prefix_verbatim() => Some(Component::CurDir),
736 b"." => None, // . components are normalized away, except at
737 // the beginning of a path, which is treated
738 // separately via `include_cur_dir`
739 b".." => Some(Component::ParentDir),
740 b"" => None,
741 _ => Some(Component::Normal(unsafe { OsStr::from_encoded_bytes_unchecked(comp) })),
742 }
743 }
744
745 // parse a component from the left, saying how many bytes to consume to
746 // remove the component
747 fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
748 debug_assert!(self.front == State::Body);
749 let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
750 None => (0, self.path),
751 Some(i) => (1, &self.path[..i]),
752 };
753 // SAFETY: `comp` is a valid substring, since it is split on a separator.
754 (comp.len() + extra, unsafe { self.parse_single_component(comp) })
755 }
756
757 // parse a component from the right, saying how many bytes to consume to
758 // remove the component
759 fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
760 debug_assert!(self.back == State::Body);
761 let start = self.len_before_body();
762 let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
763 None => (0, &self.path[start..]),
764 Some(i) => (1, &self.path[start + i + 1..]),
765 };
766 // SAFETY: `comp` is a valid substring, since it is split on a separator.
767 (comp.len() + extra, unsafe { self.parse_single_component(comp) })
768 }
769
770 // trim away repeated separators (i.e., empty components) on the left
771 fn trim_left(&mut self) {
772 while !self.path.is_empty() {
773 let (size, comp) = self.parse_next_component();
774 if comp.is_some() {
775 return;
776 } else {
777 self.path = &self.path[size..];
778 }
779 }
780 }
781
782 // trim away repeated separators (i.e., empty components) on the right
783 fn trim_right(&mut self) {
784 while self.path.len() > self.len_before_body() {
785 let (size, comp) = self.parse_next_component_back();
786 if comp.is_some() {
787 return;
788 } else {
789 self.path = &self.path[..self.path.len() - size];
790 }
791 }
792 }
793}
794
795#[stable(feature = "rust1", since = "1.0.0")]
796impl AsRef<Path> for Components<'_> {
797 #[inline]
798 fn as_ref(&self) -> &Path {
799 self.as_path()
800 }
801}
802
803#[stable(feature = "rust1", since = "1.0.0")]
804impl AsRef<OsStr> for Components<'_> {
805 #[inline]
806 fn as_ref(&self) -> &OsStr {
807 self.as_path().as_os_str()
808 }
809}
810
811#[stable(feature = "path_iter_debug", since = "1.13.0")]
812impl fmt::Debug for Iter<'_> {
813 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
814 struct DebugHelper<'a>(&'a Path);
815
816 impl fmt::Debug for DebugHelper<'_> {
817 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
818 f.debug_list().entries(self.0.iter()).finish()
819 }
820 }
821
822 f.debug_tuple("Iter").field(&DebugHelper(self.as_path())).finish()
823 }
824}
825
826impl<'a> Iter<'a> {
827 /// Extracts a slice corresponding to the portion of the path remaining for iteration.
828 ///
829 /// # Examples
830 ///
831 /// ```
832 /// use std::path::Path;
833 ///
834 /// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
835 /// iter.next();
836 /// iter.next();
837 ///
838 /// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
839 /// ```
840 #[stable(feature = "rust1", since = "1.0.0")]
841 #[must_use]
842 #[inline]
843 pub fn as_path(&self) -> &'a Path {
844 self.inner.as_path()
845 }
846}
847
848#[stable(feature = "rust1", since = "1.0.0")]
849impl AsRef<Path> for Iter<'_> {
850 #[inline]
851 fn as_ref(&self) -> &Path {
852 self.as_path()
853 }
854}
855
856#[stable(feature = "rust1", since = "1.0.0")]
857impl AsRef<OsStr> for Iter<'_> {
858 #[inline]
859 fn as_ref(&self) -> &OsStr {
860 self.as_path().as_os_str()
861 }
862}
863
864#[stable(feature = "rust1", since = "1.0.0")]
865impl<'a> Iterator for Iter<'a> {
866 type Item = &'a OsStr;
867
868 #[inline]
869 fn next(&mut self) -> Option<&'a OsStr> {
870 self.inner.next().map(Component::as_os_str)
871 }
872}
873
874#[stable(feature = "rust1", since = "1.0.0")]
875impl<'a> DoubleEndedIterator for Iter<'a> {
876 #[inline]
877 fn next_back(&mut self) -> Option<&'a OsStr> {
878 self.inner.next_back().map(Component::as_os_str)
879 }
880}
881
882#[stable(feature = "fused", since = "1.26.0")]
883impl FusedIterator for Iter<'_> {}
884
885#[stable(feature = "rust1", since = "1.0.0")]
886impl<'a> Iterator for Components<'a> {
887 type Item = Component<'a>;
888
889 fn next(&mut self) -> Option<Component<'a>> {
890 while !self.finished() {
891 match self.front {
892 State::Prefix if self.prefix_len() > 0 => {
893 self.front = State::StartDir;
894 debug_assert!(self.prefix_len() <= self.path.len());
895 let raw = &self.path[..self.prefix_len()];
896 self.path = &self.path[self.prefix_len()..];
897 return Some(Component::Prefix(PrefixComponent {
898 raw: unsafe { OsStr::from_encoded_bytes_unchecked(raw) },
899 parsed: self.prefix.unwrap(),
900 }));
901 }
902 State::Prefix => {
903 self.front = State::StartDir;
904 }
905 State::StartDir => {
906 self.front = State::Body;
907 if self.has_physical_root {
908 debug_assert!(!self.path.is_empty());
909 self.path = &self.path[1..];
910 return Some(Component::RootDir);
911 } else if let Some(p) = self.prefix {
912 if p.has_implicit_root() && !p.is_verbatim() {
913 return Some(Component::RootDir);
914 }
915 } else if self.include_cur_dir() {
916 debug_assert!(!self.path.is_empty());
917 self.path = &self.path[1..];
918 return Some(Component::CurDir);
919 }
920 }
921 State::Body if !self.path.is_empty() => {
922 let (size, comp) = self.parse_next_component();
923 self.path = &self.path[size..];
924 if comp.is_some() {
925 return comp;
926 }
927 }
928 State::Body => {
929 self.front = State::Done;
930 }
931 State::Done => unreachable!(),
932 }
933 }
934 None
935 }
936}
937
938#[stable(feature = "rust1", since = "1.0.0")]
939impl<'a> DoubleEndedIterator for Components<'a> {
940 fn next_back(&mut self) -> Option<Component<'a>> {
941 while !self.finished() {
942 match self.back {
943 State::Body if self.path.len() > self.len_before_body() => {
944 let (size, comp) = self.parse_next_component_back();
945 self.path = &self.path[..self.path.len() - size];
946 if comp.is_some() {
947 return comp;
948 }
949 }
950 State::Body => {
951 self.back = State::StartDir;
952 }
953 State::StartDir => {
954 self.back = State::Prefix;
955 if self.has_physical_root {
956 self.path = &self.path[..self.path.len() - 1];
957 return Some(Component::RootDir);
958 } else if let Some(p) = self.prefix {
959 if p.has_implicit_root() && !p.is_verbatim() {
960 return Some(Component::RootDir);
961 }
962 } else if self.include_cur_dir() {
963 self.path = &self.path[..self.path.len() - 1];
964 return Some(Component::CurDir);
965 }
966 }
967 State::Prefix if self.prefix_len() > 0 => {
968 self.back = State::Done;
969 return Some(Component::Prefix(PrefixComponent {
970 raw: unsafe { OsStr::from_encoded_bytes_unchecked(self.path) },
971 parsed: self.prefix.unwrap(),
972 }));
973 }
974 State::Prefix => {
975 self.back = State::Done;
976 return None;
977 }
978 State::Done => unreachable!(),
979 }
980 }
981 None
982 }
983}
984
985#[stable(feature = "fused", since = "1.26.0")]
986impl FusedIterator for Components<'_> {}
987
988#[stable(feature = "rust1", since = "1.0.0")]
989impl<'a> PartialEq for Components<'a> {
990 #[inline]
991 fn eq(&self, other: &Components<'a>) -> bool {
992 let Components { path: _, front: _, back: _, has_physical_root: _, prefix: _ } = self;
993
994 // Fast path for exact matches, e.g. for hashmap lookups.
995 // Don't explicitly compare the prefix or has_physical_root fields since they'll
996 // either be covered by the `path` buffer or are only relevant for `prefix_verbatim()`.
997 if self.path.len() == other.path.len()
998 && self.front == other.front
999 && self.back == State::Body
1000 && other.back == State::Body
1001 && self.prefix_verbatim() == other.prefix_verbatim()
1002 {
1003 // possible future improvement: this could bail out earlier if there were a
1004 // reverse memcmp/bcmp comparing back to front
1005 if self.path == other.path {
1006 return true;
1007 }
1008 }
1009
1010 // compare back to front since absolute paths often share long prefixes
1011 Iterator::eq(self.clone().rev(), other.clone().rev())
1012 }
1013}
1014
1015#[stable(feature = "rust1", since = "1.0.0")]
1016impl Eq for Components<'_> {}
1017
1018#[stable(feature = "rust1", since = "1.0.0")]
1019impl<'a> PartialOrd for Components<'a> {
1020 #[inline]
1021 fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
1022 Some(compare_components(self.clone(), other.clone()))
1023 }
1024}
1025
1026#[stable(feature = "rust1", since = "1.0.0")]
1027impl Ord for Components<'_> {
1028 #[inline]
1029 fn cmp(&self, other: &Self) -> cmp::Ordering {
1030 compare_components(self.clone(), other.clone())
1031 }
1032}
1033
1034fn compare_components(mut left: Components<'_>, mut right: Components<'_>) -> cmp::Ordering {
1035 // Fast path for long shared prefixes
1036 //
1037 // - compare raw bytes to find first mismatch
1038 // - backtrack to find separator before mismatch to avoid ambiguous parsings of '.' or '..' characters
1039 // - if found update state to only do a component-wise comparison on the remainder,
1040 // otherwise do it on the full path
1041 //
1042 // The fast path isn't taken for paths with a PrefixComponent to avoid backtracking into
1043 // the middle of one
1044 if left.prefix.is_none() && right.prefix.is_none() && left.front == right.front {
1045 // possible future improvement: a [u8]::first_mismatch simd implementation
1046 let first_difference = match left.path.iter().zip(right.path).position(|(&a, &b)| a != b) {
1047 None if left.path.len() == right.path.len() => return cmp::Ordering::Equal,
1048 None => left.path.len().min(right.path.len()),
1049 Some(diff) => diff,
1050 };
1051
1052 if let Some(previous_sep) =
1053 left.path[..first_difference].iter().rposition(|&b| left.is_sep_byte(b))
1054 {
1055 let mismatched_component_start = previous_sep + 1;
1056 left.path = &left.path[mismatched_component_start..];
1057 left.front = State::Body;
1058 right.path = &right.path[mismatched_component_start..];
1059 right.front = State::Body;
1060 }
1061 }
1062
1063 Iterator::cmp(left, right)
1064}
1065
1066/// An iterator over [`Path`] and its ancestors.
1067///
1068/// This `struct` is created by the [`ancestors`] method on [`Path`].
1069/// See its documentation for more.
1070///
1071/// # Examples
1072///
1073/// ```
1074/// use std::path::Path;
1075///
1076/// let path = Path::new("/foo/bar");
1077///
1078/// for ancestor in path.ancestors() {
1079/// println!("{}", ancestor.display());
1080/// }
1081/// ```
1082///
1083/// [`ancestors`]: Path::ancestors
1084#[derive(Copy, Clone, Debug)]
1085#[must_use = "iterators are lazy and do nothing unless consumed"]
1086#[stable(feature = "path_ancestors", since = "1.28.0")]
1087pub struct Ancestors<'a> {
1088 next: Option<&'a Path>,
1089}
1090
1091#[stable(feature = "path_ancestors", since = "1.28.0")]
1092impl<'a> Iterator for Ancestors<'a> {
1093 type Item = &'a Path;
1094
1095 #[inline]
1096 fn next(&mut self) -> Option<Self::Item> {
1097 let next = self.next;
1098 self.next = next.and_then(Path::parent);
1099 next
1100 }
1101}
1102
1103#[stable(feature = "path_ancestors", since = "1.28.0")]
1104impl FusedIterator for Ancestors<'_> {}
1105
1106////////////////////////////////////////////////////////////////////////////////
1107// Basic types and traits
1108////////////////////////////////////////////////////////////////////////////////
1109
1110/// An owned, mutable path (akin to [`String`]).
1111///
1112/// This type provides methods like [`push`] and [`set_extension`] that mutate
1113/// the path in place. It also implements [`Deref`] to [`Path`], meaning that
1114/// all methods on [`Path`] slices are available on `PathBuf` values as well.
1115///
1116/// [`push`]: PathBuf::push
1117/// [`set_extension`]: PathBuf::set_extension
1118///
1119/// More details about the overall approach can be found in
1120/// the [module documentation](self).
1121///
1122/// # Examples
1123///
1124/// You can use [`push`] to build up a `PathBuf` from
1125/// components:
1126///
1127/// ```
1128/// use std::path::PathBuf;
1129///
1130/// let mut path = PathBuf::new();
1131///
1132/// path.push(r"C:\");
1133/// path.push("windows");
1134/// path.push("system32");
1135///
1136/// path.set_extension("dll");
1137/// ```
1138///
1139/// However, [`push`] is best used for dynamic situations. This is a better way
1140/// to do this when you know all of the components ahead of time:
1141///
1142/// ```
1143/// use std::path::PathBuf;
1144///
1145/// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
1146/// ```
1147///
1148/// We can still do better than this! Since these are all strings, we can use
1149/// `From::from`:
1150///
1151/// ```
1152/// use std::path::PathBuf;
1153///
1154/// let path = PathBuf::from(r"C:\windows\system32.dll");
1155/// ```
1156///
1157/// Which method works best depends on what kind of situation you're in.
1158///
1159/// Note that `PathBuf` does not always sanitize arguments, for example
1160/// [`push`] allows paths built from strings which include separators:
1161///
1162/// ```
1163/// use std::path::PathBuf;
1164///
1165/// let mut path = PathBuf::new();
1166///
1167/// path.push(r"C:\");
1168/// path.push("windows");
1169/// path.push(r"..\otherdir");
1170/// path.push("system32");
1171/// ```
1172///
1173/// The behavior of `PathBuf` may be changed to a panic on such inputs
1174/// in the future. [`Extend::extend`] should be used to add multi-part paths.
1175#[cfg_attr(not(test), rustc_diagnostic_item = "PathBuf")]
1176#[stable(feature = "rust1", since = "1.0.0")]
1177pub struct PathBuf {
1178 inner: OsString,
1179}
1180
1181impl PathBuf {
1182 /// Allocates an empty `PathBuf`.
1183 ///
1184 /// # Examples
1185 ///
1186 /// ```
1187 /// use std::path::PathBuf;
1188 ///
1189 /// let path = PathBuf::new();
1190 /// ```
1191 #[stable(feature = "rust1", since = "1.0.0")]
1192 #[must_use]
1193 #[inline]
1194 #[rustc_const_unstable(feature = "const_pathbuf_osstring_new", issue = "141520")]
1195 pub const fn new() -> PathBuf {
1196 PathBuf { inner: OsString::new() }
1197 }
1198
1199 /// Creates a new `PathBuf` with a given capacity used to create the
1200 /// internal [`OsString`]. See [`with_capacity`] defined on [`OsString`].
1201 ///
1202 /// # Examples
1203 ///
1204 /// ```
1205 /// use std::path::PathBuf;
1206 ///
1207 /// let mut path = PathBuf::with_capacity(10);
1208 /// let capacity = path.capacity();
1209 ///
1210 /// // This push is done without reallocating
1211 /// path.push(r"C:\");
1212 ///
1213 /// assert_eq!(capacity, path.capacity());
1214 /// ```
1215 ///
1216 /// [`with_capacity`]: OsString::with_capacity
1217 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1218 #[must_use]
1219 #[inline]
1220 pub fn with_capacity(capacity: usize) -> PathBuf {
1221 PathBuf { inner: OsString::with_capacity(capacity) }
1222 }
1223
1224 /// Coerces to a [`Path`] slice.
1225 ///
1226 /// # Examples
1227 ///
1228 /// ```
1229 /// use std::path::{Path, PathBuf};
1230 ///
1231 /// let p = PathBuf::from("/test");
1232 /// assert_eq!(Path::new("/test"), p.as_path());
1233 /// ```
1234 #[cfg_attr(not(test), rustc_diagnostic_item = "pathbuf_as_path")]
1235 #[stable(feature = "rust1", since = "1.0.0")]
1236 #[must_use]
1237 #[inline]
1238 pub fn as_path(&self) -> &Path {
1239 self
1240 }
1241
1242 /// Consumes and leaks the `PathBuf`, returning a mutable reference to the contents,
1243 /// `&'a mut Path`.
1244 ///
1245 /// The caller has free choice over the returned lifetime, including 'static.
1246 /// Indeed, this function is ideally used for data that lives for the remainder of
1247 /// the program’s life, as dropping the returned reference will cause a memory leak.
1248 ///
1249 /// It does not reallocate or shrink the `PathBuf`, so the leaked allocation may include
1250 /// unused capacity that is not part of the returned slice. If you want to discard excess
1251 /// capacity, call [`into_boxed_path`], and then [`Box::leak`] instead.
1252 /// However, keep in mind that trimming the capacity may result in a reallocation and copy.
1253 ///
1254 /// [`into_boxed_path`]: Self::into_boxed_path
1255 #[stable(feature = "os_string_pathbuf_leak", since = "CURRENT_RUSTC_VERSION")]
1256 #[inline]
1257 pub fn leak<'a>(self) -> &'a mut Path {
1258 Path::from_inner_mut(self.inner.leak())
1259 }
1260
1261 /// Extends `self` with `path`.
1262 ///
1263 /// If `path` is absolute, it replaces the current path.
1264 ///
1265 /// On Windows:
1266 ///
1267 /// * if `path` has a root but no prefix (e.g., `\windows`), it
1268 /// replaces everything except for the prefix (if any) of `self`.
1269 /// * if `path` has a prefix but no root, it replaces `self`.
1270 /// * if `self` has a verbatim prefix (e.g. `\\?\C:\windows`)
1271 /// and `path` is not empty, the new path is normalized: all references
1272 /// to `.` and `..` are removed.
1273 ///
1274 /// Consider using [`Path::join`] if you need a new `PathBuf` instead of
1275 /// using this function on a cloned `PathBuf`.
1276 ///
1277 /// # Examples
1278 ///
1279 /// Pushing a relative path extends the existing path:
1280 ///
1281 /// ```
1282 /// use std::path::PathBuf;
1283 ///
1284 /// let mut path = PathBuf::from("/tmp");
1285 /// path.push("file.bk");
1286 /// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
1287 /// ```
1288 ///
1289 /// Pushing an absolute path replaces the existing path:
1290 ///
1291 /// ```
1292 /// use std::path::PathBuf;
1293 ///
1294 /// let mut path = PathBuf::from("/tmp");
1295 /// path.push("/etc");
1296 /// assert_eq!(path, PathBuf::from("/etc"));
1297 /// ```
1298 #[stable(feature = "rust1", since = "1.0.0")]
1299 #[rustc_confusables("append", "put")]
1300 pub fn push<P: AsRef<Path>>(&mut self, path: P) {
1301 self._push(path.as_ref())
1302 }
1303
1304 fn _push(&mut self, path: &Path) {
1305 // in general, a separator is needed if the rightmost byte is not a separator
1306 let buf = self.inner.as_encoded_bytes();
1307 let mut need_sep = buf.last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
1308
1309 // in the special case of `C:` on Windows, do *not* add a separator
1310 let comps = self.components();
1311
1312 if comps.prefix_len() > 0
1313 && comps.prefix_len() == comps.path.len()
1314 && comps.prefix.unwrap().is_drive()
1315 {
1316 need_sep = false
1317 }
1318
1319 let need_clear = if cfg!(target_os = "cygwin") {
1320 // If path is absolute and its prefix is none, it is like `/foo`,
1321 // and will be handled below.
1322 path.prefix().is_some()
1323 } else {
1324 // On Unix: prefix is always None.
1325 path.is_absolute() || path.prefix().is_some()
1326 };
1327
1328 // absolute `path` replaces `self`
1329 if need_clear {
1330 self.inner.truncate(0);
1331
1332 // verbatim paths need . and .. removed
1333 } else if comps.prefix_verbatim() && !path.inner.is_empty() {
1334 let mut buf: Vec<_> = comps.collect();
1335 for c in path.components() {
1336 match c {
1337 Component::RootDir => {
1338 buf.truncate(1);
1339 buf.push(c);
1340 }
1341 Component::CurDir => (),
1342 Component::ParentDir => {
1343 if let Some(Component::Normal(_)) = buf.last() {
1344 buf.pop();
1345 }
1346 }
1347 _ => buf.push(c),
1348 }
1349 }
1350
1351 let mut res = OsString::new();
1352 let mut need_sep = false;
1353
1354 for c in buf {
1355 if need_sep && c != Component::RootDir {
1356 res.push(MAIN_SEP_STR);
1357 }
1358 res.push(c.as_os_str());
1359
1360 need_sep = match c {
1361 Component::RootDir => false,
1362 Component::Prefix(prefix) => {
1363 !prefix.parsed.is_drive() && prefix.parsed.len() > 0
1364 }
1365 _ => true,
1366 }
1367 }
1368
1369 self.inner = res;
1370 return;
1371
1372 // `path` has a root but no prefix, e.g., `\windows` (Windows only)
1373 } else if path.has_root() {
1374 let prefix_len = self.components().prefix_remaining();
1375 self.inner.truncate(prefix_len);
1376
1377 // `path` is a pure relative path
1378 } else if need_sep {
1379 self.inner.push(MAIN_SEP_STR);
1380 }
1381
1382 self.inner.push(path);
1383 }
1384
1385 /// Truncates `self` to [`self.parent`].
1386 ///
1387 /// Returns `false` and does nothing if [`self.parent`] is [`None`].
1388 /// Otherwise, returns `true`.
1389 ///
1390 /// [`self.parent`]: Path::parent
1391 ///
1392 /// # Examples
1393 ///
1394 /// ```
1395 /// use std::path::{Path, PathBuf};
1396 ///
1397 /// let mut p = PathBuf::from("/spirited/away.rs");
1398 ///
1399 /// p.pop();
1400 /// assert_eq!(Path::new("/spirited"), p);
1401 /// p.pop();
1402 /// assert_eq!(Path::new("/"), p);
1403 /// ```
1404 #[stable(feature = "rust1", since = "1.0.0")]
1405 pub fn pop(&mut self) -> bool {
1406 match self.parent().map(|p| p.as_u8_slice().len()) {
1407 Some(len) => {
1408 self.inner.truncate(len);
1409 true
1410 }
1411 None => false,
1412 }
1413 }
1414
1415 /// Updates [`self.file_name`] to `file_name`.
1416 ///
1417 /// If [`self.file_name`] was [`None`], this is equivalent to pushing
1418 /// `file_name`.
1419 ///
1420 /// Otherwise it is equivalent to calling [`pop`] and then pushing
1421 /// `file_name`. The new path will be a sibling of the original path.
1422 /// (That is, it will have the same parent.)
1423 ///
1424 /// The argument is not sanitized, so can include separators. This
1425 /// behavior may be changed to a panic in the future.
1426 ///
1427 /// [`self.file_name`]: Path::file_name
1428 /// [`pop`]: PathBuf::pop
1429 ///
1430 /// # Examples
1431 ///
1432 /// ```
1433 /// use std::path::PathBuf;
1434 ///
1435 /// let mut buf = PathBuf::from("/");
1436 /// assert!(buf.file_name() == None);
1437 ///
1438 /// buf.set_file_name("foo.txt");
1439 /// assert!(buf == PathBuf::from("/foo.txt"));
1440 /// assert!(buf.file_name().is_some());
1441 ///
1442 /// buf.set_file_name("bar.txt");
1443 /// assert!(buf == PathBuf::from("/bar.txt"));
1444 ///
1445 /// buf.set_file_name("baz");
1446 /// assert!(buf == PathBuf::from("/baz"));
1447 ///
1448 /// buf.set_file_name("../b/c.txt");
1449 /// assert!(buf == PathBuf::from("/../b/c.txt"));
1450 ///
1451 /// buf.set_file_name("baz");
1452 /// assert!(buf == PathBuf::from("/../b/baz"));
1453 /// ```
1454 #[stable(feature = "rust1", since = "1.0.0")]
1455 pub fn set_file_name<S: AsRef<OsStr>>(&mut self, file_name: S) {
1456 self._set_file_name(file_name.as_ref())
1457 }
1458
1459 fn _set_file_name(&mut self, file_name: &OsStr) {
1460 if self.file_name().is_some() {
1461 let popped = self.pop();
1462 debug_assert!(popped);
1463 }
1464 self.push(file_name);
1465 }
1466
1467 /// Updates [`self.extension`] to `Some(extension)` or to `None` if
1468 /// `extension` is empty.
1469 ///
1470 /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1471 /// returns `true` and updates the extension otherwise.
1472 ///
1473 /// If [`self.extension`] is [`None`], the extension is added; otherwise
1474 /// it is replaced.
1475 ///
1476 /// If `extension` is the empty string, [`self.extension`] will be [`None`]
1477 /// afterwards, not `Some("")`.
1478 ///
1479 /// # Panics
1480 ///
1481 /// Panics if the passed extension contains a path separator (see
1482 /// [`is_separator`]).
1483 ///
1484 /// # Caveats
1485 ///
1486 /// The new `extension` may contain dots and will be used in its entirety,
1487 /// but only the part after the final dot will be reflected in
1488 /// [`self.extension`].
1489 ///
1490 /// If the file stem contains internal dots and `extension` is empty, part
1491 /// of the old file stem will be considered the new [`self.extension`].
1492 ///
1493 /// See the examples below.
1494 ///
1495 /// [`self.file_name`]: Path::file_name
1496 /// [`self.extension`]: Path::extension
1497 ///
1498 /// # Examples
1499 ///
1500 /// ```
1501 /// use std::path::{Path, PathBuf};
1502 ///
1503 /// let mut p = PathBuf::from("/feel/the");
1504 ///
1505 /// p.set_extension("force");
1506 /// assert_eq!(Path::new("/feel/the.force"), p.as_path());
1507 ///
1508 /// p.set_extension("dark.side");
1509 /// assert_eq!(Path::new("/feel/the.dark.side"), p.as_path());
1510 ///
1511 /// p.set_extension("cookie");
1512 /// assert_eq!(Path::new("/feel/the.dark.cookie"), p.as_path());
1513 ///
1514 /// p.set_extension("");
1515 /// assert_eq!(Path::new("/feel/the.dark"), p.as_path());
1516 ///
1517 /// p.set_extension("");
1518 /// assert_eq!(Path::new("/feel/the"), p.as_path());
1519 ///
1520 /// p.set_extension("");
1521 /// assert_eq!(Path::new("/feel/the"), p.as_path());
1522 /// ```
1523 #[stable(feature = "rust1", since = "1.0.0")]
1524 pub fn set_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1525 self._set_extension(extension.as_ref())
1526 }
1527
1528 fn _set_extension(&mut self, extension: &OsStr) -> bool {
1529 validate_extension(extension);
1530
1531 let file_stem = match self.file_stem() {
1532 None => return false,
1533 Some(f) => f.as_encoded_bytes(),
1534 };
1535
1536 // truncate until right after the file stem
1537 let end_file_stem = file_stem[file_stem.len()..].as_ptr().addr();
1538 let start = self.inner.as_encoded_bytes().as_ptr().addr();
1539 self.inner.truncate(end_file_stem.wrapping_sub(start));
1540
1541 // add the new extension, if any
1542 let new = extension.as_encoded_bytes();
1543 if !new.is_empty() {
1544 self.inner.reserve_exact(new.len() + 1);
1545 self.inner.push(".");
1546 // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1547 // for the buffer to end with a surrogate half.
1548 unsafe { self.inner.extend_from_slice_unchecked(new) };
1549 }
1550
1551 true
1552 }
1553
1554 /// Append [`self.extension`] with `extension`.
1555 ///
1556 /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1557 /// returns `true` and updates the extension otherwise.
1558 ///
1559 /// # Panics
1560 ///
1561 /// Panics if the passed extension contains a path separator (see
1562 /// [`is_separator`]).
1563 ///
1564 /// # Caveats
1565 ///
1566 /// The appended `extension` may contain dots and will be used in its entirety,
1567 /// but only the part after the final dot will be reflected in
1568 /// [`self.extension`].
1569 ///
1570 /// See the examples below.
1571 ///
1572 /// [`self.file_name`]: Path::file_name
1573 /// [`self.extension`]: Path::extension
1574 ///
1575 /// # Examples
1576 ///
1577 /// ```
1578 /// #![feature(path_add_extension)]
1579 ///
1580 /// use std::path::{Path, PathBuf};
1581 ///
1582 /// let mut p = PathBuf::from("/feel/the");
1583 ///
1584 /// p.add_extension("formatted");
1585 /// assert_eq!(Path::new("/feel/the.formatted"), p.as_path());
1586 ///
1587 /// p.add_extension("dark.side");
1588 /// assert_eq!(Path::new("/feel/the.formatted.dark.side"), p.as_path());
1589 ///
1590 /// p.set_extension("cookie");
1591 /// assert_eq!(Path::new("/feel/the.formatted.dark.cookie"), p.as_path());
1592 ///
1593 /// p.set_extension("");
1594 /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1595 ///
1596 /// p.add_extension("");
1597 /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1598 /// ```
1599 #[unstable(feature = "path_add_extension", issue = "127292")]
1600 pub fn add_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1601 self._add_extension(extension.as_ref())
1602 }
1603
1604 fn _add_extension(&mut self, extension: &OsStr) -> bool {
1605 validate_extension(extension);
1606
1607 let file_name = match self.file_name() {
1608 None => return false,
1609 Some(f) => f.as_encoded_bytes(),
1610 };
1611
1612 let new = extension.as_encoded_bytes();
1613 if !new.is_empty() {
1614 // truncate until right after the file name
1615 // this is necessary for trimming the trailing slash
1616 let end_file_name = file_name[file_name.len()..].as_ptr().addr();
1617 let start = self.inner.as_encoded_bytes().as_ptr().addr();
1618 self.inner.truncate(end_file_name.wrapping_sub(start));
1619
1620 // append the new extension
1621 self.inner.reserve_exact(new.len() + 1);
1622 self.inner.push(".");
1623 // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1624 // for the buffer to end with a surrogate half.
1625 unsafe { self.inner.extend_from_slice_unchecked(new) };
1626 }
1627
1628 true
1629 }
1630
1631 /// Yields a mutable reference to the underlying [`OsString`] instance.
1632 ///
1633 /// # Examples
1634 ///
1635 /// ```
1636 /// use std::path::{Path, PathBuf};
1637 ///
1638 /// let mut path = PathBuf::from("/foo");
1639 ///
1640 /// path.push("bar");
1641 /// assert_eq!(path, Path::new("/foo/bar"));
1642 ///
1643 /// // OsString's `push` does not add a separator.
1644 /// path.as_mut_os_string().push("baz");
1645 /// assert_eq!(path, Path::new("/foo/barbaz"));
1646 /// ```
1647 #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
1648 #[must_use]
1649 #[inline]
1650 pub fn as_mut_os_string(&mut self) -> &mut OsString {
1651 &mut self.inner
1652 }
1653
1654 /// Consumes the `PathBuf`, yielding its internal [`OsString`] storage.
1655 ///
1656 /// # Examples
1657 ///
1658 /// ```
1659 /// use std::path::PathBuf;
1660 ///
1661 /// let p = PathBuf::from("/the/head");
1662 /// let os_str = p.into_os_string();
1663 /// ```
1664 #[stable(feature = "rust1", since = "1.0.0")]
1665 #[must_use = "`self` will be dropped if the result is not used"]
1666 #[inline]
1667 pub fn into_os_string(self) -> OsString {
1668 self.inner
1669 }
1670
1671 /// Converts this `PathBuf` into a [boxed](Box) [`Path`].
1672 #[stable(feature = "into_boxed_path", since = "1.20.0")]
1673 #[must_use = "`self` will be dropped if the result is not used"]
1674 #[inline]
1675 pub fn into_boxed_path(self) -> Box<Path> {
1676 let rw = Box::into_raw(self.inner.into_boxed_os_str()) as *mut Path;
1677 unsafe { Box::from_raw(rw) }
1678 }
1679
1680 /// Invokes [`capacity`] on the underlying instance of [`OsString`].
1681 ///
1682 /// [`capacity`]: OsString::capacity
1683 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1684 #[must_use]
1685 #[inline]
1686 pub fn capacity(&self) -> usize {
1687 self.inner.capacity()
1688 }
1689
1690 /// Invokes [`clear`] on the underlying instance of [`OsString`].
1691 ///
1692 /// [`clear`]: OsString::clear
1693 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1694 #[inline]
1695 pub fn clear(&mut self) {
1696 self.inner.clear()
1697 }
1698
1699 /// Invokes [`reserve`] on the underlying instance of [`OsString`].
1700 ///
1701 /// [`reserve`]: OsString::reserve
1702 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1703 #[inline]
1704 pub fn reserve(&mut self, additional: usize) {
1705 self.inner.reserve(additional)
1706 }
1707
1708 /// Invokes [`try_reserve`] on the underlying instance of [`OsString`].
1709 ///
1710 /// [`try_reserve`]: OsString::try_reserve
1711 #[stable(feature = "try_reserve_2", since = "1.63.0")]
1712 #[inline]
1713 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1714 self.inner.try_reserve(additional)
1715 }
1716
1717 /// Invokes [`reserve_exact`] on the underlying instance of [`OsString`].
1718 ///
1719 /// [`reserve_exact`]: OsString::reserve_exact
1720 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1721 #[inline]
1722 pub fn reserve_exact(&mut self, additional: usize) {
1723 self.inner.reserve_exact(additional)
1724 }
1725
1726 /// Invokes [`try_reserve_exact`] on the underlying instance of [`OsString`].
1727 ///
1728 /// [`try_reserve_exact`]: OsString::try_reserve_exact
1729 #[stable(feature = "try_reserve_2", since = "1.63.0")]
1730 #[inline]
1731 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1732 self.inner.try_reserve_exact(additional)
1733 }
1734
1735 /// Invokes [`shrink_to_fit`] on the underlying instance of [`OsString`].
1736 ///
1737 /// [`shrink_to_fit`]: OsString::shrink_to_fit
1738 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1739 #[inline]
1740 pub fn shrink_to_fit(&mut self) {
1741 self.inner.shrink_to_fit()
1742 }
1743
1744 /// Invokes [`shrink_to`] on the underlying instance of [`OsString`].
1745 ///
1746 /// [`shrink_to`]: OsString::shrink_to
1747 #[stable(feature = "shrink_to", since = "1.56.0")]
1748 #[inline]
1749 pub fn shrink_to(&mut self, min_capacity: usize) {
1750 self.inner.shrink_to(min_capacity)
1751 }
1752}
1753
1754#[stable(feature = "rust1", since = "1.0.0")]
1755impl Clone for PathBuf {
1756 #[inline]
1757 fn clone(&self) -> Self {
1758 PathBuf { inner: self.inner.clone() }
1759 }
1760
1761 /// Clones the contents of `source` into `self`.
1762 ///
1763 /// This method is preferred over simply assigning `source.clone()` to `self`,
1764 /// as it avoids reallocation if possible.
1765 #[inline]
1766 fn clone_from(&mut self, source: &Self) {
1767 self.inner.clone_from(&source.inner)
1768 }
1769}
1770
1771#[stable(feature = "box_from_path", since = "1.17.0")]
1772impl From<&Path> for Box<Path> {
1773 /// Creates a boxed [`Path`] from a reference.
1774 ///
1775 /// This will allocate and clone `path` to it.
1776 fn from(path: &Path) -> Box<Path> {
1777 let boxed: Box<OsStr> = path.inner.into();
1778 let rw = Box::into_raw(boxed) as *mut Path;
1779 unsafe { Box::from_raw(rw) }
1780 }
1781}
1782
1783#[stable(feature = "box_from_mut_slice", since = "1.84.0")]
1784impl From<&mut Path> for Box<Path> {
1785 /// Creates a boxed [`Path`] from a reference.
1786 ///
1787 /// This will allocate and clone `path` to it.
1788 fn from(path: &mut Path) -> Box<Path> {
1789 Self::from(&*path)
1790 }
1791}
1792
1793#[stable(feature = "box_from_cow", since = "1.45.0")]
1794impl From<Cow<'_, Path>> for Box<Path> {
1795 /// Creates a boxed [`Path`] from a clone-on-write pointer.
1796 ///
1797 /// Converting from a `Cow::Owned` does not clone or allocate.
1798 #[inline]
1799 fn from(cow: Cow<'_, Path>) -> Box<Path> {
1800 match cow {
1801 Cow::Borrowed(path) => Box::from(path),
1802 Cow::Owned(path) => Box::from(path),
1803 }
1804 }
1805}
1806
1807#[stable(feature = "path_buf_from_box", since = "1.18.0")]
1808impl From<Box<Path>> for PathBuf {
1809 /// Converts a <code>[Box]<[Path]></code> into a [`PathBuf`].
1810 ///
1811 /// This conversion does not allocate or copy memory.
1812 #[inline]
1813 fn from(boxed: Box<Path>) -> PathBuf {
1814 boxed.into_path_buf()
1815 }
1816}
1817
1818#[stable(feature = "box_from_path_buf", since = "1.20.0")]
1819impl From<PathBuf> for Box<Path> {
1820 /// Converts a [`PathBuf`] into a <code>[Box]<[Path]></code>.
1821 ///
1822 /// This conversion currently should not allocate memory,
1823 /// but this behavior is not guaranteed on all platforms or in all future versions.
1824 #[inline]
1825 fn from(p: PathBuf) -> Box<Path> {
1826 p.into_boxed_path()
1827 }
1828}
1829
1830#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
1831impl Clone for Box<Path> {
1832 #[inline]
1833 fn clone(&self) -> Self {
1834 self.to_path_buf().into_boxed_path()
1835 }
1836}
1837
1838#[stable(feature = "rust1", since = "1.0.0")]
1839impl<T: ?Sized + AsRef<OsStr>> From<&T> for PathBuf {
1840 /// Converts a borrowed [`OsStr`] to a [`PathBuf`].
1841 ///
1842 /// Allocates a [`PathBuf`] and copies the data into it.
1843 #[inline]
1844 fn from(s: &T) -> PathBuf {
1845 PathBuf::from(s.as_ref().to_os_string())
1846 }
1847}
1848
1849#[stable(feature = "rust1", since = "1.0.0")]
1850impl From<OsString> for PathBuf {
1851 /// Converts an [`OsString`] into a [`PathBuf`].
1852 ///
1853 /// This conversion does not allocate or copy memory.
1854 #[inline]
1855 fn from(s: OsString) -> PathBuf {
1856 PathBuf { inner: s }
1857 }
1858}
1859
1860#[stable(feature = "from_path_buf_for_os_string", since = "1.14.0")]
1861impl From<PathBuf> for OsString {
1862 /// Converts a [`PathBuf`] into an [`OsString`]
1863 ///
1864 /// This conversion does not allocate or copy memory.
1865 #[inline]
1866 fn from(path_buf: PathBuf) -> OsString {
1867 path_buf.inner
1868 }
1869}
1870
1871#[stable(feature = "rust1", since = "1.0.0")]
1872impl From<String> for PathBuf {
1873 /// Converts a [`String`] into a [`PathBuf`]
1874 ///
1875 /// This conversion does not allocate or copy memory.
1876 #[inline]
1877 fn from(s: String) -> PathBuf {
1878 PathBuf::from(OsString::from(s))
1879 }
1880}
1881
1882#[stable(feature = "path_from_str", since = "1.32.0")]
1883impl FromStr for PathBuf {
1884 type Err = core::convert::Infallible;
1885
1886 #[inline]
1887 fn from_str(s: &str) -> Result<Self, Self::Err> {
1888 Ok(PathBuf::from(s))
1889 }
1890}
1891
1892#[stable(feature = "rust1", since = "1.0.0")]
1893impl<P: AsRef<Path>> FromIterator<P> for PathBuf {
1894 /// Creates a new `PathBuf` from the [`Path`] elements of an iterator.
1895 ///
1896 /// This uses [`push`](Self::push) to add each element, so can be used to adjoin multiple path
1897 /// [components](Components).
1898 ///
1899 /// # Examples
1900 /// ```
1901 /// # use std::path::PathBuf;
1902 /// let path = PathBuf::from_iter(["/tmp", "foo", "bar"]);
1903 /// assert_eq!(path, PathBuf::from("/tmp/foo/bar"));
1904 /// ```
1905 ///
1906 /// See documentation for [`push`](Self::push) for more details on how the path is constructed.
1907 fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
1908 let mut buf = PathBuf::new();
1909 buf.extend(iter);
1910 buf
1911 }
1912}
1913
1914#[stable(feature = "rust1", since = "1.0.0")]
1915impl<P: AsRef<Path>> Extend<P> for PathBuf {
1916 /// Extends `self` with [`Path`] elements from `iter`.
1917 ///
1918 /// This uses [`push`](Self::push) to add each element, so can be used to adjoin multiple path
1919 /// [components](Components).
1920 ///
1921 /// # Examples
1922 /// ```
1923 /// # use std::path::PathBuf;
1924 /// let mut path = PathBuf::from("/tmp");
1925 /// path.extend(["foo", "bar", "file.txt"]);
1926 /// assert_eq!(path, PathBuf::from("/tmp/foo/bar/file.txt"));
1927 /// ```
1928 ///
1929 /// See documentation for [`push`](Self::push) for more details on how the path is constructed.
1930 fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
1931 iter.into_iter().for_each(move |p| self.push(p.as_ref()));
1932 }
1933
1934 #[inline]
1935 fn extend_one(&mut self, p: P) {
1936 self.push(p.as_ref());
1937 }
1938}
1939
1940#[stable(feature = "rust1", since = "1.0.0")]
1941impl fmt::Debug for PathBuf {
1942 fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1943 fmt::Debug::fmt(&**self, formatter)
1944 }
1945}
1946
1947#[stable(feature = "rust1", since = "1.0.0")]
1948impl ops::Deref for PathBuf {
1949 type Target = Path;
1950 #[inline]
1951 fn deref(&self) -> &Path {
1952 Path::new(&self.inner)
1953 }
1954}
1955
1956#[stable(feature = "path_buf_deref_mut", since = "1.68.0")]
1957impl ops::DerefMut for PathBuf {
1958 #[inline]
1959 fn deref_mut(&mut self) -> &mut Path {
1960 Path::from_inner_mut(&mut self.inner)
1961 }
1962}
1963
1964#[stable(feature = "rust1", since = "1.0.0")]
1965impl Borrow<Path> for PathBuf {
1966 #[inline]
1967 fn borrow(&self) -> &Path {
1968 self.deref()
1969 }
1970}
1971
1972#[stable(feature = "default_for_pathbuf", since = "1.17.0")]
1973impl Default for PathBuf {
1974 #[inline]
1975 fn default() -> Self {
1976 PathBuf::new()
1977 }
1978}
1979
1980#[stable(feature = "cow_from_path", since = "1.6.0")]
1981impl<'a> From<&'a Path> for Cow<'a, Path> {
1982 /// Creates a clone-on-write pointer from a reference to
1983 /// [`Path`].
1984 ///
1985 /// This conversion does not clone or allocate.
1986 #[inline]
1987 fn from(s: &'a Path) -> Cow<'a, Path> {
1988 Cow::Borrowed(s)
1989 }
1990}
1991
1992#[stable(feature = "cow_from_path", since = "1.6.0")]
1993impl<'a> From<PathBuf> for Cow<'a, Path> {
1994 /// Creates a clone-on-write pointer from an owned
1995 /// instance of [`PathBuf`].
1996 ///
1997 /// This conversion does not clone or allocate.
1998 #[inline]
1999 fn from(s: PathBuf) -> Cow<'a, Path> {
2000 Cow::Owned(s)
2001 }
2002}
2003
2004#[stable(feature = "cow_from_pathbuf_ref", since = "1.28.0")]
2005impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
2006 /// Creates a clone-on-write pointer from a reference to
2007 /// [`PathBuf`].
2008 ///
2009 /// This conversion does not clone or allocate.
2010 #[inline]
2011 fn from(p: &'a PathBuf) -> Cow<'a, Path> {
2012 Cow::Borrowed(p.as_path())
2013 }
2014}
2015
2016#[stable(feature = "pathbuf_from_cow_path", since = "1.28.0")]
2017impl<'a> From<Cow<'a, Path>> for PathBuf {
2018 /// Converts a clone-on-write pointer to an owned path.
2019 ///
2020 /// Converting from a `Cow::Owned` does not clone or allocate.
2021 #[inline]
2022 fn from(p: Cow<'a, Path>) -> Self {
2023 p.into_owned()
2024 }
2025}
2026
2027#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2028impl From<PathBuf> for Arc<Path> {
2029 /// Converts a [`PathBuf`] into an <code>[Arc]<[Path]></code> by moving the [`PathBuf`] data
2030 /// into a new [`Arc`] buffer.
2031 #[inline]
2032 fn from(s: PathBuf) -> Arc<Path> {
2033 let arc: Arc<OsStr> = Arc::from(s.into_os_string());
2034 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2035 }
2036}
2037
2038#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2039impl From<&Path> for Arc<Path> {
2040 /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2041 #[inline]
2042 fn from(s: &Path) -> Arc<Path> {
2043 let arc: Arc<OsStr> = Arc::from(s.as_os_str());
2044 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2045 }
2046}
2047
2048#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2049impl From<&mut Path> for Arc<Path> {
2050 /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2051 #[inline]
2052 fn from(s: &mut Path) -> Arc<Path> {
2053 Arc::from(&*s)
2054 }
2055}
2056
2057#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2058impl From<PathBuf> for Rc<Path> {
2059 /// Converts a [`PathBuf`] into an <code>[Rc]<[Path]></code> by moving the [`PathBuf`] data into
2060 /// a new [`Rc`] buffer.
2061 #[inline]
2062 fn from(s: PathBuf) -> Rc<Path> {
2063 let rc: Rc<OsStr> = Rc::from(s.into_os_string());
2064 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2065 }
2066}
2067
2068#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2069impl From<&Path> for Rc<Path> {
2070 /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2071 #[inline]
2072 fn from(s: &Path) -> Rc<Path> {
2073 let rc: Rc<OsStr> = Rc::from(s.as_os_str());
2074 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2075 }
2076}
2077
2078#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2079impl From<&mut Path> for Rc<Path> {
2080 /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2081 #[inline]
2082 fn from(s: &mut Path) -> Rc<Path> {
2083 Rc::from(&*s)
2084 }
2085}
2086
2087#[stable(feature = "rust1", since = "1.0.0")]
2088impl ToOwned for Path {
2089 type Owned = PathBuf;
2090 #[inline]
2091 fn to_owned(&self) -> PathBuf {
2092 self.to_path_buf()
2093 }
2094 #[inline]
2095 fn clone_into(&self, target: &mut PathBuf) {
2096 self.inner.clone_into(&mut target.inner);
2097 }
2098}
2099
2100#[stable(feature = "rust1", since = "1.0.0")]
2101impl PartialEq for PathBuf {
2102 #[inline]
2103 fn eq(&self, other: &PathBuf) -> bool {
2104 self.components() == other.components()
2105 }
2106}
2107
2108#[stable(feature = "rust1", since = "1.0.0")]
2109impl Hash for PathBuf {
2110 fn hash<H: Hasher>(&self, h: &mut H) {
2111 self.as_path().hash(h)
2112 }
2113}
2114
2115#[stable(feature = "rust1", since = "1.0.0")]
2116impl Eq for PathBuf {}
2117
2118#[stable(feature = "rust1", since = "1.0.0")]
2119impl PartialOrd for PathBuf {
2120 #[inline]
2121 fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
2122 Some(compare_components(self.components(), other.components()))
2123 }
2124}
2125
2126#[stable(feature = "rust1", since = "1.0.0")]
2127impl Ord for PathBuf {
2128 #[inline]
2129 fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
2130 compare_components(self.components(), other.components())
2131 }
2132}
2133
2134#[stable(feature = "rust1", since = "1.0.0")]
2135impl AsRef<OsStr> for PathBuf {
2136 #[inline]
2137 fn as_ref(&self) -> &OsStr {
2138 &self.inner[..]
2139 }
2140}
2141
2142/// A slice of a path (akin to [`str`]).
2143///
2144/// This type supports a number of operations for inspecting a path, including
2145/// breaking the path into its components (separated by `/` on Unix and by either
2146/// `/` or `\` on Windows), extracting the file name, determining whether the path
2147/// is absolute, and so on.
2148///
2149/// This is an *unsized* type, meaning that it must always be used behind a
2150/// pointer like `&` or [`Box`]. For an owned version of this type,
2151/// see [`PathBuf`].
2152///
2153/// More details about the overall approach can be found in
2154/// the [module documentation](self).
2155///
2156/// # Examples
2157///
2158/// ```
2159/// use std::path::Path;
2160/// use std::ffi::OsStr;
2161///
2162/// // Note: this example does work on Windows
2163/// let path = Path::new("./foo/bar.txt");
2164///
2165/// let parent = path.parent();
2166/// assert_eq!(parent, Some(Path::new("./foo")));
2167///
2168/// let file_stem = path.file_stem();
2169/// assert_eq!(file_stem, Some(OsStr::new("bar")));
2170///
2171/// let extension = path.extension();
2172/// assert_eq!(extension, Some(OsStr::new("txt")));
2173/// ```
2174#[cfg_attr(not(test), rustc_diagnostic_item = "Path")]
2175#[stable(feature = "rust1", since = "1.0.0")]
2176// `Path::new` and `impl CloneToUninit for Path` current implementation relies
2177// on `Path` being layout-compatible with `OsStr`.
2178// However, `Path` layout is considered an implementation detail and must not be relied upon.
2179#[repr(transparent)]
2180pub struct Path {
2181 inner: OsStr,
2182}
2183
2184/// An error returned from [`Path::strip_prefix`] if the prefix was not found.
2185///
2186/// This `struct` is created by the [`strip_prefix`] method on [`Path`].
2187/// See its documentation for more.
2188///
2189/// [`strip_prefix`]: Path::strip_prefix
2190#[derive(Debug, Clone, PartialEq, Eq)]
2191#[stable(since = "1.7.0", feature = "strip_prefix")]
2192pub struct StripPrefixError(());
2193
2194/// An error returned from [`Path::normalize_lexically`] if a `..` parent reference
2195/// would escape the path.
2196#[unstable(feature = "normalize_lexically", issue = "134694")]
2197#[derive(Debug, PartialEq)]
2198#[non_exhaustive]
2199pub struct NormalizeError;
2200
2201impl Path {
2202 // The following (private!) function allows construction of a path from a u8
2203 // slice, which is only safe when it is known to follow the OsStr encoding.
2204 unsafe fn from_u8_slice(s: &[u8]) -> &Path {
2205 unsafe { Path::new(OsStr::from_encoded_bytes_unchecked(s)) }
2206 }
2207 // The following (private!) function reveals the byte encoding used for OsStr.
2208 pub(crate) fn as_u8_slice(&self) -> &[u8] {
2209 self.inner.as_encoded_bytes()
2210 }
2211
2212 /// Directly wraps a string slice as a `Path` slice.
2213 ///
2214 /// This is a cost-free conversion.
2215 ///
2216 /// # Examples
2217 ///
2218 /// ```
2219 /// use std::path::Path;
2220 ///
2221 /// Path::new("foo.txt");
2222 /// ```
2223 ///
2224 /// You can create `Path`s from `String`s, or even other `Path`s:
2225 ///
2226 /// ```
2227 /// use std::path::Path;
2228 ///
2229 /// let string = String::from("foo.txt");
2230 /// let from_string = Path::new(&string);
2231 /// let from_path = Path::new(&from_string);
2232 /// assert_eq!(from_string, from_path);
2233 /// ```
2234 #[stable(feature = "rust1", since = "1.0.0")]
2235 pub fn new<S: AsRef<OsStr> + ?Sized>(s: &S) -> &Path {
2236 unsafe { &*(s.as_ref() as *const OsStr as *const Path) }
2237 }
2238
2239 fn from_inner_mut(inner: &mut OsStr) -> &mut Path {
2240 // SAFETY: Path is just a wrapper around OsStr,
2241 // therefore converting &mut OsStr to &mut Path is safe.
2242 unsafe { &mut *(inner as *mut OsStr as *mut Path) }
2243 }
2244
2245 /// Yields the underlying [`OsStr`] slice.
2246 ///
2247 /// # Examples
2248 ///
2249 /// ```
2250 /// use std::path::Path;
2251 ///
2252 /// let os_str = Path::new("foo.txt").as_os_str();
2253 /// assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
2254 /// ```
2255 #[stable(feature = "rust1", since = "1.0.0")]
2256 #[must_use]
2257 #[inline]
2258 pub fn as_os_str(&self) -> &OsStr {
2259 &self.inner
2260 }
2261
2262 /// Yields a mutable reference to the underlying [`OsStr`] slice.
2263 ///
2264 /// # Examples
2265 ///
2266 /// ```
2267 /// use std::path::{Path, PathBuf};
2268 ///
2269 /// let mut path = PathBuf::from("Foo.TXT");
2270 ///
2271 /// assert_ne!(path, Path::new("foo.txt"));
2272 ///
2273 /// path.as_mut_os_str().make_ascii_lowercase();
2274 /// assert_eq!(path, Path::new("foo.txt"));
2275 /// ```
2276 #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
2277 #[must_use]
2278 #[inline]
2279 pub fn as_mut_os_str(&mut self) -> &mut OsStr {
2280 &mut self.inner
2281 }
2282
2283 /// Yields a [`&str`] slice if the `Path` is valid unicode.
2284 ///
2285 /// This conversion may entail doing a check for UTF-8 validity.
2286 /// Note that validation is performed because non-UTF-8 strings are
2287 /// perfectly valid for some OS.
2288 ///
2289 /// [`&str`]: str
2290 ///
2291 /// # Examples
2292 ///
2293 /// ```
2294 /// use std::path::Path;
2295 ///
2296 /// let path = Path::new("foo.txt");
2297 /// assert_eq!(path.to_str(), Some("foo.txt"));
2298 /// ```
2299 #[stable(feature = "rust1", since = "1.0.0")]
2300 #[must_use = "this returns the result of the operation, \
2301 without modifying the original"]
2302 #[inline]
2303 pub fn to_str(&self) -> Option<&str> {
2304 self.inner.to_str()
2305 }
2306
2307 /// Converts a `Path` to a [`Cow<str>`].
2308 ///
2309 /// Any non-UTF-8 sequences are replaced with
2310 /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
2311 ///
2312 /// [U+FFFD]: super::char::REPLACEMENT_CHARACTER
2313 ///
2314 /// # Examples
2315 ///
2316 /// Calling `to_string_lossy` on a `Path` with valid unicode:
2317 ///
2318 /// ```
2319 /// use std::path::Path;
2320 ///
2321 /// let path = Path::new("foo.txt");
2322 /// assert_eq!(path.to_string_lossy(), "foo.txt");
2323 /// ```
2324 ///
2325 /// Had `path` contained invalid unicode, the `to_string_lossy` call might
2326 /// have returned `"fo�.txt"`.
2327 #[stable(feature = "rust1", since = "1.0.0")]
2328 #[must_use = "this returns the result of the operation, \
2329 without modifying the original"]
2330 #[inline]
2331 pub fn to_string_lossy(&self) -> Cow<'_, str> {
2332 self.inner.to_string_lossy()
2333 }
2334
2335 /// Converts a `Path` to an owned [`PathBuf`].
2336 ///
2337 /// # Examples
2338 ///
2339 /// ```
2340 /// use std::path::{Path, PathBuf};
2341 ///
2342 /// let path_buf = Path::new("foo.txt").to_path_buf();
2343 /// assert_eq!(path_buf, PathBuf::from("foo.txt"));
2344 /// ```
2345 #[rustc_conversion_suggestion]
2346 #[must_use = "this returns the result of the operation, \
2347 without modifying the original"]
2348 #[stable(feature = "rust1", since = "1.0.0")]
2349 #[cfg_attr(not(test), rustc_diagnostic_item = "path_to_pathbuf")]
2350 pub fn to_path_buf(&self) -> PathBuf {
2351 PathBuf::from(self.inner.to_os_string())
2352 }
2353
2354 /// Returns `true` if the `Path` is absolute, i.e., if it is independent of
2355 /// the current directory.
2356 ///
2357 /// * On Unix, a path is absolute if it starts with the root, so
2358 /// `is_absolute` and [`has_root`] are equivalent.
2359 ///
2360 /// * On Windows, a path is absolute if it has a prefix and starts with the
2361 /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not.
2362 ///
2363 /// # Examples
2364 ///
2365 /// ```
2366 /// use std::path::Path;
2367 ///
2368 /// assert!(!Path::new("foo.txt").is_absolute());
2369 /// ```
2370 ///
2371 /// [`has_root`]: Path::has_root
2372 #[stable(feature = "rust1", since = "1.0.0")]
2373 #[must_use]
2374 #[allow(deprecated)]
2375 pub fn is_absolute(&self) -> bool {
2376 sys::path::is_absolute(self)
2377 }
2378
2379 /// Returns `true` if the `Path` is relative, i.e., not absolute.
2380 ///
2381 /// See [`is_absolute`]'s documentation for more details.
2382 ///
2383 /// # Examples
2384 ///
2385 /// ```
2386 /// use std::path::Path;
2387 ///
2388 /// assert!(Path::new("foo.txt").is_relative());
2389 /// ```
2390 ///
2391 /// [`is_absolute`]: Path::is_absolute
2392 #[stable(feature = "rust1", since = "1.0.0")]
2393 #[must_use]
2394 #[inline]
2395 pub fn is_relative(&self) -> bool {
2396 !self.is_absolute()
2397 }
2398
2399 pub(crate) fn prefix(&self) -> Option<Prefix<'_>> {
2400 self.components().prefix
2401 }
2402
2403 /// Returns `true` if the `Path` has a root.
2404 ///
2405 /// * On Unix, a path has a root if it begins with `/`.
2406 ///
2407 /// * On Windows, a path has a root if it:
2408 /// * has no prefix and begins with a separator, e.g., `\windows`
2409 /// * has a prefix followed by a separator, e.g., `c:\windows` but not `c:windows`
2410 /// * has any non-disk prefix, e.g., `\\server\share`
2411 ///
2412 /// # Examples
2413 ///
2414 /// ```
2415 /// use std::path::Path;
2416 ///
2417 /// assert!(Path::new("/etc/passwd").has_root());
2418 /// ```
2419 #[stable(feature = "rust1", since = "1.0.0")]
2420 #[must_use]
2421 #[inline]
2422 pub fn has_root(&self) -> bool {
2423 self.components().has_root()
2424 }
2425
2426 /// Returns the `Path` without its final component, if there is one.
2427 ///
2428 /// This means it returns `Some("")` for relative paths with one component.
2429 ///
2430 /// Returns [`None`] if the path terminates in a root or prefix, or if it's
2431 /// the empty string.
2432 ///
2433 /// # Examples
2434 ///
2435 /// ```
2436 /// use std::path::Path;
2437 ///
2438 /// let path = Path::new("/foo/bar");
2439 /// let parent = path.parent().unwrap();
2440 /// assert_eq!(parent, Path::new("/foo"));
2441 ///
2442 /// let grand_parent = parent.parent().unwrap();
2443 /// assert_eq!(grand_parent, Path::new("/"));
2444 /// assert_eq!(grand_parent.parent(), None);
2445 ///
2446 /// let relative_path = Path::new("foo/bar");
2447 /// let parent = relative_path.parent();
2448 /// assert_eq!(parent, Some(Path::new("foo")));
2449 /// let grand_parent = parent.and_then(Path::parent);
2450 /// assert_eq!(grand_parent, Some(Path::new("")));
2451 /// let great_grand_parent = grand_parent.and_then(Path::parent);
2452 /// assert_eq!(great_grand_parent, None);
2453 /// ```
2454 #[stable(feature = "rust1", since = "1.0.0")]
2455 #[doc(alias = "dirname")]
2456 #[must_use]
2457 pub fn parent(&self) -> Option<&Path> {
2458 let mut comps = self.components();
2459 let comp = comps.next_back();
2460 comp.and_then(|p| match p {
2461 Component::Normal(_) | Component::CurDir | Component::ParentDir => {
2462 Some(comps.as_path())
2463 }
2464 _ => None,
2465 })
2466 }
2467
2468 /// Produces an iterator over `Path` and its ancestors.
2469 ///
2470 /// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
2471 /// or more times. If the [`parent`] method returns [`None`], the iterator will do likewise.
2472 /// The iterator will always yield at least one value, namely `Some(&self)`. Next it will yield
2473 /// `&self.parent()`, `&self.parent().and_then(Path::parent)` and so on.
2474 ///
2475 /// # Examples
2476 ///
2477 /// ```
2478 /// use std::path::Path;
2479 ///
2480 /// let mut ancestors = Path::new("/foo/bar").ancestors();
2481 /// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
2482 /// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
2483 /// assert_eq!(ancestors.next(), Some(Path::new("/")));
2484 /// assert_eq!(ancestors.next(), None);
2485 ///
2486 /// let mut ancestors = Path::new("../foo/bar").ancestors();
2487 /// assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
2488 /// assert_eq!(ancestors.next(), Some(Path::new("../foo")));
2489 /// assert_eq!(ancestors.next(), Some(Path::new("..")));
2490 /// assert_eq!(ancestors.next(), Some(Path::new("")));
2491 /// assert_eq!(ancestors.next(), None);
2492 /// ```
2493 ///
2494 /// [`parent`]: Path::parent
2495 #[stable(feature = "path_ancestors", since = "1.28.0")]
2496 #[inline]
2497 pub fn ancestors(&self) -> Ancestors<'_> {
2498 Ancestors { next: Some(&self) }
2499 }
2500
2501 /// Returns the final component of the `Path`, if there is one.
2502 ///
2503 /// If the path is a normal file, this is the file name. If it's the path of a directory, this
2504 /// is the directory name.
2505 ///
2506 /// Returns [`None`] if the path terminates in `..`.
2507 ///
2508 /// # Examples
2509 ///
2510 /// ```
2511 /// use std::path::Path;
2512 /// use std::ffi::OsStr;
2513 ///
2514 /// assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
2515 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
2516 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
2517 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
2518 /// assert_eq!(None, Path::new("foo.txt/..").file_name());
2519 /// assert_eq!(None, Path::new("/").file_name());
2520 /// ```
2521 #[stable(feature = "rust1", since = "1.0.0")]
2522 #[doc(alias = "basename")]
2523 #[must_use]
2524 pub fn file_name(&self) -> Option<&OsStr> {
2525 self.components().next_back().and_then(|p| match p {
2526 Component::Normal(p) => Some(p),
2527 _ => None,
2528 })
2529 }
2530
2531 /// Returns a path that, when joined onto `base`, yields `self`.
2532 ///
2533 /// # Errors
2534 ///
2535 /// If `base` is not a prefix of `self` (i.e., [`starts_with`]
2536 /// returns `false`), returns [`Err`].
2537 ///
2538 /// [`starts_with`]: Path::starts_with
2539 ///
2540 /// # Examples
2541 ///
2542 /// ```
2543 /// use std::path::{Path, PathBuf};
2544 ///
2545 /// let path = Path::new("/test/haha/foo.txt");
2546 ///
2547 /// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
2548 /// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
2549 /// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
2550 /// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
2551 /// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
2552 ///
2553 /// assert!(path.strip_prefix("test").is_err());
2554 /// assert!(path.strip_prefix("/te").is_err());
2555 /// assert!(path.strip_prefix("/haha").is_err());
2556 ///
2557 /// let prefix = PathBuf::from("/test/");
2558 /// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
2559 /// ```
2560 #[stable(since = "1.7.0", feature = "path_strip_prefix")]
2561 pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
2562 where
2563 P: AsRef<Path>,
2564 {
2565 self._strip_prefix(base.as_ref())
2566 }
2567
2568 fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
2569 iter_after(self.components(), base.components())
2570 .map(|c| c.as_path())
2571 .ok_or(StripPrefixError(()))
2572 }
2573
2574 /// Determines whether `base` is a prefix of `self`.
2575 ///
2576 /// Only considers whole path components to match.
2577 ///
2578 /// # Examples
2579 ///
2580 /// ```
2581 /// use std::path::Path;
2582 ///
2583 /// let path = Path::new("/etc/passwd");
2584 ///
2585 /// assert!(path.starts_with("/etc"));
2586 /// assert!(path.starts_with("/etc/"));
2587 /// assert!(path.starts_with("/etc/passwd"));
2588 /// assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
2589 /// assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
2590 ///
2591 /// assert!(!path.starts_with("/e"));
2592 /// assert!(!path.starts_with("/etc/passwd.txt"));
2593 ///
2594 /// assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
2595 /// ```
2596 #[stable(feature = "rust1", since = "1.0.0")]
2597 #[must_use]
2598 pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
2599 self._starts_with(base.as_ref())
2600 }
2601
2602 fn _starts_with(&self, base: &Path) -> bool {
2603 iter_after(self.components(), base.components()).is_some()
2604 }
2605
2606 /// Determines whether `child` is a suffix of `self`.
2607 ///
2608 /// Only considers whole path components to match.
2609 ///
2610 /// # Examples
2611 ///
2612 /// ```
2613 /// use std::path::Path;
2614 ///
2615 /// let path = Path::new("/etc/resolv.conf");
2616 ///
2617 /// assert!(path.ends_with("resolv.conf"));
2618 /// assert!(path.ends_with("etc/resolv.conf"));
2619 /// assert!(path.ends_with("/etc/resolv.conf"));
2620 ///
2621 /// assert!(!path.ends_with("/resolv.conf"));
2622 /// assert!(!path.ends_with("conf")); // use .extension() instead
2623 /// ```
2624 #[stable(feature = "rust1", since = "1.0.0")]
2625 #[must_use]
2626 pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
2627 self._ends_with(child.as_ref())
2628 }
2629
2630 fn _ends_with(&self, child: &Path) -> bool {
2631 iter_after(self.components().rev(), child.components().rev()).is_some()
2632 }
2633
2634 /// Extracts the stem (non-extension) portion of [`self.file_name`].
2635 ///
2636 /// [`self.file_name`]: Path::file_name
2637 ///
2638 /// The stem is:
2639 ///
2640 /// * [`None`], if there is no file name;
2641 /// * The entire file name if there is no embedded `.`;
2642 /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2643 /// * Otherwise, the portion of the file name before the final `.`
2644 ///
2645 /// # Examples
2646 ///
2647 /// ```
2648 /// use std::path::Path;
2649 ///
2650 /// assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
2651 /// assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
2652 /// ```
2653 ///
2654 /// # See Also
2655 /// This method is similar to [`Path::file_prefix`], which extracts the portion of the file name
2656 /// before the *first* `.`
2657 ///
2658 /// [`Path::file_prefix`]: Path::file_prefix
2659 ///
2660 #[stable(feature = "rust1", since = "1.0.0")]
2661 #[must_use]
2662 pub fn file_stem(&self) -> Option<&OsStr> {
2663 self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.or(after))
2664 }
2665
2666 /// Extracts the prefix of [`self.file_name`].
2667 ///
2668 /// The prefix is:
2669 ///
2670 /// * [`None`], if there is no file name;
2671 /// * The entire file name if there is no embedded `.`;
2672 /// * The portion of the file name before the first non-beginning `.`;
2673 /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2674 /// * The portion of the file name before the second `.` if the file name begins with `.`
2675 ///
2676 /// [`self.file_name`]: Path::file_name
2677 ///
2678 /// # Examples
2679 ///
2680 /// ```
2681 /// # #![feature(path_file_prefix)]
2682 /// use std::path::Path;
2683 ///
2684 /// assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
2685 /// assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
2686 /// ```
2687 ///
2688 /// # See Also
2689 /// This method is similar to [`Path::file_stem`], which extracts the portion of the file name
2690 /// before the *last* `.`
2691 ///
2692 /// [`Path::file_stem`]: Path::file_stem
2693 ///
2694 #[unstable(feature = "path_file_prefix", issue = "86319")]
2695 #[must_use]
2696 pub fn file_prefix(&self) -> Option<&OsStr> {
2697 self.file_name().map(split_file_at_dot).and_then(|(before, _after)| Some(before))
2698 }
2699
2700 /// Extracts the extension (without the leading dot) of [`self.file_name`], if possible.
2701 ///
2702 /// The extension is:
2703 ///
2704 /// * [`None`], if there is no file name;
2705 /// * [`None`], if there is no embedded `.`;
2706 /// * [`None`], if the file name begins with `.` and has no other `.`s within;
2707 /// * Otherwise, the portion of the file name after the final `.`
2708 ///
2709 /// [`self.file_name`]: Path::file_name
2710 ///
2711 /// # Examples
2712 ///
2713 /// ```
2714 /// use std::path::Path;
2715 ///
2716 /// assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
2717 /// assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
2718 /// ```
2719 #[stable(feature = "rust1", since = "1.0.0")]
2720 #[must_use]
2721 pub fn extension(&self) -> Option<&OsStr> {
2722 self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.and(after))
2723 }
2724
2725 /// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
2726 ///
2727 /// If `path` is absolute, it replaces the current path.
2728 ///
2729 /// See [`PathBuf::push`] for more details on what it means to adjoin a path.
2730 ///
2731 /// # Examples
2732 ///
2733 /// ```
2734 /// use std::path::{Path, PathBuf};
2735 ///
2736 /// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
2737 /// assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));
2738 /// ```
2739 #[stable(feature = "rust1", since = "1.0.0")]
2740 #[must_use]
2741 pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
2742 self._join(path.as_ref())
2743 }
2744
2745 fn _join(&self, path: &Path) -> PathBuf {
2746 let mut buf = self.to_path_buf();
2747 buf.push(path);
2748 buf
2749 }
2750
2751 /// Creates an owned [`PathBuf`] like `self` but with the given file name.
2752 ///
2753 /// See [`PathBuf::set_file_name`] for more details.
2754 ///
2755 /// # Examples
2756 ///
2757 /// ```
2758 /// use std::path::{Path, PathBuf};
2759 ///
2760 /// let path = Path::new("/tmp/foo.png");
2761 /// assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
2762 /// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
2763 ///
2764 /// let path = Path::new("/tmp");
2765 /// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
2766 /// ```
2767 #[stable(feature = "rust1", since = "1.0.0")]
2768 #[must_use]
2769 pub fn with_file_name<S: AsRef<OsStr>>(&self, file_name: S) -> PathBuf {
2770 self._with_file_name(file_name.as_ref())
2771 }
2772
2773 fn _with_file_name(&self, file_name: &OsStr) -> PathBuf {
2774 let mut buf = self.to_path_buf();
2775 buf.set_file_name(file_name);
2776 buf
2777 }
2778
2779 /// Creates an owned [`PathBuf`] like `self` but with the given extension.
2780 ///
2781 /// See [`PathBuf::set_extension`] for more details.
2782 ///
2783 /// # Examples
2784 ///
2785 /// ```
2786 /// use std::path::Path;
2787 ///
2788 /// let path = Path::new("foo.rs");
2789 /// assert_eq!(path.with_extension("txt"), Path::new("foo.txt"));
2790 /// assert_eq!(path.with_extension(""), Path::new("foo"));
2791 /// ```
2792 ///
2793 /// Handling multiple extensions:
2794 ///
2795 /// ```
2796 /// use std::path::Path;
2797 ///
2798 /// let path = Path::new("foo.tar.gz");
2799 /// assert_eq!(path.with_extension("xz"), Path::new("foo.tar.xz"));
2800 /// assert_eq!(path.with_extension("").with_extension("txt"), Path::new("foo.txt"));
2801 /// ```
2802 ///
2803 /// Adding an extension where one did not exist:
2804 ///
2805 /// ```
2806 /// use std::path::Path;
2807 ///
2808 /// let path = Path::new("foo");
2809 /// assert_eq!(path.with_extension("rs"), Path::new("foo.rs"));
2810 /// ```
2811 #[stable(feature = "rust1", since = "1.0.0")]
2812 pub fn with_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2813 self._with_extension(extension.as_ref())
2814 }
2815
2816 fn _with_extension(&self, extension: &OsStr) -> PathBuf {
2817 let self_len = self.as_os_str().len();
2818 let self_bytes = self.as_os_str().as_encoded_bytes();
2819
2820 let (new_capacity, slice_to_copy) = match self.extension() {
2821 None => {
2822 // Enough capacity for the extension and the dot
2823 let capacity = self_len + extension.len() + 1;
2824 let whole_path = self_bytes;
2825 (capacity, whole_path)
2826 }
2827 Some(previous_extension) => {
2828 let capacity = self_len + extension.len() - previous_extension.len();
2829 let path_till_dot = &self_bytes[..self_len - previous_extension.len()];
2830 (capacity, path_till_dot)
2831 }
2832 };
2833
2834 let mut new_path = PathBuf::with_capacity(new_capacity);
2835 // SAFETY: The path is empty, so cannot have surrogate halves.
2836 unsafe { new_path.inner.extend_from_slice_unchecked(slice_to_copy) };
2837 new_path.set_extension(extension);
2838 new_path
2839 }
2840
2841 /// Creates an owned [`PathBuf`] like `self` but with the extension added.
2842 ///
2843 /// See [`PathBuf::add_extension`] for more details.
2844 ///
2845 /// # Examples
2846 ///
2847 /// ```
2848 /// #![feature(path_add_extension)]
2849 ///
2850 /// use std::path::{Path, PathBuf};
2851 ///
2852 /// let path = Path::new("foo.rs");
2853 /// assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
2854 ///
2855 /// let path = Path::new("foo.tar.gz");
2856 /// assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
2857 /// assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
2858 /// assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));
2859 /// ```
2860 #[unstable(feature = "path_add_extension", issue = "127292")]
2861 pub fn with_added_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2862 let mut new_path = self.to_path_buf();
2863 new_path.add_extension(extension);
2864 new_path
2865 }
2866
2867 /// Produces an iterator over the [`Component`]s of the path.
2868 ///
2869 /// When parsing the path, there is a small amount of normalization:
2870 ///
2871 /// * Repeated separators are ignored, so `a/b` and `a//b` both have
2872 /// `a` and `b` as components.
2873 ///
2874 /// * Occurrences of `.` are normalized away, except if they are at the
2875 /// beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
2876 /// `a/b` all have `a` and `b` as components, but `./a/b` starts with
2877 /// an additional [`CurDir`] component.
2878 ///
2879 /// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
2880 ///
2881 /// Note that no other normalization takes place; in particular, `a/c`
2882 /// and `a/b/../c` are distinct, to account for the possibility that `b`
2883 /// is a symbolic link (so its parent isn't `a`).
2884 ///
2885 /// # Examples
2886 ///
2887 /// ```
2888 /// use std::path::{Path, Component};
2889 /// use std::ffi::OsStr;
2890 ///
2891 /// let mut components = Path::new("/tmp/foo.txt").components();
2892 ///
2893 /// assert_eq!(components.next(), Some(Component::RootDir));
2894 /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
2895 /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
2896 /// assert_eq!(components.next(), None)
2897 /// ```
2898 ///
2899 /// [`CurDir`]: Component::CurDir
2900 #[stable(feature = "rust1", since = "1.0.0")]
2901 pub fn components(&self) -> Components<'_> {
2902 let prefix = parse_prefix(self.as_os_str());
2903 Components {
2904 path: self.as_u8_slice(),
2905 prefix,
2906 has_physical_root: has_physical_root(self.as_u8_slice(), prefix),
2907 front: State::Prefix,
2908 back: State::Body,
2909 }
2910 }
2911
2912 /// Produces an iterator over the path's components viewed as [`OsStr`]
2913 /// slices.
2914 ///
2915 /// For more information about the particulars of how the path is separated
2916 /// into components, see [`components`].
2917 ///
2918 /// [`components`]: Path::components
2919 ///
2920 /// # Examples
2921 ///
2922 /// ```
2923 /// use std::path::{self, Path};
2924 /// use std::ffi::OsStr;
2925 ///
2926 /// let mut it = Path::new("/tmp/foo.txt").iter();
2927 /// assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
2928 /// assert_eq!(it.next(), Some(OsStr::new("tmp")));
2929 /// assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
2930 /// assert_eq!(it.next(), None)
2931 /// ```
2932 #[stable(feature = "rust1", since = "1.0.0")]
2933 #[inline]
2934 pub fn iter(&self) -> Iter<'_> {
2935 Iter { inner: self.components() }
2936 }
2937
2938 /// Returns an object that implements [`Display`] for safely printing paths
2939 /// that may contain non-Unicode data. This may perform lossy conversion,
2940 /// depending on the platform. If you would like an implementation which
2941 /// escapes the path please use [`Debug`] instead.
2942 ///
2943 /// [`Display`]: fmt::Display
2944 /// [`Debug`]: fmt::Debug
2945 ///
2946 /// # Examples
2947 ///
2948 /// ```
2949 /// use std::path::Path;
2950 ///
2951 /// let path = Path::new("/tmp/foo.rs");
2952 ///
2953 /// println!("{}", path.display());
2954 /// ```
2955 #[stable(feature = "rust1", since = "1.0.0")]
2956 #[must_use = "this does not display the path, \
2957 it returns an object that can be displayed"]
2958 #[inline]
2959 pub fn display(&self) -> Display<'_> {
2960 Display { inner: self.inner.display() }
2961 }
2962
2963 /// Queries the file system to get information about a file, directory, etc.
2964 ///
2965 /// This function will traverse symbolic links to query information about the
2966 /// destination file.
2967 ///
2968 /// This is an alias to [`fs::metadata`].
2969 ///
2970 /// # Examples
2971 ///
2972 /// ```no_run
2973 /// use std::path::Path;
2974 ///
2975 /// let path = Path::new("/Minas/tirith");
2976 /// let metadata = path.metadata().expect("metadata call failed");
2977 /// println!("{:?}", metadata.file_type());
2978 /// ```
2979 #[stable(feature = "path_ext", since = "1.5.0")]
2980 #[inline]
2981 pub fn metadata(&self) -> io::Result<fs::Metadata> {
2982 fs::metadata(self)
2983 }
2984
2985 /// Queries the metadata about a file without following symlinks.
2986 ///
2987 /// This is an alias to [`fs::symlink_metadata`].
2988 ///
2989 /// # Examples
2990 ///
2991 /// ```no_run
2992 /// use std::path::Path;
2993 ///
2994 /// let path = Path::new("/Minas/tirith");
2995 /// let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
2996 /// println!("{:?}", metadata.file_type());
2997 /// ```
2998 #[stable(feature = "path_ext", since = "1.5.0")]
2999 #[inline]
3000 pub fn symlink_metadata(&self) -> io::Result<fs::Metadata> {
3001 fs::symlink_metadata(self)
3002 }
3003
3004 /// Returns the canonical, absolute form of the path with all intermediate
3005 /// components normalized and symbolic links resolved.
3006 ///
3007 /// This is an alias to [`fs::canonicalize`].
3008 ///
3009 /// # Examples
3010 ///
3011 /// ```no_run
3012 /// use std::path::{Path, PathBuf};
3013 ///
3014 /// let path = Path::new("/foo/test/../test/bar.rs");
3015 /// assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
3016 /// ```
3017 #[stable(feature = "path_ext", since = "1.5.0")]
3018 #[inline]
3019 pub fn canonicalize(&self) -> io::Result<PathBuf> {
3020 fs::canonicalize(self)
3021 }
3022
3023 /// Normalize a path, including `..` without traversing the filesystem.
3024 ///
3025 /// Returns an error if normalization would leave leading `..` components.
3026 ///
3027 /// <div class="warning">
3028 ///
3029 /// This function always resolves `..` to the "lexical" parent.
3030 /// That is "a/b/../c" will always resolve to `a/c` which can change the meaning of the path.
3031 /// In particular, `a/c` and `a/b/../c` are distinct on many systems because `b` may be a symbolic link, so its parent isn’t `a`.
3032 ///
3033 /// </div>
3034 ///
3035 /// [`path::absolute`](absolute) is an alternative that preserves `..`.
3036 /// Or [`Path::canonicalize`] can be used to resolve any `..` by querying the filesystem.
3037 #[unstable(feature = "normalize_lexically", issue = "134694")]
3038 pub fn normalize_lexically(&self) -> Result<PathBuf, NormalizeError> {
3039 let mut lexical = PathBuf::new();
3040 let mut iter = self.components().peekable();
3041
3042 // Find the root, if any, and add it to the lexical path.
3043 // Here we treat the Windows path "C:\" as a single "root" even though
3044 // `components` splits it into two: (Prefix, RootDir).
3045 let root = match iter.peek() {
3046 Some(Component::ParentDir) => return Err(NormalizeError),
3047 Some(p @ Component::RootDir) | Some(p @ Component::CurDir) => {
3048 lexical.push(p);
3049 iter.next();
3050 lexical.as_os_str().len()
3051 }
3052 Some(Component::Prefix(prefix)) => {
3053 lexical.push(prefix.as_os_str());
3054 iter.next();
3055 if let Some(p @ Component::RootDir) = iter.peek() {
3056 lexical.push(p);
3057 iter.next();
3058 }
3059 lexical.as_os_str().len()
3060 }
3061 None => return Ok(PathBuf::new()),
3062 Some(Component::Normal(_)) => 0,
3063 };
3064
3065 for component in iter {
3066 match component {
3067 Component::RootDir => unreachable!(),
3068 Component::Prefix(_) => return Err(NormalizeError),
3069 Component::CurDir => continue,
3070 Component::ParentDir => {
3071 // It's an error if ParentDir causes us to go above the "root".
3072 if lexical.as_os_str().len() == root {
3073 return Err(NormalizeError);
3074 } else {
3075 lexical.pop();
3076 }
3077 }
3078 Component::Normal(path) => lexical.push(path),
3079 }
3080 }
3081 Ok(lexical)
3082 }
3083
3084 /// Reads a symbolic link, returning the file that the link points to.
3085 ///
3086 /// This is an alias to [`fs::read_link`].
3087 ///
3088 /// # Examples
3089 ///
3090 /// ```no_run
3091 /// use std::path::Path;
3092 ///
3093 /// let path = Path::new("/laputa/sky_castle.rs");
3094 /// let path_link = path.read_link().expect("read_link call failed");
3095 /// ```
3096 #[stable(feature = "path_ext", since = "1.5.0")]
3097 #[inline]
3098 pub fn read_link(&self) -> io::Result<PathBuf> {
3099 fs::read_link(self)
3100 }
3101
3102 /// Returns an iterator over the entries within a directory.
3103 ///
3104 /// The iterator will yield instances of <code>[io::Result]<[fs::DirEntry]></code>. New
3105 /// errors may be encountered after an iterator is initially constructed.
3106 ///
3107 /// This is an alias to [`fs::read_dir`].
3108 ///
3109 /// # Examples
3110 ///
3111 /// ```no_run
3112 /// use std::path::Path;
3113 ///
3114 /// let path = Path::new("/laputa");
3115 /// for entry in path.read_dir().expect("read_dir call failed") {
3116 /// if let Ok(entry) = entry {
3117 /// println!("{:?}", entry.path());
3118 /// }
3119 /// }
3120 /// ```
3121 #[stable(feature = "path_ext", since = "1.5.0")]
3122 #[inline]
3123 pub fn read_dir(&self) -> io::Result<fs::ReadDir> {
3124 fs::read_dir(self)
3125 }
3126
3127 /// Returns `true` if the path points at an existing entity.
3128 ///
3129 /// Warning: this method may be error-prone, consider using [`try_exists()`] instead!
3130 /// It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.
3131 ///
3132 /// This function will traverse symbolic links to query information about the
3133 /// destination file.
3134 ///
3135 /// If you cannot access the metadata of the file, e.g. because of a
3136 /// permission error or broken symbolic links, this will return `false`.
3137 ///
3138 /// # Examples
3139 ///
3140 /// ```no_run
3141 /// use std::path::Path;
3142 /// assert!(!Path::new("does_not_exist.txt").exists());
3143 /// ```
3144 ///
3145 /// # See Also
3146 ///
3147 /// This is a convenience function that coerces errors to false. If you want to
3148 /// check errors, call [`Path::try_exists`].
3149 ///
3150 /// [`try_exists()`]: Self::try_exists
3151 #[stable(feature = "path_ext", since = "1.5.0")]
3152 #[must_use]
3153 #[inline]
3154 pub fn exists(&self) -> bool {
3155 fs::metadata(self).is_ok()
3156 }
3157
3158 /// Returns `Ok(true)` if the path points at an existing entity.
3159 ///
3160 /// This function will traverse symbolic links to query information about the
3161 /// destination file. In case of broken symbolic links this will return `Ok(false)`.
3162 ///
3163 /// [`Path::exists()`] only checks whether or not a path was both found and readable. By
3164 /// contrast, `try_exists` will return `Ok(true)` or `Ok(false)`, respectively, if the path
3165 /// was _verified_ to exist or not exist. If its existence can neither be confirmed nor
3166 /// denied, it will propagate an `Err(_)` instead. This can be the case if e.g. listing
3167 /// permission is denied on one of the parent directories.
3168 ///
3169 /// Note that while this avoids some pitfalls of the `exists()` method, it still can not
3170 /// prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios
3171 /// where those bugs are not an issue.
3172 ///
3173 /// This is an alias for [`std::fs::exists`](crate::fs::exists).
3174 ///
3175 /// # Examples
3176 ///
3177 /// ```no_run
3178 /// use std::path::Path;
3179 /// assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
3180 /// assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
3181 /// ```
3182 ///
3183 /// [`exists()`]: Self::exists
3184 #[stable(feature = "path_try_exists", since = "1.63.0")]
3185 #[inline]
3186 pub fn try_exists(&self) -> io::Result<bool> {
3187 fs::exists(self)
3188 }
3189
3190 /// Returns `true` if the path exists on disk and is pointing at a regular file.
3191 ///
3192 /// This function will traverse symbolic links to query information about the
3193 /// destination file.
3194 ///
3195 /// If you cannot access the metadata of the file, e.g. because of a
3196 /// permission error or broken symbolic links, this will return `false`.
3197 ///
3198 /// # Examples
3199 ///
3200 /// ```no_run
3201 /// use std::path::Path;
3202 /// assert_eq!(Path::new("./is_a_directory/").is_file(), false);
3203 /// assert_eq!(Path::new("a_file.txt").is_file(), true);
3204 /// ```
3205 ///
3206 /// # See Also
3207 ///
3208 /// This is a convenience function that coerces errors to false. If you want to
3209 /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3210 /// [`fs::Metadata::is_file`] if it was [`Ok`].
3211 ///
3212 /// When the goal is simply to read from (or write to) the source, the most
3213 /// reliable way to test the source can be read (or written to) is to open
3214 /// it. Only using `is_file` can break workflows like `diff <( prog_a )` on
3215 /// a Unix-like system for example. See [`fs::File::open`] or
3216 /// [`fs::OpenOptions::open`] for more information.
3217 #[stable(feature = "path_ext", since = "1.5.0")]
3218 #[must_use]
3219 pub fn is_file(&self) -> bool {
3220 fs::metadata(self).map(|m| m.is_file()).unwrap_or(false)
3221 }
3222
3223 /// Returns `true` if the path exists on disk and is pointing at a directory.
3224 ///
3225 /// This function will traverse symbolic links to query information about the
3226 /// destination file.
3227 ///
3228 /// If you cannot access the metadata of the file, e.g. because of a
3229 /// permission error or broken symbolic links, this will return `false`.
3230 ///
3231 /// # Examples
3232 ///
3233 /// ```no_run
3234 /// use std::path::Path;
3235 /// assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
3236 /// assert_eq!(Path::new("a_file.txt").is_dir(), false);
3237 /// ```
3238 ///
3239 /// # See Also
3240 ///
3241 /// This is a convenience function that coerces errors to false. If you want to
3242 /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3243 /// [`fs::Metadata::is_dir`] if it was [`Ok`].
3244 #[stable(feature = "path_ext", since = "1.5.0")]
3245 #[must_use]
3246 pub fn is_dir(&self) -> bool {
3247 fs::metadata(self).map(|m| m.is_dir()).unwrap_or(false)
3248 }
3249
3250 /// Returns `true` if the path exists on disk and is pointing at a symbolic link.
3251 ///
3252 /// This function will not traverse symbolic links.
3253 /// In case of a broken symbolic link this will also return true.
3254 ///
3255 /// If you cannot access the directory containing the file, e.g., because of a
3256 /// permission error, this will return false.
3257 ///
3258 /// # Examples
3259 ///
3260 #[cfg_attr(unix, doc = "```no_run")]
3261 #[cfg_attr(not(unix), doc = "```ignore")]
3262 /// use std::path::Path;
3263 /// use std::os::unix::fs::symlink;
3264 ///
3265 /// let link_path = Path::new("link");
3266 /// symlink("/origin_does_not_exist/", link_path).unwrap();
3267 /// assert_eq!(link_path.is_symlink(), true);
3268 /// assert_eq!(link_path.exists(), false);
3269 /// ```
3270 ///
3271 /// # See Also
3272 ///
3273 /// This is a convenience function that coerces errors to false. If you want to
3274 /// check errors, call [`fs::symlink_metadata`] and handle its [`Result`]. Then call
3275 /// [`fs::Metadata::is_symlink`] if it was [`Ok`].
3276 #[must_use]
3277 #[stable(feature = "is_symlink", since = "1.58.0")]
3278 pub fn is_symlink(&self) -> bool {
3279 fs::symlink_metadata(self).map(|m| m.is_symlink()).unwrap_or(false)
3280 }
3281
3282 /// Converts a [`Box<Path>`](Box) into a [`PathBuf`] without copying or
3283 /// allocating.
3284 #[stable(feature = "into_boxed_path", since = "1.20.0")]
3285 #[must_use = "`self` will be dropped if the result is not used"]
3286 pub fn into_path_buf(self: Box<Self>) -> PathBuf {
3287 let rw = Box::into_raw(self) as *mut OsStr;
3288 let inner = unsafe { Box::from_raw(rw) };
3289 PathBuf { inner: OsString::from(inner) }
3290 }
3291}
3292
3293#[unstable(feature = "clone_to_uninit", issue = "126799")]
3294unsafe impl CloneToUninit for Path {
3295 #[inline]
3296 #[cfg_attr(debug_assertions, track_caller)]
3297 unsafe fn clone_to_uninit(&self, dst: *mut u8) {
3298 // SAFETY: Path is just a transparent wrapper around OsStr
3299 unsafe { self.inner.clone_to_uninit(dst) }
3300 }
3301}
3302
3303#[stable(feature = "rust1", since = "1.0.0")]
3304impl AsRef<OsStr> for Path {
3305 #[inline]
3306 fn as_ref(&self) -> &OsStr {
3307 &self.inner
3308 }
3309}
3310
3311#[stable(feature = "rust1", since = "1.0.0")]
3312impl fmt::Debug for Path {
3313 fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
3314 fmt::Debug::fmt(&self.inner, formatter)
3315 }
3316}
3317
3318/// Helper struct for safely printing paths with [`format!`] and `{}`.
3319///
3320/// A [`Path`] might contain non-Unicode data. This `struct` implements the
3321/// [`Display`] trait in a way that mitigates that. It is created by the
3322/// [`display`](Path::display) method on [`Path`]. This may perform lossy
3323/// conversion, depending on the platform. If you would like an implementation
3324/// which escapes the path please use [`Debug`] instead.
3325///
3326/// # Examples
3327///
3328/// ```
3329/// use std::path::Path;
3330///
3331/// let path = Path::new("/tmp/foo.rs");
3332///
3333/// println!("{}", path.display());
3334/// ```
3335///
3336/// [`Display`]: fmt::Display
3337/// [`format!`]: crate::format
3338#[stable(feature = "rust1", since = "1.0.0")]
3339pub struct Display<'a> {
3340 inner: os_str::Display<'a>,
3341}
3342
3343#[stable(feature = "rust1", since = "1.0.0")]
3344impl fmt::Debug for Display<'_> {
3345 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3346 fmt::Debug::fmt(&self.inner, f)
3347 }
3348}
3349
3350#[stable(feature = "rust1", since = "1.0.0")]
3351impl fmt::Display for Display<'_> {
3352 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3353 fmt::Display::fmt(&self.inner, f)
3354 }
3355}
3356
3357#[stable(feature = "rust1", since = "1.0.0")]
3358impl PartialEq for Path {
3359 #[inline]
3360 fn eq(&self, other: &Path) -> bool {
3361 self.components() == other.components()
3362 }
3363}
3364
3365#[stable(feature = "rust1", since = "1.0.0")]
3366impl Hash for Path {
3367 fn hash<H: Hasher>(&self, h: &mut H) {
3368 let bytes = self.as_u8_slice();
3369 let (prefix_len, verbatim) = match parse_prefix(&self.inner) {
3370 Some(prefix) => {
3371 prefix.hash(h);
3372 (prefix.len(), prefix.is_verbatim())
3373 }
3374 None => (0, false),
3375 };
3376 let bytes = &bytes[prefix_len..];
3377
3378 let mut component_start = 0;
3379 // track some extra state to avoid prefix collisions.
3380 // ["foo", "bar"] and ["foobar"], will have the same payload bytes
3381 // but result in different chunk_bits
3382 let mut chunk_bits: usize = 0;
3383
3384 for i in 0..bytes.len() {
3385 let is_sep = if verbatim { is_verbatim_sep(bytes[i]) } else { is_sep_byte(bytes[i]) };
3386 if is_sep {
3387 if i > component_start {
3388 let to_hash = &bytes[component_start..i];
3389 chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3390 chunk_bits = chunk_bits.rotate_right(2);
3391 h.write(to_hash);
3392 }
3393
3394 // skip over separator and optionally a following CurDir item
3395 // since components() would normalize these away.
3396 component_start = i + 1;
3397
3398 let tail = &bytes[component_start..];
3399
3400 if !verbatim {
3401 component_start += match tail {
3402 [b'.'] => 1,
3403 [b'.', sep, ..] if is_sep_byte(*sep) => 1,
3404 _ => 0,
3405 };
3406 }
3407 }
3408 }
3409
3410 if component_start < bytes.len() {
3411 let to_hash = &bytes[component_start..];
3412 chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3413 chunk_bits = chunk_bits.rotate_right(2);
3414 h.write(to_hash);
3415 }
3416
3417 h.write_usize(chunk_bits);
3418 }
3419}
3420
3421#[stable(feature = "rust1", since = "1.0.0")]
3422impl Eq for Path {}
3423
3424#[stable(feature = "rust1", since = "1.0.0")]
3425impl PartialOrd for Path {
3426 #[inline]
3427 fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
3428 Some(compare_components(self.components(), other.components()))
3429 }
3430}
3431
3432#[stable(feature = "rust1", since = "1.0.0")]
3433impl Ord for Path {
3434 #[inline]
3435 fn cmp(&self, other: &Path) -> cmp::Ordering {
3436 compare_components(self.components(), other.components())
3437 }
3438}
3439
3440#[stable(feature = "rust1", since = "1.0.0")]
3441impl AsRef<Path> for Path {
3442 #[inline]
3443 fn as_ref(&self) -> &Path {
3444 self
3445 }
3446}
3447
3448#[stable(feature = "rust1", since = "1.0.0")]
3449impl AsRef<Path> for OsStr {
3450 #[inline]
3451 fn as_ref(&self) -> &Path {
3452 Path::new(self)
3453 }
3454}
3455
3456#[stable(feature = "cow_os_str_as_ref_path", since = "1.8.0")]
3457impl AsRef<Path> for Cow<'_, OsStr> {
3458 #[inline]
3459 fn as_ref(&self) -> &Path {
3460 Path::new(self)
3461 }
3462}
3463
3464#[stable(feature = "rust1", since = "1.0.0")]
3465impl AsRef<Path> for OsString {
3466 #[inline]
3467 fn as_ref(&self) -> &Path {
3468 Path::new(self)
3469 }
3470}
3471
3472#[stable(feature = "rust1", since = "1.0.0")]
3473impl AsRef<Path> for str {
3474 #[inline]
3475 fn as_ref(&self) -> &Path {
3476 Path::new(self)
3477 }
3478}
3479
3480#[stable(feature = "rust1", since = "1.0.0")]
3481impl AsRef<Path> for String {
3482 #[inline]
3483 fn as_ref(&self) -> &Path {
3484 Path::new(self)
3485 }
3486}
3487
3488#[stable(feature = "rust1", since = "1.0.0")]
3489impl AsRef<Path> for PathBuf {
3490 #[inline]
3491 fn as_ref(&self) -> &Path {
3492 self
3493 }
3494}
3495
3496#[stable(feature = "path_into_iter", since = "1.6.0")]
3497impl<'a> IntoIterator for &'a PathBuf {
3498 type Item = &'a OsStr;
3499 type IntoIter = Iter<'a>;
3500 #[inline]
3501 fn into_iter(self) -> Iter<'a> {
3502 self.iter()
3503 }
3504}
3505
3506#[stable(feature = "path_into_iter", since = "1.6.0")]
3507impl<'a> IntoIterator for &'a Path {
3508 type Item = &'a OsStr;
3509 type IntoIter = Iter<'a>;
3510 #[inline]
3511 fn into_iter(self) -> Iter<'a> {
3512 self.iter()
3513 }
3514}
3515
3516macro_rules! impl_cmp {
3517 (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3518 #[stable(feature = "partialeq_path", since = "1.6.0")]
3519 impl<$($life),*> PartialEq<$rhs> for $lhs {
3520 #[inline]
3521 fn eq(&self, other: &$rhs) -> bool {
3522 <Path as PartialEq>::eq(self, other)
3523 }
3524 }
3525
3526 #[stable(feature = "partialeq_path", since = "1.6.0")]
3527 impl<$($life),*> PartialEq<$lhs> for $rhs {
3528 #[inline]
3529 fn eq(&self, other: &$lhs) -> bool {
3530 <Path as PartialEq>::eq(self, other)
3531 }
3532 }
3533
3534 #[stable(feature = "cmp_path", since = "1.8.0")]
3535 impl<$($life),*> PartialOrd<$rhs> for $lhs {
3536 #[inline]
3537 fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3538 <Path as PartialOrd>::partial_cmp(self, other)
3539 }
3540 }
3541
3542 #[stable(feature = "cmp_path", since = "1.8.0")]
3543 impl<$($life),*> PartialOrd<$lhs> for $rhs {
3544 #[inline]
3545 fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3546 <Path as PartialOrd>::partial_cmp(self, other)
3547 }
3548 }
3549 };
3550}
3551
3552impl_cmp!(<> PathBuf, Path);
3553impl_cmp!(<'a> PathBuf, &'a Path);
3554impl_cmp!(<'a> Cow<'a, Path>, Path);
3555impl_cmp!(<'a, 'b> Cow<'a, Path>, &'b Path);
3556impl_cmp!(<'a> Cow<'a, Path>, PathBuf);
3557
3558macro_rules! impl_cmp_os_str {
3559 (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3560 #[stable(feature = "cmp_path", since = "1.8.0")]
3561 impl<$($life),*> PartialEq<$rhs> for $lhs {
3562 #[inline]
3563 fn eq(&self, other: &$rhs) -> bool {
3564 <Path as PartialEq>::eq(self, other.as_ref())
3565 }
3566 }
3567
3568 #[stable(feature = "cmp_path", since = "1.8.0")]
3569 impl<$($life),*> PartialEq<$lhs> for $rhs {
3570 #[inline]
3571 fn eq(&self, other: &$lhs) -> bool {
3572 <Path as PartialEq>::eq(self.as_ref(), other)
3573 }
3574 }
3575
3576 #[stable(feature = "cmp_path", since = "1.8.0")]
3577 impl<$($life),*> PartialOrd<$rhs> for $lhs {
3578 #[inline]
3579 fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3580 <Path as PartialOrd>::partial_cmp(self, other.as_ref())
3581 }
3582 }
3583
3584 #[stable(feature = "cmp_path", since = "1.8.0")]
3585 impl<$($life),*> PartialOrd<$lhs> for $rhs {
3586 #[inline]
3587 fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3588 <Path as PartialOrd>::partial_cmp(self.as_ref(), other)
3589 }
3590 }
3591 };
3592}
3593
3594impl_cmp_os_str!(<> PathBuf, OsStr);
3595impl_cmp_os_str!(<'a> PathBuf, &'a OsStr);
3596impl_cmp_os_str!(<'a> PathBuf, Cow<'a, OsStr>);
3597impl_cmp_os_str!(<> PathBuf, OsString);
3598impl_cmp_os_str!(<> Path, OsStr);
3599impl_cmp_os_str!(<'a> Path, &'a OsStr);
3600impl_cmp_os_str!(<'a> Path, Cow<'a, OsStr>);
3601impl_cmp_os_str!(<> Path, OsString);
3602impl_cmp_os_str!(<'a> &'a Path, OsStr);
3603impl_cmp_os_str!(<'a, 'b> &'a Path, Cow<'b, OsStr>);
3604impl_cmp_os_str!(<'a> &'a Path, OsString);
3605impl_cmp_os_str!(<'a> Cow<'a, Path>, OsStr);
3606impl_cmp_os_str!(<'a, 'b> Cow<'a, Path>, &'b OsStr);
3607impl_cmp_os_str!(<'a> Cow<'a, Path>, OsString);
3608
3609#[stable(since = "1.7.0", feature = "strip_prefix")]
3610impl fmt::Display for StripPrefixError {
3611 #[allow(deprecated, deprecated_in_future)]
3612 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3613 self.description().fmt(f)
3614 }
3615}
3616
3617#[stable(since = "1.7.0", feature = "strip_prefix")]
3618impl Error for StripPrefixError {
3619 #[allow(deprecated)]
3620 fn description(&self) -> &str {
3621 "prefix not found"
3622 }
3623}
3624
3625#[unstable(feature = "normalize_lexically", issue = "134694")]
3626impl fmt::Display for NormalizeError {
3627 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3628 f.write_str("parent reference `..` points outside of base directory")
3629 }
3630}
3631#[unstable(feature = "normalize_lexically", issue = "134694")]
3632impl Error for NormalizeError {}
3633
3634/// Makes the path absolute without accessing the filesystem.
3635///
3636/// If the path is relative, the current directory is used as the base directory.
3637/// All intermediate components will be resolved according to platform-specific
3638/// rules, but unlike [`canonicalize`][crate::fs::canonicalize], this does not
3639/// resolve symlinks and may succeed even if the path does not exist.
3640///
3641/// If the `path` is empty or getting the
3642/// [current directory][crate::env::current_dir] fails, then an error will be
3643/// returned.
3644///
3645/// # Platform-specific behavior
3646///
3647/// On POSIX platforms, the path is resolved using [POSIX semantics][posix-semantics],
3648/// except that it stops short of resolving symlinks. This means it will keep `..`
3649/// components and trailing slashes.
3650///
3651/// On Windows, for verbatim paths, this will simply return the path as given. For other
3652/// paths, this is currently equivalent to calling
3653/// [`GetFullPathNameW`][windows-path].
3654///
3655/// On Cygwin, this is currently equivalent to calling [`cygwin_conv_path`][cygwin-path]
3656/// with mode `CCP_WIN_A_TO_POSIX`, and then being processed like other POSIX platforms.
3657/// If a Windows path is given, it will be converted to an absolute POSIX path without
3658/// keeping `..`.
3659///
3660/// Note that these [may change in the future][changes].
3661///
3662/// # Errors
3663///
3664/// This function may return an error in the following situations:
3665///
3666/// * If `path` is syntactically invalid; in particular, if it is empty.
3667/// * If getting the [current directory][crate::env::current_dir] fails.
3668///
3669/// # Examples
3670///
3671/// ## POSIX paths
3672///
3673/// ```
3674/// # #[cfg(unix)]
3675/// fn main() -> std::io::Result<()> {
3676/// use std::path::{self, Path};
3677///
3678/// // Relative to absolute
3679/// let absolute = path::absolute("foo/./bar")?;
3680/// assert!(absolute.ends_with("foo/bar"));
3681///
3682/// // Absolute to absolute
3683/// let absolute = path::absolute("/foo//test/.././bar.rs")?;
3684/// assert_eq!(absolute, Path::new("/foo/test/../bar.rs"));
3685/// Ok(())
3686/// }
3687/// # #[cfg(not(unix))]
3688/// # fn main() {}
3689/// ```
3690///
3691/// ## Windows paths
3692///
3693/// ```
3694/// # #[cfg(windows)]
3695/// fn main() -> std::io::Result<()> {
3696/// use std::path::{self, Path};
3697///
3698/// // Relative to absolute
3699/// let absolute = path::absolute("foo/./bar")?;
3700/// assert!(absolute.ends_with(r"foo\bar"));
3701///
3702/// // Absolute to absolute
3703/// let absolute = path::absolute(r"C:\foo//test\..\./bar.rs")?;
3704///
3705/// assert_eq!(absolute, Path::new(r"C:\foo\bar.rs"));
3706/// Ok(())
3707/// }
3708/// # #[cfg(not(windows))]
3709/// # fn main() {}
3710/// ```
3711///
3712/// Note that this [may change in the future][changes].
3713///
3714/// [changes]: io#platform-specific-behavior
3715/// [posix-semantics]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13
3716/// [windows-path]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfullpathnamew
3717/// [cygwin-path]: https://cygwin.com/cygwin-api/func-cygwin-conv-path.html
3718#[stable(feature = "absolute_path", since = "1.79.0")]
3719pub fn absolute<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
3720 let path = path.as_ref();
3721 if path.as_os_str().is_empty() {
3722 Err(io::const_error!(io::ErrorKind::InvalidInput, "cannot make an empty path absolute"))
3723 } else {
3724 sys::path::absolute(path)
3725 }
3726}