[go: up one dir, main page]

std/
path.rs

1//! Cross-platform path manipulation.
2//!
3//! This module provides two types, [`PathBuf`] and [`Path`] (akin to [`String`]
4//! and [`str`]), for working with paths abstractly. These types are thin wrappers
5//! around [`OsString`] and [`OsStr`] respectively, meaning that they work directly
6//! on strings according to the local platform's path syntax.
7//!
8//! Paths can be parsed into [`Component`]s by iterating over the structure
9//! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
10//! correspond to the substrings between path separators (`/` or `\`). You can
11//! reconstruct an equivalent path from components with the [`push`] method on
12//! [`PathBuf`]; note that the paths may differ syntactically by the
13//! normalization described in the documentation for the [`components`] method.
14//!
15//! ## Case sensitivity
16//!
17//! Unless otherwise indicated path methods that do not access the filesystem,
18//! such as [`Path::starts_with`] and [`Path::ends_with`], are case sensitive no
19//! matter the platform or filesystem. An exception to this is made for Windows
20//! drive letters.
21//!
22//! ## Simple usage
23//!
24//! Path manipulation includes both parsing components from slices and building
25//! new owned paths.
26//!
27//! To parse a path, you can create a [`Path`] slice from a [`str`]
28//! slice and start asking questions:
29//!
30//! ```
31//! use std::path::Path;
32//! use std::ffi::OsStr;
33//!
34//! let path = Path::new("/tmp/foo/bar.txt");
35//!
36//! let parent = path.parent();
37//! assert_eq!(parent, Some(Path::new("/tmp/foo")));
38//!
39//! let file_stem = path.file_stem();
40//! assert_eq!(file_stem, Some(OsStr::new("bar")));
41//!
42//! let extension = path.extension();
43//! assert_eq!(extension, Some(OsStr::new("txt")));
44//! ```
45//!
46//! To build or modify paths, use [`PathBuf`]:
47//!
48//! ```
49//! use std::path::PathBuf;
50//!
51//! // This way works...
52//! let mut path = PathBuf::from("c:\\");
53//!
54//! path.push("windows");
55//! path.push("system32");
56//!
57//! path.set_extension("dll");
58//!
59//! // ... but push is best used if you don't know everything up
60//! // front. If you do, this way is better:
61//! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
62//! ```
63//!
64//! [`components`]: Path::components
65//! [`push`]: PathBuf::push
66
67#![stable(feature = "rust1", since = "1.0.0")]
68#![deny(unsafe_op_in_unsafe_fn)]
69
70use core::clone::CloneToUninit;
71
72use crate::borrow::{Borrow, Cow};
73use crate::collections::TryReserveError;
74use crate::error::Error;
75use crate::ffi::{OsStr, OsString, os_str};
76use crate::hash::{Hash, Hasher};
77use crate::iter::FusedIterator;
78use crate::ops::{self, Deref};
79use crate::rc::Rc;
80use crate::str::FromStr;
81use crate::sync::Arc;
82use crate::sys::path::{MAIN_SEP_STR, is_sep_byte, is_verbatim_sep, parse_prefix};
83use crate::{cmp, fmt, fs, io, sys};
84
85////////////////////////////////////////////////////////////////////////////////
86// GENERAL NOTES
87////////////////////////////////////////////////////////////////////////////////
88//
89// Parsing in this module is done by directly transmuting OsStr to [u8] slices,
90// taking advantage of the fact that OsStr always encodes ASCII characters
91// as-is.  Eventually, this transmutation should be replaced by direct uses of
92// OsStr APIs for parsing, but it will take a while for those to become
93// available.
94
95////////////////////////////////////////////////////////////////////////////////
96// Windows Prefixes
97////////////////////////////////////////////////////////////////////////////////
98
99/// Windows path prefixes, e.g., `C:` or `\\server\share`.
100///
101/// Windows uses a variety of path prefix styles, including references to drive
102/// volumes (like `C:`), network shared folders (like `\\server\share`), and
103/// others. In addition, some path prefixes are "verbatim" (i.e., prefixed with
104/// `\\?\`), in which case `/` is *not* treated as a separator and essentially
105/// no normalization is performed.
106///
107/// # Examples
108///
109/// ```
110/// use std::path::{Component, Path, Prefix};
111/// use std::path::Prefix::*;
112/// use std::ffi::OsStr;
113///
114/// fn get_path_prefix(s: &str) -> Prefix<'_> {
115///     let path = Path::new(s);
116///     match path.components().next().unwrap() {
117///         Component::Prefix(prefix_component) => prefix_component.kind(),
118///         _ => panic!(),
119///     }
120/// }
121///
122/// # if cfg!(windows) {
123/// assert_eq!(Verbatim(OsStr::new("pictures")),
124///            get_path_prefix(r"\\?\pictures\kittens"));
125/// assert_eq!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")),
126///            get_path_prefix(r"\\?\UNC\server\share"));
127/// assert_eq!(VerbatimDisk(b'C'), get_path_prefix(r"\\?\c:\"));
128/// assert_eq!(DeviceNS(OsStr::new("BrainInterface")),
129///            get_path_prefix(r"\\.\BrainInterface"));
130/// assert_eq!(UNC(OsStr::new("server"), OsStr::new("share")),
131///            get_path_prefix(r"\\server\share"));
132/// assert_eq!(Disk(b'C'), get_path_prefix(r"C:\Users\Rust\Pictures\Ferris"));
133/// # }
134/// ```
135#[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
136#[stable(feature = "rust1", since = "1.0.0")]
137pub enum Prefix<'a> {
138    /// Verbatim prefix, e.g., `\\?\cat_pics`.
139    ///
140    /// Verbatim prefixes consist of `\\?\` immediately followed by the given
141    /// component.
142    #[stable(feature = "rust1", since = "1.0.0")]
143    Verbatim(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
144
145    /// Verbatim prefix using Windows' _**U**niform **N**aming **C**onvention_,
146    /// e.g., `\\?\UNC\server\share`.
147    ///
148    /// Verbatim UNC prefixes consist of `\\?\UNC\` immediately followed by the
149    /// server's hostname and a share name.
150    #[stable(feature = "rust1", since = "1.0.0")]
151    VerbatimUNC(
152        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
153        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
154    ),
155
156    /// Verbatim disk prefix, e.g., `\\?\C:`.
157    ///
158    /// Verbatim disk prefixes consist of `\\?\` immediately followed by the
159    /// drive letter and `:`.
160    #[stable(feature = "rust1", since = "1.0.0")]
161    VerbatimDisk(#[stable(feature = "rust1", since = "1.0.0")] u8),
162
163    /// Device namespace prefix, e.g., `\\.\COM42`.
164    ///
165    /// Device namespace prefixes consist of `\\.\` (possibly using `/`
166    /// instead of `\`), immediately followed by the device name.
167    #[stable(feature = "rust1", since = "1.0.0")]
168    DeviceNS(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
169
170    /// Prefix using Windows' _**U**niform **N**aming **C**onvention_, e.g.
171    /// `\\server\share`.
172    ///
173    /// UNC prefixes consist of the server's hostname and a share name.
174    #[stable(feature = "rust1", since = "1.0.0")]
175    UNC(
176        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
177        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
178    ),
179
180    /// Prefix `C:` for the given disk drive.
181    #[stable(feature = "rust1", since = "1.0.0")]
182    Disk(#[stable(feature = "rust1", since = "1.0.0")] u8),
183}
184
185impl<'a> Prefix<'a> {
186    #[inline]
187    fn len(&self) -> usize {
188        use self::Prefix::*;
189        fn os_str_len(s: &OsStr) -> usize {
190            s.as_encoded_bytes().len()
191        }
192        match *self {
193            Verbatim(x) => 4 + os_str_len(x),
194            VerbatimUNC(x, y) => {
195                8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }
196            }
197            VerbatimDisk(_) => 6,
198            UNC(x, y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 },
199            DeviceNS(x) => 4 + os_str_len(x),
200            Disk(_) => 2,
201        }
202    }
203
204    /// Determines if the prefix is verbatim, i.e., begins with `\\?\`.
205    ///
206    /// # Examples
207    ///
208    /// ```
209    /// use std::path::Prefix::*;
210    /// use std::ffi::OsStr;
211    ///
212    /// assert!(Verbatim(OsStr::new("pictures")).is_verbatim());
213    /// assert!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
214    /// assert!(VerbatimDisk(b'C').is_verbatim());
215    /// assert!(!DeviceNS(OsStr::new("BrainInterface")).is_verbatim());
216    /// assert!(!UNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
217    /// assert!(!Disk(b'C').is_verbatim());
218    /// ```
219    #[inline]
220    #[must_use]
221    #[stable(feature = "rust1", since = "1.0.0")]
222    pub fn is_verbatim(&self) -> bool {
223        use self::Prefix::*;
224        matches!(*self, Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(..))
225    }
226
227    #[inline]
228    fn is_drive(&self) -> bool {
229        matches!(*self, Prefix::Disk(_))
230    }
231
232    #[inline]
233    fn has_implicit_root(&self) -> bool {
234        !self.is_drive()
235    }
236}
237
238////////////////////////////////////////////////////////////////////////////////
239// Exposed parsing helpers
240////////////////////////////////////////////////////////////////////////////////
241
242/// Determines whether the character is one of the permitted path
243/// separators for the current platform.
244///
245/// # Examples
246///
247/// ```
248/// use std::path;
249///
250/// assert!(path::is_separator('/')); // '/' works for both Unix and Windows
251/// assert!(!path::is_separator('❤'));
252/// ```
253#[must_use]
254#[stable(feature = "rust1", since = "1.0.0")]
255pub fn is_separator(c: char) -> bool {
256    c.is_ascii() && is_sep_byte(c as u8)
257}
258
259/// The primary separator of path components for the current platform.
260///
261/// For example, `/` on Unix and `\` on Windows.
262#[stable(feature = "rust1", since = "1.0.0")]
263#[cfg_attr(not(test), rustc_diagnostic_item = "path_main_separator")]
264pub const MAIN_SEPARATOR: char = crate::sys::path::MAIN_SEP;
265
266/// The primary separator of path components for the current platform.
267///
268/// For example, `/` on Unix and `\` on Windows.
269#[stable(feature = "main_separator_str", since = "1.68.0")]
270pub const MAIN_SEPARATOR_STR: &str = crate::sys::path::MAIN_SEP_STR;
271
272////////////////////////////////////////////////////////////////////////////////
273// Misc helpers
274////////////////////////////////////////////////////////////////////////////////
275
276// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
277// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
278// `iter` after having exhausted `prefix`.
279fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
280where
281    I: Iterator<Item = Component<'a>> + Clone,
282    J: Iterator<Item = Component<'b>>,
283{
284    loop {
285        let mut iter_next = iter.clone();
286        match (iter_next.next(), prefix.next()) {
287            (Some(ref x), Some(ref y)) if x == y => (),
288            (Some(_), Some(_)) => return None,
289            (Some(_), None) => return Some(iter),
290            (None, None) => return Some(iter),
291            (None, Some(_)) => return None,
292        }
293        iter = iter_next;
294    }
295}
296
297////////////////////////////////////////////////////////////////////////////////
298// Cross-platform, iterator-independent parsing
299////////////////////////////////////////////////////////////////////////////////
300
301/// Says whether the first byte after the prefix is a separator.
302fn has_physical_root(s: &[u8], prefix: Option<Prefix<'_>>) -> bool {
303    let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
304    !path.is_empty() && is_sep_byte(path[0])
305}
306
307// basic workhorse for splitting stem and extension
308fn rsplit_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
309    if file.as_encoded_bytes() == b".." {
310        return (Some(file), None);
311    }
312
313    // The unsafety here stems from converting between &OsStr and &[u8]
314    // and back. This is safe to do because (1) we only look at ASCII
315    // contents of the encoding and (2) new &OsStr values are produced
316    // only from ASCII-bounded slices of existing &OsStr values.
317    let mut iter = file.as_encoded_bytes().rsplitn(2, |b| *b == b'.');
318    let after = iter.next();
319    let before = iter.next();
320    if before == Some(b"") {
321        (Some(file), None)
322    } else {
323        unsafe {
324            (
325                before.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
326                after.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
327            )
328        }
329    }
330}
331
332fn split_file_at_dot(file: &OsStr) -> (&OsStr, Option<&OsStr>) {
333    let slice = file.as_encoded_bytes();
334    if slice == b".." {
335        return (file, None);
336    }
337
338    // The unsafety here stems from converting between &OsStr and &[u8]
339    // and back. This is safe to do because (1) we only look at ASCII
340    // contents of the encoding and (2) new &OsStr values are produced
341    // only from ASCII-bounded slices of existing &OsStr values.
342    let i = match slice[1..].iter().position(|b| *b == b'.') {
343        Some(i) => i + 1,
344        None => return (file, None),
345    };
346    let before = &slice[..i];
347    let after = &slice[i + 1..];
348    unsafe {
349        (
350            OsStr::from_encoded_bytes_unchecked(before),
351            Some(OsStr::from_encoded_bytes_unchecked(after)),
352        )
353    }
354}
355
356/// Checks whether the string is valid as a file extension, or panics otherwise.
357fn validate_extension(extension: &OsStr) {
358    for &b in extension.as_encoded_bytes() {
359        if is_sep_byte(b) {
360            panic!("extension cannot contain path separators: {extension:?}");
361        }
362    }
363}
364
365////////////////////////////////////////////////////////////////////////////////
366// The core iterators
367////////////////////////////////////////////////////////////////////////////////
368
369/// Component parsing works by a double-ended state machine; the cursors at the
370/// front and back of the path each keep track of what parts of the path have
371/// been consumed so far.
372///
373/// Going front to back, a path is made up of a prefix, a starting
374/// directory component, and a body (of normal components)
375#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
376enum State {
377    Prefix = 0,   // c:
378    StartDir = 1, // / or . or nothing
379    Body = 2,     // foo/bar/baz
380    Done = 3,
381}
382
383/// A structure wrapping a Windows path prefix as well as its unparsed string
384/// representation.
385///
386/// In addition to the parsed [`Prefix`] information returned by [`kind`],
387/// `PrefixComponent` also holds the raw and unparsed [`OsStr`] slice,
388/// returned by [`as_os_str`].
389///
390/// Instances of this `struct` can be obtained by matching against the
391/// [`Prefix` variant] on [`Component`].
392///
393/// Does not occur on Unix.
394///
395/// # Examples
396///
397/// ```
398/// # if cfg!(windows) {
399/// use std::path::{Component, Path, Prefix};
400/// use std::ffi::OsStr;
401///
402/// let path = Path::new(r"c:\you\later\");
403/// match path.components().next().unwrap() {
404///     Component::Prefix(prefix_component) => {
405///         assert_eq!(Prefix::Disk(b'C'), prefix_component.kind());
406///         assert_eq!(OsStr::new("c:"), prefix_component.as_os_str());
407///     }
408///     _ => unreachable!(),
409/// }
410/// # }
411/// ```
412///
413/// [`as_os_str`]: PrefixComponent::as_os_str
414/// [`kind`]: PrefixComponent::kind
415/// [`Prefix` variant]: Component::Prefix
416#[stable(feature = "rust1", since = "1.0.0")]
417#[derive(Copy, Clone, Eq, Debug)]
418pub struct PrefixComponent<'a> {
419    /// The prefix as an unparsed `OsStr` slice.
420    raw: &'a OsStr,
421
422    /// The parsed prefix data.
423    parsed: Prefix<'a>,
424}
425
426impl<'a> PrefixComponent<'a> {
427    /// Returns the parsed prefix data.
428    ///
429    /// See [`Prefix`]'s documentation for more information on the different
430    /// kinds of prefixes.
431    #[stable(feature = "rust1", since = "1.0.0")]
432    #[must_use]
433    #[inline]
434    pub fn kind(&self) -> Prefix<'a> {
435        self.parsed
436    }
437
438    /// Returns the raw [`OsStr`] slice for this prefix.
439    #[stable(feature = "rust1", since = "1.0.0")]
440    #[must_use]
441    #[inline]
442    pub fn as_os_str(&self) -> &'a OsStr {
443        self.raw
444    }
445}
446
447#[stable(feature = "rust1", since = "1.0.0")]
448impl<'a> PartialEq for PrefixComponent<'a> {
449    #[inline]
450    fn eq(&self, other: &PrefixComponent<'a>) -> bool {
451        self.parsed == other.parsed
452    }
453}
454
455#[stable(feature = "rust1", since = "1.0.0")]
456impl<'a> PartialOrd for PrefixComponent<'a> {
457    #[inline]
458    fn partial_cmp(&self, other: &PrefixComponent<'a>) -> Option<cmp::Ordering> {
459        PartialOrd::partial_cmp(&self.parsed, &other.parsed)
460    }
461}
462
463#[stable(feature = "rust1", since = "1.0.0")]
464impl Ord for PrefixComponent<'_> {
465    #[inline]
466    fn cmp(&self, other: &Self) -> cmp::Ordering {
467        Ord::cmp(&self.parsed, &other.parsed)
468    }
469}
470
471#[stable(feature = "rust1", since = "1.0.0")]
472impl Hash for PrefixComponent<'_> {
473    fn hash<H: Hasher>(&self, h: &mut H) {
474        self.parsed.hash(h);
475    }
476}
477
478/// A single component of a path.
479///
480/// A `Component` roughly corresponds to a substring between path separators
481/// (`/` or `\`).
482///
483/// This `enum` is created by iterating over [`Components`], which in turn is
484/// created by the [`components`](Path::components) method on [`Path`].
485///
486/// # Examples
487///
488/// ```rust
489/// use std::path::{Component, Path};
490///
491/// let path = Path::new("/tmp/foo/bar.txt");
492/// let components = path.components().collect::<Vec<_>>();
493/// assert_eq!(&components, &[
494///     Component::RootDir,
495///     Component::Normal("tmp".as_ref()),
496///     Component::Normal("foo".as_ref()),
497///     Component::Normal("bar.txt".as_ref()),
498/// ]);
499/// ```
500#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
501#[stable(feature = "rust1", since = "1.0.0")]
502pub enum Component<'a> {
503    /// A Windows path prefix, e.g., `C:` or `\\server\share`.
504    ///
505    /// There is a large variety of prefix types, see [`Prefix`]'s documentation
506    /// for more.
507    ///
508    /// Does not occur on Unix.
509    #[stable(feature = "rust1", since = "1.0.0")]
510    Prefix(#[stable(feature = "rust1", since = "1.0.0")] PrefixComponent<'a>),
511
512    /// The root directory component, appears after any prefix and before anything else.
513    ///
514    /// It represents a separator that designates that a path starts from root.
515    #[stable(feature = "rust1", since = "1.0.0")]
516    RootDir,
517
518    /// A reference to the current directory, i.e., `.`.
519    #[stable(feature = "rust1", since = "1.0.0")]
520    CurDir,
521
522    /// A reference to the parent directory, i.e., `..`.
523    #[stable(feature = "rust1", since = "1.0.0")]
524    ParentDir,
525
526    /// A normal component, e.g., `a` and `b` in `a/b`.
527    ///
528    /// This variant is the most common one, it represents references to files
529    /// or directories.
530    #[stable(feature = "rust1", since = "1.0.0")]
531    Normal(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
532}
533
534impl<'a> Component<'a> {
535    /// Extracts the underlying [`OsStr`] slice.
536    ///
537    /// # Examples
538    ///
539    /// ```
540    /// use std::path::Path;
541    ///
542    /// let path = Path::new("./tmp/foo/bar.txt");
543    /// let components: Vec<_> = path.components().map(|comp| comp.as_os_str()).collect();
544    /// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
545    /// ```
546    #[must_use = "`self` will be dropped if the result is not used"]
547    #[stable(feature = "rust1", since = "1.0.0")]
548    pub fn as_os_str(self) -> &'a OsStr {
549        match self {
550            Component::Prefix(p) => p.as_os_str(),
551            Component::RootDir => OsStr::new(MAIN_SEP_STR),
552            Component::CurDir => OsStr::new("."),
553            Component::ParentDir => OsStr::new(".."),
554            Component::Normal(path) => path,
555        }
556    }
557}
558
559#[stable(feature = "rust1", since = "1.0.0")]
560impl AsRef<OsStr> for Component<'_> {
561    #[inline]
562    fn as_ref(&self) -> &OsStr {
563        self.as_os_str()
564    }
565}
566
567#[stable(feature = "path_component_asref", since = "1.25.0")]
568impl AsRef<Path> for Component<'_> {
569    #[inline]
570    fn as_ref(&self) -> &Path {
571        self.as_os_str().as_ref()
572    }
573}
574
575/// An iterator over the [`Component`]s of a [`Path`].
576///
577/// This `struct` is created by the [`components`] method on [`Path`].
578/// See its documentation for more.
579///
580/// # Examples
581///
582/// ```
583/// use std::path::Path;
584///
585/// let path = Path::new("/tmp/foo/bar.txt");
586///
587/// for component in path.components() {
588///     println!("{component:?}");
589/// }
590/// ```
591///
592/// [`components`]: Path::components
593#[derive(Clone)]
594#[must_use = "iterators are lazy and do nothing unless consumed"]
595#[stable(feature = "rust1", since = "1.0.0")]
596pub struct Components<'a> {
597    // The path left to parse components from
598    path: &'a [u8],
599
600    // The prefix as it was originally parsed, if any
601    prefix: Option<Prefix<'a>>,
602
603    // true if path *physically* has a root separator; for most Windows
604    // prefixes, it may have a "logical" root separator for the purposes of
605    // normalization, e.g., \\server\share == \\server\share\.
606    has_physical_root: bool,
607
608    // The iterator is double-ended, and these two states keep track of what has
609    // been produced from either end
610    front: State,
611    back: State,
612}
613
614/// An iterator over the [`Component`]s of a [`Path`], as [`OsStr`] slices.
615///
616/// This `struct` is created by the [`iter`] method on [`Path`].
617/// See its documentation for more.
618///
619/// [`iter`]: Path::iter
620#[derive(Clone)]
621#[must_use = "iterators are lazy and do nothing unless consumed"]
622#[stable(feature = "rust1", since = "1.0.0")]
623pub struct Iter<'a> {
624    inner: Components<'a>,
625}
626
627#[stable(feature = "path_components_debug", since = "1.13.0")]
628impl fmt::Debug for Components<'_> {
629    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
630        struct DebugHelper<'a>(&'a Path);
631
632        impl fmt::Debug for DebugHelper<'_> {
633            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
634                f.debug_list().entries(self.0.components()).finish()
635            }
636        }
637
638        f.debug_tuple("Components").field(&DebugHelper(self.as_path())).finish()
639    }
640}
641
642impl<'a> Components<'a> {
643    // how long is the prefix, if any?
644    #[inline]
645    fn prefix_len(&self) -> usize {
646        self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
647    }
648
649    #[inline]
650    fn prefix_verbatim(&self) -> bool {
651        self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
652    }
653
654    /// how much of the prefix is left from the point of view of iteration?
655    #[inline]
656    fn prefix_remaining(&self) -> usize {
657        if self.front == State::Prefix { self.prefix_len() } else { 0 }
658    }
659
660    // Given the iteration so far, how much of the pre-State::Body path is left?
661    #[inline]
662    fn len_before_body(&self) -> usize {
663        let root = if self.front <= State::StartDir && self.has_physical_root { 1 } else { 0 };
664        let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() { 1 } else { 0 };
665        self.prefix_remaining() + root + cur_dir
666    }
667
668    // is the iteration complete?
669    #[inline]
670    fn finished(&self) -> bool {
671        self.front == State::Done || self.back == State::Done || self.front > self.back
672    }
673
674    #[inline]
675    fn is_sep_byte(&self, b: u8) -> bool {
676        if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep_byte(b) }
677    }
678
679    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
680    ///
681    /// # Examples
682    ///
683    /// ```
684    /// use std::path::Path;
685    ///
686    /// let mut components = Path::new("/tmp/foo/bar.txt").components();
687    /// components.next();
688    /// components.next();
689    ///
690    /// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
691    /// ```
692    #[must_use]
693    #[stable(feature = "rust1", since = "1.0.0")]
694    pub fn as_path(&self) -> &'a Path {
695        let mut comps = self.clone();
696        if comps.front == State::Body {
697            comps.trim_left();
698        }
699        if comps.back == State::Body {
700            comps.trim_right();
701        }
702        unsafe { Path::from_u8_slice(comps.path) }
703    }
704
705    /// Is the *original* path rooted?
706    fn has_root(&self) -> bool {
707        if self.has_physical_root {
708            return true;
709        }
710        if let Some(p) = self.prefix {
711            if p.has_implicit_root() {
712                return true;
713            }
714        }
715        false
716    }
717
718    /// Should the normalized path include a leading . ?
719    fn include_cur_dir(&self) -> bool {
720        if self.has_root() {
721            return false;
722        }
723        let mut iter = self.path[self.prefix_remaining()..].iter();
724        match (iter.next(), iter.next()) {
725            (Some(&b'.'), None) => true,
726            (Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
727            _ => false,
728        }
729    }
730
731    // parse a given byte sequence following the OsStr encoding into the
732    // corresponding path component
733    unsafe fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
734        match comp {
735            b"." if self.prefix_verbatim() => Some(Component::CurDir),
736            b"." => None, // . components are normalized away, except at
737            // the beginning of a path, which is treated
738            // separately via `include_cur_dir`
739            b".." => Some(Component::ParentDir),
740            b"" => None,
741            _ => Some(Component::Normal(unsafe { OsStr::from_encoded_bytes_unchecked(comp) })),
742        }
743    }
744
745    // parse a component from the left, saying how many bytes to consume to
746    // remove the component
747    fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
748        debug_assert!(self.front == State::Body);
749        let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
750            None => (0, self.path),
751            Some(i) => (1, &self.path[..i]),
752        };
753        // SAFETY: `comp` is a valid substring, since it is split on a separator.
754        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
755    }
756
757    // parse a component from the right, saying how many bytes to consume to
758    // remove the component
759    fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
760        debug_assert!(self.back == State::Body);
761        let start = self.len_before_body();
762        let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
763            None => (0, &self.path[start..]),
764            Some(i) => (1, &self.path[start + i + 1..]),
765        };
766        // SAFETY: `comp` is a valid substring, since it is split on a separator.
767        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
768    }
769
770    // trim away repeated separators (i.e., empty components) on the left
771    fn trim_left(&mut self) {
772        while !self.path.is_empty() {
773            let (size, comp) = self.parse_next_component();
774            if comp.is_some() {
775                return;
776            } else {
777                self.path = &self.path[size..];
778            }
779        }
780    }
781
782    // trim away repeated separators (i.e., empty components) on the right
783    fn trim_right(&mut self) {
784        while self.path.len() > self.len_before_body() {
785            let (size, comp) = self.parse_next_component_back();
786            if comp.is_some() {
787                return;
788            } else {
789                self.path = &self.path[..self.path.len() - size];
790            }
791        }
792    }
793}
794
795#[stable(feature = "rust1", since = "1.0.0")]
796impl AsRef<Path> for Components<'_> {
797    #[inline]
798    fn as_ref(&self) -> &Path {
799        self.as_path()
800    }
801}
802
803#[stable(feature = "rust1", since = "1.0.0")]
804impl AsRef<OsStr> for Components<'_> {
805    #[inline]
806    fn as_ref(&self) -> &OsStr {
807        self.as_path().as_os_str()
808    }
809}
810
811#[stable(feature = "path_iter_debug", since = "1.13.0")]
812impl fmt::Debug for Iter<'_> {
813    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
814        struct DebugHelper<'a>(&'a Path);
815
816        impl fmt::Debug for DebugHelper<'_> {
817            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
818                f.debug_list().entries(self.0.iter()).finish()
819            }
820        }
821
822        f.debug_tuple("Iter").field(&DebugHelper(self.as_path())).finish()
823    }
824}
825
826impl<'a> Iter<'a> {
827    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
828    ///
829    /// # Examples
830    ///
831    /// ```
832    /// use std::path::Path;
833    ///
834    /// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
835    /// iter.next();
836    /// iter.next();
837    ///
838    /// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
839    /// ```
840    #[stable(feature = "rust1", since = "1.0.0")]
841    #[must_use]
842    #[inline]
843    pub fn as_path(&self) -> &'a Path {
844        self.inner.as_path()
845    }
846}
847
848#[stable(feature = "rust1", since = "1.0.0")]
849impl AsRef<Path> for Iter<'_> {
850    #[inline]
851    fn as_ref(&self) -> &Path {
852        self.as_path()
853    }
854}
855
856#[stable(feature = "rust1", since = "1.0.0")]
857impl AsRef<OsStr> for Iter<'_> {
858    #[inline]
859    fn as_ref(&self) -> &OsStr {
860        self.as_path().as_os_str()
861    }
862}
863
864#[stable(feature = "rust1", since = "1.0.0")]
865impl<'a> Iterator for Iter<'a> {
866    type Item = &'a OsStr;
867
868    #[inline]
869    fn next(&mut self) -> Option<&'a OsStr> {
870        self.inner.next().map(Component::as_os_str)
871    }
872}
873
874#[stable(feature = "rust1", since = "1.0.0")]
875impl<'a> DoubleEndedIterator for Iter<'a> {
876    #[inline]
877    fn next_back(&mut self) -> Option<&'a OsStr> {
878        self.inner.next_back().map(Component::as_os_str)
879    }
880}
881
882#[stable(feature = "fused", since = "1.26.0")]
883impl FusedIterator for Iter<'_> {}
884
885#[stable(feature = "rust1", since = "1.0.0")]
886impl<'a> Iterator for Components<'a> {
887    type Item = Component<'a>;
888
889    fn next(&mut self) -> Option<Component<'a>> {
890        while !self.finished() {
891            match self.front {
892                State::Prefix if self.prefix_len() > 0 => {
893                    self.front = State::StartDir;
894                    debug_assert!(self.prefix_len() <= self.path.len());
895                    let raw = &self.path[..self.prefix_len()];
896                    self.path = &self.path[self.prefix_len()..];
897                    return Some(Component::Prefix(PrefixComponent {
898                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(raw) },
899                        parsed: self.prefix.unwrap(),
900                    }));
901                }
902                State::Prefix => {
903                    self.front = State::StartDir;
904                }
905                State::StartDir => {
906                    self.front = State::Body;
907                    if self.has_physical_root {
908                        debug_assert!(!self.path.is_empty());
909                        self.path = &self.path[1..];
910                        return Some(Component::RootDir);
911                    } else if let Some(p) = self.prefix {
912                        if p.has_implicit_root() && !p.is_verbatim() {
913                            return Some(Component::RootDir);
914                        }
915                    } else if self.include_cur_dir() {
916                        debug_assert!(!self.path.is_empty());
917                        self.path = &self.path[1..];
918                        return Some(Component::CurDir);
919                    }
920                }
921                State::Body if !self.path.is_empty() => {
922                    let (size, comp) = self.parse_next_component();
923                    self.path = &self.path[size..];
924                    if comp.is_some() {
925                        return comp;
926                    }
927                }
928                State::Body => {
929                    self.front = State::Done;
930                }
931                State::Done => unreachable!(),
932            }
933        }
934        None
935    }
936}
937
938#[stable(feature = "rust1", since = "1.0.0")]
939impl<'a> DoubleEndedIterator for Components<'a> {
940    fn next_back(&mut self) -> Option<Component<'a>> {
941        while !self.finished() {
942            match self.back {
943                State::Body if self.path.len() > self.len_before_body() => {
944                    let (size, comp) = self.parse_next_component_back();
945                    self.path = &self.path[..self.path.len() - size];
946                    if comp.is_some() {
947                        return comp;
948                    }
949                }
950                State::Body => {
951                    self.back = State::StartDir;
952                }
953                State::StartDir => {
954                    self.back = State::Prefix;
955                    if self.has_physical_root {
956                        self.path = &self.path[..self.path.len() - 1];
957                        return Some(Component::RootDir);
958                    } else if let Some(p) = self.prefix {
959                        if p.has_implicit_root() && !p.is_verbatim() {
960                            return Some(Component::RootDir);
961                        }
962                    } else if self.include_cur_dir() {
963                        self.path = &self.path[..self.path.len() - 1];
964                        return Some(Component::CurDir);
965                    }
966                }
967                State::Prefix if self.prefix_len() > 0 => {
968                    self.back = State::Done;
969                    return Some(Component::Prefix(PrefixComponent {
970                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(self.path) },
971                        parsed: self.prefix.unwrap(),
972                    }));
973                }
974                State::Prefix => {
975                    self.back = State::Done;
976                    return None;
977                }
978                State::Done => unreachable!(),
979            }
980        }
981        None
982    }
983}
984
985#[stable(feature = "fused", since = "1.26.0")]
986impl FusedIterator for Components<'_> {}
987
988#[stable(feature = "rust1", since = "1.0.0")]
989impl<'a> PartialEq for Components<'a> {
990    #[inline]
991    fn eq(&self, other: &Components<'a>) -> bool {
992        let Components { path: _, front: _, back: _, has_physical_root: _, prefix: _ } = self;
993
994        // Fast path for exact matches, e.g. for hashmap lookups.
995        // Don't explicitly compare the prefix or has_physical_root fields since they'll
996        // either be covered by the `path` buffer or are only relevant for `prefix_verbatim()`.
997        if self.path.len() == other.path.len()
998            && self.front == other.front
999            && self.back == State::Body
1000            && other.back == State::Body
1001            && self.prefix_verbatim() == other.prefix_verbatim()
1002        {
1003            // possible future improvement: this could bail out earlier if there were a
1004            // reverse memcmp/bcmp comparing back to front
1005            if self.path == other.path {
1006                return true;
1007            }
1008        }
1009
1010        // compare back to front since absolute paths often share long prefixes
1011        Iterator::eq(self.clone().rev(), other.clone().rev())
1012    }
1013}
1014
1015#[stable(feature = "rust1", since = "1.0.0")]
1016impl Eq for Components<'_> {}
1017
1018#[stable(feature = "rust1", since = "1.0.0")]
1019impl<'a> PartialOrd for Components<'a> {
1020    #[inline]
1021    fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
1022        Some(compare_components(self.clone(), other.clone()))
1023    }
1024}
1025
1026#[stable(feature = "rust1", since = "1.0.0")]
1027impl Ord for Components<'_> {
1028    #[inline]
1029    fn cmp(&self, other: &Self) -> cmp::Ordering {
1030        compare_components(self.clone(), other.clone())
1031    }
1032}
1033
1034fn compare_components(mut left: Components<'_>, mut right: Components<'_>) -> cmp::Ordering {
1035    // Fast path for long shared prefixes
1036    //
1037    // - compare raw bytes to find first mismatch
1038    // - backtrack to find separator before mismatch to avoid ambiguous parsings of '.' or '..' characters
1039    // - if found update state to only do a component-wise comparison on the remainder,
1040    //   otherwise do it on the full path
1041    //
1042    // The fast path isn't taken for paths with a PrefixComponent to avoid backtracking into
1043    // the middle of one
1044    if left.prefix.is_none() && right.prefix.is_none() && left.front == right.front {
1045        // possible future improvement: a [u8]::first_mismatch simd implementation
1046        let first_difference = match left.path.iter().zip(right.path).position(|(&a, &b)| a != b) {
1047            None if left.path.len() == right.path.len() => return cmp::Ordering::Equal,
1048            None => left.path.len().min(right.path.len()),
1049            Some(diff) => diff,
1050        };
1051
1052        if let Some(previous_sep) =
1053            left.path[..first_difference].iter().rposition(|&b| left.is_sep_byte(b))
1054        {
1055            let mismatched_component_start = previous_sep + 1;
1056            left.path = &left.path[mismatched_component_start..];
1057            left.front = State::Body;
1058            right.path = &right.path[mismatched_component_start..];
1059            right.front = State::Body;
1060        }
1061    }
1062
1063    Iterator::cmp(left, right)
1064}
1065
1066/// An iterator over [`Path`] and its ancestors.
1067///
1068/// This `struct` is created by the [`ancestors`] method on [`Path`].
1069/// See its documentation for more.
1070///
1071/// # Examples
1072///
1073/// ```
1074/// use std::path::Path;
1075///
1076/// let path = Path::new("/foo/bar");
1077///
1078/// for ancestor in path.ancestors() {
1079///     println!("{}", ancestor.display());
1080/// }
1081/// ```
1082///
1083/// [`ancestors`]: Path::ancestors
1084#[derive(Copy, Clone, Debug)]
1085#[must_use = "iterators are lazy and do nothing unless consumed"]
1086#[stable(feature = "path_ancestors", since = "1.28.0")]
1087pub struct Ancestors<'a> {
1088    next: Option<&'a Path>,
1089}
1090
1091#[stable(feature = "path_ancestors", since = "1.28.0")]
1092impl<'a> Iterator for Ancestors<'a> {
1093    type Item = &'a Path;
1094
1095    #[inline]
1096    fn next(&mut self) -> Option<Self::Item> {
1097        let next = self.next;
1098        self.next = next.and_then(Path::parent);
1099        next
1100    }
1101}
1102
1103#[stable(feature = "path_ancestors", since = "1.28.0")]
1104impl FusedIterator for Ancestors<'_> {}
1105
1106////////////////////////////////////////////////////////////////////////////////
1107// Basic types and traits
1108////////////////////////////////////////////////////////////////////////////////
1109
1110/// An owned, mutable path (akin to [`String`]).
1111///
1112/// This type provides methods like [`push`] and [`set_extension`] that mutate
1113/// the path in place. It also implements [`Deref`] to [`Path`], meaning that
1114/// all methods on [`Path`] slices are available on `PathBuf` values as well.
1115///
1116/// [`push`]: PathBuf::push
1117/// [`set_extension`]: PathBuf::set_extension
1118///
1119/// More details about the overall approach can be found in
1120/// the [module documentation](self).
1121///
1122/// # Examples
1123///
1124/// You can use [`push`] to build up a `PathBuf` from
1125/// components:
1126///
1127/// ```
1128/// use std::path::PathBuf;
1129///
1130/// let mut path = PathBuf::new();
1131///
1132/// path.push(r"C:\");
1133/// path.push("windows");
1134/// path.push("system32");
1135///
1136/// path.set_extension("dll");
1137/// ```
1138///
1139/// However, [`push`] is best used for dynamic situations. This is a better way
1140/// to do this when you know all of the components ahead of time:
1141///
1142/// ```
1143/// use std::path::PathBuf;
1144///
1145/// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
1146/// ```
1147///
1148/// We can still do better than this! Since these are all strings, we can use
1149/// `From::from`:
1150///
1151/// ```
1152/// use std::path::PathBuf;
1153///
1154/// let path = PathBuf::from(r"C:\windows\system32.dll");
1155/// ```
1156///
1157/// Which method works best depends on what kind of situation you're in.
1158///
1159/// Note that `PathBuf` does not always sanitize arguments, for example
1160/// [`push`] allows paths built from strings which include separators:
1161///
1162/// ```
1163/// use std::path::PathBuf;
1164///
1165/// let mut path = PathBuf::new();
1166///
1167/// path.push(r"C:\");
1168/// path.push("windows");
1169/// path.push(r"..\otherdir");
1170/// path.push("system32");
1171/// ```
1172///
1173/// The behavior of `PathBuf` may be changed to a panic on such inputs
1174/// in the future. [`Extend::extend`] should be used to add multi-part paths.
1175#[cfg_attr(not(test), rustc_diagnostic_item = "PathBuf")]
1176#[stable(feature = "rust1", since = "1.0.0")]
1177pub struct PathBuf {
1178    inner: OsString,
1179}
1180
1181impl PathBuf {
1182    /// Allocates an empty `PathBuf`.
1183    ///
1184    /// # Examples
1185    ///
1186    /// ```
1187    /// use std::path::PathBuf;
1188    ///
1189    /// let path = PathBuf::new();
1190    /// ```
1191    #[stable(feature = "rust1", since = "1.0.0")]
1192    #[must_use]
1193    #[inline]
1194    #[rustc_const_unstable(feature = "const_pathbuf_osstring_new", issue = "141520")]
1195    pub const fn new() -> PathBuf {
1196        PathBuf { inner: OsString::new() }
1197    }
1198
1199    /// Creates a new `PathBuf` with a given capacity used to create the
1200    /// internal [`OsString`]. See [`with_capacity`] defined on [`OsString`].
1201    ///
1202    /// # Examples
1203    ///
1204    /// ```
1205    /// use std::path::PathBuf;
1206    ///
1207    /// let mut path = PathBuf::with_capacity(10);
1208    /// let capacity = path.capacity();
1209    ///
1210    /// // This push is done without reallocating
1211    /// path.push(r"C:\");
1212    ///
1213    /// assert_eq!(capacity, path.capacity());
1214    /// ```
1215    ///
1216    /// [`with_capacity`]: OsString::with_capacity
1217    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1218    #[must_use]
1219    #[inline]
1220    pub fn with_capacity(capacity: usize) -> PathBuf {
1221        PathBuf { inner: OsString::with_capacity(capacity) }
1222    }
1223
1224    /// Coerces to a [`Path`] slice.
1225    ///
1226    /// # Examples
1227    ///
1228    /// ```
1229    /// use std::path::{Path, PathBuf};
1230    ///
1231    /// let p = PathBuf::from("/test");
1232    /// assert_eq!(Path::new("/test"), p.as_path());
1233    /// ```
1234    #[cfg_attr(not(test), rustc_diagnostic_item = "pathbuf_as_path")]
1235    #[stable(feature = "rust1", since = "1.0.0")]
1236    #[must_use]
1237    #[inline]
1238    pub fn as_path(&self) -> &Path {
1239        self
1240    }
1241
1242    /// Consumes and leaks the `PathBuf`, returning a mutable reference to the contents,
1243    /// `&'a mut Path`.
1244    ///
1245    /// The caller has free choice over the returned lifetime, including 'static.
1246    /// Indeed, this function is ideally used for data that lives for the remainder of
1247    /// the program’s life, as dropping the returned reference will cause a memory leak.
1248    ///
1249    /// It does not reallocate or shrink the `PathBuf`, so the leaked allocation may include
1250    /// unused capacity that is not part of the returned slice. If you want to discard excess
1251    /// capacity, call [`into_boxed_path`], and then [`Box::leak`] instead.
1252    /// However, keep in mind that trimming the capacity may result in a reallocation and copy.
1253    ///
1254    /// [`into_boxed_path`]: Self::into_boxed_path
1255    #[stable(feature = "os_string_pathbuf_leak", since = "CURRENT_RUSTC_VERSION")]
1256    #[inline]
1257    pub fn leak<'a>(self) -> &'a mut Path {
1258        Path::from_inner_mut(self.inner.leak())
1259    }
1260
1261    /// Extends `self` with `path`.
1262    ///
1263    /// If `path` is absolute, it replaces the current path.
1264    ///
1265    /// On Windows:
1266    ///
1267    /// * if `path` has a root but no prefix (e.g., `\windows`), it
1268    ///   replaces everything except for the prefix (if any) of `self`.
1269    /// * if `path` has a prefix but no root, it replaces `self`.
1270    /// * if `self` has a verbatim prefix (e.g. `\\?\C:\windows`)
1271    ///   and `path` is not empty, the new path is normalized: all references
1272    ///   to `.` and `..` are removed.
1273    ///
1274    /// Consider using [`Path::join`] if you need a new `PathBuf` instead of
1275    /// using this function on a cloned `PathBuf`.
1276    ///
1277    /// # Examples
1278    ///
1279    /// Pushing a relative path extends the existing path:
1280    ///
1281    /// ```
1282    /// use std::path::PathBuf;
1283    ///
1284    /// let mut path = PathBuf::from("/tmp");
1285    /// path.push("file.bk");
1286    /// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
1287    /// ```
1288    ///
1289    /// Pushing an absolute path replaces the existing path:
1290    ///
1291    /// ```
1292    /// use std::path::PathBuf;
1293    ///
1294    /// let mut path = PathBuf::from("/tmp");
1295    /// path.push("/etc");
1296    /// assert_eq!(path, PathBuf::from("/etc"));
1297    /// ```
1298    #[stable(feature = "rust1", since = "1.0.0")]
1299    #[rustc_confusables("append", "put")]
1300    pub fn push<P: AsRef<Path>>(&mut self, path: P) {
1301        self._push(path.as_ref())
1302    }
1303
1304    fn _push(&mut self, path: &Path) {
1305        // in general, a separator is needed if the rightmost byte is not a separator
1306        let buf = self.inner.as_encoded_bytes();
1307        let mut need_sep = buf.last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
1308
1309        // in the special case of `C:` on Windows, do *not* add a separator
1310        let comps = self.components();
1311
1312        if comps.prefix_len() > 0
1313            && comps.prefix_len() == comps.path.len()
1314            && comps.prefix.unwrap().is_drive()
1315        {
1316            need_sep = false
1317        }
1318
1319        let need_clear = if cfg!(target_os = "cygwin") {
1320            // If path is absolute and its prefix is none, it is like `/foo`,
1321            // and will be handled below.
1322            path.prefix().is_some()
1323        } else {
1324            // On Unix: prefix is always None.
1325            path.is_absolute() || path.prefix().is_some()
1326        };
1327
1328        // absolute `path` replaces `self`
1329        if need_clear {
1330            self.inner.truncate(0);
1331
1332        // verbatim paths need . and .. removed
1333        } else if comps.prefix_verbatim() && !path.inner.is_empty() {
1334            let mut buf: Vec<_> = comps.collect();
1335            for c in path.components() {
1336                match c {
1337                    Component::RootDir => {
1338                        buf.truncate(1);
1339                        buf.push(c);
1340                    }
1341                    Component::CurDir => (),
1342                    Component::ParentDir => {
1343                        if let Some(Component::Normal(_)) = buf.last() {
1344                            buf.pop();
1345                        }
1346                    }
1347                    _ => buf.push(c),
1348                }
1349            }
1350
1351            let mut res = OsString::new();
1352            let mut need_sep = false;
1353
1354            for c in buf {
1355                if need_sep && c != Component::RootDir {
1356                    res.push(MAIN_SEP_STR);
1357                }
1358                res.push(c.as_os_str());
1359
1360                need_sep = match c {
1361                    Component::RootDir => false,
1362                    Component::Prefix(prefix) => {
1363                        !prefix.parsed.is_drive() && prefix.parsed.len() > 0
1364                    }
1365                    _ => true,
1366                }
1367            }
1368
1369            self.inner = res;
1370            return;
1371
1372        // `path` has a root but no prefix, e.g., `\windows` (Windows only)
1373        } else if path.has_root() {
1374            let prefix_len = self.components().prefix_remaining();
1375            self.inner.truncate(prefix_len);
1376
1377        // `path` is a pure relative path
1378        } else if need_sep {
1379            self.inner.push(MAIN_SEP_STR);
1380        }
1381
1382        self.inner.push(path);
1383    }
1384
1385    /// Truncates `self` to [`self.parent`].
1386    ///
1387    /// Returns `false` and does nothing if [`self.parent`] is [`None`].
1388    /// Otherwise, returns `true`.
1389    ///
1390    /// [`self.parent`]: Path::parent
1391    ///
1392    /// # Examples
1393    ///
1394    /// ```
1395    /// use std::path::{Path, PathBuf};
1396    ///
1397    /// let mut p = PathBuf::from("/spirited/away.rs");
1398    ///
1399    /// p.pop();
1400    /// assert_eq!(Path::new("/spirited"), p);
1401    /// p.pop();
1402    /// assert_eq!(Path::new("/"), p);
1403    /// ```
1404    #[stable(feature = "rust1", since = "1.0.0")]
1405    pub fn pop(&mut self) -> bool {
1406        match self.parent().map(|p| p.as_u8_slice().len()) {
1407            Some(len) => {
1408                self.inner.truncate(len);
1409                true
1410            }
1411            None => false,
1412        }
1413    }
1414
1415    /// Updates [`self.file_name`] to `file_name`.
1416    ///
1417    /// If [`self.file_name`] was [`None`], this is equivalent to pushing
1418    /// `file_name`.
1419    ///
1420    /// Otherwise it is equivalent to calling [`pop`] and then pushing
1421    /// `file_name`. The new path will be a sibling of the original path.
1422    /// (That is, it will have the same parent.)
1423    ///
1424    /// The argument is not sanitized, so can include separators. This
1425    /// behavior may be changed to a panic in the future.
1426    ///
1427    /// [`self.file_name`]: Path::file_name
1428    /// [`pop`]: PathBuf::pop
1429    ///
1430    /// # Examples
1431    ///
1432    /// ```
1433    /// use std::path::PathBuf;
1434    ///
1435    /// let mut buf = PathBuf::from("/");
1436    /// assert!(buf.file_name() == None);
1437    ///
1438    /// buf.set_file_name("foo.txt");
1439    /// assert!(buf == PathBuf::from("/foo.txt"));
1440    /// assert!(buf.file_name().is_some());
1441    ///
1442    /// buf.set_file_name("bar.txt");
1443    /// assert!(buf == PathBuf::from("/bar.txt"));
1444    ///
1445    /// buf.set_file_name("baz");
1446    /// assert!(buf == PathBuf::from("/baz"));
1447    ///
1448    /// buf.set_file_name("../b/c.txt");
1449    /// assert!(buf == PathBuf::from("/../b/c.txt"));
1450    ///
1451    /// buf.set_file_name("baz");
1452    /// assert!(buf == PathBuf::from("/../b/baz"));
1453    /// ```
1454    #[stable(feature = "rust1", since = "1.0.0")]
1455    pub fn set_file_name<S: AsRef<OsStr>>(&mut self, file_name: S) {
1456        self._set_file_name(file_name.as_ref())
1457    }
1458
1459    fn _set_file_name(&mut self, file_name: &OsStr) {
1460        if self.file_name().is_some() {
1461            let popped = self.pop();
1462            debug_assert!(popped);
1463        }
1464        self.push(file_name);
1465    }
1466
1467    /// Updates [`self.extension`] to `Some(extension)` or to `None` if
1468    /// `extension` is empty.
1469    ///
1470    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1471    /// returns `true` and updates the extension otherwise.
1472    ///
1473    /// If [`self.extension`] is [`None`], the extension is added; otherwise
1474    /// it is replaced.
1475    ///
1476    /// If `extension` is the empty string, [`self.extension`] will be [`None`]
1477    /// afterwards, not `Some("")`.
1478    ///
1479    /// # Panics
1480    ///
1481    /// Panics if the passed extension contains a path separator (see
1482    /// [`is_separator`]).
1483    ///
1484    /// # Caveats
1485    ///
1486    /// The new `extension` may contain dots and will be used in its entirety,
1487    /// but only the part after the final dot will be reflected in
1488    /// [`self.extension`].
1489    ///
1490    /// If the file stem contains internal dots and `extension` is empty, part
1491    /// of the old file stem will be considered the new [`self.extension`].
1492    ///
1493    /// See the examples below.
1494    ///
1495    /// [`self.file_name`]: Path::file_name
1496    /// [`self.extension`]: Path::extension
1497    ///
1498    /// # Examples
1499    ///
1500    /// ```
1501    /// use std::path::{Path, PathBuf};
1502    ///
1503    /// let mut p = PathBuf::from("/feel/the");
1504    ///
1505    /// p.set_extension("force");
1506    /// assert_eq!(Path::new("/feel/the.force"), p.as_path());
1507    ///
1508    /// p.set_extension("dark.side");
1509    /// assert_eq!(Path::new("/feel/the.dark.side"), p.as_path());
1510    ///
1511    /// p.set_extension("cookie");
1512    /// assert_eq!(Path::new("/feel/the.dark.cookie"), p.as_path());
1513    ///
1514    /// p.set_extension("");
1515    /// assert_eq!(Path::new("/feel/the.dark"), p.as_path());
1516    ///
1517    /// p.set_extension("");
1518    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1519    ///
1520    /// p.set_extension("");
1521    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1522    /// ```
1523    #[stable(feature = "rust1", since = "1.0.0")]
1524    pub fn set_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1525        self._set_extension(extension.as_ref())
1526    }
1527
1528    fn _set_extension(&mut self, extension: &OsStr) -> bool {
1529        validate_extension(extension);
1530
1531        let file_stem = match self.file_stem() {
1532            None => return false,
1533            Some(f) => f.as_encoded_bytes(),
1534        };
1535
1536        // truncate until right after the file stem
1537        let end_file_stem = file_stem[file_stem.len()..].as_ptr().addr();
1538        let start = self.inner.as_encoded_bytes().as_ptr().addr();
1539        self.inner.truncate(end_file_stem.wrapping_sub(start));
1540
1541        // add the new extension, if any
1542        let new = extension.as_encoded_bytes();
1543        if !new.is_empty() {
1544            self.inner.reserve_exact(new.len() + 1);
1545            self.inner.push(".");
1546            // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1547            // for the buffer to end with a surrogate half.
1548            unsafe { self.inner.extend_from_slice_unchecked(new) };
1549        }
1550
1551        true
1552    }
1553
1554    /// Append [`self.extension`] with `extension`.
1555    ///
1556    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1557    /// returns `true` and updates the extension otherwise.
1558    ///
1559    /// # Panics
1560    ///
1561    /// Panics if the passed extension contains a path separator (see
1562    /// [`is_separator`]).
1563    ///
1564    /// # Caveats
1565    ///
1566    /// The appended `extension` may contain dots and will be used in its entirety,
1567    /// but only the part after the final dot will be reflected in
1568    /// [`self.extension`].
1569    ///
1570    /// See the examples below.
1571    ///
1572    /// [`self.file_name`]: Path::file_name
1573    /// [`self.extension`]: Path::extension
1574    ///
1575    /// # Examples
1576    ///
1577    /// ```
1578    /// #![feature(path_add_extension)]
1579    ///
1580    /// use std::path::{Path, PathBuf};
1581    ///
1582    /// let mut p = PathBuf::from("/feel/the");
1583    ///
1584    /// p.add_extension("formatted");
1585    /// assert_eq!(Path::new("/feel/the.formatted"), p.as_path());
1586    ///
1587    /// p.add_extension("dark.side");
1588    /// assert_eq!(Path::new("/feel/the.formatted.dark.side"), p.as_path());
1589    ///
1590    /// p.set_extension("cookie");
1591    /// assert_eq!(Path::new("/feel/the.formatted.dark.cookie"), p.as_path());
1592    ///
1593    /// p.set_extension("");
1594    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1595    ///
1596    /// p.add_extension("");
1597    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1598    /// ```
1599    #[unstable(feature = "path_add_extension", issue = "127292")]
1600    pub fn add_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1601        self._add_extension(extension.as_ref())
1602    }
1603
1604    fn _add_extension(&mut self, extension: &OsStr) -> bool {
1605        validate_extension(extension);
1606
1607        let file_name = match self.file_name() {
1608            None => return false,
1609            Some(f) => f.as_encoded_bytes(),
1610        };
1611
1612        let new = extension.as_encoded_bytes();
1613        if !new.is_empty() {
1614            // truncate until right after the file name
1615            // this is necessary for trimming the trailing slash
1616            let end_file_name = file_name[file_name.len()..].as_ptr().addr();
1617            let start = self.inner.as_encoded_bytes().as_ptr().addr();
1618            self.inner.truncate(end_file_name.wrapping_sub(start));
1619
1620            // append the new extension
1621            self.inner.reserve_exact(new.len() + 1);
1622            self.inner.push(".");
1623            // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1624            // for the buffer to end with a surrogate half.
1625            unsafe { self.inner.extend_from_slice_unchecked(new) };
1626        }
1627
1628        true
1629    }
1630
1631    /// Yields a mutable reference to the underlying [`OsString`] instance.
1632    ///
1633    /// # Examples
1634    ///
1635    /// ```
1636    /// use std::path::{Path, PathBuf};
1637    ///
1638    /// let mut path = PathBuf::from("/foo");
1639    ///
1640    /// path.push("bar");
1641    /// assert_eq!(path, Path::new("/foo/bar"));
1642    ///
1643    /// // OsString's `push` does not add a separator.
1644    /// path.as_mut_os_string().push("baz");
1645    /// assert_eq!(path, Path::new("/foo/barbaz"));
1646    /// ```
1647    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
1648    #[must_use]
1649    #[inline]
1650    pub fn as_mut_os_string(&mut self) -> &mut OsString {
1651        &mut self.inner
1652    }
1653
1654    /// Consumes the `PathBuf`, yielding its internal [`OsString`] storage.
1655    ///
1656    /// # Examples
1657    ///
1658    /// ```
1659    /// use std::path::PathBuf;
1660    ///
1661    /// let p = PathBuf::from("/the/head");
1662    /// let os_str = p.into_os_string();
1663    /// ```
1664    #[stable(feature = "rust1", since = "1.0.0")]
1665    #[must_use = "`self` will be dropped if the result is not used"]
1666    #[inline]
1667    pub fn into_os_string(self) -> OsString {
1668        self.inner
1669    }
1670
1671    /// Converts this `PathBuf` into a [boxed](Box) [`Path`].
1672    #[stable(feature = "into_boxed_path", since = "1.20.0")]
1673    #[must_use = "`self` will be dropped if the result is not used"]
1674    #[inline]
1675    pub fn into_boxed_path(self) -> Box<Path> {
1676        let rw = Box::into_raw(self.inner.into_boxed_os_str()) as *mut Path;
1677        unsafe { Box::from_raw(rw) }
1678    }
1679
1680    /// Invokes [`capacity`] on the underlying instance of [`OsString`].
1681    ///
1682    /// [`capacity`]: OsString::capacity
1683    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1684    #[must_use]
1685    #[inline]
1686    pub fn capacity(&self) -> usize {
1687        self.inner.capacity()
1688    }
1689
1690    /// Invokes [`clear`] on the underlying instance of [`OsString`].
1691    ///
1692    /// [`clear`]: OsString::clear
1693    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1694    #[inline]
1695    pub fn clear(&mut self) {
1696        self.inner.clear()
1697    }
1698
1699    /// Invokes [`reserve`] on the underlying instance of [`OsString`].
1700    ///
1701    /// [`reserve`]: OsString::reserve
1702    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1703    #[inline]
1704    pub fn reserve(&mut self, additional: usize) {
1705        self.inner.reserve(additional)
1706    }
1707
1708    /// Invokes [`try_reserve`] on the underlying instance of [`OsString`].
1709    ///
1710    /// [`try_reserve`]: OsString::try_reserve
1711    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1712    #[inline]
1713    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1714        self.inner.try_reserve(additional)
1715    }
1716
1717    /// Invokes [`reserve_exact`] on the underlying instance of [`OsString`].
1718    ///
1719    /// [`reserve_exact`]: OsString::reserve_exact
1720    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1721    #[inline]
1722    pub fn reserve_exact(&mut self, additional: usize) {
1723        self.inner.reserve_exact(additional)
1724    }
1725
1726    /// Invokes [`try_reserve_exact`] on the underlying instance of [`OsString`].
1727    ///
1728    /// [`try_reserve_exact`]: OsString::try_reserve_exact
1729    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1730    #[inline]
1731    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1732        self.inner.try_reserve_exact(additional)
1733    }
1734
1735    /// Invokes [`shrink_to_fit`] on the underlying instance of [`OsString`].
1736    ///
1737    /// [`shrink_to_fit`]: OsString::shrink_to_fit
1738    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1739    #[inline]
1740    pub fn shrink_to_fit(&mut self) {
1741        self.inner.shrink_to_fit()
1742    }
1743
1744    /// Invokes [`shrink_to`] on the underlying instance of [`OsString`].
1745    ///
1746    /// [`shrink_to`]: OsString::shrink_to
1747    #[stable(feature = "shrink_to", since = "1.56.0")]
1748    #[inline]
1749    pub fn shrink_to(&mut self, min_capacity: usize) {
1750        self.inner.shrink_to(min_capacity)
1751    }
1752}
1753
1754#[stable(feature = "rust1", since = "1.0.0")]
1755impl Clone for PathBuf {
1756    #[inline]
1757    fn clone(&self) -> Self {
1758        PathBuf { inner: self.inner.clone() }
1759    }
1760
1761    /// Clones the contents of `source` into `self`.
1762    ///
1763    /// This method is preferred over simply assigning `source.clone()` to `self`,
1764    /// as it avoids reallocation if possible.
1765    #[inline]
1766    fn clone_from(&mut self, source: &Self) {
1767        self.inner.clone_from(&source.inner)
1768    }
1769}
1770
1771#[stable(feature = "box_from_path", since = "1.17.0")]
1772impl From<&Path> for Box<Path> {
1773    /// Creates a boxed [`Path`] from a reference.
1774    ///
1775    /// This will allocate and clone `path` to it.
1776    fn from(path: &Path) -> Box<Path> {
1777        let boxed: Box<OsStr> = path.inner.into();
1778        let rw = Box::into_raw(boxed) as *mut Path;
1779        unsafe { Box::from_raw(rw) }
1780    }
1781}
1782
1783#[stable(feature = "box_from_mut_slice", since = "1.84.0")]
1784impl From<&mut Path> for Box<Path> {
1785    /// Creates a boxed [`Path`] from a reference.
1786    ///
1787    /// This will allocate and clone `path` to it.
1788    fn from(path: &mut Path) -> Box<Path> {
1789        Self::from(&*path)
1790    }
1791}
1792
1793#[stable(feature = "box_from_cow", since = "1.45.0")]
1794impl From<Cow<'_, Path>> for Box<Path> {
1795    /// Creates a boxed [`Path`] from a clone-on-write pointer.
1796    ///
1797    /// Converting from a `Cow::Owned` does not clone or allocate.
1798    #[inline]
1799    fn from(cow: Cow<'_, Path>) -> Box<Path> {
1800        match cow {
1801            Cow::Borrowed(path) => Box::from(path),
1802            Cow::Owned(path) => Box::from(path),
1803        }
1804    }
1805}
1806
1807#[stable(feature = "path_buf_from_box", since = "1.18.0")]
1808impl From<Box<Path>> for PathBuf {
1809    /// Converts a <code>[Box]&lt;[Path]&gt;</code> into a [`PathBuf`].
1810    ///
1811    /// This conversion does not allocate or copy memory.
1812    #[inline]
1813    fn from(boxed: Box<Path>) -> PathBuf {
1814        boxed.into_path_buf()
1815    }
1816}
1817
1818#[stable(feature = "box_from_path_buf", since = "1.20.0")]
1819impl From<PathBuf> for Box<Path> {
1820    /// Converts a [`PathBuf`] into a <code>[Box]&lt;[Path]&gt;</code>.
1821    ///
1822    /// This conversion currently should not allocate memory,
1823    /// but this behavior is not guaranteed on all platforms or in all future versions.
1824    #[inline]
1825    fn from(p: PathBuf) -> Box<Path> {
1826        p.into_boxed_path()
1827    }
1828}
1829
1830#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
1831impl Clone for Box<Path> {
1832    #[inline]
1833    fn clone(&self) -> Self {
1834        self.to_path_buf().into_boxed_path()
1835    }
1836}
1837
1838#[stable(feature = "rust1", since = "1.0.0")]
1839impl<T: ?Sized + AsRef<OsStr>> From<&T> for PathBuf {
1840    /// Converts a borrowed [`OsStr`] to a [`PathBuf`].
1841    ///
1842    /// Allocates a [`PathBuf`] and copies the data into it.
1843    #[inline]
1844    fn from(s: &T) -> PathBuf {
1845        PathBuf::from(s.as_ref().to_os_string())
1846    }
1847}
1848
1849#[stable(feature = "rust1", since = "1.0.0")]
1850impl From<OsString> for PathBuf {
1851    /// Converts an [`OsString`] into a [`PathBuf`].
1852    ///
1853    /// This conversion does not allocate or copy memory.
1854    #[inline]
1855    fn from(s: OsString) -> PathBuf {
1856        PathBuf { inner: s }
1857    }
1858}
1859
1860#[stable(feature = "from_path_buf_for_os_string", since = "1.14.0")]
1861impl From<PathBuf> for OsString {
1862    /// Converts a [`PathBuf`] into an [`OsString`]
1863    ///
1864    /// This conversion does not allocate or copy memory.
1865    #[inline]
1866    fn from(path_buf: PathBuf) -> OsString {
1867        path_buf.inner
1868    }
1869}
1870
1871#[stable(feature = "rust1", since = "1.0.0")]
1872impl From<String> for PathBuf {
1873    /// Converts a [`String`] into a [`PathBuf`]
1874    ///
1875    /// This conversion does not allocate or copy memory.
1876    #[inline]
1877    fn from(s: String) -> PathBuf {
1878        PathBuf::from(OsString::from(s))
1879    }
1880}
1881
1882#[stable(feature = "path_from_str", since = "1.32.0")]
1883impl FromStr for PathBuf {
1884    type Err = core::convert::Infallible;
1885
1886    #[inline]
1887    fn from_str(s: &str) -> Result<Self, Self::Err> {
1888        Ok(PathBuf::from(s))
1889    }
1890}
1891
1892#[stable(feature = "rust1", since = "1.0.0")]
1893impl<P: AsRef<Path>> FromIterator<P> for PathBuf {
1894    /// Creates a new `PathBuf` from the [`Path`] elements of an iterator.
1895    ///
1896    /// This uses [`push`](Self::push) to add each element, so can be used to adjoin multiple path
1897    /// [components](Components).
1898    ///
1899    /// # Examples
1900    /// ```
1901    /// # use std::path::PathBuf;
1902    /// let path = PathBuf::from_iter(["/tmp", "foo", "bar"]);
1903    /// assert_eq!(path, PathBuf::from("/tmp/foo/bar"));
1904    /// ```
1905    ///
1906    /// See documentation for [`push`](Self::push) for more details on how the path is constructed.
1907    fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
1908        let mut buf = PathBuf::new();
1909        buf.extend(iter);
1910        buf
1911    }
1912}
1913
1914#[stable(feature = "rust1", since = "1.0.0")]
1915impl<P: AsRef<Path>> Extend<P> for PathBuf {
1916    /// Extends `self` with [`Path`] elements from `iter`.
1917    ///
1918    /// This uses [`push`](Self::push) to add each element, so can be used to adjoin multiple path
1919    /// [components](Components).
1920    ///
1921    /// # Examples
1922    /// ```
1923    /// # use std::path::PathBuf;
1924    /// let mut path = PathBuf::from("/tmp");
1925    /// path.extend(["foo", "bar", "file.txt"]);
1926    /// assert_eq!(path, PathBuf::from("/tmp/foo/bar/file.txt"));
1927    /// ```
1928    ///
1929    /// See documentation for [`push`](Self::push) for more details on how the path is constructed.
1930    fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
1931        iter.into_iter().for_each(move |p| self.push(p.as_ref()));
1932    }
1933
1934    #[inline]
1935    fn extend_one(&mut self, p: P) {
1936        self.push(p.as_ref());
1937    }
1938}
1939
1940#[stable(feature = "rust1", since = "1.0.0")]
1941impl fmt::Debug for PathBuf {
1942    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1943        fmt::Debug::fmt(&**self, formatter)
1944    }
1945}
1946
1947#[stable(feature = "rust1", since = "1.0.0")]
1948impl ops::Deref for PathBuf {
1949    type Target = Path;
1950    #[inline]
1951    fn deref(&self) -> &Path {
1952        Path::new(&self.inner)
1953    }
1954}
1955
1956#[stable(feature = "path_buf_deref_mut", since = "1.68.0")]
1957impl ops::DerefMut for PathBuf {
1958    #[inline]
1959    fn deref_mut(&mut self) -> &mut Path {
1960        Path::from_inner_mut(&mut self.inner)
1961    }
1962}
1963
1964#[stable(feature = "rust1", since = "1.0.0")]
1965impl Borrow<Path> for PathBuf {
1966    #[inline]
1967    fn borrow(&self) -> &Path {
1968        self.deref()
1969    }
1970}
1971
1972#[stable(feature = "default_for_pathbuf", since = "1.17.0")]
1973impl Default for PathBuf {
1974    #[inline]
1975    fn default() -> Self {
1976        PathBuf::new()
1977    }
1978}
1979
1980#[stable(feature = "cow_from_path", since = "1.6.0")]
1981impl<'a> From<&'a Path> for Cow<'a, Path> {
1982    /// Creates a clone-on-write pointer from a reference to
1983    /// [`Path`].
1984    ///
1985    /// This conversion does not clone or allocate.
1986    #[inline]
1987    fn from(s: &'a Path) -> Cow<'a, Path> {
1988        Cow::Borrowed(s)
1989    }
1990}
1991
1992#[stable(feature = "cow_from_path", since = "1.6.0")]
1993impl<'a> From<PathBuf> for Cow<'a, Path> {
1994    /// Creates a clone-on-write pointer from an owned
1995    /// instance of [`PathBuf`].
1996    ///
1997    /// This conversion does not clone or allocate.
1998    #[inline]
1999    fn from(s: PathBuf) -> Cow<'a, Path> {
2000        Cow::Owned(s)
2001    }
2002}
2003
2004#[stable(feature = "cow_from_pathbuf_ref", since = "1.28.0")]
2005impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
2006    /// Creates a clone-on-write pointer from a reference to
2007    /// [`PathBuf`].
2008    ///
2009    /// This conversion does not clone or allocate.
2010    #[inline]
2011    fn from(p: &'a PathBuf) -> Cow<'a, Path> {
2012        Cow::Borrowed(p.as_path())
2013    }
2014}
2015
2016#[stable(feature = "pathbuf_from_cow_path", since = "1.28.0")]
2017impl<'a> From<Cow<'a, Path>> for PathBuf {
2018    /// Converts a clone-on-write pointer to an owned path.
2019    ///
2020    /// Converting from a `Cow::Owned` does not clone or allocate.
2021    #[inline]
2022    fn from(p: Cow<'a, Path>) -> Self {
2023        p.into_owned()
2024    }
2025}
2026
2027#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2028impl From<PathBuf> for Arc<Path> {
2029    /// Converts a [`PathBuf`] into an <code>[Arc]<[Path]></code> by moving the [`PathBuf`] data
2030    /// into a new [`Arc`] buffer.
2031    #[inline]
2032    fn from(s: PathBuf) -> Arc<Path> {
2033        let arc: Arc<OsStr> = Arc::from(s.into_os_string());
2034        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2035    }
2036}
2037
2038#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2039impl From<&Path> for Arc<Path> {
2040    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2041    #[inline]
2042    fn from(s: &Path) -> Arc<Path> {
2043        let arc: Arc<OsStr> = Arc::from(s.as_os_str());
2044        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2045    }
2046}
2047
2048#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2049impl From<&mut Path> for Arc<Path> {
2050    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2051    #[inline]
2052    fn from(s: &mut Path) -> Arc<Path> {
2053        Arc::from(&*s)
2054    }
2055}
2056
2057#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2058impl From<PathBuf> for Rc<Path> {
2059    /// Converts a [`PathBuf`] into an <code>[Rc]<[Path]></code> by moving the [`PathBuf`] data into
2060    /// a new [`Rc`] buffer.
2061    #[inline]
2062    fn from(s: PathBuf) -> Rc<Path> {
2063        let rc: Rc<OsStr> = Rc::from(s.into_os_string());
2064        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2065    }
2066}
2067
2068#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2069impl From<&Path> for Rc<Path> {
2070    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2071    #[inline]
2072    fn from(s: &Path) -> Rc<Path> {
2073        let rc: Rc<OsStr> = Rc::from(s.as_os_str());
2074        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2075    }
2076}
2077
2078#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2079impl From<&mut Path> for Rc<Path> {
2080    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2081    #[inline]
2082    fn from(s: &mut Path) -> Rc<Path> {
2083        Rc::from(&*s)
2084    }
2085}
2086
2087#[stable(feature = "rust1", since = "1.0.0")]
2088impl ToOwned for Path {
2089    type Owned = PathBuf;
2090    #[inline]
2091    fn to_owned(&self) -> PathBuf {
2092        self.to_path_buf()
2093    }
2094    #[inline]
2095    fn clone_into(&self, target: &mut PathBuf) {
2096        self.inner.clone_into(&mut target.inner);
2097    }
2098}
2099
2100#[stable(feature = "rust1", since = "1.0.0")]
2101impl PartialEq for PathBuf {
2102    #[inline]
2103    fn eq(&self, other: &PathBuf) -> bool {
2104        self.components() == other.components()
2105    }
2106}
2107
2108#[stable(feature = "rust1", since = "1.0.0")]
2109impl Hash for PathBuf {
2110    fn hash<H: Hasher>(&self, h: &mut H) {
2111        self.as_path().hash(h)
2112    }
2113}
2114
2115#[stable(feature = "rust1", since = "1.0.0")]
2116impl Eq for PathBuf {}
2117
2118#[stable(feature = "rust1", since = "1.0.0")]
2119impl PartialOrd for PathBuf {
2120    #[inline]
2121    fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
2122        Some(compare_components(self.components(), other.components()))
2123    }
2124}
2125
2126#[stable(feature = "rust1", since = "1.0.0")]
2127impl Ord for PathBuf {
2128    #[inline]
2129    fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
2130        compare_components(self.components(), other.components())
2131    }
2132}
2133
2134#[stable(feature = "rust1", since = "1.0.0")]
2135impl AsRef<OsStr> for PathBuf {
2136    #[inline]
2137    fn as_ref(&self) -> &OsStr {
2138        &self.inner[..]
2139    }
2140}
2141
2142/// A slice of a path (akin to [`str`]).
2143///
2144/// This type supports a number of operations for inspecting a path, including
2145/// breaking the path into its components (separated by `/` on Unix and by either
2146/// `/` or `\` on Windows), extracting the file name, determining whether the path
2147/// is absolute, and so on.
2148///
2149/// This is an *unsized* type, meaning that it must always be used behind a
2150/// pointer like `&` or [`Box`]. For an owned version of this type,
2151/// see [`PathBuf`].
2152///
2153/// More details about the overall approach can be found in
2154/// the [module documentation](self).
2155///
2156/// # Examples
2157///
2158/// ```
2159/// use std::path::Path;
2160/// use std::ffi::OsStr;
2161///
2162/// // Note: this example does work on Windows
2163/// let path = Path::new("./foo/bar.txt");
2164///
2165/// let parent = path.parent();
2166/// assert_eq!(parent, Some(Path::new("./foo")));
2167///
2168/// let file_stem = path.file_stem();
2169/// assert_eq!(file_stem, Some(OsStr::new("bar")));
2170///
2171/// let extension = path.extension();
2172/// assert_eq!(extension, Some(OsStr::new("txt")));
2173/// ```
2174#[cfg_attr(not(test), rustc_diagnostic_item = "Path")]
2175#[stable(feature = "rust1", since = "1.0.0")]
2176// `Path::new` and `impl CloneToUninit for Path` current implementation relies
2177// on `Path` being layout-compatible with `OsStr`.
2178// However, `Path` layout is considered an implementation detail and must not be relied upon.
2179#[repr(transparent)]
2180pub struct Path {
2181    inner: OsStr,
2182}
2183
2184/// An error returned from [`Path::strip_prefix`] if the prefix was not found.
2185///
2186/// This `struct` is created by the [`strip_prefix`] method on [`Path`].
2187/// See its documentation for more.
2188///
2189/// [`strip_prefix`]: Path::strip_prefix
2190#[derive(Debug, Clone, PartialEq, Eq)]
2191#[stable(since = "1.7.0", feature = "strip_prefix")]
2192pub struct StripPrefixError(());
2193
2194/// An error returned from [`Path::normalize_lexically`] if a `..` parent reference
2195/// would escape the path.
2196#[unstable(feature = "normalize_lexically", issue = "134694")]
2197#[derive(Debug, PartialEq)]
2198#[non_exhaustive]
2199pub struct NormalizeError;
2200
2201impl Path {
2202    // The following (private!) function allows construction of a path from a u8
2203    // slice, which is only safe when it is known to follow the OsStr encoding.
2204    unsafe fn from_u8_slice(s: &[u8]) -> &Path {
2205        unsafe { Path::new(OsStr::from_encoded_bytes_unchecked(s)) }
2206    }
2207    // The following (private!) function reveals the byte encoding used for OsStr.
2208    pub(crate) fn as_u8_slice(&self) -> &[u8] {
2209        self.inner.as_encoded_bytes()
2210    }
2211
2212    /// Directly wraps a string slice as a `Path` slice.
2213    ///
2214    /// This is a cost-free conversion.
2215    ///
2216    /// # Examples
2217    ///
2218    /// ```
2219    /// use std::path::Path;
2220    ///
2221    /// Path::new("foo.txt");
2222    /// ```
2223    ///
2224    /// You can create `Path`s from `String`s, or even other `Path`s:
2225    ///
2226    /// ```
2227    /// use std::path::Path;
2228    ///
2229    /// let string = String::from("foo.txt");
2230    /// let from_string = Path::new(&string);
2231    /// let from_path = Path::new(&from_string);
2232    /// assert_eq!(from_string, from_path);
2233    /// ```
2234    #[stable(feature = "rust1", since = "1.0.0")]
2235    pub fn new<S: AsRef<OsStr> + ?Sized>(s: &S) -> &Path {
2236        unsafe { &*(s.as_ref() as *const OsStr as *const Path) }
2237    }
2238
2239    fn from_inner_mut(inner: &mut OsStr) -> &mut Path {
2240        // SAFETY: Path is just a wrapper around OsStr,
2241        // therefore converting &mut OsStr to &mut Path is safe.
2242        unsafe { &mut *(inner as *mut OsStr as *mut Path) }
2243    }
2244
2245    /// Yields the underlying [`OsStr`] slice.
2246    ///
2247    /// # Examples
2248    ///
2249    /// ```
2250    /// use std::path::Path;
2251    ///
2252    /// let os_str = Path::new("foo.txt").as_os_str();
2253    /// assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
2254    /// ```
2255    #[stable(feature = "rust1", since = "1.0.0")]
2256    #[must_use]
2257    #[inline]
2258    pub fn as_os_str(&self) -> &OsStr {
2259        &self.inner
2260    }
2261
2262    /// Yields a mutable reference to the underlying [`OsStr`] slice.
2263    ///
2264    /// # Examples
2265    ///
2266    /// ```
2267    /// use std::path::{Path, PathBuf};
2268    ///
2269    /// let mut path = PathBuf::from("Foo.TXT");
2270    ///
2271    /// assert_ne!(path, Path::new("foo.txt"));
2272    ///
2273    /// path.as_mut_os_str().make_ascii_lowercase();
2274    /// assert_eq!(path, Path::new("foo.txt"));
2275    /// ```
2276    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
2277    #[must_use]
2278    #[inline]
2279    pub fn as_mut_os_str(&mut self) -> &mut OsStr {
2280        &mut self.inner
2281    }
2282
2283    /// Yields a [`&str`] slice if the `Path` is valid unicode.
2284    ///
2285    /// This conversion may entail doing a check for UTF-8 validity.
2286    /// Note that validation is performed because non-UTF-8 strings are
2287    /// perfectly valid for some OS.
2288    ///
2289    /// [`&str`]: str
2290    ///
2291    /// # Examples
2292    ///
2293    /// ```
2294    /// use std::path::Path;
2295    ///
2296    /// let path = Path::new("foo.txt");
2297    /// assert_eq!(path.to_str(), Some("foo.txt"));
2298    /// ```
2299    #[stable(feature = "rust1", since = "1.0.0")]
2300    #[must_use = "this returns the result of the operation, \
2301                  without modifying the original"]
2302    #[inline]
2303    pub fn to_str(&self) -> Option<&str> {
2304        self.inner.to_str()
2305    }
2306
2307    /// Converts a `Path` to a [`Cow<str>`].
2308    ///
2309    /// Any non-UTF-8 sequences are replaced with
2310    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
2311    ///
2312    /// [U+FFFD]: super::char::REPLACEMENT_CHARACTER
2313    ///
2314    /// # Examples
2315    ///
2316    /// Calling `to_string_lossy` on a `Path` with valid unicode:
2317    ///
2318    /// ```
2319    /// use std::path::Path;
2320    ///
2321    /// let path = Path::new("foo.txt");
2322    /// assert_eq!(path.to_string_lossy(), "foo.txt");
2323    /// ```
2324    ///
2325    /// Had `path` contained invalid unicode, the `to_string_lossy` call might
2326    /// have returned `"fo�.txt"`.
2327    #[stable(feature = "rust1", since = "1.0.0")]
2328    #[must_use = "this returns the result of the operation, \
2329                  without modifying the original"]
2330    #[inline]
2331    pub fn to_string_lossy(&self) -> Cow<'_, str> {
2332        self.inner.to_string_lossy()
2333    }
2334
2335    /// Converts a `Path` to an owned [`PathBuf`].
2336    ///
2337    /// # Examples
2338    ///
2339    /// ```
2340    /// use std::path::{Path, PathBuf};
2341    ///
2342    /// let path_buf = Path::new("foo.txt").to_path_buf();
2343    /// assert_eq!(path_buf, PathBuf::from("foo.txt"));
2344    /// ```
2345    #[rustc_conversion_suggestion]
2346    #[must_use = "this returns the result of the operation, \
2347                  without modifying the original"]
2348    #[stable(feature = "rust1", since = "1.0.0")]
2349    #[cfg_attr(not(test), rustc_diagnostic_item = "path_to_pathbuf")]
2350    pub fn to_path_buf(&self) -> PathBuf {
2351        PathBuf::from(self.inner.to_os_string())
2352    }
2353
2354    /// Returns `true` if the `Path` is absolute, i.e., if it is independent of
2355    /// the current directory.
2356    ///
2357    /// * On Unix, a path is absolute if it starts with the root, so
2358    /// `is_absolute` and [`has_root`] are equivalent.
2359    ///
2360    /// * On Windows, a path is absolute if it has a prefix and starts with the
2361    /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not.
2362    ///
2363    /// # Examples
2364    ///
2365    /// ```
2366    /// use std::path::Path;
2367    ///
2368    /// assert!(!Path::new("foo.txt").is_absolute());
2369    /// ```
2370    ///
2371    /// [`has_root`]: Path::has_root
2372    #[stable(feature = "rust1", since = "1.0.0")]
2373    #[must_use]
2374    #[allow(deprecated)]
2375    pub fn is_absolute(&self) -> bool {
2376        sys::path::is_absolute(self)
2377    }
2378
2379    /// Returns `true` if the `Path` is relative, i.e., not absolute.
2380    ///
2381    /// See [`is_absolute`]'s documentation for more details.
2382    ///
2383    /// # Examples
2384    ///
2385    /// ```
2386    /// use std::path::Path;
2387    ///
2388    /// assert!(Path::new("foo.txt").is_relative());
2389    /// ```
2390    ///
2391    /// [`is_absolute`]: Path::is_absolute
2392    #[stable(feature = "rust1", since = "1.0.0")]
2393    #[must_use]
2394    #[inline]
2395    pub fn is_relative(&self) -> bool {
2396        !self.is_absolute()
2397    }
2398
2399    pub(crate) fn prefix(&self) -> Option<Prefix<'_>> {
2400        self.components().prefix
2401    }
2402
2403    /// Returns `true` if the `Path` has a root.
2404    ///
2405    /// * On Unix, a path has a root if it begins with `/`.
2406    ///
2407    /// * On Windows, a path has a root if it:
2408    ///     * has no prefix and begins with a separator, e.g., `\windows`
2409    ///     * has a prefix followed by a separator, e.g., `c:\windows` but not `c:windows`
2410    ///     * has any non-disk prefix, e.g., `\\server\share`
2411    ///
2412    /// # Examples
2413    ///
2414    /// ```
2415    /// use std::path::Path;
2416    ///
2417    /// assert!(Path::new("/etc/passwd").has_root());
2418    /// ```
2419    #[stable(feature = "rust1", since = "1.0.0")]
2420    #[must_use]
2421    #[inline]
2422    pub fn has_root(&self) -> bool {
2423        self.components().has_root()
2424    }
2425
2426    /// Returns the `Path` without its final component, if there is one.
2427    ///
2428    /// This means it returns `Some("")` for relative paths with one component.
2429    ///
2430    /// Returns [`None`] if the path terminates in a root or prefix, or if it's
2431    /// the empty string.
2432    ///
2433    /// # Examples
2434    ///
2435    /// ```
2436    /// use std::path::Path;
2437    ///
2438    /// let path = Path::new("/foo/bar");
2439    /// let parent = path.parent().unwrap();
2440    /// assert_eq!(parent, Path::new("/foo"));
2441    ///
2442    /// let grand_parent = parent.parent().unwrap();
2443    /// assert_eq!(grand_parent, Path::new("/"));
2444    /// assert_eq!(grand_parent.parent(), None);
2445    ///
2446    /// let relative_path = Path::new("foo/bar");
2447    /// let parent = relative_path.parent();
2448    /// assert_eq!(parent, Some(Path::new("foo")));
2449    /// let grand_parent = parent.and_then(Path::parent);
2450    /// assert_eq!(grand_parent, Some(Path::new("")));
2451    /// let great_grand_parent = grand_parent.and_then(Path::parent);
2452    /// assert_eq!(great_grand_parent, None);
2453    /// ```
2454    #[stable(feature = "rust1", since = "1.0.0")]
2455    #[doc(alias = "dirname")]
2456    #[must_use]
2457    pub fn parent(&self) -> Option<&Path> {
2458        let mut comps = self.components();
2459        let comp = comps.next_back();
2460        comp.and_then(|p| match p {
2461            Component::Normal(_) | Component::CurDir | Component::ParentDir => {
2462                Some(comps.as_path())
2463            }
2464            _ => None,
2465        })
2466    }
2467
2468    /// Produces an iterator over `Path` and its ancestors.
2469    ///
2470    /// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
2471    /// or more times. If the [`parent`] method returns [`None`], the iterator will do likewise.
2472    /// The iterator will always yield at least one value, namely `Some(&self)`. Next it will yield
2473    /// `&self.parent()`, `&self.parent().and_then(Path::parent)` and so on.
2474    ///
2475    /// # Examples
2476    ///
2477    /// ```
2478    /// use std::path::Path;
2479    ///
2480    /// let mut ancestors = Path::new("/foo/bar").ancestors();
2481    /// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
2482    /// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
2483    /// assert_eq!(ancestors.next(), Some(Path::new("/")));
2484    /// assert_eq!(ancestors.next(), None);
2485    ///
2486    /// let mut ancestors = Path::new("../foo/bar").ancestors();
2487    /// assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
2488    /// assert_eq!(ancestors.next(), Some(Path::new("../foo")));
2489    /// assert_eq!(ancestors.next(), Some(Path::new("..")));
2490    /// assert_eq!(ancestors.next(), Some(Path::new("")));
2491    /// assert_eq!(ancestors.next(), None);
2492    /// ```
2493    ///
2494    /// [`parent`]: Path::parent
2495    #[stable(feature = "path_ancestors", since = "1.28.0")]
2496    #[inline]
2497    pub fn ancestors(&self) -> Ancestors<'_> {
2498        Ancestors { next: Some(&self) }
2499    }
2500
2501    /// Returns the final component of the `Path`, if there is one.
2502    ///
2503    /// If the path is a normal file, this is the file name. If it's the path of a directory, this
2504    /// is the directory name.
2505    ///
2506    /// Returns [`None`] if the path terminates in `..`.
2507    ///
2508    /// # Examples
2509    ///
2510    /// ```
2511    /// use std::path::Path;
2512    /// use std::ffi::OsStr;
2513    ///
2514    /// assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
2515    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
2516    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
2517    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
2518    /// assert_eq!(None, Path::new("foo.txt/..").file_name());
2519    /// assert_eq!(None, Path::new("/").file_name());
2520    /// ```
2521    #[stable(feature = "rust1", since = "1.0.0")]
2522    #[doc(alias = "basename")]
2523    #[must_use]
2524    pub fn file_name(&self) -> Option<&OsStr> {
2525        self.components().next_back().and_then(|p| match p {
2526            Component::Normal(p) => Some(p),
2527            _ => None,
2528        })
2529    }
2530
2531    /// Returns a path that, when joined onto `base`, yields `self`.
2532    ///
2533    /// # Errors
2534    ///
2535    /// If `base` is not a prefix of `self` (i.e., [`starts_with`]
2536    /// returns `false`), returns [`Err`].
2537    ///
2538    /// [`starts_with`]: Path::starts_with
2539    ///
2540    /// # Examples
2541    ///
2542    /// ```
2543    /// use std::path::{Path, PathBuf};
2544    ///
2545    /// let path = Path::new("/test/haha/foo.txt");
2546    ///
2547    /// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
2548    /// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
2549    /// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
2550    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
2551    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
2552    ///
2553    /// assert!(path.strip_prefix("test").is_err());
2554    /// assert!(path.strip_prefix("/te").is_err());
2555    /// assert!(path.strip_prefix("/haha").is_err());
2556    ///
2557    /// let prefix = PathBuf::from("/test/");
2558    /// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
2559    /// ```
2560    #[stable(since = "1.7.0", feature = "path_strip_prefix")]
2561    pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
2562    where
2563        P: AsRef<Path>,
2564    {
2565        self._strip_prefix(base.as_ref())
2566    }
2567
2568    fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
2569        iter_after(self.components(), base.components())
2570            .map(|c| c.as_path())
2571            .ok_or(StripPrefixError(()))
2572    }
2573
2574    /// Determines whether `base` is a prefix of `self`.
2575    ///
2576    /// Only considers whole path components to match.
2577    ///
2578    /// # Examples
2579    ///
2580    /// ```
2581    /// use std::path::Path;
2582    ///
2583    /// let path = Path::new("/etc/passwd");
2584    ///
2585    /// assert!(path.starts_with("/etc"));
2586    /// assert!(path.starts_with("/etc/"));
2587    /// assert!(path.starts_with("/etc/passwd"));
2588    /// assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
2589    /// assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
2590    ///
2591    /// assert!(!path.starts_with("/e"));
2592    /// assert!(!path.starts_with("/etc/passwd.txt"));
2593    ///
2594    /// assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
2595    /// ```
2596    #[stable(feature = "rust1", since = "1.0.0")]
2597    #[must_use]
2598    pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
2599        self._starts_with(base.as_ref())
2600    }
2601
2602    fn _starts_with(&self, base: &Path) -> bool {
2603        iter_after(self.components(), base.components()).is_some()
2604    }
2605
2606    /// Determines whether `child` is a suffix of `self`.
2607    ///
2608    /// Only considers whole path components to match.
2609    ///
2610    /// # Examples
2611    ///
2612    /// ```
2613    /// use std::path::Path;
2614    ///
2615    /// let path = Path::new("/etc/resolv.conf");
2616    ///
2617    /// assert!(path.ends_with("resolv.conf"));
2618    /// assert!(path.ends_with("etc/resolv.conf"));
2619    /// assert!(path.ends_with("/etc/resolv.conf"));
2620    ///
2621    /// assert!(!path.ends_with("/resolv.conf"));
2622    /// assert!(!path.ends_with("conf")); // use .extension() instead
2623    /// ```
2624    #[stable(feature = "rust1", since = "1.0.0")]
2625    #[must_use]
2626    pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
2627        self._ends_with(child.as_ref())
2628    }
2629
2630    fn _ends_with(&self, child: &Path) -> bool {
2631        iter_after(self.components().rev(), child.components().rev()).is_some()
2632    }
2633
2634    /// Extracts the stem (non-extension) portion of [`self.file_name`].
2635    ///
2636    /// [`self.file_name`]: Path::file_name
2637    ///
2638    /// The stem is:
2639    ///
2640    /// * [`None`], if there is no file name;
2641    /// * The entire file name if there is no embedded `.`;
2642    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2643    /// * Otherwise, the portion of the file name before the final `.`
2644    ///
2645    /// # Examples
2646    ///
2647    /// ```
2648    /// use std::path::Path;
2649    ///
2650    /// assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
2651    /// assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
2652    /// ```
2653    ///
2654    /// # See Also
2655    /// This method is similar to [`Path::file_prefix`], which extracts the portion of the file name
2656    /// before the *first* `.`
2657    ///
2658    /// [`Path::file_prefix`]: Path::file_prefix
2659    ///
2660    #[stable(feature = "rust1", since = "1.0.0")]
2661    #[must_use]
2662    pub fn file_stem(&self) -> Option<&OsStr> {
2663        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.or(after))
2664    }
2665
2666    /// Extracts the prefix of [`self.file_name`].
2667    ///
2668    /// The prefix is:
2669    ///
2670    /// * [`None`], if there is no file name;
2671    /// * The entire file name if there is no embedded `.`;
2672    /// * The portion of the file name before the first non-beginning `.`;
2673    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2674    /// * The portion of the file name before the second `.` if the file name begins with `.`
2675    ///
2676    /// [`self.file_name`]: Path::file_name
2677    ///
2678    /// # Examples
2679    ///
2680    /// ```
2681    /// # #![feature(path_file_prefix)]
2682    /// use std::path::Path;
2683    ///
2684    /// assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
2685    /// assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
2686    /// ```
2687    ///
2688    /// # See Also
2689    /// This method is similar to [`Path::file_stem`], which extracts the portion of the file name
2690    /// before the *last* `.`
2691    ///
2692    /// [`Path::file_stem`]: Path::file_stem
2693    ///
2694    #[unstable(feature = "path_file_prefix", issue = "86319")]
2695    #[must_use]
2696    pub fn file_prefix(&self) -> Option<&OsStr> {
2697        self.file_name().map(split_file_at_dot).and_then(|(before, _after)| Some(before))
2698    }
2699
2700    /// Extracts the extension (without the leading dot) of [`self.file_name`], if possible.
2701    ///
2702    /// The extension is:
2703    ///
2704    /// * [`None`], if there is no file name;
2705    /// * [`None`], if there is no embedded `.`;
2706    /// * [`None`], if the file name begins with `.` and has no other `.`s within;
2707    /// * Otherwise, the portion of the file name after the final `.`
2708    ///
2709    /// [`self.file_name`]: Path::file_name
2710    ///
2711    /// # Examples
2712    ///
2713    /// ```
2714    /// use std::path::Path;
2715    ///
2716    /// assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
2717    /// assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
2718    /// ```
2719    #[stable(feature = "rust1", since = "1.0.0")]
2720    #[must_use]
2721    pub fn extension(&self) -> Option<&OsStr> {
2722        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.and(after))
2723    }
2724
2725    /// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
2726    ///
2727    /// If `path` is absolute, it replaces the current path.
2728    ///
2729    /// See [`PathBuf::push`] for more details on what it means to adjoin a path.
2730    ///
2731    /// # Examples
2732    ///
2733    /// ```
2734    /// use std::path::{Path, PathBuf};
2735    ///
2736    /// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
2737    /// assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));
2738    /// ```
2739    #[stable(feature = "rust1", since = "1.0.0")]
2740    #[must_use]
2741    pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
2742        self._join(path.as_ref())
2743    }
2744
2745    fn _join(&self, path: &Path) -> PathBuf {
2746        let mut buf = self.to_path_buf();
2747        buf.push(path);
2748        buf
2749    }
2750
2751    /// Creates an owned [`PathBuf`] like `self` but with the given file name.
2752    ///
2753    /// See [`PathBuf::set_file_name`] for more details.
2754    ///
2755    /// # Examples
2756    ///
2757    /// ```
2758    /// use std::path::{Path, PathBuf};
2759    ///
2760    /// let path = Path::new("/tmp/foo.png");
2761    /// assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
2762    /// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
2763    ///
2764    /// let path = Path::new("/tmp");
2765    /// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
2766    /// ```
2767    #[stable(feature = "rust1", since = "1.0.0")]
2768    #[must_use]
2769    pub fn with_file_name<S: AsRef<OsStr>>(&self, file_name: S) -> PathBuf {
2770        self._with_file_name(file_name.as_ref())
2771    }
2772
2773    fn _with_file_name(&self, file_name: &OsStr) -> PathBuf {
2774        let mut buf = self.to_path_buf();
2775        buf.set_file_name(file_name);
2776        buf
2777    }
2778
2779    /// Creates an owned [`PathBuf`] like `self` but with the given extension.
2780    ///
2781    /// See [`PathBuf::set_extension`] for more details.
2782    ///
2783    /// # Examples
2784    ///
2785    /// ```
2786    /// use std::path::Path;
2787    ///
2788    /// let path = Path::new("foo.rs");
2789    /// assert_eq!(path.with_extension("txt"), Path::new("foo.txt"));
2790    /// assert_eq!(path.with_extension(""), Path::new("foo"));
2791    /// ```
2792    ///
2793    /// Handling multiple extensions:
2794    ///
2795    /// ```
2796    /// use std::path::Path;
2797    ///
2798    /// let path = Path::new("foo.tar.gz");
2799    /// assert_eq!(path.with_extension("xz"), Path::new("foo.tar.xz"));
2800    /// assert_eq!(path.with_extension("").with_extension("txt"), Path::new("foo.txt"));
2801    /// ```
2802    ///
2803    /// Adding an extension where one did not exist:
2804    ///
2805    /// ```
2806    /// use std::path::Path;
2807    ///
2808    /// let path = Path::new("foo");
2809    /// assert_eq!(path.with_extension("rs"), Path::new("foo.rs"));
2810    /// ```
2811    #[stable(feature = "rust1", since = "1.0.0")]
2812    pub fn with_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2813        self._with_extension(extension.as_ref())
2814    }
2815
2816    fn _with_extension(&self, extension: &OsStr) -> PathBuf {
2817        let self_len = self.as_os_str().len();
2818        let self_bytes = self.as_os_str().as_encoded_bytes();
2819
2820        let (new_capacity, slice_to_copy) = match self.extension() {
2821            None => {
2822                // Enough capacity for the extension and the dot
2823                let capacity = self_len + extension.len() + 1;
2824                let whole_path = self_bytes;
2825                (capacity, whole_path)
2826            }
2827            Some(previous_extension) => {
2828                let capacity = self_len + extension.len() - previous_extension.len();
2829                let path_till_dot = &self_bytes[..self_len - previous_extension.len()];
2830                (capacity, path_till_dot)
2831            }
2832        };
2833
2834        let mut new_path = PathBuf::with_capacity(new_capacity);
2835        // SAFETY: The path is empty, so cannot have surrogate halves.
2836        unsafe { new_path.inner.extend_from_slice_unchecked(slice_to_copy) };
2837        new_path.set_extension(extension);
2838        new_path
2839    }
2840
2841    /// Creates an owned [`PathBuf`] like `self` but with the extension added.
2842    ///
2843    /// See [`PathBuf::add_extension`] for more details.
2844    ///
2845    /// # Examples
2846    ///
2847    /// ```
2848    /// #![feature(path_add_extension)]
2849    ///
2850    /// use std::path::{Path, PathBuf};
2851    ///
2852    /// let path = Path::new("foo.rs");
2853    /// assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
2854    ///
2855    /// let path = Path::new("foo.tar.gz");
2856    /// assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
2857    /// assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
2858    /// assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));
2859    /// ```
2860    #[unstable(feature = "path_add_extension", issue = "127292")]
2861    pub fn with_added_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2862        let mut new_path = self.to_path_buf();
2863        new_path.add_extension(extension);
2864        new_path
2865    }
2866
2867    /// Produces an iterator over the [`Component`]s of the path.
2868    ///
2869    /// When parsing the path, there is a small amount of normalization:
2870    ///
2871    /// * Repeated separators are ignored, so `a/b` and `a//b` both have
2872    ///   `a` and `b` as components.
2873    ///
2874    /// * Occurrences of `.` are normalized away, except if they are at the
2875    ///   beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
2876    ///   `a/b` all have `a` and `b` as components, but `./a/b` starts with
2877    ///   an additional [`CurDir`] component.
2878    ///
2879    /// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
2880    ///
2881    /// Note that no other normalization takes place; in particular, `a/c`
2882    /// and `a/b/../c` are distinct, to account for the possibility that `b`
2883    /// is a symbolic link (so its parent isn't `a`).
2884    ///
2885    /// # Examples
2886    ///
2887    /// ```
2888    /// use std::path::{Path, Component};
2889    /// use std::ffi::OsStr;
2890    ///
2891    /// let mut components = Path::new("/tmp/foo.txt").components();
2892    ///
2893    /// assert_eq!(components.next(), Some(Component::RootDir));
2894    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
2895    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
2896    /// assert_eq!(components.next(), None)
2897    /// ```
2898    ///
2899    /// [`CurDir`]: Component::CurDir
2900    #[stable(feature = "rust1", since = "1.0.0")]
2901    pub fn components(&self) -> Components<'_> {
2902        let prefix = parse_prefix(self.as_os_str());
2903        Components {
2904            path: self.as_u8_slice(),
2905            prefix,
2906            has_physical_root: has_physical_root(self.as_u8_slice(), prefix),
2907            front: State::Prefix,
2908            back: State::Body,
2909        }
2910    }
2911
2912    /// Produces an iterator over the path's components viewed as [`OsStr`]
2913    /// slices.
2914    ///
2915    /// For more information about the particulars of how the path is separated
2916    /// into components, see [`components`].
2917    ///
2918    /// [`components`]: Path::components
2919    ///
2920    /// # Examples
2921    ///
2922    /// ```
2923    /// use std::path::{self, Path};
2924    /// use std::ffi::OsStr;
2925    ///
2926    /// let mut it = Path::new("/tmp/foo.txt").iter();
2927    /// assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
2928    /// assert_eq!(it.next(), Some(OsStr::new("tmp")));
2929    /// assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
2930    /// assert_eq!(it.next(), None)
2931    /// ```
2932    #[stable(feature = "rust1", since = "1.0.0")]
2933    #[inline]
2934    pub fn iter(&self) -> Iter<'_> {
2935        Iter { inner: self.components() }
2936    }
2937
2938    /// Returns an object that implements [`Display`] for safely printing paths
2939    /// that may contain non-Unicode data. This may perform lossy conversion,
2940    /// depending on the platform.  If you would like an implementation which
2941    /// escapes the path please use [`Debug`] instead.
2942    ///
2943    /// [`Display`]: fmt::Display
2944    /// [`Debug`]: fmt::Debug
2945    ///
2946    /// # Examples
2947    ///
2948    /// ```
2949    /// use std::path::Path;
2950    ///
2951    /// let path = Path::new("/tmp/foo.rs");
2952    ///
2953    /// println!("{}", path.display());
2954    /// ```
2955    #[stable(feature = "rust1", since = "1.0.0")]
2956    #[must_use = "this does not display the path, \
2957                  it returns an object that can be displayed"]
2958    #[inline]
2959    pub fn display(&self) -> Display<'_> {
2960        Display { inner: self.inner.display() }
2961    }
2962
2963    /// Queries the file system to get information about a file, directory, etc.
2964    ///
2965    /// This function will traverse symbolic links to query information about the
2966    /// destination file.
2967    ///
2968    /// This is an alias to [`fs::metadata`].
2969    ///
2970    /// # Examples
2971    ///
2972    /// ```no_run
2973    /// use std::path::Path;
2974    ///
2975    /// let path = Path::new("/Minas/tirith");
2976    /// let metadata = path.metadata().expect("metadata call failed");
2977    /// println!("{:?}", metadata.file_type());
2978    /// ```
2979    #[stable(feature = "path_ext", since = "1.5.0")]
2980    #[inline]
2981    pub fn metadata(&self) -> io::Result<fs::Metadata> {
2982        fs::metadata(self)
2983    }
2984
2985    /// Queries the metadata about a file without following symlinks.
2986    ///
2987    /// This is an alias to [`fs::symlink_metadata`].
2988    ///
2989    /// # Examples
2990    ///
2991    /// ```no_run
2992    /// use std::path::Path;
2993    ///
2994    /// let path = Path::new("/Minas/tirith");
2995    /// let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
2996    /// println!("{:?}", metadata.file_type());
2997    /// ```
2998    #[stable(feature = "path_ext", since = "1.5.0")]
2999    #[inline]
3000    pub fn symlink_metadata(&self) -> io::Result<fs::Metadata> {
3001        fs::symlink_metadata(self)
3002    }
3003
3004    /// Returns the canonical, absolute form of the path with all intermediate
3005    /// components normalized and symbolic links resolved.
3006    ///
3007    /// This is an alias to [`fs::canonicalize`].
3008    ///
3009    /// # Examples
3010    ///
3011    /// ```no_run
3012    /// use std::path::{Path, PathBuf};
3013    ///
3014    /// let path = Path::new("/foo/test/../test/bar.rs");
3015    /// assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
3016    /// ```
3017    #[stable(feature = "path_ext", since = "1.5.0")]
3018    #[inline]
3019    pub fn canonicalize(&self) -> io::Result<PathBuf> {
3020        fs::canonicalize(self)
3021    }
3022
3023    /// Normalize a path, including `..` without traversing the filesystem.
3024    ///
3025    /// Returns an error if normalization would leave leading `..` components.
3026    ///
3027    /// <div class="warning">
3028    ///
3029    /// This function always resolves `..` to the "lexical" parent.
3030    /// That is "a/b/../c" will always resolve to `a/c` which can change the meaning of the path.
3031    /// In particular, `a/c` and `a/b/../c` are distinct on many systems because `b` may be a symbolic link, so its parent isn’t `a`.
3032    ///
3033    /// </div>
3034    ///
3035    /// [`path::absolute`](absolute) is an alternative that preserves `..`.
3036    /// Or [`Path::canonicalize`] can be used to resolve any `..` by querying the filesystem.
3037    #[unstable(feature = "normalize_lexically", issue = "134694")]
3038    pub fn normalize_lexically(&self) -> Result<PathBuf, NormalizeError> {
3039        let mut lexical = PathBuf::new();
3040        let mut iter = self.components().peekable();
3041
3042        // Find the root, if any, and add it to the lexical path.
3043        // Here we treat the Windows path "C:\" as a single "root" even though
3044        // `components` splits it into two: (Prefix, RootDir).
3045        let root = match iter.peek() {
3046            Some(Component::ParentDir) => return Err(NormalizeError),
3047            Some(p @ Component::RootDir) | Some(p @ Component::CurDir) => {
3048                lexical.push(p);
3049                iter.next();
3050                lexical.as_os_str().len()
3051            }
3052            Some(Component::Prefix(prefix)) => {
3053                lexical.push(prefix.as_os_str());
3054                iter.next();
3055                if let Some(p @ Component::RootDir) = iter.peek() {
3056                    lexical.push(p);
3057                    iter.next();
3058                }
3059                lexical.as_os_str().len()
3060            }
3061            None => return Ok(PathBuf::new()),
3062            Some(Component::Normal(_)) => 0,
3063        };
3064
3065        for component in iter {
3066            match component {
3067                Component::RootDir => unreachable!(),
3068                Component::Prefix(_) => return Err(NormalizeError),
3069                Component::CurDir => continue,
3070                Component::ParentDir => {
3071                    // It's an error if ParentDir causes us to go above the "root".
3072                    if lexical.as_os_str().len() == root {
3073                        return Err(NormalizeError);
3074                    } else {
3075                        lexical.pop();
3076                    }
3077                }
3078                Component::Normal(path) => lexical.push(path),
3079            }
3080        }
3081        Ok(lexical)
3082    }
3083
3084    /// Reads a symbolic link, returning the file that the link points to.
3085    ///
3086    /// This is an alias to [`fs::read_link`].
3087    ///
3088    /// # Examples
3089    ///
3090    /// ```no_run
3091    /// use std::path::Path;
3092    ///
3093    /// let path = Path::new("/laputa/sky_castle.rs");
3094    /// let path_link = path.read_link().expect("read_link call failed");
3095    /// ```
3096    #[stable(feature = "path_ext", since = "1.5.0")]
3097    #[inline]
3098    pub fn read_link(&self) -> io::Result<PathBuf> {
3099        fs::read_link(self)
3100    }
3101
3102    /// Returns an iterator over the entries within a directory.
3103    ///
3104    /// The iterator will yield instances of <code>[io::Result]<[fs::DirEntry]></code>. New
3105    /// errors may be encountered after an iterator is initially constructed.
3106    ///
3107    /// This is an alias to [`fs::read_dir`].
3108    ///
3109    /// # Examples
3110    ///
3111    /// ```no_run
3112    /// use std::path::Path;
3113    ///
3114    /// let path = Path::new("/laputa");
3115    /// for entry in path.read_dir().expect("read_dir call failed") {
3116    ///     if let Ok(entry) = entry {
3117    ///         println!("{:?}", entry.path());
3118    ///     }
3119    /// }
3120    /// ```
3121    #[stable(feature = "path_ext", since = "1.5.0")]
3122    #[inline]
3123    pub fn read_dir(&self) -> io::Result<fs::ReadDir> {
3124        fs::read_dir(self)
3125    }
3126
3127    /// Returns `true` if the path points at an existing entity.
3128    ///
3129    /// Warning: this method may be error-prone, consider using [`try_exists()`] instead!
3130    /// It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.
3131    ///
3132    /// This function will traverse symbolic links to query information about the
3133    /// destination file.
3134    ///
3135    /// If you cannot access the metadata of the file, e.g. because of a
3136    /// permission error or broken symbolic links, this will return `false`.
3137    ///
3138    /// # Examples
3139    ///
3140    /// ```no_run
3141    /// use std::path::Path;
3142    /// assert!(!Path::new("does_not_exist.txt").exists());
3143    /// ```
3144    ///
3145    /// # See Also
3146    ///
3147    /// This is a convenience function that coerces errors to false. If you want to
3148    /// check errors, call [`Path::try_exists`].
3149    ///
3150    /// [`try_exists()`]: Self::try_exists
3151    #[stable(feature = "path_ext", since = "1.5.0")]
3152    #[must_use]
3153    #[inline]
3154    pub fn exists(&self) -> bool {
3155        fs::metadata(self).is_ok()
3156    }
3157
3158    /// Returns `Ok(true)` if the path points at an existing entity.
3159    ///
3160    /// This function will traverse symbolic links to query information about the
3161    /// destination file. In case of broken symbolic links this will return `Ok(false)`.
3162    ///
3163    /// [`Path::exists()`] only checks whether or not a path was both found and readable. By
3164    /// contrast, `try_exists` will return `Ok(true)` or `Ok(false)`, respectively, if the path
3165    /// was _verified_ to exist or not exist. If its existence can neither be confirmed nor
3166    /// denied, it will propagate an `Err(_)` instead. This can be the case if e.g. listing
3167    /// permission is denied on one of the parent directories.
3168    ///
3169    /// Note that while this avoids some pitfalls of the `exists()` method, it still can not
3170    /// prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios
3171    /// where those bugs are not an issue.
3172    ///
3173    /// This is an alias for [`std::fs::exists`](crate::fs::exists).
3174    ///
3175    /// # Examples
3176    ///
3177    /// ```no_run
3178    /// use std::path::Path;
3179    /// assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
3180    /// assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
3181    /// ```
3182    ///
3183    /// [`exists()`]: Self::exists
3184    #[stable(feature = "path_try_exists", since = "1.63.0")]
3185    #[inline]
3186    pub fn try_exists(&self) -> io::Result<bool> {
3187        fs::exists(self)
3188    }
3189
3190    /// Returns `true` if the path exists on disk and is pointing at a regular file.
3191    ///
3192    /// This function will traverse symbolic links to query information about the
3193    /// destination file.
3194    ///
3195    /// If you cannot access the metadata of the file, e.g. because of a
3196    /// permission error or broken symbolic links, this will return `false`.
3197    ///
3198    /// # Examples
3199    ///
3200    /// ```no_run
3201    /// use std::path::Path;
3202    /// assert_eq!(Path::new("./is_a_directory/").is_file(), false);
3203    /// assert_eq!(Path::new("a_file.txt").is_file(), true);
3204    /// ```
3205    ///
3206    /// # See Also
3207    ///
3208    /// This is a convenience function that coerces errors to false. If you want to
3209    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3210    /// [`fs::Metadata::is_file`] if it was [`Ok`].
3211    ///
3212    /// When the goal is simply to read from (or write to) the source, the most
3213    /// reliable way to test the source can be read (or written to) is to open
3214    /// it. Only using `is_file` can break workflows like `diff <( prog_a )` on
3215    /// a Unix-like system for example. See [`fs::File::open`] or
3216    /// [`fs::OpenOptions::open`] for more information.
3217    #[stable(feature = "path_ext", since = "1.5.0")]
3218    #[must_use]
3219    pub fn is_file(&self) -> bool {
3220        fs::metadata(self).map(|m| m.is_file()).unwrap_or(false)
3221    }
3222
3223    /// Returns `true` if the path exists on disk and is pointing at a directory.
3224    ///
3225    /// This function will traverse symbolic links to query information about the
3226    /// destination file.
3227    ///
3228    /// If you cannot access the metadata of the file, e.g. because of a
3229    /// permission error or broken symbolic links, this will return `false`.
3230    ///
3231    /// # Examples
3232    ///
3233    /// ```no_run
3234    /// use std::path::Path;
3235    /// assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
3236    /// assert_eq!(Path::new("a_file.txt").is_dir(), false);
3237    /// ```
3238    ///
3239    /// # See Also
3240    ///
3241    /// This is a convenience function that coerces errors to false. If you want to
3242    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3243    /// [`fs::Metadata::is_dir`] if it was [`Ok`].
3244    #[stable(feature = "path_ext", since = "1.5.0")]
3245    #[must_use]
3246    pub fn is_dir(&self) -> bool {
3247        fs::metadata(self).map(|m| m.is_dir()).unwrap_or(false)
3248    }
3249
3250    /// Returns `true` if the path exists on disk and is pointing at a symbolic link.
3251    ///
3252    /// This function will not traverse symbolic links.
3253    /// In case of a broken symbolic link this will also return true.
3254    ///
3255    /// If you cannot access the directory containing the file, e.g., because of a
3256    /// permission error, this will return false.
3257    ///
3258    /// # Examples
3259    ///
3260    #[cfg_attr(unix, doc = "```no_run")]
3261    #[cfg_attr(not(unix), doc = "```ignore")]
3262    /// use std::path::Path;
3263    /// use std::os::unix::fs::symlink;
3264    ///
3265    /// let link_path = Path::new("link");
3266    /// symlink("/origin_does_not_exist/", link_path).unwrap();
3267    /// assert_eq!(link_path.is_symlink(), true);
3268    /// assert_eq!(link_path.exists(), false);
3269    /// ```
3270    ///
3271    /// # See Also
3272    ///
3273    /// This is a convenience function that coerces errors to false. If you want to
3274    /// check errors, call [`fs::symlink_metadata`] and handle its [`Result`]. Then call
3275    /// [`fs::Metadata::is_symlink`] if it was [`Ok`].
3276    #[must_use]
3277    #[stable(feature = "is_symlink", since = "1.58.0")]
3278    pub fn is_symlink(&self) -> bool {
3279        fs::symlink_metadata(self).map(|m| m.is_symlink()).unwrap_or(false)
3280    }
3281
3282    /// Converts a [`Box<Path>`](Box) into a [`PathBuf`] without copying or
3283    /// allocating.
3284    #[stable(feature = "into_boxed_path", since = "1.20.0")]
3285    #[must_use = "`self` will be dropped if the result is not used"]
3286    pub fn into_path_buf(self: Box<Self>) -> PathBuf {
3287        let rw = Box::into_raw(self) as *mut OsStr;
3288        let inner = unsafe { Box::from_raw(rw) };
3289        PathBuf { inner: OsString::from(inner) }
3290    }
3291}
3292
3293#[unstable(feature = "clone_to_uninit", issue = "126799")]
3294unsafe impl CloneToUninit for Path {
3295    #[inline]
3296    #[cfg_attr(debug_assertions, track_caller)]
3297    unsafe fn clone_to_uninit(&self, dst: *mut u8) {
3298        // SAFETY: Path is just a transparent wrapper around OsStr
3299        unsafe { self.inner.clone_to_uninit(dst) }
3300    }
3301}
3302
3303#[stable(feature = "rust1", since = "1.0.0")]
3304impl AsRef<OsStr> for Path {
3305    #[inline]
3306    fn as_ref(&self) -> &OsStr {
3307        &self.inner
3308    }
3309}
3310
3311#[stable(feature = "rust1", since = "1.0.0")]
3312impl fmt::Debug for Path {
3313    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
3314        fmt::Debug::fmt(&self.inner, formatter)
3315    }
3316}
3317
3318/// Helper struct for safely printing paths with [`format!`] and `{}`.
3319///
3320/// A [`Path`] might contain non-Unicode data. This `struct` implements the
3321/// [`Display`] trait in a way that mitigates that. It is created by the
3322/// [`display`](Path::display) method on [`Path`]. This may perform lossy
3323/// conversion, depending on the platform. If you would like an implementation
3324/// which escapes the path please use [`Debug`] instead.
3325///
3326/// # Examples
3327///
3328/// ```
3329/// use std::path::Path;
3330///
3331/// let path = Path::new("/tmp/foo.rs");
3332///
3333/// println!("{}", path.display());
3334/// ```
3335///
3336/// [`Display`]: fmt::Display
3337/// [`format!`]: crate::format
3338#[stable(feature = "rust1", since = "1.0.0")]
3339pub struct Display<'a> {
3340    inner: os_str::Display<'a>,
3341}
3342
3343#[stable(feature = "rust1", since = "1.0.0")]
3344impl fmt::Debug for Display<'_> {
3345    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3346        fmt::Debug::fmt(&self.inner, f)
3347    }
3348}
3349
3350#[stable(feature = "rust1", since = "1.0.0")]
3351impl fmt::Display for Display<'_> {
3352    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3353        fmt::Display::fmt(&self.inner, f)
3354    }
3355}
3356
3357#[stable(feature = "rust1", since = "1.0.0")]
3358impl PartialEq for Path {
3359    #[inline]
3360    fn eq(&self, other: &Path) -> bool {
3361        self.components() == other.components()
3362    }
3363}
3364
3365#[stable(feature = "rust1", since = "1.0.0")]
3366impl Hash for Path {
3367    fn hash<H: Hasher>(&self, h: &mut H) {
3368        let bytes = self.as_u8_slice();
3369        let (prefix_len, verbatim) = match parse_prefix(&self.inner) {
3370            Some(prefix) => {
3371                prefix.hash(h);
3372                (prefix.len(), prefix.is_verbatim())
3373            }
3374            None => (0, false),
3375        };
3376        let bytes = &bytes[prefix_len..];
3377
3378        let mut component_start = 0;
3379        // track some extra state to avoid prefix collisions.
3380        // ["foo", "bar"] and ["foobar"], will have the same payload bytes
3381        // but result in different chunk_bits
3382        let mut chunk_bits: usize = 0;
3383
3384        for i in 0..bytes.len() {
3385            let is_sep = if verbatim { is_verbatim_sep(bytes[i]) } else { is_sep_byte(bytes[i]) };
3386            if is_sep {
3387                if i > component_start {
3388                    let to_hash = &bytes[component_start..i];
3389                    chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3390                    chunk_bits = chunk_bits.rotate_right(2);
3391                    h.write(to_hash);
3392                }
3393
3394                // skip over separator and optionally a following CurDir item
3395                // since components() would normalize these away.
3396                component_start = i + 1;
3397
3398                let tail = &bytes[component_start..];
3399
3400                if !verbatim {
3401                    component_start += match tail {
3402                        [b'.'] => 1,
3403                        [b'.', sep, ..] if is_sep_byte(*sep) => 1,
3404                        _ => 0,
3405                    };
3406                }
3407            }
3408        }
3409
3410        if component_start < bytes.len() {
3411            let to_hash = &bytes[component_start..];
3412            chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3413            chunk_bits = chunk_bits.rotate_right(2);
3414            h.write(to_hash);
3415        }
3416
3417        h.write_usize(chunk_bits);
3418    }
3419}
3420
3421#[stable(feature = "rust1", since = "1.0.0")]
3422impl Eq for Path {}
3423
3424#[stable(feature = "rust1", since = "1.0.0")]
3425impl PartialOrd for Path {
3426    #[inline]
3427    fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
3428        Some(compare_components(self.components(), other.components()))
3429    }
3430}
3431
3432#[stable(feature = "rust1", since = "1.0.0")]
3433impl Ord for Path {
3434    #[inline]
3435    fn cmp(&self, other: &Path) -> cmp::Ordering {
3436        compare_components(self.components(), other.components())
3437    }
3438}
3439
3440#[stable(feature = "rust1", since = "1.0.0")]
3441impl AsRef<Path> for Path {
3442    #[inline]
3443    fn as_ref(&self) -> &Path {
3444        self
3445    }
3446}
3447
3448#[stable(feature = "rust1", since = "1.0.0")]
3449impl AsRef<Path> for OsStr {
3450    #[inline]
3451    fn as_ref(&self) -> &Path {
3452        Path::new(self)
3453    }
3454}
3455
3456#[stable(feature = "cow_os_str_as_ref_path", since = "1.8.0")]
3457impl AsRef<Path> for Cow<'_, OsStr> {
3458    #[inline]
3459    fn as_ref(&self) -> &Path {
3460        Path::new(self)
3461    }
3462}
3463
3464#[stable(feature = "rust1", since = "1.0.0")]
3465impl AsRef<Path> for OsString {
3466    #[inline]
3467    fn as_ref(&self) -> &Path {
3468        Path::new(self)
3469    }
3470}
3471
3472#[stable(feature = "rust1", since = "1.0.0")]
3473impl AsRef<Path> for str {
3474    #[inline]
3475    fn as_ref(&self) -> &Path {
3476        Path::new(self)
3477    }
3478}
3479
3480#[stable(feature = "rust1", since = "1.0.0")]
3481impl AsRef<Path> for String {
3482    #[inline]
3483    fn as_ref(&self) -> &Path {
3484        Path::new(self)
3485    }
3486}
3487
3488#[stable(feature = "rust1", since = "1.0.0")]
3489impl AsRef<Path> for PathBuf {
3490    #[inline]
3491    fn as_ref(&self) -> &Path {
3492        self
3493    }
3494}
3495
3496#[stable(feature = "path_into_iter", since = "1.6.0")]
3497impl<'a> IntoIterator for &'a PathBuf {
3498    type Item = &'a OsStr;
3499    type IntoIter = Iter<'a>;
3500    #[inline]
3501    fn into_iter(self) -> Iter<'a> {
3502        self.iter()
3503    }
3504}
3505
3506#[stable(feature = "path_into_iter", since = "1.6.0")]
3507impl<'a> IntoIterator for &'a Path {
3508    type Item = &'a OsStr;
3509    type IntoIter = Iter<'a>;
3510    #[inline]
3511    fn into_iter(self) -> Iter<'a> {
3512        self.iter()
3513    }
3514}
3515
3516macro_rules! impl_cmp {
3517    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3518        #[stable(feature = "partialeq_path", since = "1.6.0")]
3519        impl<$($life),*> PartialEq<$rhs> for $lhs {
3520            #[inline]
3521            fn eq(&self, other: &$rhs) -> bool {
3522                <Path as PartialEq>::eq(self, other)
3523            }
3524        }
3525
3526        #[stable(feature = "partialeq_path", since = "1.6.0")]
3527        impl<$($life),*> PartialEq<$lhs> for $rhs {
3528            #[inline]
3529            fn eq(&self, other: &$lhs) -> bool {
3530                <Path as PartialEq>::eq(self, other)
3531            }
3532        }
3533
3534        #[stable(feature = "cmp_path", since = "1.8.0")]
3535        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3536            #[inline]
3537            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3538                <Path as PartialOrd>::partial_cmp(self, other)
3539            }
3540        }
3541
3542        #[stable(feature = "cmp_path", since = "1.8.0")]
3543        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3544            #[inline]
3545            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3546                <Path as PartialOrd>::partial_cmp(self, other)
3547            }
3548        }
3549    };
3550}
3551
3552impl_cmp!(<> PathBuf, Path);
3553impl_cmp!(<'a> PathBuf, &'a Path);
3554impl_cmp!(<'a> Cow<'a, Path>, Path);
3555impl_cmp!(<'a, 'b> Cow<'a, Path>, &'b Path);
3556impl_cmp!(<'a> Cow<'a, Path>, PathBuf);
3557
3558macro_rules! impl_cmp_os_str {
3559    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3560        #[stable(feature = "cmp_path", since = "1.8.0")]
3561        impl<$($life),*> PartialEq<$rhs> for $lhs {
3562            #[inline]
3563            fn eq(&self, other: &$rhs) -> bool {
3564                <Path as PartialEq>::eq(self, other.as_ref())
3565            }
3566        }
3567
3568        #[stable(feature = "cmp_path", since = "1.8.0")]
3569        impl<$($life),*> PartialEq<$lhs> for $rhs {
3570            #[inline]
3571            fn eq(&self, other: &$lhs) -> bool {
3572                <Path as PartialEq>::eq(self.as_ref(), other)
3573            }
3574        }
3575
3576        #[stable(feature = "cmp_path", since = "1.8.0")]
3577        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3578            #[inline]
3579            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3580                <Path as PartialOrd>::partial_cmp(self, other.as_ref())
3581            }
3582        }
3583
3584        #[stable(feature = "cmp_path", since = "1.8.0")]
3585        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3586            #[inline]
3587            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3588                <Path as PartialOrd>::partial_cmp(self.as_ref(), other)
3589            }
3590        }
3591    };
3592}
3593
3594impl_cmp_os_str!(<> PathBuf, OsStr);
3595impl_cmp_os_str!(<'a> PathBuf, &'a OsStr);
3596impl_cmp_os_str!(<'a> PathBuf, Cow<'a, OsStr>);
3597impl_cmp_os_str!(<> PathBuf, OsString);
3598impl_cmp_os_str!(<> Path, OsStr);
3599impl_cmp_os_str!(<'a> Path, &'a OsStr);
3600impl_cmp_os_str!(<'a> Path, Cow<'a, OsStr>);
3601impl_cmp_os_str!(<> Path, OsString);
3602impl_cmp_os_str!(<'a> &'a Path, OsStr);
3603impl_cmp_os_str!(<'a, 'b> &'a Path, Cow<'b, OsStr>);
3604impl_cmp_os_str!(<'a> &'a Path, OsString);
3605impl_cmp_os_str!(<'a> Cow<'a, Path>, OsStr);
3606impl_cmp_os_str!(<'a, 'b> Cow<'a, Path>, &'b OsStr);
3607impl_cmp_os_str!(<'a> Cow<'a, Path>, OsString);
3608
3609#[stable(since = "1.7.0", feature = "strip_prefix")]
3610impl fmt::Display for StripPrefixError {
3611    #[allow(deprecated, deprecated_in_future)]
3612    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3613        self.description().fmt(f)
3614    }
3615}
3616
3617#[stable(since = "1.7.0", feature = "strip_prefix")]
3618impl Error for StripPrefixError {
3619    #[allow(deprecated)]
3620    fn description(&self) -> &str {
3621        "prefix not found"
3622    }
3623}
3624
3625#[unstable(feature = "normalize_lexically", issue = "134694")]
3626impl fmt::Display for NormalizeError {
3627    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3628        f.write_str("parent reference `..` points outside of base directory")
3629    }
3630}
3631#[unstable(feature = "normalize_lexically", issue = "134694")]
3632impl Error for NormalizeError {}
3633
3634/// Makes the path absolute without accessing the filesystem.
3635///
3636/// If the path is relative, the current directory is used as the base directory.
3637/// All intermediate components will be resolved according to platform-specific
3638/// rules, but unlike [`canonicalize`][crate::fs::canonicalize], this does not
3639/// resolve symlinks and may succeed even if the path does not exist.
3640///
3641/// If the `path` is empty or getting the
3642/// [current directory][crate::env::current_dir] fails, then an error will be
3643/// returned.
3644///
3645/// # Platform-specific behavior
3646///
3647/// On POSIX platforms, the path is resolved using [POSIX semantics][posix-semantics],
3648/// except that it stops short of resolving symlinks. This means it will keep `..`
3649/// components and trailing slashes.
3650///
3651/// On Windows, for verbatim paths, this will simply return the path as given. For other
3652/// paths, this is currently equivalent to calling
3653/// [`GetFullPathNameW`][windows-path].
3654///
3655/// On Cygwin, this is currently equivalent to calling [`cygwin_conv_path`][cygwin-path]
3656/// with mode `CCP_WIN_A_TO_POSIX`, and then being processed like other POSIX platforms.
3657/// If a Windows path is given, it will be converted to an absolute POSIX path without
3658/// keeping `..`.
3659///
3660/// Note that these [may change in the future][changes].
3661///
3662/// # Errors
3663///
3664/// This function may return an error in the following situations:
3665///
3666/// * If `path` is syntactically invalid; in particular, if it is empty.
3667/// * If getting the [current directory][crate::env::current_dir] fails.
3668///
3669/// # Examples
3670///
3671/// ## POSIX paths
3672///
3673/// ```
3674/// # #[cfg(unix)]
3675/// fn main() -> std::io::Result<()> {
3676///     use std::path::{self, Path};
3677///
3678///     // Relative to absolute
3679///     let absolute = path::absolute("foo/./bar")?;
3680///     assert!(absolute.ends_with("foo/bar"));
3681///
3682///     // Absolute to absolute
3683///     let absolute = path::absolute("/foo//test/.././bar.rs")?;
3684///     assert_eq!(absolute, Path::new("/foo/test/../bar.rs"));
3685///     Ok(())
3686/// }
3687/// # #[cfg(not(unix))]
3688/// # fn main() {}
3689/// ```
3690///
3691/// ## Windows paths
3692///
3693/// ```
3694/// # #[cfg(windows)]
3695/// fn main() -> std::io::Result<()> {
3696///     use std::path::{self, Path};
3697///
3698///     // Relative to absolute
3699///     let absolute = path::absolute("foo/./bar")?;
3700///     assert!(absolute.ends_with(r"foo\bar"));
3701///
3702///     // Absolute to absolute
3703///     let absolute = path::absolute(r"C:\foo//test\..\./bar.rs")?;
3704///
3705///     assert_eq!(absolute, Path::new(r"C:\foo\bar.rs"));
3706///     Ok(())
3707/// }
3708/// # #[cfg(not(windows))]
3709/// # fn main() {}
3710/// ```
3711///
3712/// Note that this [may change in the future][changes].
3713///
3714/// [changes]: io#platform-specific-behavior
3715/// [posix-semantics]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13
3716/// [windows-path]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfullpathnamew
3717/// [cygwin-path]: https://cygwin.com/cygwin-api/func-cygwin-conv-path.html
3718#[stable(feature = "absolute_path", since = "1.79.0")]
3719pub fn absolute<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
3720    let path = path.as_ref();
3721    if path.as_os_str().is_empty() {
3722        Err(io::const_error!(io::ErrorKind::InvalidInput, "cannot make an empty path absolute"))
3723    } else {
3724        sys::path::absolute(path)
3725    }
3726}