[go: up one dir, main page]

core/convert/
mod.rs

1//! Traits for conversions between types.
2//!
3//! The traits in this module provide a way to convert from one type to another type.
4//! Each trait serves a different purpose:
5//!
6//! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions
7//! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions
8//! - Implement the [`From`] trait for consuming value-to-value conversions
9//! - Implement the [`Into`] trait for consuming value-to-value conversions to types
10//!   outside the current crate
11//! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`],
12//!   but should be implemented when the conversion can fail.
13//!
14//! The traits in this module are often used as trait bounds for generic functions such that to
15//! arguments of multiple types are supported. See the documentation of each trait for examples.
16//!
17//! As a library author, you should always prefer implementing [`From<T>`][`From`] or
18//! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`],
19//! as [`From`] and [`TryFrom`] provide greater flexibility and offer
20//! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a
21//! blanket implementation in the standard library. When targeting a version prior to Rust 1.41, it
22//! may be necessary to implement [`Into`] or [`TryInto`] directly when converting to a type
23//! outside the current crate.
24//!
25//! # Generic Implementations
26//!
27//! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
28//!   (but not generally for all [dereferenceable types][core::ops::Deref])
29//! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
30//! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
31//! - [`From`] and [`Into`] are reflexive, which means that all types can
32//!   `into` themselves and `from` themselves
33//!
34//! See each trait for usage examples.
35
36#![stable(feature = "rust1", since = "1.0.0")]
37
38use crate::error::Error;
39use crate::fmt;
40use crate::hash::{Hash, Hasher};
41use crate::marker::PointeeSized;
42
43mod num;
44
45#[unstable(feature = "convert_float_to_int", issue = "67057")]
46pub use num::FloatToInt;
47
48/// The identity function.
49///
50/// Two things are important to note about this function:
51///
52/// - It is not always equivalent to a closure like `|x| x`, since the
53///   closure may coerce `x` into a different type.
54///
55/// - It moves the input `x` passed to the function.
56///
57/// While it might seem strange to have a function that just returns back the
58/// input, there are some interesting uses.
59///
60/// # Examples
61///
62/// Using `identity` to do nothing in a sequence of other, interesting,
63/// functions:
64///
65/// ```rust
66/// use std::convert::identity;
67///
68/// fn manipulation(x: u32) -> u32 {
69///     // Let's pretend that adding one is an interesting function.
70///     x + 1
71/// }
72///
73/// let _arr = &[identity, manipulation];
74/// ```
75///
76/// Using `identity` as a "do nothing" base case in a conditional:
77///
78/// ```rust
79/// use std::convert::identity;
80///
81/// # let condition = true;
82/// #
83/// # fn manipulation(x: u32) -> u32 { x + 1 }
84/// #
85/// let do_stuff = if condition { manipulation } else { identity };
86///
87/// // Do more interesting stuff...
88///
89/// let _results = do_stuff(42);
90/// ```
91///
92/// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`:
93///
94/// ```rust
95/// use std::convert::identity;
96///
97/// let iter = [Some(1), None, Some(3)].into_iter();
98/// let filtered = iter.filter_map(identity).collect::<Vec<_>>();
99/// assert_eq!(vec![1, 3], filtered);
100/// ```
101#[stable(feature = "convert_id", since = "1.33.0")]
102#[rustc_const_stable(feature = "const_identity", since = "1.33.0")]
103#[inline(always)]
104#[rustc_diagnostic_item = "convert_identity"]
105pub const fn identity<T>(x: T) -> T {
106    x
107}
108
109/// Used to do a cheap reference-to-reference conversion.
110///
111/// This trait is similar to [`AsMut`] which is used for converting between mutable references.
112/// If you need to do a costly conversion it is better to implement [`From`] with type
113/// `&T` or write a custom function.
114///
115/// # Relation to `Borrow`
116///
117/// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in a few aspects:
118///
119/// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
120///   a reference or a value. (See also note on `AsRef`'s reflexibility below.)
121/// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for a borrowed value are
122///   equivalent to those of the owned value. For this reason, if you want to
123///   borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
124///
125/// **Note: This trait must not fail**. If the conversion can fail, use a
126/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
127///
128/// # Generic Implementations
129///
130/// `AsRef` auto-dereferences if the inner type is a reference or a mutable reference
131/// (e.g.: `foo.as_ref()` will work the same if `foo` has type `&mut Foo` or `&&mut Foo`).
132///
133/// Note that due to historic reasons, the above currently does not hold generally for all
134/// [dereferenceable types], e.g. `foo.as_ref()` will *not* work the same as
135/// `Box::new(foo).as_ref()`. Instead, many smart pointers provide an `as_ref` implementation which
136/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
137/// reference-to-reference conversion for that value). However, [`AsRef::as_ref`] should not be
138/// used for the sole purpose of dereferencing; instead ['`Deref` coercion'] can be used:
139///
140/// [dereferenceable types]: core::ops::Deref
141/// [pointed-to value]: core::ops::Deref::Target
142/// ['`Deref` coercion']: core::ops::Deref#deref-coercion
143///
144/// ```
145/// let x = Box::new(5i32);
146/// // Avoid this:
147/// // let y: &i32 = x.as_ref();
148/// // Better just write:
149/// let y: &i32 = &x;
150/// ```
151///
152/// Types which implement [`Deref`] should consider implementing `AsRef<T>` as follows:
153///
154/// [`Deref`]: core::ops::Deref
155///
156/// ```
157/// # use core::ops::Deref;
158/// # struct SomeType;
159/// # impl Deref for SomeType {
160/// #     type Target = [u8];
161/// #     fn deref(&self) -> &[u8] {
162/// #         &[]
163/// #     }
164/// # }
165/// impl<T> AsRef<T> for SomeType
166/// where
167///     T: ?Sized,
168///     <SomeType as Deref>::Target: AsRef<T>,
169/// {
170///     fn as_ref(&self) -> &T {
171///         self.deref().as_ref()
172///     }
173/// }
174/// ```
175///
176/// # Reflexivity
177///
178/// Ideally, `AsRef` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsRef<T> for T`
179/// with [`as_ref`] simply returning its argument unchanged.
180/// Such a blanket implementation is currently *not* provided due to technical restrictions of
181/// Rust's type system (it would be overlapping with another existing blanket implementation for
182/// `&T where T: AsRef<U>` which allows `AsRef` to auto-dereference, see "Generic Implementations"
183/// above).
184///
185/// [`as_ref`]: AsRef::as_ref
186///
187/// A trivial implementation of `AsRef<T> for T` must be added explicitly for a particular type `T`
188/// where needed or desired. Note, however, that not all types from `std` contain such an
189/// implementation, and those cannot be added by external code due to orphan rules.
190///
191/// # Examples
192///
193/// By using trait bounds we can accept arguments of different types as long as they can be
194/// converted to the specified type `T`.
195///
196/// For example: By creating a generic function that takes an `AsRef<str>` we express that we
197/// want to accept all references that can be converted to [`&str`] as an argument.
198/// Since both [`String`] and [`&str`] implement `AsRef<str>` we can accept both as input argument.
199///
200/// [`&str`]: primitive@str
201/// [`Borrow`]: crate::borrow::Borrow
202/// [`Eq`]: crate::cmp::Eq
203/// [`Ord`]: crate::cmp::Ord
204/// [`String`]: ../../std/string/struct.String.html
205///
206/// ```
207/// fn is_hello<T: AsRef<str>>(s: T) {
208///    assert_eq!("hello", s.as_ref());
209/// }
210///
211/// let s = "hello";
212/// is_hello(s);
213///
214/// let s = "hello".to_string();
215/// is_hello(s);
216/// ```
217#[stable(feature = "rust1", since = "1.0.0")]
218#[rustc_diagnostic_item = "AsRef"]
219#[const_trait]
220#[rustc_const_unstable(feature = "const_try", issue = "74935")]
221pub trait AsRef<T: PointeeSized>: PointeeSized {
222    /// Converts this type into a shared reference of the (usually inferred) input type.
223    #[stable(feature = "rust1", since = "1.0.0")]
224    fn as_ref(&self) -> &T;
225}
226
227/// Used to do a cheap mutable-to-mutable reference conversion.
228///
229/// This trait is similar to [`AsRef`] but used for converting between mutable
230/// references. If you need to do a costly conversion it is better to
231/// implement [`From`] with type `&mut T` or write a custom function.
232///
233/// **Note: This trait must not fail**. If the conversion can fail, use a
234/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
235///
236/// # Generic Implementations
237///
238/// `AsMut` auto-dereferences if the inner type is a mutable reference
239/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` or `&mut &mut Foo`).
240///
241/// Note that due to historic reasons, the above currently does not hold generally for all
242/// [mutably dereferenceable types], e.g. `foo.as_mut()` will *not* work the same as
243/// `Box::new(foo).as_mut()`. Instead, many smart pointers provide an `as_mut` implementation which
244/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
245/// reference-to-reference conversion for that value). However, [`AsMut::as_mut`] should not be
246/// used for the sole purpose of mutable dereferencing; instead ['`Deref` coercion'] can be used:
247///
248/// [mutably dereferenceable types]: core::ops::DerefMut
249/// [pointed-to value]: core::ops::Deref::Target
250/// ['`Deref` coercion']: core::ops::DerefMut#mutable-deref-coercion
251///
252/// ```
253/// let mut x = Box::new(5i32);
254/// // Avoid this:
255/// // let y: &mut i32 = x.as_mut();
256/// // Better just write:
257/// let y: &mut i32 = &mut x;
258/// ```
259///
260/// Types which implement [`DerefMut`] should consider to add an implementation of `AsMut<T>` as
261/// follows:
262///
263/// [`DerefMut`]: core::ops::DerefMut
264///
265/// ```
266/// # use core::ops::{Deref, DerefMut};
267/// # struct SomeType;
268/// # impl Deref for SomeType {
269/// #     type Target = [u8];
270/// #     fn deref(&self) -> &[u8] {
271/// #         &[]
272/// #     }
273/// # }
274/// # impl DerefMut for SomeType {
275/// #     fn deref_mut(&mut self) -> &mut [u8] {
276/// #         &mut []
277/// #     }
278/// # }
279/// impl<T> AsMut<T> for SomeType
280/// where
281///     <SomeType as Deref>::Target: AsMut<T>,
282/// {
283///     fn as_mut(&mut self) -> &mut T {
284///         self.deref_mut().as_mut()
285///     }
286/// }
287/// ```
288///
289/// # Reflexivity
290///
291/// Ideally, `AsMut` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsMut<T> for T`
292/// with [`as_mut`] simply returning its argument unchanged.
293/// Such a blanket implementation is currently *not* provided due to technical restrictions of
294/// Rust's type system (it would be overlapping with another existing blanket implementation for
295/// `&mut T where T: AsMut<U>` which allows `AsMut` to auto-dereference, see "Generic
296/// Implementations" above).
297///
298/// [`as_mut`]: AsMut::as_mut
299///
300/// A trivial implementation of `AsMut<T> for T` must be added explicitly for a particular type `T`
301/// where needed or desired. Note, however, that not all types from `std` contain such an
302/// implementation, and those cannot be added by external code due to orphan rules.
303///
304/// # Examples
305///
306/// Using `AsMut` as trait bound for a generic function, we can accept all mutable references that
307/// can be converted to type `&mut T`. Unlike [dereference], which has a single [target type],
308/// there can be multiple implementations of `AsMut` for a type. In particular, `Vec<T>` implements
309/// both `AsMut<Vec<T>>` and `AsMut<[T]>`.
310///
311/// In the following, the example functions `caesar` and `null_terminate` provide a generic
312/// interface which work with any type that can be converted by cheap mutable-to-mutable conversion
313/// into a byte slice (`[u8]`) or byte vector (`Vec<u8>`), respectively.
314///
315/// [dereference]: core::ops::DerefMut
316/// [target type]: core::ops::Deref::Target
317///
318/// ```
319/// struct Document {
320///     info: String,
321///     content: Vec<u8>,
322/// }
323///
324/// impl<T: ?Sized> AsMut<T> for Document
325/// where
326///     Vec<u8>: AsMut<T>,
327/// {
328///     fn as_mut(&mut self) -> &mut T {
329///         self.content.as_mut()
330///     }
331/// }
332///
333/// fn caesar<T: AsMut<[u8]>>(data: &mut T, key: u8) {
334///     for byte in data.as_mut() {
335///         *byte = byte.wrapping_add(key);
336///     }
337/// }
338///
339/// fn null_terminate<T: AsMut<Vec<u8>>>(data: &mut T) {
340///     // Using a non-generic inner function, which contains most of the
341///     // functionality, helps to minimize monomorphization overhead.
342///     fn doit(data: &mut Vec<u8>) {
343///         let len = data.len();
344///         if len == 0 || data[len-1] != 0 {
345///             data.push(0);
346///         }
347///     }
348///     doit(data.as_mut());
349/// }
350///
351/// fn main() {
352///     let mut v: Vec<u8> = vec![1, 2, 3];
353///     caesar(&mut v, 5);
354///     assert_eq!(v, [6, 7, 8]);
355///     null_terminate(&mut v);
356///     assert_eq!(v, [6, 7, 8, 0]);
357///     let mut doc = Document {
358///         info: String::from("Example"),
359///         content: vec![17, 19, 8],
360///     };
361///     caesar(&mut doc, 1);
362///     assert_eq!(doc.content, [18, 20, 9]);
363///     null_terminate(&mut doc);
364///     assert_eq!(doc.content, [18, 20, 9, 0]);
365/// }
366/// ```
367///
368/// Note, however, that APIs don't need to be generic. In many cases taking a `&mut [u8]` or
369/// `&mut Vec<u8>`, for example, is the better choice (callers need to pass the correct type then).
370#[stable(feature = "rust1", since = "1.0.0")]
371#[rustc_diagnostic_item = "AsMut"]
372#[const_trait]
373#[rustc_const_unstable(feature = "const_try", issue = "74935")]
374pub trait AsMut<T: PointeeSized>: PointeeSized {
375    /// Converts this type into a mutable reference of the (usually inferred) input type.
376    #[stable(feature = "rust1", since = "1.0.0")]
377    fn as_mut(&mut self) -> &mut T;
378}
379
380/// A value-to-value conversion that consumes the input value. The
381/// opposite of [`From`].
382///
383/// One should avoid implementing [`Into`] and implement [`From`] instead.
384/// Implementing [`From`] automatically provides one with an implementation of [`Into`]
385/// thanks to the blanket implementation in the standard library.
386///
387/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
388/// to ensure that types that only implement [`Into`] can be used as well.
389///
390/// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`].
391///
392/// # Generic Implementations
393///
394/// - [`From`]`<T> for U` implies `Into<U> for T`
395/// - [`Into`] is reflexive, which means that `Into<T> for T` is implemented
396///
397/// # Implementing [`Into`] for conversions to external types in old versions of Rust
398///
399/// Prior to Rust 1.41, if the destination type was not part of the current crate
400/// then you couldn't implement [`From`] directly.
401/// For example, take this code:
402///
403/// ```
404/// # #![allow(non_local_definitions)]
405/// struct Wrapper<T>(Vec<T>);
406/// impl<T> From<Wrapper<T>> for Vec<T> {
407///     fn from(w: Wrapper<T>) -> Vec<T> {
408///         w.0
409///     }
410/// }
411/// ```
412/// This will fail to compile in older versions of the language because Rust's orphaning rules
413/// used to be a little bit more strict. To bypass this, you could implement [`Into`] directly:
414///
415/// ```
416/// struct Wrapper<T>(Vec<T>);
417/// impl<T> Into<Vec<T>> for Wrapper<T> {
418///     fn into(self) -> Vec<T> {
419///         self.0
420///     }
421/// }
422/// ```
423///
424/// It is important to understand that [`Into`] does not provide a [`From`] implementation
425/// (as [`From`] does with [`Into`]). Therefore, you should always try to implement [`From`]
426/// and then fall back to [`Into`] if [`From`] can't be implemented.
427///
428/// # Examples
429///
430/// [`String`] implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>`:
431///
432/// In order to express that we want a generic function to take all arguments that can be
433/// converted to a specified type `T`, we can use a trait bound of [`Into`]`<T>`.
434/// For example: The function `is_hello` takes all arguments that can be converted into a
435/// [`Vec`]`<`[`u8`]`>`.
436///
437/// ```
438/// fn is_hello<T: Into<Vec<u8>>>(s: T) {
439///    let bytes = b"hello".to_vec();
440///    assert_eq!(bytes, s.into());
441/// }
442///
443/// let s = "hello".to_string();
444/// is_hello(s);
445/// ```
446///
447/// [`String`]: ../../std/string/struct.String.html
448/// [`Vec`]: ../../std/vec/struct.Vec.html
449#[rustc_diagnostic_item = "Into"]
450#[stable(feature = "rust1", since = "1.0.0")]
451#[doc(search_unbox)]
452#[rustc_const_unstable(feature = "const_from", issue = "143773")]
453#[const_trait]
454pub trait Into<T>: Sized {
455    /// Converts this type into the (usually inferred) input type.
456    #[must_use]
457    #[stable(feature = "rust1", since = "1.0.0")]
458    fn into(self) -> T;
459}
460
461/// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of
462/// [`Into`].
463///
464/// One should always prefer implementing `From` over [`Into`]
465/// because implementing `From` automatically provides one with an implementation of [`Into`]
466/// thanks to the blanket implementation in the standard library.
467///
468/// Only implement [`Into`] when targeting a version prior to Rust 1.41 and converting to a type
469/// outside the current crate.
470/// `From` was not able to do these types of conversions in earlier versions because of Rust's
471/// orphaning rules.
472/// See [`Into`] for more details.
473///
474/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
475/// to ensure that types that only implement [`Into`] can be used as well.
476///
477/// The `From` trait is also very useful when performing error handling. When constructing a function
478/// that is capable of failing, the return type will generally be of the form `Result<T, E>`.
479/// `From` simplifies error handling by allowing a function to return a single error type
480/// that encapsulates multiple error types. See the "Examples" section and [the book][book] for more
481/// details.
482///
483/// **Note: This trait must not fail**. The `From` trait is intended for perfect conversions.
484/// If the conversion can fail or is not perfect, use [`TryFrom`].
485///
486/// # Generic Implementations
487///
488/// - `From<T> for U` implies [`Into`]`<U> for T`
489/// - `From` is reflexive, which means that `From<T> for T` is implemented
490///
491/// # When to implement `From`
492///
493/// While there's no technical restrictions on which conversions can be done using
494/// a `From` implementation, the general expectation is that the conversions
495/// should typically be restricted as follows:
496///
497/// * The conversion is *infallible*: if the conversion can fail, use [`TryFrom`]
498///   instead; don't provide a `From` impl that panics.
499///
500/// * The conversion is *lossless*: semantically, it should not lose or discard
501///   information. For example, `i32: From<u16>` exists, where the original
502///   value can be recovered using `u16: TryFrom<i32>`.  And `String: From<&str>`
503///   exists, where you can get something equivalent to the original value via
504///   `Deref`.  But `From` cannot be used to convert from `u32` to `u16`, since
505///   that cannot succeed in a lossless way.  (There's some wiggle room here for
506///   information not considered semantically relevant.  For example,
507///   `Box<[T]>: From<Vec<T>>` exists even though it might not preserve capacity,
508///   like how two vectors can be equal despite differing capacities.)
509///
510/// * The conversion is *value-preserving*: the conceptual kind and meaning of
511///   the resulting value is the same, even though the Rust type and technical
512///   representation might be different.  For example `-1_i8 as u8` is *lossless*,
513///   since `as` casting back can recover the original value, but that conversion
514///   is *not* available via `From` because `-1` and `255` are different conceptual
515///   values (despite being identical bit patterns technically).  But
516///   `f32: From<i16>` *is* available because `1_i16` and `1.0_f32` are conceptually
517///   the same real number (despite having very different bit patterns technically).
518///   `String: From<char>` is available because they're both *text*, but
519///   `String: From<u32>` is *not* available, since `1` (a number) and `"1"`
520///   (text) are too different.  (Converting values to text is instead covered
521///   by the [`Display`](crate::fmt::Display) trait.)
522///
523/// * The conversion is *obvious*: it's the only reasonable conversion between
524///   the two types.  Otherwise it's better to have it be a named method or
525///   constructor, like how [`str::as_bytes`] is a method and how integers have
526///   methods like [`u32::from_ne_bytes`], [`u32::from_le_bytes`], and
527///   [`u32::from_be_bytes`], none of which are `From` implementations.  Whereas
528///   there's only one reasonable way to wrap an [`Ipv6Addr`](crate::net::Ipv6Addr)
529///   into an [`IpAddr`](crate::net::IpAddr), thus `IpAddr: From<Ipv6Addr>` exists.
530///
531/// # Examples
532///
533/// [`String`] implements `From<&str>`:
534///
535/// An explicit conversion from a `&str` to a String is done as follows:
536///
537/// ```
538/// let string = "hello".to_string();
539/// let other_string = String::from("hello");
540///
541/// assert_eq!(string, other_string);
542/// ```
543///
544/// While performing error handling it is often useful to implement `From` for your own error type.
545/// By converting underlying error types to our own custom error type that encapsulates the
546/// underlying error type, we can return a single error type without losing information on the
547/// underlying cause. The '?' operator automatically converts the underlying error type to our
548/// custom error type with `From::from`.
549///
550/// ```
551/// use std::fs;
552/// use std::io;
553/// use std::num;
554///
555/// enum CliError {
556///     IoError(io::Error),
557///     ParseError(num::ParseIntError),
558/// }
559///
560/// impl From<io::Error> for CliError {
561///     fn from(error: io::Error) -> Self {
562///         CliError::IoError(error)
563///     }
564/// }
565///
566/// impl From<num::ParseIntError> for CliError {
567///     fn from(error: num::ParseIntError) -> Self {
568///         CliError::ParseError(error)
569///     }
570/// }
571///
572/// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> {
573///     let mut contents = fs::read_to_string(&file_name)?;
574///     let num: i32 = contents.trim().parse()?;
575///     Ok(num)
576/// }
577/// ```
578///
579/// [`String`]: ../../std/string/struct.String.html
580/// [`from`]: From::from
581/// [book]: ../../book/ch09-00-error-handling.html
582#[rustc_diagnostic_item = "From"]
583#[stable(feature = "rust1", since = "1.0.0")]
584#[rustc_on_unimplemented(on(
585    all(Self = "&str", T = "alloc::string::String"),
586    note = "to coerce a `{T}` into a `{Self}`, use `&*` as a prefix",
587))]
588#[doc(search_unbox)]
589#[rustc_const_unstable(feature = "const_from", issue = "143773")]
590#[const_trait]
591pub trait From<T>: Sized {
592    /// Converts to this type from the input type.
593    #[rustc_diagnostic_item = "from_fn"]
594    #[must_use]
595    #[stable(feature = "rust1", since = "1.0.0")]
596    fn from(value: T) -> Self;
597}
598
599/// An attempted conversion that consumes `self`, which may or may not be
600/// expensive.
601///
602/// Library authors should usually not directly implement this trait,
603/// but should prefer implementing the [`TryFrom`] trait, which offers
604/// greater flexibility and provides an equivalent `TryInto`
605/// implementation for free, thanks to a blanket implementation in the
606/// standard library. For more information on this, see the
607/// documentation for [`Into`].
608///
609/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function
610/// to ensure that types that only implement [`TryInto`] can be used as well.
611///
612/// # Implementing `TryInto`
613///
614/// This suffers the same restrictions and reasoning as implementing
615/// [`Into`], see there for details.
616#[rustc_diagnostic_item = "TryInto"]
617#[stable(feature = "try_from", since = "1.34.0")]
618#[rustc_const_unstable(feature = "const_from", issue = "143773")]
619#[const_trait]
620pub trait TryInto<T>: Sized {
621    /// The type returned in the event of a conversion error.
622    #[stable(feature = "try_from", since = "1.34.0")]
623    type Error;
624
625    /// Performs the conversion.
626    #[stable(feature = "try_from", since = "1.34.0")]
627    fn try_into(self) -> Result<T, Self::Error>;
628}
629
630/// Simple and safe type conversions that may fail in a controlled
631/// way under some circumstances. It is the reciprocal of [`TryInto`].
632///
633/// This is useful when you are doing a type conversion that may
634/// trivially succeed but may also need special handling.
635/// For example, there is no way to convert an [`i64`] into an [`i32`]
636/// using the [`From`] trait, because an [`i64`] may contain a value
637/// that an [`i32`] cannot represent and so the conversion would lose data.
638/// This might be handled by truncating the [`i64`] to an [`i32`] or by
639/// simply returning [`i32::MAX`], or by some other method.  The [`From`]
640/// trait is intended for perfect conversions, so the `TryFrom` trait
641/// informs the programmer when a type conversion could go bad and lets
642/// them decide how to handle it.
643///
644/// # Generic Implementations
645///
646/// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T`
647/// - [`try_from`] is reflexive, which means that `TryFrom<T> for T`
648/// is implemented and cannot fail -- the associated `Error` type for
649/// calling `T::try_from()` on a value of type `T` is [`Infallible`].
650/// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be
651/// equivalent.
652///
653/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function
654/// to ensure that types that only implement [`TryInto`] can be used as well.
655///
656/// `TryFrom<T>` can be implemented as follows:
657///
658/// ```
659/// struct GreaterThanZero(i32);
660///
661/// impl TryFrom<i32> for GreaterThanZero {
662///     type Error = &'static str;
663///
664///     fn try_from(value: i32) -> Result<Self, Self::Error> {
665///         if value <= 0 {
666///             Err("GreaterThanZero only accepts values greater than zero!")
667///         } else {
668///             Ok(GreaterThanZero(value))
669///         }
670///     }
671/// }
672/// ```
673///
674/// # Examples
675///
676/// As described, [`i32`] implements `TryFrom<`[`i64`]`>`:
677///
678/// ```
679/// let big_number = 1_000_000_000_000i64;
680/// // Silently truncates `big_number`, requires detecting
681/// // and handling the truncation after the fact.
682/// let smaller_number = big_number as i32;
683/// assert_eq!(smaller_number, -727379968);
684///
685/// // Returns an error because `big_number` is too big to
686/// // fit in an `i32`.
687/// let try_smaller_number = i32::try_from(big_number);
688/// assert!(try_smaller_number.is_err());
689///
690/// // Returns `Ok(3)`.
691/// let try_successful_smaller_number = i32::try_from(3);
692/// assert!(try_successful_smaller_number.is_ok());
693/// ```
694///
695/// [`try_from`]: TryFrom::try_from
696#[rustc_diagnostic_item = "TryFrom"]
697#[stable(feature = "try_from", since = "1.34.0")]
698#[rustc_const_unstable(feature = "const_from", issue = "143773")]
699#[const_trait]
700pub trait TryFrom<T>: Sized {
701    /// The type returned in the event of a conversion error.
702    #[stable(feature = "try_from", since = "1.34.0")]
703    type Error;
704
705    /// Performs the conversion.
706    #[stable(feature = "try_from", since = "1.34.0")]
707    #[rustc_diagnostic_item = "try_from_fn"]
708    fn try_from(value: T) -> Result<Self, Self::Error>;
709}
710
711////////////////////////////////////////////////////////////////////////////////
712// GENERIC IMPLS
713////////////////////////////////////////////////////////////////////////////////
714
715// As lifts over &
716#[stable(feature = "rust1", since = "1.0.0")]
717#[rustc_const_unstable(feature = "const_try", issue = "74935")]
718impl<T: PointeeSized, U: PointeeSized> const AsRef<U> for &T
719where
720    T: ~const AsRef<U>,
721{
722    #[inline]
723    fn as_ref(&self) -> &U {
724        <T as AsRef<U>>::as_ref(*self)
725    }
726}
727
728// As lifts over &mut
729#[stable(feature = "rust1", since = "1.0.0")]
730#[rustc_const_unstable(feature = "const_try", issue = "74935")]
731impl<T: PointeeSized, U: PointeeSized> const AsRef<U> for &mut T
732where
733    T: ~const AsRef<U>,
734{
735    #[inline]
736    fn as_ref(&self) -> &U {
737        <T as AsRef<U>>::as_ref(*self)
738    }
739}
740
741// FIXME (#45742): replace the above impls for &/&mut with the following more general one:
742// // As lifts over Deref
743// impl<D: ?Sized + Deref<Target: AsRef<U>>, U: ?Sized> AsRef<U> for D {
744//     fn as_ref(&self) -> &U {
745//         self.deref().as_ref()
746//     }
747// }
748
749// AsMut lifts over &mut
750#[stable(feature = "rust1", since = "1.0.0")]
751#[rustc_const_unstable(feature = "const_try", issue = "74935")]
752impl<T: PointeeSized, U: PointeeSized> const AsMut<U> for &mut T
753where
754    T: ~const AsMut<U>,
755{
756    #[inline]
757    fn as_mut(&mut self) -> &mut U {
758        (*self).as_mut()
759    }
760}
761
762// FIXME (#45742): replace the above impl for &mut with the following more general one:
763// // AsMut lifts over DerefMut
764// impl<D: ?Sized + Deref<Target: AsMut<U>>, U: ?Sized> AsMut<U> for D {
765//     fn as_mut(&mut self) -> &mut U {
766//         self.deref_mut().as_mut()
767//     }
768// }
769
770// From implies Into
771#[stable(feature = "rust1", since = "1.0.0")]
772#[rustc_const_unstable(feature = "const_from", issue = "143773")]
773impl<T, U> const Into<U> for T
774where
775    U: ~const From<T>,
776{
777    /// Calls `U::from(self)`.
778    ///
779    /// That is, this conversion is whatever the implementation of
780    /// <code>[From]&lt;T&gt; for U</code> chooses to do.
781    #[inline]
782    #[track_caller]
783    fn into(self) -> U {
784        U::from(self)
785    }
786}
787
788// From (and thus Into) is reflexive
789#[stable(feature = "rust1", since = "1.0.0")]
790#[rustc_const_unstable(feature = "const_from", issue = "143773")]
791impl<T> const From<T> for T {
792    /// Returns the argument unchanged.
793    #[inline(always)]
794    fn from(t: T) -> T {
795        t
796    }
797}
798
799/// **Stability note:** This impl does not yet exist, but we are
800/// "reserving space" to add it in the future. See
801/// [rust-lang/rust#64715][#64715] for details.
802///
803/// [#64715]: https://github.com/rust-lang/rust/issues/64715
804#[stable(feature = "convert_infallible", since = "1.34.0")]
805#[rustc_reservation_impl = "permitting this impl would forbid us from adding \
806                            `impl<T> From<!> for T` later; see rust-lang/rust#64715 for details"]
807#[rustc_const_unstable(feature = "const_from", issue = "143773")]
808impl<T> const From<!> for T {
809    fn from(t: !) -> T {
810        t
811    }
812}
813
814// TryFrom implies TryInto
815#[stable(feature = "try_from", since = "1.34.0")]
816#[rustc_const_unstable(feature = "const_from", issue = "143773")]
817impl<T, U> const TryInto<U> for T
818where
819    U: ~const TryFrom<T>,
820{
821    type Error = U::Error;
822
823    #[inline]
824    fn try_into(self) -> Result<U, U::Error> {
825        U::try_from(self)
826    }
827}
828
829// Infallible conversions are semantically equivalent to fallible conversions
830// with an uninhabited error type.
831#[stable(feature = "try_from", since = "1.34.0")]
832#[rustc_const_unstable(feature = "const_from", issue = "143773")]
833impl<T, U> const TryFrom<U> for T
834where
835    U: ~const Into<T>,
836{
837    type Error = Infallible;
838
839    #[inline]
840    fn try_from(value: U) -> Result<Self, Self::Error> {
841        Ok(U::into(value))
842    }
843}
844
845////////////////////////////////////////////////////////////////////////////////
846// CONCRETE IMPLS
847////////////////////////////////////////////////////////////////////////////////
848
849#[stable(feature = "rust1", since = "1.0.0")]
850#[rustc_const_unstable(feature = "const_try", issue = "74935")]
851impl<T> const AsRef<[T]> for [T] {
852    #[inline(always)]
853    fn as_ref(&self) -> &[T] {
854        self
855    }
856}
857
858#[stable(feature = "rust1", since = "1.0.0")]
859#[rustc_const_unstable(feature = "const_try", issue = "74935")]
860impl<T> const AsMut<[T]> for [T] {
861    #[inline(always)]
862    fn as_mut(&mut self) -> &mut [T] {
863        self
864    }
865}
866
867#[stable(feature = "rust1", since = "1.0.0")]
868#[rustc_const_unstable(feature = "const_try", issue = "74935")]
869impl const AsRef<str> for str {
870    #[inline(always)]
871    fn as_ref(&self) -> &str {
872        self
873    }
874}
875
876#[stable(feature = "as_mut_str_for_str", since = "1.51.0")]
877#[rustc_const_unstable(feature = "const_try", issue = "74935")]
878impl const AsMut<str> for str {
879    #[inline(always)]
880    fn as_mut(&mut self) -> &mut str {
881        self
882    }
883}
884
885////////////////////////////////////////////////////////////////////////////////
886// THE NO-ERROR ERROR TYPE
887////////////////////////////////////////////////////////////////////////////////
888
889/// The error type for errors that can never happen.
890///
891/// Since this enum has no variant, a value of this type can never actually exist.
892/// This can be useful for generic APIs that use [`Result`] and parameterize the error type,
893/// to indicate that the result is always [`Ok`].
894///
895/// For example, the [`TryFrom`] trait (conversion that returns a [`Result`])
896/// has a blanket implementation for all types where a reverse [`Into`] implementation exists.
897///
898/// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error)
899/// impl<T, U> TryFrom<U> for T where U: Into<T> {
900///     type Error = Infallible;
901///
902///     fn try_from(value: U) -> Result<Self, Infallible> {
903///         Ok(U::into(value))  // Never returns `Err`
904///     }
905/// }
906/// ```
907///
908/// # Future compatibility
909///
910/// This enum has the same role as [the `!` “never” type][never],
911/// which is unstable in this version of Rust.
912/// When `!` is stabilized, we plan to make `Infallible` a type alias to it:
913///
914/// ```ignore (illustrates future std change)
915/// pub type Infallible = !;
916/// ```
917///
918/// … and eventually deprecate `Infallible`.
919///
920/// However there is one case where `!` syntax can be used
921/// before `!` is stabilized as a full-fledged type: in the position of a function’s return type.
922/// Specifically, it is possible to have implementations for two different function pointer types:
923///
924/// ```
925/// trait MyTrait {}
926/// impl MyTrait for fn() -> ! {}
927/// impl MyTrait for fn() -> std::convert::Infallible {}
928/// ```
929///
930/// With `Infallible` being an enum, this code is valid.
931/// However when `Infallible` becomes an alias for the never type,
932/// the two `impl`s will start to overlap
933/// and therefore will be disallowed by the language’s trait coherence rules.
934#[stable(feature = "convert_infallible", since = "1.34.0")]
935#[derive(Copy)]
936pub enum Infallible {}
937
938#[stable(feature = "convert_infallible", since = "1.34.0")]
939#[rustc_const_unstable(feature = "const_try", issue = "74935")]
940impl const Clone for Infallible {
941    fn clone(&self) -> Infallible {
942        match *self {}
943    }
944}
945
946#[stable(feature = "convert_infallible", since = "1.34.0")]
947impl fmt::Debug for Infallible {
948    fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
949        match *self {}
950    }
951}
952
953#[stable(feature = "convert_infallible", since = "1.34.0")]
954impl fmt::Display for Infallible {
955    fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
956        match *self {}
957    }
958}
959
960#[stable(feature = "str_parse_error2", since = "1.8.0")]
961impl Error for Infallible {
962    fn description(&self) -> &str {
963        match *self {}
964    }
965}
966
967#[stable(feature = "convert_infallible", since = "1.34.0")]
968#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
969impl const PartialEq for Infallible {
970    fn eq(&self, _: &Infallible) -> bool {
971        match *self {}
972    }
973}
974
975#[stable(feature = "convert_infallible", since = "1.34.0")]
976impl Eq for Infallible {}
977
978#[stable(feature = "convert_infallible", since = "1.34.0")]
979impl PartialOrd for Infallible {
980    fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> {
981        match *self {}
982    }
983}
984
985#[stable(feature = "convert_infallible", since = "1.34.0")]
986impl Ord for Infallible {
987    fn cmp(&self, _other: &Self) -> crate::cmp::Ordering {
988        match *self {}
989    }
990}
991
992#[stable(feature = "convert_infallible", since = "1.34.0")]
993#[rustc_const_unstable(feature = "const_try", issue = "74935")]
994impl const From<!> for Infallible {
995    #[inline]
996    fn from(x: !) -> Self {
997        x
998    }
999}
1000
1001#[stable(feature = "convert_infallible_hash", since = "1.44.0")]
1002impl Hash for Infallible {
1003    fn hash<H: Hasher>(&self, _: &mut H) {
1004        match *self {}
1005    }
1006}