std/io/pipe.rs
1use crate::io;
2use crate::sys::{FromInner, IntoInner, pipe as imp};
3
4/// Creates an anonymous pipe.
5///
6/// # Behavior
7///
8/// A pipe is a one-way data channel provided by the OS, which works across processes. A pipe is
9/// typically used to communicate between two or more separate processes, as there are better,
10/// faster ways to communicate within a single process.
11///
12/// In particular:
13///
14/// * A read on a [`PipeReader`] blocks until the pipe is non-empty.
15/// * A write on a [`PipeWriter`] blocks when the pipe is full.
16/// * When all copies of a [`PipeWriter`] are closed, a read on the corresponding [`PipeReader`]
17/// returns EOF.
18/// * [`PipeWriter`] can be shared, and multiple processes or threads can write to it at once, but
19/// writes (above a target-specific threshold) may have their data interleaved.
20/// * [`PipeReader`] can be shared, and multiple processes or threads can read it at once. Any
21/// given byte will only get consumed by one reader. There are no guarantees about data
22/// interleaving.
23/// * Portable applications cannot assume any atomicity of messages larger than a single byte.
24///
25/// # Platform-specific behavior
26///
27/// This function currently corresponds to the `pipe` function on Unix and the
28/// `CreatePipe` function on Windows.
29///
30/// Note that this [may change in the future][changes].
31///
32/// # Capacity
33///
34/// Pipe capacity is platform dependent. To quote the Linux [man page]:
35///
36/// > Different implementations have different limits for the pipe capacity. Applications should
37/// > not rely on a particular capacity: an application should be designed so that a reading process
38/// > consumes data as soon as it is available, so that a writing process does not remain blocked.
39///
40/// # Example
41///
42/// ```no_run
43/// # #[cfg(miri)] fn main() {}
44/// # #[cfg(not(miri))]
45/// # fn main() -> std::io::Result<()> {
46/// use std::io::{Read, Write, pipe};
47/// use std::process::Command;
48/// let (ping_reader, mut ping_writer) = pipe()?;
49/// let (mut pong_reader, pong_writer) = pipe()?;
50///
51/// // Spawn a child process that echoes its input.
52/// let mut echo_command = Command::new("cat");
53/// echo_command.stdin(ping_reader);
54/// echo_command.stdout(pong_writer);
55/// let mut echo_child = echo_command.spawn()?;
56///
57/// // Send input to the child process. Note that because we're writing all the input before we
58/// // read any output, this could deadlock if the child's input and output pipe buffers both
59/// // filled up. Those buffers are usually at least a few KB, so "hello" is fine, but for longer
60/// // inputs we'd need to read and write at the same time, e.g. using threads.
61/// ping_writer.write_all(b"hello")?;
62///
63/// // `cat` exits when it reads EOF from stdin, but that can't happen while any ping writer
64/// // remains open. We need to drop our ping writer, or read_to_string will deadlock below.
65/// drop(ping_writer);
66///
67/// // The pong reader can't report EOF while any pong writer remains open. Our Command object is
68/// // holding a pong writer, and again read_to_string will deadlock if we don't drop it.
69/// drop(echo_command);
70///
71/// let mut buf = String::new();
72/// // Block until `cat` closes its stdout (a pong writer).
73/// pong_reader.read_to_string(&mut buf)?;
74/// assert_eq!(&buf, "hello");
75///
76/// // At this point we know `cat` has exited, but we still need to wait to clean up the "zombie".
77/// echo_child.wait()?;
78/// # Ok(())
79/// # }
80/// ```
81/// [changes]: io#platform-specific-behavior
82/// [man page]: https://man7.org/linux/man-pages/man7/pipe.7.html
83#[stable(feature = "anonymous_pipe", since = "1.87.0")]
84#[inline]
85pub fn pipe() -> io::Result<(PipeReader, PipeWriter)> {
86 imp::pipe().map(|(reader, writer)| (PipeReader(reader), PipeWriter(writer)))
87}
88
89/// Read end of an anonymous pipe.
90#[stable(feature = "anonymous_pipe", since = "1.87.0")]
91#[derive(Debug)]
92pub struct PipeReader(pub(crate) imp::Pipe);
93
94/// Write end of an anonymous pipe.
95#[stable(feature = "anonymous_pipe", since = "1.87.0")]
96#[derive(Debug)]
97pub struct PipeWriter(pub(crate) imp::Pipe);
98
99impl FromInner<imp::Pipe> for PipeReader {
100 fn from_inner(inner: imp::Pipe) -> Self {
101 Self(inner)
102 }
103}
104
105impl IntoInner<imp::Pipe> for PipeReader {
106 fn into_inner(self) -> imp::Pipe {
107 self.0
108 }
109}
110
111impl FromInner<imp::Pipe> for PipeWriter {
112 fn from_inner(inner: imp::Pipe) -> Self {
113 Self(inner)
114 }
115}
116
117impl IntoInner<imp::Pipe> for PipeWriter {
118 fn into_inner(self) -> imp::Pipe {
119 self.0
120 }
121}
122
123impl PipeReader {
124 /// Creates a new [`PipeReader`] instance that shares the same underlying file description.
125 ///
126 /// # Examples
127 ///
128 /// ```no_run
129 /// # #[cfg(miri)] fn main() {}
130 /// # #[cfg(not(miri))]
131 /// # fn main() -> std::io::Result<()> {
132 /// use std::fs;
133 /// use std::io::{pipe, Write};
134 /// use std::process::Command;
135 /// const NUM_SLOT: u8 = 2;
136 /// const NUM_PROC: u8 = 5;
137 /// const OUTPUT: &str = "work.txt";
138 ///
139 /// let mut jobs = vec![];
140 /// let (reader, mut writer) = pipe()?;
141 ///
142 /// // Write NUM_SLOT characters the pipe.
143 /// writer.write_all(&[b'|'; NUM_SLOT as usize])?;
144 ///
145 /// // Spawn several processes that read a character from the pipe, do some work, then
146 /// // write back to the pipe. When the pipe is empty, the processes block, so only
147 /// // NUM_SLOT processes can be working at any given time.
148 /// for _ in 0..NUM_PROC {
149 /// jobs.push(
150 /// Command::new("bash")
151 /// .args(["-c",
152 /// &format!(
153 /// "read -n 1\n\
154 /// echo -n 'x' >> '{OUTPUT}'\n\
155 /// echo -n '|'",
156 /// ),
157 /// ])
158 /// .stdin(reader.try_clone()?)
159 /// .stdout(writer.try_clone()?)
160 /// .spawn()?,
161 /// );
162 /// }
163 ///
164 /// // Wait for all jobs to finish.
165 /// for mut job in jobs {
166 /// job.wait()?;
167 /// }
168 ///
169 /// // Check our work and clean up.
170 /// let xs = fs::read_to_string(OUTPUT)?;
171 /// fs::remove_file(OUTPUT)?;
172 /// assert_eq!(xs, "x".repeat(NUM_PROC.into()));
173 /// # Ok(())
174 /// # }
175 /// ```
176 #[stable(feature = "anonymous_pipe", since = "1.87.0")]
177 pub fn try_clone(&self) -> io::Result<Self> {
178 self.0.try_clone().map(Self)
179 }
180}
181
182impl PipeWriter {
183 /// Creates a new [`PipeWriter`] instance that shares the same underlying file description.
184 ///
185 /// # Examples
186 ///
187 /// ```no_run
188 /// # #[cfg(miri)] fn main() {}
189 /// # #[cfg(not(miri))]
190 /// # fn main() -> std::io::Result<()> {
191 /// use std::process::Command;
192 /// use std::io::{pipe, Read};
193 /// let (mut reader, writer) = pipe()?;
194 ///
195 /// // Spawn a process that writes to stdout and stderr.
196 /// let mut peer = Command::new("bash")
197 /// .args([
198 /// "-c",
199 /// "echo -n foo\n\
200 /// echo -n bar >&2"
201 /// ])
202 /// .stdout(writer.try_clone()?)
203 /// .stderr(writer)
204 /// .spawn()?;
205 ///
206 /// // Read and check the result.
207 /// let mut msg = String::new();
208 /// reader.read_to_string(&mut msg)?;
209 /// assert_eq!(&msg, "foobar");
210 ///
211 /// peer.wait()?;
212 /// # Ok(())
213 /// # }
214 /// ```
215 #[stable(feature = "anonymous_pipe", since = "1.87.0")]
216 pub fn try_clone(&self) -> io::Result<Self> {
217 self.0.try_clone().map(Self)
218 }
219}
220
221#[stable(feature = "anonymous_pipe", since = "1.87.0")]
222impl io::Read for &PipeReader {
223 fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
224 self.0.read(buf)
225 }
226 fn read_vectored(&mut self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
227 self.0.read_vectored(bufs)
228 }
229 #[inline]
230 fn is_read_vectored(&self) -> bool {
231 self.0.is_read_vectored()
232 }
233 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
234 self.0.read_to_end(buf)
235 }
236 fn read_buf(&mut self, buf: io::BorrowedCursor<'_>) -> io::Result<()> {
237 self.0.read_buf(buf)
238 }
239}
240
241#[stable(feature = "anonymous_pipe", since = "1.87.0")]
242impl io::Read for PipeReader {
243 fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
244 self.0.read(buf)
245 }
246 fn read_vectored(&mut self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
247 self.0.read_vectored(bufs)
248 }
249 #[inline]
250 fn is_read_vectored(&self) -> bool {
251 self.0.is_read_vectored()
252 }
253 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
254 self.0.read_to_end(buf)
255 }
256 fn read_buf(&mut self, buf: io::BorrowedCursor<'_>) -> io::Result<()> {
257 self.0.read_buf(buf)
258 }
259}
260
261#[stable(feature = "anonymous_pipe", since = "1.87.0")]
262impl io::Write for &PipeWriter {
263 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
264 self.0.write(buf)
265 }
266 #[inline]
267 fn flush(&mut self) -> io::Result<()> {
268 Ok(())
269 }
270 fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
271 self.0.write_vectored(bufs)
272 }
273 #[inline]
274 fn is_write_vectored(&self) -> bool {
275 self.0.is_write_vectored()
276 }
277}
278
279#[stable(feature = "anonymous_pipe", since = "1.87.0")]
280impl io::Write for PipeWriter {
281 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
282 self.0.write(buf)
283 }
284 #[inline]
285 fn flush(&mut self) -> io::Result<()> {
286 Ok(())
287 }
288 fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
289 self.0.write_vectored(bufs)
290 }
291 #[inline]
292 fn is_write_vectored(&self) -> bool {
293 self.0.is_write_vectored()
294 }
295}