core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(feature = "panic_immediate_abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(feature = "panic_immediate_abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74 slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79 panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84 const MAX_DISPLAY_LENGTH: usize = 256;
85 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86 let s_trunc = &s[..trunc_len];
87 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89 // 1. out of bounds
90 if begin > s.len() || end > s.len() {
91 let oob_index = if begin > s.len() { begin } else { end };
92 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93 }
94
95 // 2. begin <= end
96 assert!(
97 begin <= end,
98 "begin <= end ({} <= {}) when slicing `{}`{}",
99 begin,
100 end,
101 s_trunc,
102 ellipsis
103 );
104
105 // 3. character boundary
106 let index = if !s.is_char_boundary(begin) { begin } else { end };
107 // find the character
108 let char_start = s.floor_char_boundary(index);
109 // `char_start` must be less than len and a char boundary
110 let ch = s[char_start..].chars().next().unwrap();
111 let char_range = char_start..char_start + ch.len_utf8();
112 panic!(
113 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114 index, ch, char_range, s_trunc, ellipsis
115 );
116}
117
118impl str {
119 /// Returns the length of `self`.
120 ///
121 /// This length is in bytes, not [`char`]s or graphemes. In other words,
122 /// it might not be what a human considers the length of the string.
123 ///
124 /// [`char`]: prim@char
125 ///
126 /// # Examples
127 ///
128 /// ```
129 /// let len = "foo".len();
130 /// assert_eq!(3, len);
131 ///
132 /// assert_eq!("ƒoo".len(), 4); // fancy f!
133 /// assert_eq!("ƒoo".chars().count(), 3);
134 /// ```
135 #[stable(feature = "rust1", since = "1.0.0")]
136 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137 #[rustc_diagnostic_item = "str_len"]
138 #[rustc_no_implicit_autorefs]
139 #[must_use]
140 #[inline]
141 pub const fn len(&self) -> usize {
142 self.as_bytes().len()
143 }
144
145 /// Returns `true` if `self` has a length of zero bytes.
146 ///
147 /// # Examples
148 ///
149 /// ```
150 /// let s = "";
151 /// assert!(s.is_empty());
152 ///
153 /// let s = "not empty";
154 /// assert!(!s.is_empty());
155 /// ```
156 #[stable(feature = "rust1", since = "1.0.0")]
157 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158 #[rustc_no_implicit_autorefs]
159 #[must_use]
160 #[inline]
161 pub const fn is_empty(&self) -> bool {
162 self.len() == 0
163 }
164
165 /// Converts a slice of bytes to a string slice.
166 ///
167 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171 /// UTF-8, and then does the conversion.
172 ///
173 /// [`&str`]: str
174 /// [byteslice]: prim@slice
175 ///
176 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177 /// incur the overhead of the validity check, there is an unsafe version of
178 /// this function, [`from_utf8_unchecked`], which has the same
179 /// behavior but skips the check.
180 ///
181 /// If you need a `String` instead of a `&str`, consider
182 /// [`String::from_utf8`][string].
183 ///
184 /// [string]: ../std/string/struct.String.html#method.from_utf8
185 ///
186 /// Because you can stack-allocate a `[u8; N]`, and you can take a
187 /// [`&[u8]`][byteslice] of it, this function is one way to have a
188 /// stack-allocated string. There is an example of this in the
189 /// examples section below.
190 ///
191 /// [byteslice]: slice
192 ///
193 /// # Errors
194 ///
195 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196 /// provided slice is not UTF-8.
197 ///
198 /// # Examples
199 ///
200 /// Basic usage:
201 ///
202 /// ```
203 /// // some bytes, in a vector
204 /// let sparkle_heart = vec![240, 159, 146, 150];
205 ///
206 /// // We can use the ? (try) operator to check if the bytes are valid
207 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208 ///
209 /// assert_eq!("💖", sparkle_heart);
210 /// # Ok::<_, std::str::Utf8Error>(())
211 /// ```
212 ///
213 /// Incorrect bytes:
214 ///
215 /// ```
216 /// // some invalid bytes, in a vector
217 /// let sparkle_heart = vec![0, 159, 146, 150];
218 ///
219 /// assert!(str::from_utf8(&sparkle_heart).is_err());
220 /// ```
221 ///
222 /// See the docs for [`Utf8Error`] for more details on the kinds of
223 /// errors that can be returned.
224 ///
225 /// A "stack allocated string":
226 ///
227 /// ```
228 /// // some bytes, in a stack-allocated array
229 /// let sparkle_heart = [240, 159, 146, 150];
230 ///
231 /// // We know these bytes are valid, so just use `unwrap()`.
232 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233 ///
234 /// assert_eq!("💖", sparkle_heart);
235 /// ```
236 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240 converts::from_utf8(v)
241 }
242
243 /// Converts a mutable slice of bytes to a mutable string slice.
244 ///
245 /// # Examples
246 ///
247 /// Basic usage:
248 ///
249 /// ```
250 /// // "Hello, Rust!" as a mutable vector
251 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252 ///
253 /// // As we know these bytes are valid, we can use `unwrap()`
254 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255 ///
256 /// assert_eq!("Hello, Rust!", outstr);
257 /// ```
258 ///
259 /// Incorrect bytes:
260 ///
261 /// ```
262 /// // Some invalid bytes in a mutable vector
263 /// let mut invalid = vec![128, 223];
264 ///
265 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266 /// ```
267 /// See the docs for [`Utf8Error`] for more details on the kinds of
268 /// errors that can be returned.
269 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273 converts::from_utf8_mut(v)
274 }
275
276 /// Converts a slice of bytes to a string slice without checking
277 /// that the string contains valid UTF-8.
278 ///
279 /// See the safe version, [`from_utf8`], for more information.
280 ///
281 /// # Safety
282 ///
283 /// The bytes passed in must be valid UTF-8.
284 ///
285 /// # Examples
286 ///
287 /// Basic usage:
288 ///
289 /// ```
290 /// // some bytes, in a vector
291 /// let sparkle_heart = vec![240, 159, 146, 150];
292 ///
293 /// let sparkle_heart = unsafe {
294 /// str::from_utf8_unchecked(&sparkle_heart)
295 /// };
296 ///
297 /// assert_eq!("💖", sparkle_heart);
298 /// ```
299 #[inline]
300 #[must_use]
301 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306 unsafe { converts::from_utf8_unchecked(v) }
307 }
308
309 /// Converts a slice of bytes to a string slice without checking
310 /// that the string contains valid UTF-8; mutable version.
311 ///
312 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313 ///
314 /// # Examples
315 ///
316 /// Basic usage:
317 ///
318 /// ```
319 /// let mut heart = vec![240, 159, 146, 150];
320 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321 ///
322 /// assert_eq!("💖", heart);
323 /// ```
324 #[inline]
325 #[must_use]
326 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331 unsafe { converts::from_utf8_unchecked_mut(v) }
332 }
333
334 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335 /// sequence or the end of the string.
336 ///
337 /// The start and end of the string (when `index == self.len()`) are
338 /// considered to be boundaries.
339 ///
340 /// Returns `false` if `index` is greater than `self.len()`.
341 ///
342 /// # Examples
343 ///
344 /// ```
345 /// let s = "Löwe 老虎 Léopard";
346 /// assert!(s.is_char_boundary(0));
347 /// // start of `老`
348 /// assert!(s.is_char_boundary(6));
349 /// assert!(s.is_char_boundary(s.len()));
350 ///
351 /// // second byte of `ö`
352 /// assert!(!s.is_char_boundary(2));
353 ///
354 /// // third byte of `老`
355 /// assert!(!s.is_char_boundary(8));
356 /// ```
357 #[must_use]
358 #[stable(feature = "is_char_boundary", since = "1.9.0")]
359 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360 #[inline]
361 pub const fn is_char_boundary(&self, index: usize) -> bool {
362 // 0 is always ok.
363 // Test for 0 explicitly so that it can optimize out the check
364 // easily and skip reading string data for that case.
365 // Note that optimizing `self.get(..index)` relies on this.
366 if index == 0 {
367 return true;
368 }
369
370 if index >= self.len() {
371 // For `true` we have two options:
372 //
373 // - index == self.len()
374 // Empty strings are valid, so return true
375 // - index > self.len()
376 // In this case return false
377 //
378 // The check is placed exactly here, because it improves generated
379 // code on higher opt-levels. See PR #84751 for more details.
380 index == self.len()
381 } else {
382 self.as_bytes()[index].is_utf8_char_boundary()
383 }
384 }
385
386 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387 ///
388 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389 /// exceed a given number of bytes. Note that this is done purely at the character level
390 /// and can still visually split graphemes, even though the underlying characters aren't
391 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
392 /// includes 🧑 (person) instead.
393 ///
394 /// [`is_char_boundary(x)`]: Self::is_char_boundary
395 ///
396 /// # Examples
397 ///
398 /// ```
399 /// #![feature(round_char_boundary)]
400 /// let s = "❤️🧡💛💚💙💜";
401 /// assert_eq!(s.len(), 26);
402 /// assert!(!s.is_char_boundary(13));
403 ///
404 /// let closest = s.floor_char_boundary(13);
405 /// assert_eq!(closest, 10);
406 /// assert_eq!(&s[..closest], "❤️🧡");
407 /// ```
408 #[unstable(feature = "round_char_boundary", issue = "93743")]
409 #[inline]
410 pub fn floor_char_boundary(&self, index: usize) -> usize {
411 if index >= self.len() {
412 self.len()
413 } else {
414 let lower_bound = index.saturating_sub(3);
415 let new_index = self.as_bytes()[lower_bound..=index]
416 .iter()
417 .rposition(|b| b.is_utf8_char_boundary());
418
419 // SAFETY: we know that the character boundary will be within four bytes
420 unsafe { lower_bound + new_index.unwrap_unchecked() }
421 }
422 }
423
424 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
425 ///
426 /// If `index` is greater than the length of the string, this returns the length of the string.
427 ///
428 /// This method is the natural complement to [`floor_char_boundary`]. See that method
429 /// for more details.
430 ///
431 /// [`floor_char_boundary`]: str::floor_char_boundary
432 /// [`is_char_boundary(x)`]: Self::is_char_boundary
433 ///
434 /// # Examples
435 ///
436 /// ```
437 /// #![feature(round_char_boundary)]
438 /// let s = "❤️🧡💛💚💙💜";
439 /// assert_eq!(s.len(), 26);
440 /// assert!(!s.is_char_boundary(13));
441 ///
442 /// let closest = s.ceil_char_boundary(13);
443 /// assert_eq!(closest, 14);
444 /// assert_eq!(&s[..closest], "❤️🧡💛");
445 /// ```
446 #[unstable(feature = "round_char_boundary", issue = "93743")]
447 #[inline]
448 pub fn ceil_char_boundary(&self, index: usize) -> usize {
449 if index >= self.len() {
450 self.len()
451 } else {
452 let upper_bound = Ord::min(index + 4, self.len());
453 self.as_bytes()[index..upper_bound]
454 .iter()
455 .position(|b| b.is_utf8_char_boundary())
456 .map_or(upper_bound, |pos| pos + index)
457 }
458 }
459
460 /// Converts a string slice to a byte slice. To convert the byte slice back
461 /// into a string slice, use the [`from_utf8`] function.
462 ///
463 /// # Examples
464 ///
465 /// ```
466 /// let bytes = "bors".as_bytes();
467 /// assert_eq!(b"bors", bytes);
468 /// ```
469 #[stable(feature = "rust1", since = "1.0.0")]
470 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
471 #[must_use]
472 #[inline(always)]
473 #[allow(unused_attributes)]
474 pub const fn as_bytes(&self) -> &[u8] {
475 // SAFETY: const sound because we transmute two types with the same layout
476 unsafe { mem::transmute(self) }
477 }
478
479 /// Converts a mutable string slice to a mutable byte slice.
480 ///
481 /// # Safety
482 ///
483 /// The caller must ensure that the content of the slice is valid UTF-8
484 /// before the borrow ends and the underlying `str` is used.
485 ///
486 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
487 ///
488 /// # Examples
489 ///
490 /// Basic usage:
491 ///
492 /// ```
493 /// let mut s = String::from("Hello");
494 /// let bytes = unsafe { s.as_bytes_mut() };
495 ///
496 /// assert_eq!(b"Hello", bytes);
497 /// ```
498 ///
499 /// Mutability:
500 ///
501 /// ```
502 /// let mut s = String::from("🗻∈🌏");
503 ///
504 /// unsafe {
505 /// let bytes = s.as_bytes_mut();
506 ///
507 /// bytes[0] = 0xF0;
508 /// bytes[1] = 0x9F;
509 /// bytes[2] = 0x8D;
510 /// bytes[3] = 0x94;
511 /// }
512 ///
513 /// assert_eq!("🍔∈🌏", s);
514 /// ```
515 #[stable(feature = "str_mut_extras", since = "1.20.0")]
516 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
517 #[must_use]
518 #[inline(always)]
519 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
520 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
521 // has the same layout as `&[u8]` (only std can make this guarantee).
522 // The pointer dereference is safe since it comes from a mutable reference which
523 // is guaranteed to be valid for writes.
524 unsafe { &mut *(self as *mut str as *mut [u8]) }
525 }
526
527 /// Converts a string slice to a raw pointer.
528 ///
529 /// As string slices are a slice of bytes, the raw pointer points to a
530 /// [`u8`]. This pointer will be pointing to the first byte of the string
531 /// slice.
532 ///
533 /// The caller must ensure that the returned pointer is never written to.
534 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
535 ///
536 /// [`as_mut_ptr`]: str::as_mut_ptr
537 ///
538 /// # Examples
539 ///
540 /// ```
541 /// let s = "Hello";
542 /// let ptr = s.as_ptr();
543 /// ```
544 #[stable(feature = "rust1", since = "1.0.0")]
545 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
546 #[rustc_never_returns_null_ptr]
547 #[rustc_as_ptr]
548 #[must_use]
549 #[inline(always)]
550 pub const fn as_ptr(&self) -> *const u8 {
551 self as *const str as *const u8
552 }
553
554 /// Converts a mutable string slice to a raw pointer.
555 ///
556 /// As string slices are a slice of bytes, the raw pointer points to a
557 /// [`u8`]. This pointer will be pointing to the first byte of the string
558 /// slice.
559 ///
560 /// It is your responsibility to make sure that the string slice only gets
561 /// modified in a way that it remains valid UTF-8.
562 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
563 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
564 #[rustc_never_returns_null_ptr]
565 #[rustc_as_ptr]
566 #[must_use]
567 #[inline(always)]
568 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
569 self as *mut str as *mut u8
570 }
571
572 /// Returns a subslice of `str`.
573 ///
574 /// This is the non-panicking alternative to indexing the `str`. Returns
575 /// [`None`] whenever equivalent indexing operation would panic.
576 ///
577 /// # Examples
578 ///
579 /// ```
580 /// let v = String::from("🗻∈🌏");
581 ///
582 /// assert_eq!(Some("🗻"), v.get(0..4));
583 ///
584 /// // indices not on UTF-8 sequence boundaries
585 /// assert!(v.get(1..).is_none());
586 /// assert!(v.get(..8).is_none());
587 ///
588 /// // out of bounds
589 /// assert!(v.get(..42).is_none());
590 /// ```
591 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
592 #[inline]
593 pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
594 i.get(self)
595 }
596
597 /// Returns a mutable subslice of `str`.
598 ///
599 /// This is the non-panicking alternative to indexing the `str`. Returns
600 /// [`None`] whenever equivalent indexing operation would panic.
601 ///
602 /// # Examples
603 ///
604 /// ```
605 /// let mut v = String::from("hello");
606 /// // correct length
607 /// assert!(v.get_mut(0..5).is_some());
608 /// // out of bounds
609 /// assert!(v.get_mut(..42).is_none());
610 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
611 ///
612 /// assert_eq!("hello", v);
613 /// {
614 /// let s = v.get_mut(0..2);
615 /// let s = s.map(|s| {
616 /// s.make_ascii_uppercase();
617 /// &*s
618 /// });
619 /// assert_eq!(Some("HE"), s);
620 /// }
621 /// assert_eq!("HEllo", v);
622 /// ```
623 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
624 #[inline]
625 pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
626 i.get_mut(self)
627 }
628
629 /// Returns an unchecked subslice of `str`.
630 ///
631 /// This is the unchecked alternative to indexing the `str`.
632 ///
633 /// # Safety
634 ///
635 /// Callers of this function are responsible that these preconditions are
636 /// satisfied:
637 ///
638 /// * The starting index must not exceed the ending index;
639 /// * Indexes must be within bounds of the original slice;
640 /// * Indexes must lie on UTF-8 sequence boundaries.
641 ///
642 /// Failing that, the returned string slice may reference invalid memory or
643 /// violate the invariants communicated by the `str` type.
644 ///
645 /// # Examples
646 ///
647 /// ```
648 /// let v = "🗻∈🌏";
649 /// unsafe {
650 /// assert_eq!("🗻", v.get_unchecked(0..4));
651 /// assert_eq!("∈", v.get_unchecked(4..7));
652 /// assert_eq!("🌏", v.get_unchecked(7..11));
653 /// }
654 /// ```
655 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
656 #[inline]
657 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
658 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
659 // the slice is dereferenceable because `self` is a safe reference.
660 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
661 unsafe { &*i.get_unchecked(self) }
662 }
663
664 /// Returns a mutable, unchecked subslice of `str`.
665 ///
666 /// This is the unchecked alternative to indexing the `str`.
667 ///
668 /// # Safety
669 ///
670 /// Callers of this function are responsible that these preconditions are
671 /// satisfied:
672 ///
673 /// * The starting index must not exceed the ending index;
674 /// * Indexes must be within bounds of the original slice;
675 /// * Indexes must lie on UTF-8 sequence boundaries.
676 ///
677 /// Failing that, the returned string slice may reference invalid memory or
678 /// violate the invariants communicated by the `str` type.
679 ///
680 /// # Examples
681 ///
682 /// ```
683 /// let mut v = String::from("🗻∈🌏");
684 /// unsafe {
685 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
686 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
687 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
688 /// }
689 /// ```
690 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
691 #[inline]
692 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
693 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
694 // the slice is dereferenceable because `self` is a safe reference.
695 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
696 unsafe { &mut *i.get_unchecked_mut(self) }
697 }
698
699 /// Creates a string slice from another string slice, bypassing safety
700 /// checks.
701 ///
702 /// This is generally not recommended, use with caution! For a safe
703 /// alternative see [`str`] and [`Index`].
704 ///
705 /// [`Index`]: crate::ops::Index
706 ///
707 /// This new slice goes from `begin` to `end`, including `begin` but
708 /// excluding `end`.
709 ///
710 /// To get a mutable string slice instead, see the
711 /// [`slice_mut_unchecked`] method.
712 ///
713 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
714 ///
715 /// # Safety
716 ///
717 /// Callers of this function are responsible that three preconditions are
718 /// satisfied:
719 ///
720 /// * `begin` must not exceed `end`.
721 /// * `begin` and `end` must be byte positions within the string slice.
722 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
723 ///
724 /// # Examples
725 ///
726 /// ```
727 /// let s = "Löwe 老虎 Léopard";
728 ///
729 /// unsafe {
730 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
731 /// }
732 ///
733 /// let s = "Hello, world!";
734 ///
735 /// unsafe {
736 /// assert_eq!("world", s.slice_unchecked(7, 12));
737 /// }
738 /// ```
739 #[stable(feature = "rust1", since = "1.0.0")]
740 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
741 #[must_use]
742 #[inline]
743 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
744 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
745 // the slice is dereferenceable because `self` is a safe reference.
746 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
747 unsafe { &*(begin..end).get_unchecked(self) }
748 }
749
750 /// Creates a string slice from another string slice, bypassing safety
751 /// checks.
752 ///
753 /// This is generally not recommended, use with caution! For a safe
754 /// alternative see [`str`] and [`IndexMut`].
755 ///
756 /// [`IndexMut`]: crate::ops::IndexMut
757 ///
758 /// This new slice goes from `begin` to `end`, including `begin` but
759 /// excluding `end`.
760 ///
761 /// To get an immutable string slice instead, see the
762 /// [`slice_unchecked`] method.
763 ///
764 /// [`slice_unchecked`]: str::slice_unchecked
765 ///
766 /// # Safety
767 ///
768 /// Callers of this function are responsible that three preconditions are
769 /// satisfied:
770 ///
771 /// * `begin` must not exceed `end`.
772 /// * `begin` and `end` must be byte positions within the string slice.
773 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
774 #[stable(feature = "str_slice_mut", since = "1.5.0")]
775 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
776 #[inline]
777 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
778 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
779 // the slice is dereferenceable because `self` is a safe reference.
780 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
781 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
782 }
783
784 /// Divides one string slice into two at an index.
785 ///
786 /// The argument, `mid`, should be a byte offset from the start of the
787 /// string. It must also be on the boundary of a UTF-8 code point.
788 ///
789 /// The two slices returned go from the start of the string slice to `mid`,
790 /// and from `mid` to the end of the string slice.
791 ///
792 /// To get mutable string slices instead, see the [`split_at_mut`]
793 /// method.
794 ///
795 /// [`split_at_mut`]: str::split_at_mut
796 ///
797 /// # Panics
798 ///
799 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
800 /// the end of the last code point of the string slice. For a non-panicking
801 /// alternative see [`split_at_checked`](str::split_at_checked).
802 ///
803 /// # Examples
804 ///
805 /// ```
806 /// let s = "Per Martin-Löf";
807 ///
808 /// let (first, last) = s.split_at(3);
809 ///
810 /// assert_eq!("Per", first);
811 /// assert_eq!(" Martin-Löf", last);
812 /// ```
813 #[inline]
814 #[must_use]
815 #[stable(feature = "str_split_at", since = "1.4.0")]
816 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
817 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
818 match self.split_at_checked(mid) {
819 None => slice_error_fail(self, 0, mid),
820 Some(pair) => pair,
821 }
822 }
823
824 /// Divides one mutable string slice into two at an index.
825 ///
826 /// The argument, `mid`, should be a byte offset from the start of the
827 /// string. It must also be on the boundary of a UTF-8 code point.
828 ///
829 /// The two slices returned go from the start of the string slice to `mid`,
830 /// and from `mid` to the end of the string slice.
831 ///
832 /// To get immutable string slices instead, see the [`split_at`] method.
833 ///
834 /// [`split_at`]: str::split_at
835 ///
836 /// # Panics
837 ///
838 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
839 /// the end of the last code point of the string slice. For a non-panicking
840 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
841 ///
842 /// # Examples
843 ///
844 /// ```
845 /// let mut s = "Per Martin-Löf".to_string();
846 /// {
847 /// let (first, last) = s.split_at_mut(3);
848 /// first.make_ascii_uppercase();
849 /// assert_eq!("PER", first);
850 /// assert_eq!(" Martin-Löf", last);
851 /// }
852 /// assert_eq!("PER Martin-Löf", s);
853 /// ```
854 #[inline]
855 #[must_use]
856 #[stable(feature = "str_split_at", since = "1.4.0")]
857 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
858 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
859 // is_char_boundary checks that the index is in [0, .len()]
860 if self.is_char_boundary(mid) {
861 // SAFETY: just checked that `mid` is on a char boundary.
862 unsafe { self.split_at_mut_unchecked(mid) }
863 } else {
864 slice_error_fail(self, 0, mid)
865 }
866 }
867
868 /// Divides one string slice into two at an index.
869 ///
870 /// The argument, `mid`, should be a valid byte offset from the start of the
871 /// string. It must also be on the boundary of a UTF-8 code point. The
872 /// method returns `None` if that’s not the case.
873 ///
874 /// The two slices returned go from the start of the string slice to `mid`,
875 /// and from `mid` to the end of the string slice.
876 ///
877 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
878 /// method.
879 ///
880 /// [`split_at_mut_checked`]: str::split_at_mut_checked
881 ///
882 /// # Examples
883 ///
884 /// ```
885 /// let s = "Per Martin-Löf";
886 ///
887 /// let (first, last) = s.split_at_checked(3).unwrap();
888 /// assert_eq!("Per", first);
889 /// assert_eq!(" Martin-Löf", last);
890 ///
891 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
892 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
893 /// ```
894 #[inline]
895 #[must_use]
896 #[stable(feature = "split_at_checked", since = "1.80.0")]
897 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
898 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
899 // is_char_boundary checks that the index is in [0, .len()]
900 if self.is_char_boundary(mid) {
901 // SAFETY: just checked that `mid` is on a char boundary.
902 Some(unsafe { self.split_at_unchecked(mid) })
903 } else {
904 None
905 }
906 }
907
908 /// Divides one mutable string slice into two at an index.
909 ///
910 /// The argument, `mid`, should be a valid byte offset from the start of the
911 /// string. It must also be on the boundary of a UTF-8 code point. The
912 /// method returns `None` if that’s not the case.
913 ///
914 /// The two slices returned go from the start of the string slice to `mid`,
915 /// and from `mid` to the end of the string slice.
916 ///
917 /// To get immutable string slices instead, see the [`split_at_checked`] method.
918 ///
919 /// [`split_at_checked`]: str::split_at_checked
920 ///
921 /// # Examples
922 ///
923 /// ```
924 /// let mut s = "Per Martin-Löf".to_string();
925 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
926 /// first.make_ascii_uppercase();
927 /// assert_eq!("PER", first);
928 /// assert_eq!(" Martin-Löf", last);
929 /// }
930 /// assert_eq!("PER Martin-Löf", s);
931 ///
932 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
933 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
934 /// ```
935 #[inline]
936 #[must_use]
937 #[stable(feature = "split_at_checked", since = "1.80.0")]
938 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
939 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
940 // is_char_boundary checks that the index is in [0, .len()]
941 if self.is_char_boundary(mid) {
942 // SAFETY: just checked that `mid` is on a char boundary.
943 Some(unsafe { self.split_at_mut_unchecked(mid) })
944 } else {
945 None
946 }
947 }
948
949 /// Divides one string slice into two at an index.
950 ///
951 /// # Safety
952 ///
953 /// The caller must ensure that `mid` is a valid byte offset from the start
954 /// of the string and falls on the boundary of a UTF-8 code point.
955 #[inline]
956 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
957 let len = self.len();
958 let ptr = self.as_ptr();
959 // SAFETY: caller guarantees `mid` is on a char boundary.
960 unsafe {
961 (
962 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
963 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
964 )
965 }
966 }
967
968 /// Divides one string slice into two at an index.
969 ///
970 /// # Safety
971 ///
972 /// The caller must ensure that `mid` is a valid byte offset from the start
973 /// of the string and falls on the boundary of a UTF-8 code point.
974 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
975 let len = self.len();
976 let ptr = self.as_mut_ptr();
977 // SAFETY: caller guarantees `mid` is on a char boundary.
978 unsafe {
979 (
980 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
981 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
982 )
983 }
984 }
985
986 /// Returns an iterator over the [`char`]s of a string slice.
987 ///
988 /// As a string slice consists of valid UTF-8, we can iterate through a
989 /// string slice by [`char`]. This method returns such an iterator.
990 ///
991 /// It's important to remember that [`char`] represents a Unicode Scalar
992 /// Value, and might not match your idea of what a 'character' is. Iteration
993 /// over grapheme clusters may be what you actually want. This functionality
994 /// is not provided by Rust's standard library, check crates.io instead.
995 ///
996 /// # Examples
997 ///
998 /// Basic usage:
999 ///
1000 /// ```
1001 /// let word = "goodbye";
1002 ///
1003 /// let count = word.chars().count();
1004 /// assert_eq!(7, count);
1005 ///
1006 /// let mut chars = word.chars();
1007 ///
1008 /// assert_eq!(Some('g'), chars.next());
1009 /// assert_eq!(Some('o'), chars.next());
1010 /// assert_eq!(Some('o'), chars.next());
1011 /// assert_eq!(Some('d'), chars.next());
1012 /// assert_eq!(Some('b'), chars.next());
1013 /// assert_eq!(Some('y'), chars.next());
1014 /// assert_eq!(Some('e'), chars.next());
1015 ///
1016 /// assert_eq!(None, chars.next());
1017 /// ```
1018 ///
1019 /// Remember, [`char`]s might not match your intuition about characters:
1020 ///
1021 /// [`char`]: prim@char
1022 ///
1023 /// ```
1024 /// let y = "y̆";
1025 ///
1026 /// let mut chars = y.chars();
1027 ///
1028 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1029 /// assert_eq!(Some('\u{0306}'), chars.next());
1030 ///
1031 /// assert_eq!(None, chars.next());
1032 /// ```
1033 #[stable(feature = "rust1", since = "1.0.0")]
1034 #[inline]
1035 #[rustc_diagnostic_item = "str_chars"]
1036 pub fn chars(&self) -> Chars<'_> {
1037 Chars { iter: self.as_bytes().iter() }
1038 }
1039
1040 /// Returns an iterator over the [`char`]s of a string slice, and their
1041 /// positions.
1042 ///
1043 /// As a string slice consists of valid UTF-8, we can iterate through a
1044 /// string slice by [`char`]. This method returns an iterator of both
1045 /// these [`char`]s, as well as their byte positions.
1046 ///
1047 /// The iterator yields tuples. The position is first, the [`char`] is
1048 /// second.
1049 ///
1050 /// # Examples
1051 ///
1052 /// Basic usage:
1053 ///
1054 /// ```
1055 /// let word = "goodbye";
1056 ///
1057 /// let count = word.char_indices().count();
1058 /// assert_eq!(7, count);
1059 ///
1060 /// let mut char_indices = word.char_indices();
1061 ///
1062 /// assert_eq!(Some((0, 'g')), char_indices.next());
1063 /// assert_eq!(Some((1, 'o')), char_indices.next());
1064 /// assert_eq!(Some((2, 'o')), char_indices.next());
1065 /// assert_eq!(Some((3, 'd')), char_indices.next());
1066 /// assert_eq!(Some((4, 'b')), char_indices.next());
1067 /// assert_eq!(Some((5, 'y')), char_indices.next());
1068 /// assert_eq!(Some((6, 'e')), char_indices.next());
1069 ///
1070 /// assert_eq!(None, char_indices.next());
1071 /// ```
1072 ///
1073 /// Remember, [`char`]s might not match your intuition about characters:
1074 ///
1075 /// [`char`]: prim@char
1076 ///
1077 /// ```
1078 /// let yes = "y̆es";
1079 ///
1080 /// let mut char_indices = yes.char_indices();
1081 ///
1082 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1083 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1084 ///
1085 /// // note the 3 here - the previous character took up two bytes
1086 /// assert_eq!(Some((3, 'e')), char_indices.next());
1087 /// assert_eq!(Some((4, 's')), char_indices.next());
1088 ///
1089 /// assert_eq!(None, char_indices.next());
1090 /// ```
1091 #[stable(feature = "rust1", since = "1.0.0")]
1092 #[inline]
1093 pub fn char_indices(&self) -> CharIndices<'_> {
1094 CharIndices { front_offset: 0, iter: self.chars() }
1095 }
1096
1097 /// Returns an iterator over the bytes of a string slice.
1098 ///
1099 /// As a string slice consists of a sequence of bytes, we can iterate
1100 /// through a string slice by byte. This method returns such an iterator.
1101 ///
1102 /// # Examples
1103 ///
1104 /// ```
1105 /// let mut bytes = "bors".bytes();
1106 ///
1107 /// assert_eq!(Some(b'b'), bytes.next());
1108 /// assert_eq!(Some(b'o'), bytes.next());
1109 /// assert_eq!(Some(b'r'), bytes.next());
1110 /// assert_eq!(Some(b's'), bytes.next());
1111 ///
1112 /// assert_eq!(None, bytes.next());
1113 /// ```
1114 #[stable(feature = "rust1", since = "1.0.0")]
1115 #[inline]
1116 pub fn bytes(&self) -> Bytes<'_> {
1117 Bytes(self.as_bytes().iter().copied())
1118 }
1119
1120 /// Splits a string slice by whitespace.
1121 ///
1122 /// The iterator returned will return string slices that are sub-slices of
1123 /// the original string slice, separated by any amount of whitespace.
1124 ///
1125 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1126 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1127 /// instead, use [`split_ascii_whitespace`].
1128 ///
1129 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1130 ///
1131 /// # Examples
1132 ///
1133 /// Basic usage:
1134 ///
1135 /// ```
1136 /// let mut iter = "A few words".split_whitespace();
1137 ///
1138 /// assert_eq!(Some("A"), iter.next());
1139 /// assert_eq!(Some("few"), iter.next());
1140 /// assert_eq!(Some("words"), iter.next());
1141 ///
1142 /// assert_eq!(None, iter.next());
1143 /// ```
1144 ///
1145 /// All kinds of whitespace are considered:
1146 ///
1147 /// ```
1148 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1149 /// assert_eq!(Some("Mary"), iter.next());
1150 /// assert_eq!(Some("had"), iter.next());
1151 /// assert_eq!(Some("a"), iter.next());
1152 /// assert_eq!(Some("little"), iter.next());
1153 /// assert_eq!(Some("lamb"), iter.next());
1154 ///
1155 /// assert_eq!(None, iter.next());
1156 /// ```
1157 ///
1158 /// If the string is empty or all whitespace, the iterator yields no string slices:
1159 /// ```
1160 /// assert_eq!("".split_whitespace().next(), None);
1161 /// assert_eq!(" ".split_whitespace().next(), None);
1162 /// ```
1163 #[must_use = "this returns the split string as an iterator, \
1164 without modifying the original"]
1165 #[stable(feature = "split_whitespace", since = "1.1.0")]
1166 #[rustc_diagnostic_item = "str_split_whitespace"]
1167 #[inline]
1168 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1169 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1170 }
1171
1172 /// Splits a string slice by ASCII whitespace.
1173 ///
1174 /// The iterator returned will return string slices that are sub-slices of
1175 /// the original string slice, separated by any amount of ASCII whitespace.
1176 ///
1177 /// This uses the same definition as [`char::is_ascii_whitespace`].
1178 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1179 ///
1180 /// [`split_whitespace`]: str::split_whitespace
1181 ///
1182 /// # Examples
1183 ///
1184 /// Basic usage:
1185 ///
1186 /// ```
1187 /// let mut iter = "A few words".split_ascii_whitespace();
1188 ///
1189 /// assert_eq!(Some("A"), iter.next());
1190 /// assert_eq!(Some("few"), iter.next());
1191 /// assert_eq!(Some("words"), iter.next());
1192 ///
1193 /// assert_eq!(None, iter.next());
1194 /// ```
1195 ///
1196 /// Various kinds of ASCII whitespace are considered
1197 /// (see [`char::is_ascii_whitespace`]):
1198 ///
1199 /// ```
1200 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1201 /// assert_eq!(Some("Mary"), iter.next());
1202 /// assert_eq!(Some("had"), iter.next());
1203 /// assert_eq!(Some("a"), iter.next());
1204 /// assert_eq!(Some("little"), iter.next());
1205 /// assert_eq!(Some("lamb"), iter.next());
1206 ///
1207 /// assert_eq!(None, iter.next());
1208 /// ```
1209 ///
1210 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1211 /// ```
1212 /// assert_eq!("".split_ascii_whitespace().next(), None);
1213 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1214 /// ```
1215 #[must_use = "this returns the split string as an iterator, \
1216 without modifying the original"]
1217 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1218 #[inline]
1219 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1220 let inner =
1221 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1222 SplitAsciiWhitespace { inner }
1223 }
1224
1225 /// Returns an iterator over the lines of a string, as string slices.
1226 ///
1227 /// Lines are split at line endings that are either newlines (`\n`) or
1228 /// sequences of a carriage return followed by a line feed (`\r\n`).
1229 ///
1230 /// Line terminators are not included in the lines returned by the iterator.
1231 ///
1232 /// Note that any carriage return (`\r`) not immediately followed by a
1233 /// line feed (`\n`) does not split a line. These carriage returns are
1234 /// thereby included in the produced lines.
1235 ///
1236 /// The final line ending is optional. A string that ends with a final line
1237 /// ending will return the same lines as an otherwise identical string
1238 /// without a final line ending.
1239 ///
1240 /// # Examples
1241 ///
1242 /// Basic usage:
1243 ///
1244 /// ```
1245 /// let text = "foo\r\nbar\n\nbaz\r";
1246 /// let mut lines = text.lines();
1247 ///
1248 /// assert_eq!(Some("foo"), lines.next());
1249 /// assert_eq!(Some("bar"), lines.next());
1250 /// assert_eq!(Some(""), lines.next());
1251 /// // Trailing carriage return is included in the last line
1252 /// assert_eq!(Some("baz\r"), lines.next());
1253 ///
1254 /// assert_eq!(None, lines.next());
1255 /// ```
1256 ///
1257 /// The final line does not require any ending:
1258 ///
1259 /// ```
1260 /// let text = "foo\nbar\n\r\nbaz";
1261 /// let mut lines = text.lines();
1262 ///
1263 /// assert_eq!(Some("foo"), lines.next());
1264 /// assert_eq!(Some("bar"), lines.next());
1265 /// assert_eq!(Some(""), lines.next());
1266 /// assert_eq!(Some("baz"), lines.next());
1267 ///
1268 /// assert_eq!(None, lines.next());
1269 /// ```
1270 #[stable(feature = "rust1", since = "1.0.0")]
1271 #[inline]
1272 pub fn lines(&self) -> Lines<'_> {
1273 Lines(self.split_inclusive('\n').map(LinesMap))
1274 }
1275
1276 /// Returns an iterator over the lines of a string.
1277 #[stable(feature = "rust1", since = "1.0.0")]
1278 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1279 #[inline]
1280 #[allow(deprecated)]
1281 pub fn lines_any(&self) -> LinesAny<'_> {
1282 LinesAny(self.lines())
1283 }
1284
1285 /// Returns an iterator of `u16` over the string encoded
1286 /// as native endian UTF-16 (without byte-order mark).
1287 ///
1288 /// # Examples
1289 ///
1290 /// ```
1291 /// let text = "Zażółć gęślą jaźń";
1292 ///
1293 /// let utf8_len = text.len();
1294 /// let utf16_len = text.encode_utf16().count();
1295 ///
1296 /// assert!(utf16_len <= utf8_len);
1297 /// ```
1298 #[must_use = "this returns the encoded string as an iterator, \
1299 without modifying the original"]
1300 #[stable(feature = "encode_utf16", since = "1.8.0")]
1301 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1302 EncodeUtf16 { chars: self.chars(), extra: 0 }
1303 }
1304
1305 /// Returns `true` if the given pattern matches a sub-slice of
1306 /// this string slice.
1307 ///
1308 /// Returns `false` if it does not.
1309 ///
1310 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1311 /// function or closure that determines if a character matches.
1312 ///
1313 /// [`char`]: prim@char
1314 /// [pattern]: self::pattern
1315 ///
1316 /// # Examples
1317 ///
1318 /// ```
1319 /// let bananas = "bananas";
1320 ///
1321 /// assert!(bananas.contains("nana"));
1322 /// assert!(!bananas.contains("apples"));
1323 /// ```
1324 #[stable(feature = "rust1", since = "1.0.0")]
1325 #[inline]
1326 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1327 pat.is_contained_in(self)
1328 }
1329
1330 /// Returns `true` if the given pattern matches a prefix of this
1331 /// string slice.
1332 ///
1333 /// Returns `false` if it does not.
1334 ///
1335 /// The [pattern] can be a `&str`, in which case this function will return true if
1336 /// the `&str` is a prefix of this string slice.
1337 ///
1338 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1339 /// function or closure that determines if a character matches.
1340 /// These will only be checked against the first character of this string slice.
1341 /// Look at the second example below regarding behavior for slices of [`char`]s.
1342 ///
1343 /// [`char`]: prim@char
1344 /// [pattern]: self::pattern
1345 ///
1346 /// # Examples
1347 ///
1348 /// ```
1349 /// let bananas = "bananas";
1350 ///
1351 /// assert!(bananas.starts_with("bana"));
1352 /// assert!(!bananas.starts_with("nana"));
1353 /// ```
1354 ///
1355 /// ```
1356 /// let bananas = "bananas";
1357 ///
1358 /// // Note that both of these assert successfully.
1359 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1360 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1361 /// ```
1362 #[stable(feature = "rust1", since = "1.0.0")]
1363 #[rustc_diagnostic_item = "str_starts_with"]
1364 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1365 pat.is_prefix_of(self)
1366 }
1367
1368 /// Returns `true` if the given pattern matches a suffix of this
1369 /// string slice.
1370 ///
1371 /// Returns `false` if it does not.
1372 ///
1373 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1374 /// function or closure that determines if a character matches.
1375 ///
1376 /// [`char`]: prim@char
1377 /// [pattern]: self::pattern
1378 ///
1379 /// # Examples
1380 ///
1381 /// ```
1382 /// let bananas = "bananas";
1383 ///
1384 /// assert!(bananas.ends_with("anas"));
1385 /// assert!(!bananas.ends_with("nana"));
1386 /// ```
1387 #[stable(feature = "rust1", since = "1.0.0")]
1388 #[rustc_diagnostic_item = "str_ends_with"]
1389 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1390 where
1391 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1392 {
1393 pat.is_suffix_of(self)
1394 }
1395
1396 /// Returns the byte index of the first character of this string slice that
1397 /// matches the pattern.
1398 ///
1399 /// Returns [`None`] if the pattern doesn't match.
1400 ///
1401 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1402 /// function or closure that determines if a character matches.
1403 ///
1404 /// [`char`]: prim@char
1405 /// [pattern]: self::pattern
1406 ///
1407 /// # Examples
1408 ///
1409 /// Simple patterns:
1410 ///
1411 /// ```
1412 /// let s = "Löwe 老虎 Léopard Gepardi";
1413 ///
1414 /// assert_eq!(s.find('L'), Some(0));
1415 /// assert_eq!(s.find('é'), Some(14));
1416 /// assert_eq!(s.find("pard"), Some(17));
1417 /// ```
1418 ///
1419 /// More complex patterns using point-free style and closures:
1420 ///
1421 /// ```
1422 /// let s = "Löwe 老虎 Léopard";
1423 ///
1424 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1425 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1426 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1427 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1428 /// ```
1429 ///
1430 /// Not finding the pattern:
1431 ///
1432 /// ```
1433 /// let s = "Löwe 老虎 Léopard";
1434 /// let x: &[_] = &['1', '2'];
1435 ///
1436 /// assert_eq!(s.find(x), None);
1437 /// ```
1438 #[stable(feature = "rust1", since = "1.0.0")]
1439 #[inline]
1440 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1441 pat.into_searcher(self).next_match().map(|(i, _)| i)
1442 }
1443
1444 /// Returns the byte index for the first character of the last match of the pattern in
1445 /// this string slice.
1446 ///
1447 /// Returns [`None`] if the pattern doesn't match.
1448 ///
1449 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1450 /// function or closure that determines if a character matches.
1451 ///
1452 /// [`char`]: prim@char
1453 /// [pattern]: self::pattern
1454 ///
1455 /// # Examples
1456 ///
1457 /// Simple patterns:
1458 ///
1459 /// ```
1460 /// let s = "Löwe 老虎 Léopard Gepardi";
1461 ///
1462 /// assert_eq!(s.rfind('L'), Some(13));
1463 /// assert_eq!(s.rfind('é'), Some(14));
1464 /// assert_eq!(s.rfind("pard"), Some(24));
1465 /// ```
1466 ///
1467 /// More complex patterns with closures:
1468 ///
1469 /// ```
1470 /// let s = "Löwe 老虎 Léopard";
1471 ///
1472 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1473 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1474 /// ```
1475 ///
1476 /// Not finding the pattern:
1477 ///
1478 /// ```
1479 /// let s = "Löwe 老虎 Léopard";
1480 /// let x: &[_] = &['1', '2'];
1481 ///
1482 /// assert_eq!(s.rfind(x), None);
1483 /// ```
1484 #[stable(feature = "rust1", since = "1.0.0")]
1485 #[inline]
1486 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1487 where
1488 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1489 {
1490 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1491 }
1492
1493 /// Returns an iterator over substrings of this string slice, separated by
1494 /// characters matched by a pattern.
1495 ///
1496 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1497 /// function or closure that determines if a character matches.
1498 ///
1499 /// If there are no matches the full string slice is returned as the only
1500 /// item in the iterator.
1501 ///
1502 /// [`char`]: prim@char
1503 /// [pattern]: self::pattern
1504 ///
1505 /// # Iterator behavior
1506 ///
1507 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1508 /// allows a reverse search and forward/reverse search yields the same
1509 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1510 ///
1511 /// If the pattern allows a reverse search but its results might differ
1512 /// from a forward search, the [`rsplit`] method can be used.
1513 ///
1514 /// [`rsplit`]: str::rsplit
1515 ///
1516 /// # Examples
1517 ///
1518 /// Simple patterns:
1519 ///
1520 /// ```
1521 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1522 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1523 ///
1524 /// let v: Vec<&str> = "".split('X').collect();
1525 /// assert_eq!(v, [""]);
1526 ///
1527 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1528 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1529 ///
1530 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1531 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1532 ///
1533 /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1534 /// assert_eq!(v, ["AABBCC"]);
1535 ///
1536 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1537 /// assert_eq!(v, ["abc", "def", "ghi"]);
1538 ///
1539 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1540 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1541 /// ```
1542 ///
1543 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1544 ///
1545 /// ```
1546 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1547 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1548 /// ```
1549 ///
1550 /// A more complex pattern, using a closure:
1551 ///
1552 /// ```
1553 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1554 /// assert_eq!(v, ["abc", "def", "ghi"]);
1555 /// ```
1556 ///
1557 /// If a string contains multiple contiguous separators, you will end up
1558 /// with empty strings in the output:
1559 ///
1560 /// ```
1561 /// let x = "||||a||b|c".to_string();
1562 /// let d: Vec<_> = x.split('|').collect();
1563 ///
1564 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1565 /// ```
1566 ///
1567 /// Contiguous separators are separated by the empty string.
1568 ///
1569 /// ```
1570 /// let x = "(///)".to_string();
1571 /// let d: Vec<_> = x.split('/').collect();
1572 ///
1573 /// assert_eq!(d, &["(", "", "", ")"]);
1574 /// ```
1575 ///
1576 /// Separators at the start or end of a string are neighbored
1577 /// by empty strings.
1578 ///
1579 /// ```
1580 /// let d: Vec<_> = "010".split("0").collect();
1581 /// assert_eq!(d, &["", "1", ""]);
1582 /// ```
1583 ///
1584 /// When the empty string is used as a separator, it separates
1585 /// every character in the string, along with the beginning
1586 /// and end of the string.
1587 ///
1588 /// ```
1589 /// let f: Vec<_> = "rust".split("").collect();
1590 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1591 /// ```
1592 ///
1593 /// Contiguous separators can lead to possibly surprising behavior
1594 /// when whitespace is used as the separator. This code is correct:
1595 ///
1596 /// ```
1597 /// let x = " a b c".to_string();
1598 /// let d: Vec<_> = x.split(' ').collect();
1599 ///
1600 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1601 /// ```
1602 ///
1603 /// It does _not_ give you:
1604 ///
1605 /// ```,ignore
1606 /// assert_eq!(d, &["a", "b", "c"]);
1607 /// ```
1608 ///
1609 /// Use [`split_whitespace`] for this behavior.
1610 ///
1611 /// [`split_whitespace`]: str::split_whitespace
1612 #[stable(feature = "rust1", since = "1.0.0")]
1613 #[inline]
1614 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1615 Split(SplitInternal {
1616 start: 0,
1617 end: self.len(),
1618 matcher: pat.into_searcher(self),
1619 allow_trailing_empty: true,
1620 finished: false,
1621 })
1622 }
1623
1624 /// Returns an iterator over substrings of this string slice, separated by
1625 /// characters matched by a pattern.
1626 ///
1627 /// Differs from the iterator produced by `split` in that `split_inclusive`
1628 /// leaves the matched part as the terminator of the substring.
1629 ///
1630 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1631 /// function or closure that determines if a character matches.
1632 ///
1633 /// [`char`]: prim@char
1634 /// [pattern]: self::pattern
1635 ///
1636 /// # Examples
1637 ///
1638 /// ```
1639 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1640 /// .split_inclusive('\n').collect();
1641 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1642 /// ```
1643 ///
1644 /// If the last element of the string is matched,
1645 /// that element will be considered the terminator of the preceding substring.
1646 /// That substring will be the last item returned by the iterator.
1647 ///
1648 /// ```
1649 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1650 /// .split_inclusive('\n').collect();
1651 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1652 /// ```
1653 #[stable(feature = "split_inclusive", since = "1.51.0")]
1654 #[inline]
1655 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1656 SplitInclusive(SplitInternal {
1657 start: 0,
1658 end: self.len(),
1659 matcher: pat.into_searcher(self),
1660 allow_trailing_empty: false,
1661 finished: false,
1662 })
1663 }
1664
1665 /// Returns an iterator over substrings of the given string slice, separated
1666 /// by characters matched by a pattern and yielded in reverse order.
1667 ///
1668 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1669 /// function or closure that determines if a character matches.
1670 ///
1671 /// [`char`]: prim@char
1672 /// [pattern]: self::pattern
1673 ///
1674 /// # Iterator behavior
1675 ///
1676 /// The returned iterator requires that the pattern supports a reverse
1677 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1678 /// search yields the same elements.
1679 ///
1680 /// For iterating from the front, the [`split`] method can be used.
1681 ///
1682 /// [`split`]: str::split
1683 ///
1684 /// # Examples
1685 ///
1686 /// Simple patterns:
1687 ///
1688 /// ```
1689 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1690 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1691 ///
1692 /// let v: Vec<&str> = "".rsplit('X').collect();
1693 /// assert_eq!(v, [""]);
1694 ///
1695 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1696 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1697 ///
1698 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1699 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1700 /// ```
1701 ///
1702 /// A more complex pattern, using a closure:
1703 ///
1704 /// ```
1705 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1706 /// assert_eq!(v, ["ghi", "def", "abc"]);
1707 /// ```
1708 #[stable(feature = "rust1", since = "1.0.0")]
1709 #[inline]
1710 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1711 where
1712 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1713 {
1714 RSplit(self.split(pat).0)
1715 }
1716
1717 /// Returns an iterator over substrings of the given string slice, separated
1718 /// by characters matched by a pattern.
1719 ///
1720 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1721 /// function or closure that determines if a character matches.
1722 ///
1723 /// [`char`]: prim@char
1724 /// [pattern]: self::pattern
1725 ///
1726 /// Equivalent to [`split`], except that the trailing substring
1727 /// is skipped if empty.
1728 ///
1729 /// [`split`]: str::split
1730 ///
1731 /// This method can be used for string data that is _terminated_,
1732 /// rather than _separated_ by a pattern.
1733 ///
1734 /// # Iterator behavior
1735 ///
1736 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1737 /// allows a reverse search and forward/reverse search yields the same
1738 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1739 ///
1740 /// If the pattern allows a reverse search but its results might differ
1741 /// from a forward search, the [`rsplit_terminator`] method can be used.
1742 ///
1743 /// [`rsplit_terminator`]: str::rsplit_terminator
1744 ///
1745 /// # Examples
1746 ///
1747 /// ```
1748 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1749 /// assert_eq!(v, ["A", "B"]);
1750 ///
1751 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1752 /// assert_eq!(v, ["A", "", "B", ""]);
1753 ///
1754 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1755 /// assert_eq!(v, ["A", "B", "C", "D"]);
1756 /// ```
1757 #[stable(feature = "rust1", since = "1.0.0")]
1758 #[inline]
1759 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1760 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1761 }
1762
1763 /// Returns an iterator over substrings of `self`, separated by characters
1764 /// matched by a pattern and yielded in reverse order.
1765 ///
1766 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1767 /// function or closure that determines if a character matches.
1768 ///
1769 /// [`char`]: prim@char
1770 /// [pattern]: self::pattern
1771 ///
1772 /// Equivalent to [`split`], except that the trailing substring is
1773 /// skipped if empty.
1774 ///
1775 /// [`split`]: str::split
1776 ///
1777 /// This method can be used for string data that is _terminated_,
1778 /// rather than _separated_ by a pattern.
1779 ///
1780 /// # Iterator behavior
1781 ///
1782 /// The returned iterator requires that the pattern supports a
1783 /// reverse search, and it will be double ended if a forward/reverse
1784 /// search yields the same elements.
1785 ///
1786 /// For iterating from the front, the [`split_terminator`] method can be
1787 /// used.
1788 ///
1789 /// [`split_terminator`]: str::split_terminator
1790 ///
1791 /// # Examples
1792 ///
1793 /// ```
1794 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1795 /// assert_eq!(v, ["B", "A"]);
1796 ///
1797 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1798 /// assert_eq!(v, ["", "B", "", "A"]);
1799 ///
1800 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1801 /// assert_eq!(v, ["D", "C", "B", "A"]);
1802 /// ```
1803 #[stable(feature = "rust1", since = "1.0.0")]
1804 #[inline]
1805 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1806 where
1807 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1808 {
1809 RSplitTerminator(self.split_terminator(pat).0)
1810 }
1811
1812 /// Returns an iterator over substrings of the given string slice, separated
1813 /// by a pattern, restricted to returning at most `n` items.
1814 ///
1815 /// If `n` substrings are returned, the last substring (the `n`th substring)
1816 /// will contain the remainder of the string.
1817 ///
1818 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1819 /// function or closure that determines if a character matches.
1820 ///
1821 /// [`char`]: prim@char
1822 /// [pattern]: self::pattern
1823 ///
1824 /// # Iterator behavior
1825 ///
1826 /// The returned iterator will not be double ended, because it is
1827 /// not efficient to support.
1828 ///
1829 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1830 /// used.
1831 ///
1832 /// [`rsplitn`]: str::rsplitn
1833 ///
1834 /// # Examples
1835 ///
1836 /// Simple patterns:
1837 ///
1838 /// ```
1839 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1840 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1841 ///
1842 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1843 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1844 ///
1845 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1846 /// assert_eq!(v, ["abcXdef"]);
1847 ///
1848 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1849 /// assert_eq!(v, [""]);
1850 /// ```
1851 ///
1852 /// A more complex pattern, using a closure:
1853 ///
1854 /// ```
1855 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1856 /// assert_eq!(v, ["abc", "defXghi"]);
1857 /// ```
1858 #[stable(feature = "rust1", since = "1.0.0")]
1859 #[inline]
1860 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1861 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1862 }
1863
1864 /// Returns an iterator over substrings of this string slice, separated by a
1865 /// pattern, starting from the end of the string, restricted to returning at
1866 /// most `n` items.
1867 ///
1868 /// If `n` substrings are returned, the last substring (the `n`th substring)
1869 /// will contain the remainder of the string.
1870 ///
1871 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1872 /// function or closure that determines if a character matches.
1873 ///
1874 /// [`char`]: prim@char
1875 /// [pattern]: self::pattern
1876 ///
1877 /// # Iterator behavior
1878 ///
1879 /// The returned iterator will not be double ended, because it is not
1880 /// efficient to support.
1881 ///
1882 /// For splitting from the front, the [`splitn`] method can be used.
1883 ///
1884 /// [`splitn`]: str::splitn
1885 ///
1886 /// # Examples
1887 ///
1888 /// Simple patterns:
1889 ///
1890 /// ```
1891 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1892 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1893 ///
1894 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1895 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1896 ///
1897 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1898 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1899 /// ```
1900 ///
1901 /// A more complex pattern, using a closure:
1902 ///
1903 /// ```
1904 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1905 /// assert_eq!(v, ["ghi", "abc1def"]);
1906 /// ```
1907 #[stable(feature = "rust1", since = "1.0.0")]
1908 #[inline]
1909 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1910 where
1911 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1912 {
1913 RSplitN(self.splitn(n, pat).0)
1914 }
1915
1916 /// Splits the string on the first occurrence of the specified delimiter and
1917 /// returns prefix before delimiter and suffix after delimiter.
1918 ///
1919 /// # Examples
1920 ///
1921 /// ```
1922 /// assert_eq!("cfg".split_once('='), None);
1923 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1924 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1925 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1926 /// ```
1927 #[stable(feature = "str_split_once", since = "1.52.0")]
1928 #[inline]
1929 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1930 let (start, end) = delimiter.into_searcher(self).next_match()?;
1931 // SAFETY: `Searcher` is known to return valid indices.
1932 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1933 }
1934
1935 /// Splits the string on the last occurrence of the specified delimiter and
1936 /// returns prefix before delimiter and suffix after delimiter.
1937 ///
1938 /// # Examples
1939 ///
1940 /// ```
1941 /// assert_eq!("cfg".rsplit_once('='), None);
1942 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1943 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1944 /// ```
1945 #[stable(feature = "str_split_once", since = "1.52.0")]
1946 #[inline]
1947 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1948 where
1949 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1950 {
1951 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1952 // SAFETY: `Searcher` is known to return valid indices.
1953 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1954 }
1955
1956 /// Returns an iterator over the disjoint matches of a pattern within the
1957 /// given string slice.
1958 ///
1959 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1960 /// function or closure that determines if a character matches.
1961 ///
1962 /// [`char`]: prim@char
1963 /// [pattern]: self::pattern
1964 ///
1965 /// # Iterator behavior
1966 ///
1967 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1968 /// allows a reverse search and forward/reverse search yields the same
1969 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1970 ///
1971 /// If the pattern allows a reverse search but its results might differ
1972 /// from a forward search, the [`rmatches`] method can be used.
1973 ///
1974 /// [`rmatches`]: str::rmatches
1975 ///
1976 /// # Examples
1977 ///
1978 /// ```
1979 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1980 /// assert_eq!(v, ["abc", "abc", "abc"]);
1981 ///
1982 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1983 /// assert_eq!(v, ["1", "2", "3"]);
1984 /// ```
1985 #[stable(feature = "str_matches", since = "1.2.0")]
1986 #[inline]
1987 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
1988 Matches(MatchesInternal(pat.into_searcher(self)))
1989 }
1990
1991 /// Returns an iterator over the disjoint matches of a pattern within this
1992 /// string slice, yielded in reverse order.
1993 ///
1994 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1995 /// function or closure that determines if a character matches.
1996 ///
1997 /// [`char`]: prim@char
1998 /// [pattern]: self::pattern
1999 ///
2000 /// # Iterator behavior
2001 ///
2002 /// The returned iterator requires that the pattern supports a reverse
2003 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2004 /// search yields the same elements.
2005 ///
2006 /// For iterating from the front, the [`matches`] method can be used.
2007 ///
2008 /// [`matches`]: str::matches
2009 ///
2010 /// # Examples
2011 ///
2012 /// ```
2013 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2014 /// assert_eq!(v, ["abc", "abc", "abc"]);
2015 ///
2016 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2017 /// assert_eq!(v, ["3", "2", "1"]);
2018 /// ```
2019 #[stable(feature = "str_matches", since = "1.2.0")]
2020 #[inline]
2021 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2022 where
2023 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2024 {
2025 RMatches(self.matches(pat).0)
2026 }
2027
2028 /// Returns an iterator over the disjoint matches of a pattern within this string
2029 /// slice as well as the index that the match starts at.
2030 ///
2031 /// For matches of `pat` within `self` that overlap, only the indices
2032 /// corresponding to the first match are returned.
2033 ///
2034 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2035 /// function or closure that determines if a character matches.
2036 ///
2037 /// [`char`]: prim@char
2038 /// [pattern]: self::pattern
2039 ///
2040 /// # Iterator behavior
2041 ///
2042 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2043 /// allows a reverse search and forward/reverse search yields the same
2044 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2045 ///
2046 /// If the pattern allows a reverse search but its results might differ
2047 /// from a forward search, the [`rmatch_indices`] method can be used.
2048 ///
2049 /// [`rmatch_indices`]: str::rmatch_indices
2050 ///
2051 /// # Examples
2052 ///
2053 /// ```
2054 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2055 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2056 ///
2057 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2058 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2059 ///
2060 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2061 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2062 /// ```
2063 #[stable(feature = "str_match_indices", since = "1.5.0")]
2064 #[inline]
2065 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2066 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2067 }
2068
2069 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2070 /// yielded in reverse order along with the index of the match.
2071 ///
2072 /// For matches of `pat` within `self` that overlap, only the indices
2073 /// corresponding to the last match are returned.
2074 ///
2075 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2076 /// function or closure that determines if a character matches.
2077 ///
2078 /// [`char`]: prim@char
2079 /// [pattern]: self::pattern
2080 ///
2081 /// # Iterator behavior
2082 ///
2083 /// The returned iterator requires that the pattern supports a reverse
2084 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2085 /// search yields the same elements.
2086 ///
2087 /// For iterating from the front, the [`match_indices`] method can be used.
2088 ///
2089 /// [`match_indices`]: str::match_indices
2090 ///
2091 /// # Examples
2092 ///
2093 /// ```
2094 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2095 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2096 ///
2097 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2098 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2099 ///
2100 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2101 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2102 /// ```
2103 #[stable(feature = "str_match_indices", since = "1.5.0")]
2104 #[inline]
2105 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2106 where
2107 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2108 {
2109 RMatchIndices(self.match_indices(pat).0)
2110 }
2111
2112 /// Returns a string slice with leading and trailing whitespace removed.
2113 ///
2114 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2115 /// Core Property `White_Space`, which includes newlines.
2116 ///
2117 /// # Examples
2118 ///
2119 /// ```
2120 /// let s = "\n Hello\tworld\t\n";
2121 ///
2122 /// assert_eq!("Hello\tworld", s.trim());
2123 /// ```
2124 #[inline]
2125 #[must_use = "this returns the trimmed string as a slice, \
2126 without modifying the original"]
2127 #[stable(feature = "rust1", since = "1.0.0")]
2128 #[rustc_diagnostic_item = "str_trim"]
2129 pub fn trim(&self) -> &str {
2130 self.trim_matches(char::is_whitespace)
2131 }
2132
2133 /// Returns a string slice with leading whitespace removed.
2134 ///
2135 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2136 /// Core Property `White_Space`, which includes newlines.
2137 ///
2138 /// # Text directionality
2139 ///
2140 /// A string is a sequence of bytes. `start` in this context means the first
2141 /// position of that byte string; for a left-to-right language like English or
2142 /// Russian, this will be left side, and for right-to-left languages like
2143 /// Arabic or Hebrew, this will be the right side.
2144 ///
2145 /// # Examples
2146 ///
2147 /// Basic usage:
2148 ///
2149 /// ```
2150 /// let s = "\n Hello\tworld\t\n";
2151 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2152 /// ```
2153 ///
2154 /// Directionality:
2155 ///
2156 /// ```
2157 /// let s = " English ";
2158 /// assert!(Some('E') == s.trim_start().chars().next());
2159 ///
2160 /// let s = " עברית ";
2161 /// assert!(Some('ע') == s.trim_start().chars().next());
2162 /// ```
2163 #[inline]
2164 #[must_use = "this returns the trimmed string as a new slice, \
2165 without modifying the original"]
2166 #[stable(feature = "trim_direction", since = "1.30.0")]
2167 #[rustc_diagnostic_item = "str_trim_start"]
2168 pub fn trim_start(&self) -> &str {
2169 self.trim_start_matches(char::is_whitespace)
2170 }
2171
2172 /// Returns a string slice with trailing whitespace removed.
2173 ///
2174 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2175 /// Core Property `White_Space`, which includes newlines.
2176 ///
2177 /// # Text directionality
2178 ///
2179 /// A string is a sequence of bytes. `end` in this context means the last
2180 /// position of that byte string; for a left-to-right language like English or
2181 /// Russian, this will be right side, and for right-to-left languages like
2182 /// Arabic or Hebrew, this will be the left side.
2183 ///
2184 /// # Examples
2185 ///
2186 /// Basic usage:
2187 ///
2188 /// ```
2189 /// let s = "\n Hello\tworld\t\n";
2190 /// assert_eq!("\n Hello\tworld", s.trim_end());
2191 /// ```
2192 ///
2193 /// Directionality:
2194 ///
2195 /// ```
2196 /// let s = " English ";
2197 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2198 ///
2199 /// let s = " עברית ";
2200 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2201 /// ```
2202 #[inline]
2203 #[must_use = "this returns the trimmed string as a new slice, \
2204 without modifying the original"]
2205 #[stable(feature = "trim_direction", since = "1.30.0")]
2206 #[rustc_diagnostic_item = "str_trim_end"]
2207 pub fn trim_end(&self) -> &str {
2208 self.trim_end_matches(char::is_whitespace)
2209 }
2210
2211 /// Returns a string slice with leading whitespace removed.
2212 ///
2213 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2214 /// Core Property `White_Space`.
2215 ///
2216 /// # Text directionality
2217 ///
2218 /// A string is a sequence of bytes. 'Left' in this context means the first
2219 /// position of that byte string; for a language like Arabic or Hebrew
2220 /// which are 'right to left' rather than 'left to right', this will be
2221 /// the _right_ side, not the left.
2222 ///
2223 /// # Examples
2224 ///
2225 /// Basic usage:
2226 ///
2227 /// ```
2228 /// let s = " Hello\tworld\t";
2229 ///
2230 /// assert_eq!("Hello\tworld\t", s.trim_left());
2231 /// ```
2232 ///
2233 /// Directionality:
2234 ///
2235 /// ```
2236 /// let s = " English";
2237 /// assert!(Some('E') == s.trim_left().chars().next());
2238 ///
2239 /// let s = " עברית";
2240 /// assert!(Some('ע') == s.trim_left().chars().next());
2241 /// ```
2242 #[must_use = "this returns the trimmed string as a new slice, \
2243 without modifying the original"]
2244 #[inline]
2245 #[stable(feature = "rust1", since = "1.0.0")]
2246 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2247 pub fn trim_left(&self) -> &str {
2248 self.trim_start()
2249 }
2250
2251 /// Returns a string slice with trailing whitespace removed.
2252 ///
2253 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2254 /// Core Property `White_Space`.
2255 ///
2256 /// # Text directionality
2257 ///
2258 /// A string is a sequence of bytes. 'Right' in this context means the last
2259 /// position of that byte string; for a language like Arabic or Hebrew
2260 /// which are 'right to left' rather than 'left to right', this will be
2261 /// the _left_ side, not the right.
2262 ///
2263 /// # Examples
2264 ///
2265 /// Basic usage:
2266 ///
2267 /// ```
2268 /// let s = " Hello\tworld\t";
2269 ///
2270 /// assert_eq!(" Hello\tworld", s.trim_right());
2271 /// ```
2272 ///
2273 /// Directionality:
2274 ///
2275 /// ```
2276 /// let s = "English ";
2277 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2278 ///
2279 /// let s = "עברית ";
2280 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2281 /// ```
2282 #[must_use = "this returns the trimmed string as a new slice, \
2283 without modifying the original"]
2284 #[inline]
2285 #[stable(feature = "rust1", since = "1.0.0")]
2286 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2287 pub fn trim_right(&self) -> &str {
2288 self.trim_end()
2289 }
2290
2291 /// Returns a string slice with all prefixes and suffixes that match a
2292 /// pattern repeatedly removed.
2293 ///
2294 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2295 /// or closure that determines if a character matches.
2296 ///
2297 /// [`char`]: prim@char
2298 /// [pattern]: self::pattern
2299 ///
2300 /// # Examples
2301 ///
2302 /// Simple patterns:
2303 ///
2304 /// ```
2305 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2306 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2307 ///
2308 /// let x: &[_] = &['1', '2'];
2309 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2310 /// ```
2311 ///
2312 /// A more complex pattern, using a closure:
2313 ///
2314 /// ```
2315 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2316 /// ```
2317 #[must_use = "this returns the trimmed string as a new slice, \
2318 without modifying the original"]
2319 #[stable(feature = "rust1", since = "1.0.0")]
2320 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2321 where
2322 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2323 {
2324 let mut i = 0;
2325 let mut j = 0;
2326 let mut matcher = pat.into_searcher(self);
2327 if let Some((a, b)) = matcher.next_reject() {
2328 i = a;
2329 j = b; // Remember earliest known match, correct it below if
2330 // last match is different
2331 }
2332 if let Some((_, b)) = matcher.next_reject_back() {
2333 j = b;
2334 }
2335 // SAFETY: `Searcher` is known to return valid indices.
2336 unsafe { self.get_unchecked(i..j) }
2337 }
2338
2339 /// Returns a string slice with all prefixes that match a pattern
2340 /// repeatedly removed.
2341 ///
2342 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2343 /// function or closure that determines if a character matches.
2344 ///
2345 /// [`char`]: prim@char
2346 /// [pattern]: self::pattern
2347 ///
2348 /// # Text directionality
2349 ///
2350 /// A string is a sequence of bytes. `start` in this context means the first
2351 /// position of that byte string; for a left-to-right language like English or
2352 /// Russian, this will be left side, and for right-to-left languages like
2353 /// Arabic or Hebrew, this will be the right side.
2354 ///
2355 /// # Examples
2356 ///
2357 /// ```
2358 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2359 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2360 ///
2361 /// let x: &[_] = &['1', '2'];
2362 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2363 /// ```
2364 #[must_use = "this returns the trimmed string as a new slice, \
2365 without modifying the original"]
2366 #[stable(feature = "trim_direction", since = "1.30.0")]
2367 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2368 let mut i = self.len();
2369 let mut matcher = pat.into_searcher(self);
2370 if let Some((a, _)) = matcher.next_reject() {
2371 i = a;
2372 }
2373 // SAFETY: `Searcher` is known to return valid indices.
2374 unsafe { self.get_unchecked(i..self.len()) }
2375 }
2376
2377 /// Returns a string slice with the prefix removed.
2378 ///
2379 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2380 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2381 ///
2382 /// If the string does not start with `prefix`, returns `None`.
2383 ///
2384 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2385 /// function or closure that determines if a character matches.
2386 ///
2387 /// [`char`]: prim@char
2388 /// [pattern]: self::pattern
2389 /// [`trim_start_matches`]: Self::trim_start_matches
2390 ///
2391 /// # Examples
2392 ///
2393 /// ```
2394 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2395 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2396 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2397 /// ```
2398 #[must_use = "this returns the remaining substring as a new slice, \
2399 without modifying the original"]
2400 #[stable(feature = "str_strip", since = "1.45.0")]
2401 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2402 prefix.strip_prefix_of(self)
2403 }
2404
2405 /// Returns a string slice with the suffix removed.
2406 ///
2407 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2408 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2409 ///
2410 /// If the string does not end with `suffix`, returns `None`.
2411 ///
2412 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2413 /// function or closure that determines if a character matches.
2414 ///
2415 /// [`char`]: prim@char
2416 /// [pattern]: self::pattern
2417 /// [`trim_end_matches`]: Self::trim_end_matches
2418 ///
2419 /// # Examples
2420 ///
2421 /// ```
2422 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2423 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2424 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2425 /// ```
2426 #[must_use = "this returns the remaining substring as a new slice, \
2427 without modifying the original"]
2428 #[stable(feature = "str_strip", since = "1.45.0")]
2429 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2430 where
2431 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2432 {
2433 suffix.strip_suffix_of(self)
2434 }
2435
2436 /// Returns a string slice with the optional prefix removed.
2437 ///
2438 /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2439 /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2440 /// instead of returning [`Option<&str>`].
2441 ///
2442 /// If the string does not start with `prefix`, returns the original string unchanged.
2443 ///
2444 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2445 /// function or closure that determines if a character matches.
2446 ///
2447 /// [`char`]: prim@char
2448 /// [pattern]: self::pattern
2449 /// [`strip_prefix`]: Self::strip_prefix
2450 ///
2451 /// # Examples
2452 ///
2453 /// ```
2454 /// #![feature(trim_prefix_suffix)]
2455 ///
2456 /// // Prefix present - removes it
2457 /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2458 /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2459 ///
2460 /// // Prefix absent - returns original string
2461 /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2462 ///
2463 /// // Method chaining example
2464 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2465 /// ```
2466 #[must_use = "this returns the remaining substring as a new slice, \
2467 without modifying the original"]
2468 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2469 pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2470 prefix.strip_prefix_of(self).unwrap_or(self)
2471 }
2472
2473 /// Returns a string slice with the optional suffix removed.
2474 ///
2475 /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2476 /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2477 /// instead of returning [`Option<&str>`].
2478 ///
2479 /// If the string does not end with `suffix`, returns the original string unchanged.
2480 ///
2481 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2482 /// function or closure that determines if a character matches.
2483 ///
2484 /// [`char`]: prim@char
2485 /// [pattern]: self::pattern
2486 /// [`strip_suffix`]: Self::strip_suffix
2487 ///
2488 /// # Examples
2489 ///
2490 /// ```
2491 /// #![feature(trim_prefix_suffix)]
2492 ///
2493 /// // Suffix present - removes it
2494 /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2495 /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2496 ///
2497 /// // Suffix absent - returns original string
2498 /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2499 ///
2500 /// // Method chaining example
2501 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2502 /// ```
2503 #[must_use = "this returns the remaining substring as a new slice, \
2504 without modifying the original"]
2505 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2506 pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2507 where
2508 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2509 {
2510 suffix.strip_suffix_of(self).unwrap_or(self)
2511 }
2512
2513 /// Returns a string slice with all suffixes that match a pattern
2514 /// repeatedly removed.
2515 ///
2516 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2517 /// function or closure that determines if a character matches.
2518 ///
2519 /// [`char`]: prim@char
2520 /// [pattern]: self::pattern
2521 ///
2522 /// # Text directionality
2523 ///
2524 /// A string is a sequence of bytes. `end` in this context means the last
2525 /// position of that byte string; for a left-to-right language like English or
2526 /// Russian, this will be right side, and for right-to-left languages like
2527 /// Arabic or Hebrew, this will be the left side.
2528 ///
2529 /// # Examples
2530 ///
2531 /// Simple patterns:
2532 ///
2533 /// ```
2534 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2535 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2536 ///
2537 /// let x: &[_] = &['1', '2'];
2538 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2539 /// ```
2540 ///
2541 /// A more complex pattern, using a closure:
2542 ///
2543 /// ```
2544 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2545 /// ```
2546 #[must_use = "this returns the trimmed string as a new slice, \
2547 without modifying the original"]
2548 #[stable(feature = "trim_direction", since = "1.30.0")]
2549 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2550 where
2551 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2552 {
2553 let mut j = 0;
2554 let mut matcher = pat.into_searcher(self);
2555 if let Some((_, b)) = matcher.next_reject_back() {
2556 j = b;
2557 }
2558 // SAFETY: `Searcher` is known to return valid indices.
2559 unsafe { self.get_unchecked(0..j) }
2560 }
2561
2562 /// Returns a string slice with all prefixes that match a pattern
2563 /// repeatedly removed.
2564 ///
2565 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2566 /// function or closure that determines if a character matches.
2567 ///
2568 /// [`char`]: prim@char
2569 /// [pattern]: self::pattern
2570 ///
2571 /// # Text directionality
2572 ///
2573 /// A string is a sequence of bytes. 'Left' in this context means the first
2574 /// position of that byte string; for a language like Arabic or Hebrew
2575 /// which are 'right to left' rather than 'left to right', this will be
2576 /// the _right_ side, not the left.
2577 ///
2578 /// # Examples
2579 ///
2580 /// ```
2581 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2582 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2583 ///
2584 /// let x: &[_] = &['1', '2'];
2585 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2586 /// ```
2587 #[stable(feature = "rust1", since = "1.0.0")]
2588 #[deprecated(
2589 since = "1.33.0",
2590 note = "superseded by `trim_start_matches`",
2591 suggestion = "trim_start_matches"
2592 )]
2593 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2594 self.trim_start_matches(pat)
2595 }
2596
2597 /// Returns a string slice with all suffixes that match a pattern
2598 /// repeatedly removed.
2599 ///
2600 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2601 /// function or closure that determines if a character matches.
2602 ///
2603 /// [`char`]: prim@char
2604 /// [pattern]: self::pattern
2605 ///
2606 /// # Text directionality
2607 ///
2608 /// A string is a sequence of bytes. 'Right' in this context means the last
2609 /// position of that byte string; for a language like Arabic or Hebrew
2610 /// which are 'right to left' rather than 'left to right', this will be
2611 /// the _left_ side, not the right.
2612 ///
2613 /// # Examples
2614 ///
2615 /// Simple patterns:
2616 ///
2617 /// ```
2618 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2619 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2620 ///
2621 /// let x: &[_] = &['1', '2'];
2622 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2623 /// ```
2624 ///
2625 /// A more complex pattern, using a closure:
2626 ///
2627 /// ```
2628 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2629 /// ```
2630 #[stable(feature = "rust1", since = "1.0.0")]
2631 #[deprecated(
2632 since = "1.33.0",
2633 note = "superseded by `trim_end_matches`",
2634 suggestion = "trim_end_matches"
2635 )]
2636 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2637 where
2638 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2639 {
2640 self.trim_end_matches(pat)
2641 }
2642
2643 /// Parses this string slice into another type.
2644 ///
2645 /// Because `parse` is so general, it can cause problems with type
2646 /// inference. As such, `parse` is one of the few times you'll see
2647 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2648 /// helps the inference algorithm understand specifically which type
2649 /// you're trying to parse into.
2650 ///
2651 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2652
2653 ///
2654 /// # Errors
2655 ///
2656 /// Will return [`Err`] if it's not possible to parse this string slice into
2657 /// the desired type.
2658 ///
2659 /// [`Err`]: FromStr::Err
2660 ///
2661 /// # Examples
2662 ///
2663 /// Basic usage:
2664 ///
2665 /// ```
2666 /// let four: u32 = "4".parse().unwrap();
2667 ///
2668 /// assert_eq!(4, four);
2669 /// ```
2670 ///
2671 /// Using the 'turbofish' instead of annotating `four`:
2672 ///
2673 /// ```
2674 /// let four = "4".parse::<u32>();
2675 ///
2676 /// assert_eq!(Ok(4), four);
2677 /// ```
2678 ///
2679 /// Failing to parse:
2680 ///
2681 /// ```
2682 /// let nope = "j".parse::<u32>();
2683 ///
2684 /// assert!(nope.is_err());
2685 /// ```
2686 #[inline]
2687 #[stable(feature = "rust1", since = "1.0.0")]
2688 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2689 FromStr::from_str(self)
2690 }
2691
2692 /// Checks if all characters in this string are within the ASCII range.
2693 ///
2694 /// # Examples
2695 ///
2696 /// ```
2697 /// let ascii = "hello!\n";
2698 /// let non_ascii = "Grüße, Jürgen ❤";
2699 ///
2700 /// assert!(ascii.is_ascii());
2701 /// assert!(!non_ascii.is_ascii());
2702 /// ```
2703 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2704 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2705 #[must_use]
2706 #[inline]
2707 pub const fn is_ascii(&self) -> bool {
2708 // We can treat each byte as character here: all multibyte characters
2709 // start with a byte that is not in the ASCII range, so we will stop
2710 // there already.
2711 self.as_bytes().is_ascii()
2712 }
2713
2714 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2715 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2716 #[unstable(feature = "ascii_char", issue = "110998")]
2717 #[must_use]
2718 #[inline]
2719 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2720 // Like in `is_ascii`, we can work on the bytes directly.
2721 self.as_bytes().as_ascii()
2722 }
2723
2724 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2725 /// without checking whether they are valid.
2726 ///
2727 /// # Safety
2728 ///
2729 /// Every character in this string must be ASCII, or else this is UB.
2730 #[unstable(feature = "ascii_char", issue = "110998")]
2731 #[must_use]
2732 #[inline]
2733 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2734 assert_unsafe_precondition!(
2735 check_library_ub,
2736 "as_ascii_unchecked requires that the string is valid ASCII",
2737 (it: &str = self) => it.is_ascii()
2738 );
2739
2740 // SAFETY: the caller promised that every byte of this string slice
2741 // is ASCII.
2742 unsafe { self.as_bytes().as_ascii_unchecked() }
2743 }
2744
2745 /// Checks that two strings are an ASCII case-insensitive match.
2746 ///
2747 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2748 /// but without allocating and copying temporaries.
2749 ///
2750 /// # Examples
2751 ///
2752 /// ```
2753 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2754 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2755 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2756 /// ```
2757 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2758 #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2759 #[must_use]
2760 #[inline]
2761 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2762 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2763 }
2764
2765 /// Converts this string to its ASCII upper case equivalent in-place.
2766 ///
2767 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2768 /// but non-ASCII letters are unchanged.
2769 ///
2770 /// To return a new uppercased value without modifying the existing one, use
2771 /// [`to_ascii_uppercase()`].
2772 ///
2773 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2774 ///
2775 /// # Examples
2776 ///
2777 /// ```
2778 /// let mut s = String::from("Grüße, Jürgen ❤");
2779 ///
2780 /// s.make_ascii_uppercase();
2781 ///
2782 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2783 /// ```
2784 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2785 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2786 #[inline]
2787 pub const fn make_ascii_uppercase(&mut self) {
2788 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2789 let me = unsafe { self.as_bytes_mut() };
2790 me.make_ascii_uppercase()
2791 }
2792
2793 /// Converts this string to its ASCII lower case equivalent in-place.
2794 ///
2795 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2796 /// but non-ASCII letters are unchanged.
2797 ///
2798 /// To return a new lowercased value without modifying the existing one, use
2799 /// [`to_ascii_lowercase()`].
2800 ///
2801 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2802 ///
2803 /// # Examples
2804 ///
2805 /// ```
2806 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2807 ///
2808 /// s.make_ascii_lowercase();
2809 ///
2810 /// assert_eq!("grÜße, jÜrgen ❤", s);
2811 /// ```
2812 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2813 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2814 #[inline]
2815 pub const fn make_ascii_lowercase(&mut self) {
2816 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2817 let me = unsafe { self.as_bytes_mut() };
2818 me.make_ascii_lowercase()
2819 }
2820
2821 /// Returns a string slice with leading ASCII whitespace removed.
2822 ///
2823 /// 'Whitespace' refers to the definition used by
2824 /// [`u8::is_ascii_whitespace`].
2825 ///
2826 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2827 ///
2828 /// # Examples
2829 ///
2830 /// ```
2831 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2832 /// assert_eq!(" ".trim_ascii_start(), "");
2833 /// assert_eq!("".trim_ascii_start(), "");
2834 /// ```
2835 #[must_use = "this returns the trimmed string as a new slice, \
2836 without modifying the original"]
2837 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2838 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2839 #[inline]
2840 pub const fn trim_ascii_start(&self) -> &str {
2841 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2842 // UTF-8.
2843 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2844 }
2845
2846 /// Returns a string slice with trailing ASCII whitespace removed.
2847 ///
2848 /// 'Whitespace' refers to the definition used by
2849 /// [`u8::is_ascii_whitespace`].
2850 ///
2851 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2852 ///
2853 /// # Examples
2854 ///
2855 /// ```
2856 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2857 /// assert_eq!(" ".trim_ascii_end(), "");
2858 /// assert_eq!("".trim_ascii_end(), "");
2859 /// ```
2860 #[must_use = "this returns the trimmed string as a new slice, \
2861 without modifying the original"]
2862 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2863 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2864 #[inline]
2865 pub const fn trim_ascii_end(&self) -> &str {
2866 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2867 // UTF-8.
2868 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2869 }
2870
2871 /// Returns a string slice with leading and trailing ASCII whitespace
2872 /// removed.
2873 ///
2874 /// 'Whitespace' refers to the definition used by
2875 /// [`u8::is_ascii_whitespace`].
2876 ///
2877 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2878 ///
2879 /// # Examples
2880 ///
2881 /// ```
2882 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2883 /// assert_eq!(" ".trim_ascii(), "");
2884 /// assert_eq!("".trim_ascii(), "");
2885 /// ```
2886 #[must_use = "this returns the trimmed string as a new slice, \
2887 without modifying the original"]
2888 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2889 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2890 #[inline]
2891 pub const fn trim_ascii(&self) -> &str {
2892 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2893 // UTF-8.
2894 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2895 }
2896
2897 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2898 ///
2899 /// Note: only extended grapheme codepoints that begin the string will be
2900 /// escaped.
2901 ///
2902 /// # Examples
2903 ///
2904 /// As an iterator:
2905 ///
2906 /// ```
2907 /// for c in "❤\n!".escape_debug() {
2908 /// print!("{c}");
2909 /// }
2910 /// println!();
2911 /// ```
2912 ///
2913 /// Using `println!` directly:
2914 ///
2915 /// ```
2916 /// println!("{}", "❤\n!".escape_debug());
2917 /// ```
2918 ///
2919 ///
2920 /// Both are equivalent to:
2921 ///
2922 /// ```
2923 /// println!("❤\\n!");
2924 /// ```
2925 ///
2926 /// Using `to_string`:
2927 ///
2928 /// ```
2929 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2930 /// ```
2931 #[must_use = "this returns the escaped string as an iterator, \
2932 without modifying the original"]
2933 #[stable(feature = "str_escape", since = "1.34.0")]
2934 pub fn escape_debug(&self) -> EscapeDebug<'_> {
2935 let mut chars = self.chars();
2936 EscapeDebug {
2937 inner: chars
2938 .next()
2939 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2940 .into_iter()
2941 .flatten()
2942 .chain(chars.flat_map(CharEscapeDebugContinue)),
2943 }
2944 }
2945
2946 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2947 ///
2948 /// # Examples
2949 ///
2950 /// As an iterator:
2951 ///
2952 /// ```
2953 /// for c in "❤\n!".escape_default() {
2954 /// print!("{c}");
2955 /// }
2956 /// println!();
2957 /// ```
2958 ///
2959 /// Using `println!` directly:
2960 ///
2961 /// ```
2962 /// println!("{}", "❤\n!".escape_default());
2963 /// ```
2964 ///
2965 ///
2966 /// Both are equivalent to:
2967 ///
2968 /// ```
2969 /// println!("\\u{{2764}}\\n!");
2970 /// ```
2971 ///
2972 /// Using `to_string`:
2973 ///
2974 /// ```
2975 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2976 /// ```
2977 #[must_use = "this returns the escaped string as an iterator, \
2978 without modifying the original"]
2979 #[stable(feature = "str_escape", since = "1.34.0")]
2980 pub fn escape_default(&self) -> EscapeDefault<'_> {
2981 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2982 }
2983
2984 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2985 ///
2986 /// # Examples
2987 ///
2988 /// As an iterator:
2989 ///
2990 /// ```
2991 /// for c in "❤\n!".escape_unicode() {
2992 /// print!("{c}");
2993 /// }
2994 /// println!();
2995 /// ```
2996 ///
2997 /// Using `println!` directly:
2998 ///
2999 /// ```
3000 /// println!("{}", "❤\n!".escape_unicode());
3001 /// ```
3002 ///
3003 ///
3004 /// Both are equivalent to:
3005 ///
3006 /// ```
3007 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3008 /// ```
3009 ///
3010 /// Using `to_string`:
3011 ///
3012 /// ```
3013 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3014 /// ```
3015 #[must_use = "this returns the escaped string as an iterator, \
3016 without modifying the original"]
3017 #[stable(feature = "str_escape", since = "1.34.0")]
3018 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3019 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3020 }
3021
3022 /// Returns the range that a substring points to.
3023 ///
3024 /// Returns `None` if `substr` does not point within `self`.
3025 ///
3026 /// Unlike [`str::find`], **this does not search through the string**.
3027 /// Instead, it uses pointer arithmetic to find where in the string
3028 /// `substr` is derived from.
3029 ///
3030 /// This is useful for extending [`str::split`] and similar methods.
3031 ///
3032 /// Note that this method may return false positives (typically either
3033 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3034 /// zero-length `str` that points at the beginning or end of another,
3035 /// independent, `str`.
3036 ///
3037 /// # Examples
3038 /// ```
3039 /// #![feature(substr_range)]
3040 ///
3041 /// let data = "a, b, b, a";
3042 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3043 ///
3044 /// assert_eq!(iter.next(), Some(0..1));
3045 /// assert_eq!(iter.next(), Some(3..4));
3046 /// assert_eq!(iter.next(), Some(6..7));
3047 /// assert_eq!(iter.next(), Some(9..10));
3048 /// ```
3049 #[must_use]
3050 #[unstable(feature = "substr_range", issue = "126769")]
3051 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3052 self.as_bytes().subslice_range(substr.as_bytes())
3053 }
3054
3055 /// Returns the same string as a string slice `&str`.
3056 ///
3057 /// This method is redundant when used directly on `&str`, but
3058 /// it helps dereferencing other string-like types to string slices,
3059 /// for example references to `Box<str>` or `Arc<str>`.
3060 #[inline]
3061 #[unstable(feature = "str_as_str", issue = "130366")]
3062 pub fn as_str(&self) -> &str {
3063 self
3064 }
3065}
3066
3067#[stable(feature = "rust1", since = "1.0.0")]
3068impl AsRef<[u8]> for str {
3069 #[inline]
3070 fn as_ref(&self) -> &[u8] {
3071 self.as_bytes()
3072 }
3073}
3074
3075#[stable(feature = "rust1", since = "1.0.0")]
3076#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3077impl const Default for &str {
3078 /// Creates an empty str
3079 #[inline]
3080 fn default() -> Self {
3081 ""
3082 }
3083}
3084
3085#[stable(feature = "default_mut_str", since = "1.28.0")]
3086#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3087impl const Default for &mut str {
3088 /// Creates an empty mutable str
3089 #[inline]
3090 fn default() -> Self {
3091 // SAFETY: The empty string is valid UTF-8.
3092 unsafe { from_utf8_unchecked_mut(&mut []) }
3093 }
3094}
3095
3096impl_fn_for_zst! {
3097 /// A nameable, cloneable fn type
3098 #[derive(Clone)]
3099 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3100 let Some(line) = line.strip_suffix('\n') else { return line };
3101 let Some(line) = line.strip_suffix('\r') else { return line };
3102 line
3103 };
3104
3105 #[derive(Clone)]
3106 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3107 c.escape_debug_ext(EscapeDebugExtArgs {
3108 escape_grapheme_extended: false,
3109 escape_single_quote: true,
3110 escape_double_quote: true
3111 })
3112 };
3113
3114 #[derive(Clone)]
3115 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3116 c.escape_unicode()
3117 };
3118 #[derive(Clone)]
3119 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3120 c.escape_default()
3121 };
3122
3123 #[derive(Clone)]
3124 struct IsWhitespace impl Fn = |c: char| -> bool {
3125 c.is_whitespace()
3126 };
3127
3128 #[derive(Clone)]
3129 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3130 byte.is_ascii_whitespace()
3131 };
3132
3133 #[derive(Clone)]
3134 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3135 !s.is_empty()
3136 };
3137
3138 #[derive(Clone)]
3139 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3140 !s.is_empty()
3141 };
3142
3143 #[derive(Clone)]
3144 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3145 // SAFETY: not safe
3146 unsafe { from_utf8_unchecked(bytes) }
3147 };
3148}
3149
3150// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3151#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3152impl !crate::error::Error for &str {}