core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(feature = "panic_immediate_abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(feature = "panic_immediate_abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74 slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79 panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84 const MAX_DISPLAY_LENGTH: usize = 256;
85 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86 let s_trunc = &s[..trunc_len];
87 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89 // 1. out of bounds
90 if begin > s.len() || end > s.len() {
91 let oob_index = if begin > s.len() { begin } else { end };
92 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93 }
94
95 // 2. begin <= end
96 assert!(
97 begin <= end,
98 "begin <= end ({} <= {}) when slicing `{}`{}",
99 begin,
100 end,
101 s_trunc,
102 ellipsis
103 );
104
105 // 3. character boundary
106 let index = if !s.is_char_boundary(begin) { begin } else { end };
107 // find the character
108 let char_start = s.floor_char_boundary(index);
109 // `char_start` must be less than len and a char boundary
110 let ch = s[char_start..].chars().next().unwrap();
111 let char_range = char_start..char_start + ch.len_utf8();
112 panic!(
113 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114 index, ch, char_range, s_trunc, ellipsis
115 );
116}
117
118impl str {
119 /// Returns the length of `self`.
120 ///
121 /// This length is in bytes, not [`char`]s or graphemes. In other words,
122 /// it might not be what a human considers the length of the string.
123 ///
124 /// [`char`]: prim@char
125 ///
126 /// # Examples
127 ///
128 /// ```
129 /// let len = "foo".len();
130 /// assert_eq!(3, len);
131 ///
132 /// assert_eq!("ƒoo".len(), 4); // fancy f!
133 /// assert_eq!("ƒoo".chars().count(), 3);
134 /// ```
135 #[stable(feature = "rust1", since = "1.0.0")]
136 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137 #[rustc_diagnostic_item = "str_len"]
138 #[rustc_no_implicit_autorefs]
139 #[must_use]
140 #[inline]
141 pub const fn len(&self) -> usize {
142 self.as_bytes().len()
143 }
144
145 /// Returns `true` if `self` has a length of zero bytes.
146 ///
147 /// # Examples
148 ///
149 /// ```
150 /// let s = "";
151 /// assert!(s.is_empty());
152 ///
153 /// let s = "not empty";
154 /// assert!(!s.is_empty());
155 /// ```
156 #[stable(feature = "rust1", since = "1.0.0")]
157 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158 #[rustc_no_implicit_autorefs]
159 #[must_use]
160 #[inline]
161 pub const fn is_empty(&self) -> bool {
162 self.len() == 0
163 }
164
165 /// Converts a slice of bytes to a string slice.
166 ///
167 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171 /// UTF-8, and then does the conversion.
172 ///
173 /// [`&str`]: str
174 /// [byteslice]: prim@slice
175 ///
176 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177 /// incur the overhead of the validity check, there is an unsafe version of
178 /// this function, [`from_utf8_unchecked`], which has the same
179 /// behavior but skips the check.
180 ///
181 /// If you need a `String` instead of a `&str`, consider
182 /// [`String::from_utf8`][string].
183 ///
184 /// [string]: ../std/string/struct.String.html#method.from_utf8
185 ///
186 /// Because you can stack-allocate a `[u8; N]`, and you can take a
187 /// [`&[u8]`][byteslice] of it, this function is one way to have a
188 /// stack-allocated string. There is an example of this in the
189 /// examples section below.
190 ///
191 /// [byteslice]: slice
192 ///
193 /// # Errors
194 ///
195 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196 /// provided slice is not UTF-8.
197 ///
198 /// # Examples
199 ///
200 /// Basic usage:
201 ///
202 /// ```
203 /// // some bytes, in a vector
204 /// let sparkle_heart = vec![240, 159, 146, 150];
205 ///
206 /// // We can use the ? (try) operator to check if the bytes are valid
207 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208 ///
209 /// assert_eq!("💖", sparkle_heart);
210 /// # Ok::<_, std::str::Utf8Error>(())
211 /// ```
212 ///
213 /// Incorrect bytes:
214 ///
215 /// ```
216 /// // some invalid bytes, in a vector
217 /// let sparkle_heart = vec![0, 159, 146, 150];
218 ///
219 /// assert!(str::from_utf8(&sparkle_heart).is_err());
220 /// ```
221 ///
222 /// See the docs for [`Utf8Error`] for more details on the kinds of
223 /// errors that can be returned.
224 ///
225 /// A "stack allocated string":
226 ///
227 /// ```
228 /// // some bytes, in a stack-allocated array
229 /// let sparkle_heart = [240, 159, 146, 150];
230 ///
231 /// // We know these bytes are valid, so just use `unwrap()`.
232 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233 ///
234 /// assert_eq!("💖", sparkle_heart);
235 /// ```
236 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240 converts::from_utf8(v)
241 }
242
243 /// Converts a mutable slice of bytes to a mutable string slice.
244 ///
245 /// # Examples
246 ///
247 /// Basic usage:
248 ///
249 /// ```
250 /// // "Hello, Rust!" as a mutable vector
251 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252 ///
253 /// // As we know these bytes are valid, we can use `unwrap()`
254 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255 ///
256 /// assert_eq!("Hello, Rust!", outstr);
257 /// ```
258 ///
259 /// Incorrect bytes:
260 ///
261 /// ```
262 /// // Some invalid bytes in a mutable vector
263 /// let mut invalid = vec![128, 223];
264 ///
265 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266 /// ```
267 /// See the docs for [`Utf8Error`] for more details on the kinds of
268 /// errors that can be returned.
269 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273 converts::from_utf8_mut(v)
274 }
275
276 /// Converts a slice of bytes to a string slice without checking
277 /// that the string contains valid UTF-8.
278 ///
279 /// See the safe version, [`from_utf8`], for more information.
280 ///
281 /// # Safety
282 ///
283 /// The bytes passed in must be valid UTF-8.
284 ///
285 /// # Examples
286 ///
287 /// Basic usage:
288 ///
289 /// ```
290 /// // some bytes, in a vector
291 /// let sparkle_heart = vec![240, 159, 146, 150];
292 ///
293 /// let sparkle_heart = unsafe {
294 /// str::from_utf8_unchecked(&sparkle_heart)
295 /// };
296 ///
297 /// assert_eq!("💖", sparkle_heart);
298 /// ```
299 #[inline]
300 #[must_use]
301 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306 unsafe { converts::from_utf8_unchecked(v) }
307 }
308
309 /// Converts a slice of bytes to a string slice without checking
310 /// that the string contains valid UTF-8; mutable version.
311 ///
312 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313 ///
314 /// # Examples
315 ///
316 /// Basic usage:
317 ///
318 /// ```
319 /// let mut heart = vec![240, 159, 146, 150];
320 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321 ///
322 /// assert_eq!("💖", heart);
323 /// ```
324 #[inline]
325 #[must_use]
326 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331 unsafe { converts::from_utf8_unchecked_mut(v) }
332 }
333
334 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335 /// sequence or the end of the string.
336 ///
337 /// The start and end of the string (when `index == self.len()`) are
338 /// considered to be boundaries.
339 ///
340 /// Returns `false` if `index` is greater than `self.len()`.
341 ///
342 /// # Examples
343 ///
344 /// ```
345 /// let s = "Löwe 老虎 Léopard";
346 /// assert!(s.is_char_boundary(0));
347 /// // start of `老`
348 /// assert!(s.is_char_boundary(6));
349 /// assert!(s.is_char_boundary(s.len()));
350 ///
351 /// // second byte of `ö`
352 /// assert!(!s.is_char_boundary(2));
353 ///
354 /// // third byte of `老`
355 /// assert!(!s.is_char_boundary(8));
356 /// ```
357 #[must_use]
358 #[stable(feature = "is_char_boundary", since = "1.9.0")]
359 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360 #[inline]
361 pub const fn is_char_boundary(&self, index: usize) -> bool {
362 // 0 is always ok.
363 // Test for 0 explicitly so that it can optimize out the check
364 // easily and skip reading string data for that case.
365 // Note that optimizing `self.get(..index)` relies on this.
366 if index == 0 {
367 return true;
368 }
369
370 if index >= self.len() {
371 // For `true` we have two options:
372 //
373 // - index == self.len()
374 // Empty strings are valid, so return true
375 // - index > self.len()
376 // In this case return false
377 //
378 // The check is placed exactly here, because it improves generated
379 // code on higher opt-levels. See PR #84751 for more details.
380 index == self.len()
381 } else {
382 self.as_bytes()[index].is_utf8_char_boundary()
383 }
384 }
385
386 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387 ///
388 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389 /// exceed a given number of bytes. Note that this is done purely at the character level
390 /// and can still visually split graphemes, even though the underlying characters aren't
391 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
392 /// includes 🧑 (person) instead.
393 ///
394 /// [`is_char_boundary(x)`]: Self::is_char_boundary
395 ///
396 /// # Examples
397 ///
398 /// ```
399 /// #![feature(round_char_boundary)]
400 /// let s = "❤️🧡💛💚💙💜";
401 /// assert_eq!(s.len(), 26);
402 /// assert!(!s.is_char_boundary(13));
403 ///
404 /// let closest = s.floor_char_boundary(13);
405 /// assert_eq!(closest, 10);
406 /// assert_eq!(&s[..closest], "❤️🧡");
407 /// ```
408 #[unstable(feature = "round_char_boundary", issue = "93743")]
409 #[inline]
410 pub fn floor_char_boundary(&self, index: usize) -> usize {
411 if index >= self.len() {
412 self.len()
413 } else {
414 let lower_bound = index.saturating_sub(3);
415 let new_index = self.as_bytes()[lower_bound..=index]
416 .iter()
417 .rposition(|b| b.is_utf8_char_boundary());
418
419 // SAFETY: we know that the character boundary will be within four bytes
420 unsafe { lower_bound + new_index.unwrap_unchecked() }
421 }
422 }
423
424 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
425 ///
426 /// If `index` is greater than the length of the string, this returns the length of the string.
427 ///
428 /// This method is the natural complement to [`floor_char_boundary`]. See that method
429 /// for more details.
430 ///
431 /// [`floor_char_boundary`]: str::floor_char_boundary
432 /// [`is_char_boundary(x)`]: Self::is_char_boundary
433 ///
434 /// # Examples
435 ///
436 /// ```
437 /// #![feature(round_char_boundary)]
438 /// let s = "❤️🧡💛💚💙💜";
439 /// assert_eq!(s.len(), 26);
440 /// assert!(!s.is_char_boundary(13));
441 ///
442 /// let closest = s.ceil_char_boundary(13);
443 /// assert_eq!(closest, 14);
444 /// assert_eq!(&s[..closest], "❤️🧡💛");
445 /// ```
446 #[unstable(feature = "round_char_boundary", issue = "93743")]
447 #[inline]
448 pub fn ceil_char_boundary(&self, index: usize) -> usize {
449 if index >= self.len() {
450 self.len()
451 } else {
452 let upper_bound = Ord::min(index + 4, self.len());
453 self.as_bytes()[index..upper_bound]
454 .iter()
455 .position(|b| b.is_utf8_char_boundary())
456 .map_or(upper_bound, |pos| pos + index)
457 }
458 }
459
460 /// Converts a string slice to a byte slice. To convert the byte slice back
461 /// into a string slice, use the [`from_utf8`] function.
462 ///
463 /// # Examples
464 ///
465 /// ```
466 /// let bytes = "bors".as_bytes();
467 /// assert_eq!(b"bors", bytes);
468 /// ```
469 #[stable(feature = "rust1", since = "1.0.0")]
470 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
471 #[must_use]
472 #[inline(always)]
473 #[allow(unused_attributes)]
474 pub const fn as_bytes(&self) -> &[u8] {
475 // SAFETY: const sound because we transmute two types with the same layout
476 unsafe { mem::transmute(self) }
477 }
478
479 /// Converts a mutable string slice to a mutable byte slice.
480 ///
481 /// # Safety
482 ///
483 /// The caller must ensure that the content of the slice is valid UTF-8
484 /// before the borrow ends and the underlying `str` is used.
485 ///
486 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
487 ///
488 /// # Examples
489 ///
490 /// Basic usage:
491 ///
492 /// ```
493 /// let mut s = String::from("Hello");
494 /// let bytes = unsafe { s.as_bytes_mut() };
495 ///
496 /// assert_eq!(b"Hello", bytes);
497 /// ```
498 ///
499 /// Mutability:
500 ///
501 /// ```
502 /// let mut s = String::from("🗻∈🌏");
503 ///
504 /// unsafe {
505 /// let bytes = s.as_bytes_mut();
506 ///
507 /// bytes[0] = 0xF0;
508 /// bytes[1] = 0x9F;
509 /// bytes[2] = 0x8D;
510 /// bytes[3] = 0x94;
511 /// }
512 ///
513 /// assert_eq!("🍔∈🌏", s);
514 /// ```
515 #[stable(feature = "str_mut_extras", since = "1.20.0")]
516 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
517 #[must_use]
518 #[inline(always)]
519 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
520 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
521 // has the same layout as `&[u8]` (only std can make this guarantee).
522 // The pointer dereference is safe since it comes from a mutable reference which
523 // is guaranteed to be valid for writes.
524 unsafe { &mut *(self as *mut str as *mut [u8]) }
525 }
526
527 /// Converts a string slice to a raw pointer.
528 ///
529 /// As string slices are a slice of bytes, the raw pointer points to a
530 /// [`u8`]. This pointer will be pointing to the first byte of the string
531 /// slice.
532 ///
533 /// The caller must ensure that the returned pointer is never written to.
534 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
535 ///
536 /// [`as_mut_ptr`]: str::as_mut_ptr
537 ///
538 /// # Examples
539 ///
540 /// ```
541 /// let s = "Hello";
542 /// let ptr = s.as_ptr();
543 /// ```
544 #[stable(feature = "rust1", since = "1.0.0")]
545 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
546 #[rustc_never_returns_null_ptr]
547 #[rustc_as_ptr]
548 #[must_use]
549 #[inline(always)]
550 pub const fn as_ptr(&self) -> *const u8 {
551 self as *const str as *const u8
552 }
553
554 /// Converts a mutable string slice to a raw pointer.
555 ///
556 /// As string slices are a slice of bytes, the raw pointer points to a
557 /// [`u8`]. This pointer will be pointing to the first byte of the string
558 /// slice.
559 ///
560 /// It is your responsibility to make sure that the string slice only gets
561 /// modified in a way that it remains valid UTF-8.
562 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
563 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
564 #[rustc_never_returns_null_ptr]
565 #[rustc_as_ptr]
566 #[must_use]
567 #[inline(always)]
568 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
569 self as *mut str as *mut u8
570 }
571
572 /// Returns a subslice of `str`.
573 ///
574 /// This is the non-panicking alternative to indexing the `str`. Returns
575 /// [`None`] whenever equivalent indexing operation would panic.
576 ///
577 /// # Examples
578 ///
579 /// ```
580 /// let v = String::from("🗻∈🌏");
581 ///
582 /// assert_eq!(Some("🗻"), v.get(0..4));
583 ///
584 /// // indices not on UTF-8 sequence boundaries
585 /// assert!(v.get(1..).is_none());
586 /// assert!(v.get(..8).is_none());
587 ///
588 /// // out of bounds
589 /// assert!(v.get(..42).is_none());
590 /// ```
591 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
592 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
593 #[inline]
594 pub const fn get<I: ~const SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
595 i.get(self)
596 }
597
598 /// Returns a mutable subslice of `str`.
599 ///
600 /// This is the non-panicking alternative to indexing the `str`. Returns
601 /// [`None`] whenever equivalent indexing operation would panic.
602 ///
603 /// # Examples
604 ///
605 /// ```
606 /// let mut v = String::from("hello");
607 /// // correct length
608 /// assert!(v.get_mut(0..5).is_some());
609 /// // out of bounds
610 /// assert!(v.get_mut(..42).is_none());
611 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
612 ///
613 /// assert_eq!("hello", v);
614 /// {
615 /// let s = v.get_mut(0..2);
616 /// let s = s.map(|s| {
617 /// s.make_ascii_uppercase();
618 /// &*s
619 /// });
620 /// assert_eq!(Some("HE"), s);
621 /// }
622 /// assert_eq!("HEllo", v);
623 /// ```
624 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
625 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
626 #[inline]
627 pub const fn get_mut<I: ~const SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
628 i.get_mut(self)
629 }
630
631 /// Returns an unchecked subslice of `str`.
632 ///
633 /// This is the unchecked alternative to indexing the `str`.
634 ///
635 /// # Safety
636 ///
637 /// Callers of this function are responsible that these preconditions are
638 /// satisfied:
639 ///
640 /// * The starting index must not exceed the ending index;
641 /// * Indexes must be within bounds of the original slice;
642 /// * Indexes must lie on UTF-8 sequence boundaries.
643 ///
644 /// Failing that, the returned string slice may reference invalid memory or
645 /// violate the invariants communicated by the `str` type.
646 ///
647 /// # Examples
648 ///
649 /// ```
650 /// let v = "🗻∈🌏";
651 /// unsafe {
652 /// assert_eq!("🗻", v.get_unchecked(0..4));
653 /// assert_eq!("∈", v.get_unchecked(4..7));
654 /// assert_eq!("🌏", v.get_unchecked(7..11));
655 /// }
656 /// ```
657 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
658 #[inline]
659 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
660 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
661 // the slice is dereferenceable because `self` is a safe reference.
662 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
663 unsafe { &*i.get_unchecked(self) }
664 }
665
666 /// Returns a mutable, unchecked subslice of `str`.
667 ///
668 /// This is the unchecked alternative to indexing the `str`.
669 ///
670 /// # Safety
671 ///
672 /// Callers of this function are responsible that these preconditions are
673 /// satisfied:
674 ///
675 /// * The starting index must not exceed the ending index;
676 /// * Indexes must be within bounds of the original slice;
677 /// * Indexes must lie on UTF-8 sequence boundaries.
678 ///
679 /// Failing that, the returned string slice may reference invalid memory or
680 /// violate the invariants communicated by the `str` type.
681 ///
682 /// # Examples
683 ///
684 /// ```
685 /// let mut v = String::from("🗻∈🌏");
686 /// unsafe {
687 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
688 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
689 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
690 /// }
691 /// ```
692 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
693 #[inline]
694 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
695 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
696 // the slice is dereferenceable because `self` is a safe reference.
697 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
698 unsafe { &mut *i.get_unchecked_mut(self) }
699 }
700
701 /// Creates a string slice from another string slice, bypassing safety
702 /// checks.
703 ///
704 /// This is generally not recommended, use with caution! For a safe
705 /// alternative see [`str`] and [`Index`].
706 ///
707 /// [`Index`]: crate::ops::Index
708 ///
709 /// This new slice goes from `begin` to `end`, including `begin` but
710 /// excluding `end`.
711 ///
712 /// To get a mutable string slice instead, see the
713 /// [`slice_mut_unchecked`] method.
714 ///
715 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
716 ///
717 /// # Safety
718 ///
719 /// Callers of this function are responsible that three preconditions are
720 /// satisfied:
721 ///
722 /// * `begin` must not exceed `end`.
723 /// * `begin` and `end` must be byte positions within the string slice.
724 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
725 ///
726 /// # Examples
727 ///
728 /// ```
729 /// let s = "Löwe 老虎 Léopard";
730 ///
731 /// unsafe {
732 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
733 /// }
734 ///
735 /// let s = "Hello, world!";
736 ///
737 /// unsafe {
738 /// assert_eq!("world", s.slice_unchecked(7, 12));
739 /// }
740 /// ```
741 #[stable(feature = "rust1", since = "1.0.0")]
742 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
743 #[must_use]
744 #[inline]
745 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
746 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
747 // the slice is dereferenceable because `self` is a safe reference.
748 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
749 unsafe { &*(begin..end).get_unchecked(self) }
750 }
751
752 /// Creates a string slice from another string slice, bypassing safety
753 /// checks.
754 ///
755 /// This is generally not recommended, use with caution! For a safe
756 /// alternative see [`str`] and [`IndexMut`].
757 ///
758 /// [`IndexMut`]: crate::ops::IndexMut
759 ///
760 /// This new slice goes from `begin` to `end`, including `begin` but
761 /// excluding `end`.
762 ///
763 /// To get an immutable string slice instead, see the
764 /// [`slice_unchecked`] method.
765 ///
766 /// [`slice_unchecked`]: str::slice_unchecked
767 ///
768 /// # Safety
769 ///
770 /// Callers of this function are responsible that three preconditions are
771 /// satisfied:
772 ///
773 /// * `begin` must not exceed `end`.
774 /// * `begin` and `end` must be byte positions within the string slice.
775 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
776 #[stable(feature = "str_slice_mut", since = "1.5.0")]
777 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
778 #[inline]
779 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
780 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
781 // the slice is dereferenceable because `self` is a safe reference.
782 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
783 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
784 }
785
786 /// Divides one string slice into two at an index.
787 ///
788 /// The argument, `mid`, should be a byte offset from the start of the
789 /// string. It must also be on the boundary of a UTF-8 code point.
790 ///
791 /// The two slices returned go from the start of the string slice to `mid`,
792 /// and from `mid` to the end of the string slice.
793 ///
794 /// To get mutable string slices instead, see the [`split_at_mut`]
795 /// method.
796 ///
797 /// [`split_at_mut`]: str::split_at_mut
798 ///
799 /// # Panics
800 ///
801 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
802 /// the end of the last code point of the string slice. For a non-panicking
803 /// alternative see [`split_at_checked`](str::split_at_checked).
804 ///
805 /// # Examples
806 ///
807 /// ```
808 /// let s = "Per Martin-Löf";
809 ///
810 /// let (first, last) = s.split_at(3);
811 ///
812 /// assert_eq!("Per", first);
813 /// assert_eq!(" Martin-Löf", last);
814 /// ```
815 #[inline]
816 #[must_use]
817 #[stable(feature = "str_split_at", since = "1.4.0")]
818 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
819 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
820 match self.split_at_checked(mid) {
821 None => slice_error_fail(self, 0, mid),
822 Some(pair) => pair,
823 }
824 }
825
826 /// Divides one mutable string slice into two at an index.
827 ///
828 /// The argument, `mid`, should be a byte offset from the start of the
829 /// string. It must also be on the boundary of a UTF-8 code point.
830 ///
831 /// The two slices returned go from the start of the string slice to `mid`,
832 /// and from `mid` to the end of the string slice.
833 ///
834 /// To get immutable string slices instead, see the [`split_at`] method.
835 ///
836 /// [`split_at`]: str::split_at
837 ///
838 /// # Panics
839 ///
840 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
841 /// the end of the last code point of the string slice. For a non-panicking
842 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
843 ///
844 /// # Examples
845 ///
846 /// ```
847 /// let mut s = "Per Martin-Löf".to_string();
848 /// {
849 /// let (first, last) = s.split_at_mut(3);
850 /// first.make_ascii_uppercase();
851 /// assert_eq!("PER", first);
852 /// assert_eq!(" Martin-Löf", last);
853 /// }
854 /// assert_eq!("PER Martin-Löf", s);
855 /// ```
856 #[inline]
857 #[must_use]
858 #[stable(feature = "str_split_at", since = "1.4.0")]
859 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
860 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
861 // is_char_boundary checks that the index is in [0, .len()]
862 if self.is_char_boundary(mid) {
863 // SAFETY: just checked that `mid` is on a char boundary.
864 unsafe { self.split_at_mut_unchecked(mid) }
865 } else {
866 slice_error_fail(self, 0, mid)
867 }
868 }
869
870 /// Divides one string slice into two at an index.
871 ///
872 /// The argument, `mid`, should be a valid byte offset from the start of the
873 /// string. It must also be on the boundary of a UTF-8 code point. The
874 /// method returns `None` if that’s not the case.
875 ///
876 /// The two slices returned go from the start of the string slice to `mid`,
877 /// and from `mid` to the end of the string slice.
878 ///
879 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
880 /// method.
881 ///
882 /// [`split_at_mut_checked`]: str::split_at_mut_checked
883 ///
884 /// # Examples
885 ///
886 /// ```
887 /// let s = "Per Martin-Löf";
888 ///
889 /// let (first, last) = s.split_at_checked(3).unwrap();
890 /// assert_eq!("Per", first);
891 /// assert_eq!(" Martin-Löf", last);
892 ///
893 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
894 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
895 /// ```
896 #[inline]
897 #[must_use]
898 #[stable(feature = "split_at_checked", since = "1.80.0")]
899 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
900 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
901 // is_char_boundary checks that the index is in [0, .len()]
902 if self.is_char_boundary(mid) {
903 // SAFETY: just checked that `mid` is on a char boundary.
904 Some(unsafe { self.split_at_unchecked(mid) })
905 } else {
906 None
907 }
908 }
909
910 /// Divides one mutable string slice into two at an index.
911 ///
912 /// The argument, `mid`, should be a valid byte offset from the start of the
913 /// string. It must also be on the boundary of a UTF-8 code point. The
914 /// method returns `None` if that’s not the case.
915 ///
916 /// The two slices returned go from the start of the string slice to `mid`,
917 /// and from `mid` to the end of the string slice.
918 ///
919 /// To get immutable string slices instead, see the [`split_at_checked`] method.
920 ///
921 /// [`split_at_checked`]: str::split_at_checked
922 ///
923 /// # Examples
924 ///
925 /// ```
926 /// let mut s = "Per Martin-Löf".to_string();
927 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
928 /// first.make_ascii_uppercase();
929 /// assert_eq!("PER", first);
930 /// assert_eq!(" Martin-Löf", last);
931 /// }
932 /// assert_eq!("PER Martin-Löf", s);
933 ///
934 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
935 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
936 /// ```
937 #[inline]
938 #[must_use]
939 #[stable(feature = "split_at_checked", since = "1.80.0")]
940 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
941 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
942 // is_char_boundary checks that the index is in [0, .len()]
943 if self.is_char_boundary(mid) {
944 // SAFETY: just checked that `mid` is on a char boundary.
945 Some(unsafe { self.split_at_mut_unchecked(mid) })
946 } else {
947 None
948 }
949 }
950
951 /// Divides one string slice into two at an index.
952 ///
953 /// # Safety
954 ///
955 /// The caller must ensure that `mid` is a valid byte offset from the start
956 /// of the string and falls on the boundary of a UTF-8 code point.
957 #[inline]
958 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
959 let len = self.len();
960 let ptr = self.as_ptr();
961 // SAFETY: caller guarantees `mid` is on a char boundary.
962 unsafe {
963 (
964 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
965 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
966 )
967 }
968 }
969
970 /// Divides one string slice into two at an index.
971 ///
972 /// # Safety
973 ///
974 /// The caller must ensure that `mid` is a valid byte offset from the start
975 /// of the string and falls on the boundary of a UTF-8 code point.
976 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
977 let len = self.len();
978 let ptr = self.as_mut_ptr();
979 // SAFETY: caller guarantees `mid` is on a char boundary.
980 unsafe {
981 (
982 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
983 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
984 )
985 }
986 }
987
988 /// Returns an iterator over the [`char`]s of a string slice.
989 ///
990 /// As a string slice consists of valid UTF-8, we can iterate through a
991 /// string slice by [`char`]. This method returns such an iterator.
992 ///
993 /// It's important to remember that [`char`] represents a Unicode Scalar
994 /// Value, and might not match your idea of what a 'character' is. Iteration
995 /// over grapheme clusters may be what you actually want. This functionality
996 /// is not provided by Rust's standard library, check crates.io instead.
997 ///
998 /// # Examples
999 ///
1000 /// Basic usage:
1001 ///
1002 /// ```
1003 /// let word = "goodbye";
1004 ///
1005 /// let count = word.chars().count();
1006 /// assert_eq!(7, count);
1007 ///
1008 /// let mut chars = word.chars();
1009 ///
1010 /// assert_eq!(Some('g'), chars.next());
1011 /// assert_eq!(Some('o'), chars.next());
1012 /// assert_eq!(Some('o'), chars.next());
1013 /// assert_eq!(Some('d'), chars.next());
1014 /// assert_eq!(Some('b'), chars.next());
1015 /// assert_eq!(Some('y'), chars.next());
1016 /// assert_eq!(Some('e'), chars.next());
1017 ///
1018 /// assert_eq!(None, chars.next());
1019 /// ```
1020 ///
1021 /// Remember, [`char`]s might not match your intuition about characters:
1022 ///
1023 /// [`char`]: prim@char
1024 ///
1025 /// ```
1026 /// let y = "y̆";
1027 ///
1028 /// let mut chars = y.chars();
1029 ///
1030 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1031 /// assert_eq!(Some('\u{0306}'), chars.next());
1032 ///
1033 /// assert_eq!(None, chars.next());
1034 /// ```
1035 #[stable(feature = "rust1", since = "1.0.0")]
1036 #[inline]
1037 #[rustc_diagnostic_item = "str_chars"]
1038 pub fn chars(&self) -> Chars<'_> {
1039 Chars { iter: self.as_bytes().iter() }
1040 }
1041
1042 /// Returns an iterator over the [`char`]s of a string slice, and their
1043 /// positions.
1044 ///
1045 /// As a string slice consists of valid UTF-8, we can iterate through a
1046 /// string slice by [`char`]. This method returns an iterator of both
1047 /// these [`char`]s, as well as their byte positions.
1048 ///
1049 /// The iterator yields tuples. The position is first, the [`char`] is
1050 /// second.
1051 ///
1052 /// # Examples
1053 ///
1054 /// Basic usage:
1055 ///
1056 /// ```
1057 /// let word = "goodbye";
1058 ///
1059 /// let count = word.char_indices().count();
1060 /// assert_eq!(7, count);
1061 ///
1062 /// let mut char_indices = word.char_indices();
1063 ///
1064 /// assert_eq!(Some((0, 'g')), char_indices.next());
1065 /// assert_eq!(Some((1, 'o')), char_indices.next());
1066 /// assert_eq!(Some((2, 'o')), char_indices.next());
1067 /// assert_eq!(Some((3, 'd')), char_indices.next());
1068 /// assert_eq!(Some((4, 'b')), char_indices.next());
1069 /// assert_eq!(Some((5, 'y')), char_indices.next());
1070 /// assert_eq!(Some((6, 'e')), char_indices.next());
1071 ///
1072 /// assert_eq!(None, char_indices.next());
1073 /// ```
1074 ///
1075 /// Remember, [`char`]s might not match your intuition about characters:
1076 ///
1077 /// [`char`]: prim@char
1078 ///
1079 /// ```
1080 /// let yes = "y̆es";
1081 ///
1082 /// let mut char_indices = yes.char_indices();
1083 ///
1084 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1085 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1086 ///
1087 /// // note the 3 here - the previous character took up two bytes
1088 /// assert_eq!(Some((3, 'e')), char_indices.next());
1089 /// assert_eq!(Some((4, 's')), char_indices.next());
1090 ///
1091 /// assert_eq!(None, char_indices.next());
1092 /// ```
1093 #[stable(feature = "rust1", since = "1.0.0")]
1094 #[inline]
1095 pub fn char_indices(&self) -> CharIndices<'_> {
1096 CharIndices { front_offset: 0, iter: self.chars() }
1097 }
1098
1099 /// Returns an iterator over the bytes of a string slice.
1100 ///
1101 /// As a string slice consists of a sequence of bytes, we can iterate
1102 /// through a string slice by byte. This method returns such an iterator.
1103 ///
1104 /// # Examples
1105 ///
1106 /// ```
1107 /// let mut bytes = "bors".bytes();
1108 ///
1109 /// assert_eq!(Some(b'b'), bytes.next());
1110 /// assert_eq!(Some(b'o'), bytes.next());
1111 /// assert_eq!(Some(b'r'), bytes.next());
1112 /// assert_eq!(Some(b's'), bytes.next());
1113 ///
1114 /// assert_eq!(None, bytes.next());
1115 /// ```
1116 #[stable(feature = "rust1", since = "1.0.0")]
1117 #[inline]
1118 pub fn bytes(&self) -> Bytes<'_> {
1119 Bytes(self.as_bytes().iter().copied())
1120 }
1121
1122 /// Splits a string slice by whitespace.
1123 ///
1124 /// The iterator returned will return string slices that are sub-slices of
1125 /// the original string slice, separated by any amount of whitespace.
1126 ///
1127 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1128 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1129 /// instead, use [`split_ascii_whitespace`].
1130 ///
1131 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1132 ///
1133 /// # Examples
1134 ///
1135 /// Basic usage:
1136 ///
1137 /// ```
1138 /// let mut iter = "A few words".split_whitespace();
1139 ///
1140 /// assert_eq!(Some("A"), iter.next());
1141 /// assert_eq!(Some("few"), iter.next());
1142 /// assert_eq!(Some("words"), iter.next());
1143 ///
1144 /// assert_eq!(None, iter.next());
1145 /// ```
1146 ///
1147 /// All kinds of whitespace are considered:
1148 ///
1149 /// ```
1150 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1151 /// assert_eq!(Some("Mary"), iter.next());
1152 /// assert_eq!(Some("had"), iter.next());
1153 /// assert_eq!(Some("a"), iter.next());
1154 /// assert_eq!(Some("little"), iter.next());
1155 /// assert_eq!(Some("lamb"), iter.next());
1156 ///
1157 /// assert_eq!(None, iter.next());
1158 /// ```
1159 ///
1160 /// If the string is empty or all whitespace, the iterator yields no string slices:
1161 /// ```
1162 /// assert_eq!("".split_whitespace().next(), None);
1163 /// assert_eq!(" ".split_whitespace().next(), None);
1164 /// ```
1165 #[must_use = "this returns the split string as an iterator, \
1166 without modifying the original"]
1167 #[stable(feature = "split_whitespace", since = "1.1.0")]
1168 #[rustc_diagnostic_item = "str_split_whitespace"]
1169 #[inline]
1170 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1171 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1172 }
1173
1174 /// Splits a string slice by ASCII whitespace.
1175 ///
1176 /// The iterator returned will return string slices that are sub-slices of
1177 /// the original string slice, separated by any amount of ASCII whitespace.
1178 ///
1179 /// This uses the same definition as [`char::is_ascii_whitespace`].
1180 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1181 ///
1182 /// [`split_whitespace`]: str::split_whitespace
1183 ///
1184 /// # Examples
1185 ///
1186 /// Basic usage:
1187 ///
1188 /// ```
1189 /// let mut iter = "A few words".split_ascii_whitespace();
1190 ///
1191 /// assert_eq!(Some("A"), iter.next());
1192 /// assert_eq!(Some("few"), iter.next());
1193 /// assert_eq!(Some("words"), iter.next());
1194 ///
1195 /// assert_eq!(None, iter.next());
1196 /// ```
1197 ///
1198 /// Various kinds of ASCII whitespace are considered
1199 /// (see [`char::is_ascii_whitespace`]):
1200 ///
1201 /// ```
1202 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1203 /// assert_eq!(Some("Mary"), iter.next());
1204 /// assert_eq!(Some("had"), iter.next());
1205 /// assert_eq!(Some("a"), iter.next());
1206 /// assert_eq!(Some("little"), iter.next());
1207 /// assert_eq!(Some("lamb"), iter.next());
1208 ///
1209 /// assert_eq!(None, iter.next());
1210 /// ```
1211 ///
1212 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1213 /// ```
1214 /// assert_eq!("".split_ascii_whitespace().next(), None);
1215 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1216 /// ```
1217 #[must_use = "this returns the split string as an iterator, \
1218 without modifying the original"]
1219 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1220 #[inline]
1221 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1222 let inner =
1223 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1224 SplitAsciiWhitespace { inner }
1225 }
1226
1227 /// Returns an iterator over the lines of a string, as string slices.
1228 ///
1229 /// Lines are split at line endings that are either newlines (`\n`) or
1230 /// sequences of a carriage return followed by a line feed (`\r\n`).
1231 ///
1232 /// Line terminators are not included in the lines returned by the iterator.
1233 ///
1234 /// Note that any carriage return (`\r`) not immediately followed by a
1235 /// line feed (`\n`) does not split a line. These carriage returns are
1236 /// thereby included in the produced lines.
1237 ///
1238 /// The final line ending is optional. A string that ends with a final line
1239 /// ending will return the same lines as an otherwise identical string
1240 /// without a final line ending.
1241 ///
1242 /// # Examples
1243 ///
1244 /// Basic usage:
1245 ///
1246 /// ```
1247 /// let text = "foo\r\nbar\n\nbaz\r";
1248 /// let mut lines = text.lines();
1249 ///
1250 /// assert_eq!(Some("foo"), lines.next());
1251 /// assert_eq!(Some("bar"), lines.next());
1252 /// assert_eq!(Some(""), lines.next());
1253 /// // Trailing carriage return is included in the last line
1254 /// assert_eq!(Some("baz\r"), lines.next());
1255 ///
1256 /// assert_eq!(None, lines.next());
1257 /// ```
1258 ///
1259 /// The final line does not require any ending:
1260 ///
1261 /// ```
1262 /// let text = "foo\nbar\n\r\nbaz";
1263 /// let mut lines = text.lines();
1264 ///
1265 /// assert_eq!(Some("foo"), lines.next());
1266 /// assert_eq!(Some("bar"), lines.next());
1267 /// assert_eq!(Some(""), lines.next());
1268 /// assert_eq!(Some("baz"), lines.next());
1269 ///
1270 /// assert_eq!(None, lines.next());
1271 /// ```
1272 #[stable(feature = "rust1", since = "1.0.0")]
1273 #[inline]
1274 pub fn lines(&self) -> Lines<'_> {
1275 Lines(self.split_inclusive('\n').map(LinesMap))
1276 }
1277
1278 /// Returns an iterator over the lines of a string.
1279 #[stable(feature = "rust1", since = "1.0.0")]
1280 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1281 #[inline]
1282 #[allow(deprecated)]
1283 pub fn lines_any(&self) -> LinesAny<'_> {
1284 LinesAny(self.lines())
1285 }
1286
1287 /// Returns an iterator of `u16` over the string encoded
1288 /// as native endian UTF-16 (without byte-order mark).
1289 ///
1290 /// # Examples
1291 ///
1292 /// ```
1293 /// let text = "Zażółć gęślą jaźń";
1294 ///
1295 /// let utf8_len = text.len();
1296 /// let utf16_len = text.encode_utf16().count();
1297 ///
1298 /// assert!(utf16_len <= utf8_len);
1299 /// ```
1300 #[must_use = "this returns the encoded string as an iterator, \
1301 without modifying the original"]
1302 #[stable(feature = "encode_utf16", since = "1.8.0")]
1303 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1304 EncodeUtf16 { chars: self.chars(), extra: 0 }
1305 }
1306
1307 /// Returns `true` if the given pattern matches a sub-slice of
1308 /// this string slice.
1309 ///
1310 /// Returns `false` if it does not.
1311 ///
1312 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1313 /// function or closure that determines if a character matches.
1314 ///
1315 /// [`char`]: prim@char
1316 /// [pattern]: self::pattern
1317 ///
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// let bananas = "bananas";
1322 ///
1323 /// assert!(bananas.contains("nana"));
1324 /// assert!(!bananas.contains("apples"));
1325 /// ```
1326 #[stable(feature = "rust1", since = "1.0.0")]
1327 #[inline]
1328 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1329 pat.is_contained_in(self)
1330 }
1331
1332 /// Returns `true` if the given pattern matches a prefix of this
1333 /// string slice.
1334 ///
1335 /// Returns `false` if it does not.
1336 ///
1337 /// The [pattern] can be a `&str`, in which case this function will return true if
1338 /// the `&str` is a prefix of this string slice.
1339 ///
1340 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1341 /// function or closure that determines if a character matches.
1342 /// These will only be checked against the first character of this string slice.
1343 /// Look at the second example below regarding behavior for slices of [`char`]s.
1344 ///
1345 /// [`char`]: prim@char
1346 /// [pattern]: self::pattern
1347 ///
1348 /// # Examples
1349 ///
1350 /// ```
1351 /// let bananas = "bananas";
1352 ///
1353 /// assert!(bananas.starts_with("bana"));
1354 /// assert!(!bananas.starts_with("nana"));
1355 /// ```
1356 ///
1357 /// ```
1358 /// let bananas = "bananas";
1359 ///
1360 /// // Note that both of these assert successfully.
1361 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1362 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1363 /// ```
1364 #[stable(feature = "rust1", since = "1.0.0")]
1365 #[rustc_diagnostic_item = "str_starts_with"]
1366 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1367 pat.is_prefix_of(self)
1368 }
1369
1370 /// Returns `true` if the given pattern matches a suffix of this
1371 /// string slice.
1372 ///
1373 /// Returns `false` if it does not.
1374 ///
1375 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1376 /// function or closure that determines if a character matches.
1377 ///
1378 /// [`char`]: prim@char
1379 /// [pattern]: self::pattern
1380 ///
1381 /// # Examples
1382 ///
1383 /// ```
1384 /// let bananas = "bananas";
1385 ///
1386 /// assert!(bananas.ends_with("anas"));
1387 /// assert!(!bananas.ends_with("nana"));
1388 /// ```
1389 #[stable(feature = "rust1", since = "1.0.0")]
1390 #[rustc_diagnostic_item = "str_ends_with"]
1391 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1392 where
1393 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1394 {
1395 pat.is_suffix_of(self)
1396 }
1397
1398 /// Returns the byte index of the first character of this string slice that
1399 /// matches the pattern.
1400 ///
1401 /// Returns [`None`] if the pattern doesn't match.
1402 ///
1403 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1404 /// function or closure that determines if a character matches.
1405 ///
1406 /// [`char`]: prim@char
1407 /// [pattern]: self::pattern
1408 ///
1409 /// # Examples
1410 ///
1411 /// Simple patterns:
1412 ///
1413 /// ```
1414 /// let s = "Löwe 老虎 Léopard Gepardi";
1415 ///
1416 /// assert_eq!(s.find('L'), Some(0));
1417 /// assert_eq!(s.find('é'), Some(14));
1418 /// assert_eq!(s.find("pard"), Some(17));
1419 /// ```
1420 ///
1421 /// More complex patterns using point-free style and closures:
1422 ///
1423 /// ```
1424 /// let s = "Löwe 老虎 Léopard";
1425 ///
1426 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1427 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1428 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1429 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1430 /// ```
1431 ///
1432 /// Not finding the pattern:
1433 ///
1434 /// ```
1435 /// let s = "Löwe 老虎 Léopard";
1436 /// let x: &[_] = &['1', '2'];
1437 ///
1438 /// assert_eq!(s.find(x), None);
1439 /// ```
1440 #[stable(feature = "rust1", since = "1.0.0")]
1441 #[inline]
1442 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1443 pat.into_searcher(self).next_match().map(|(i, _)| i)
1444 }
1445
1446 /// Returns the byte index for the first character of the last match of the pattern in
1447 /// this string slice.
1448 ///
1449 /// Returns [`None`] if the pattern doesn't match.
1450 ///
1451 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1452 /// function or closure that determines if a character matches.
1453 ///
1454 /// [`char`]: prim@char
1455 /// [pattern]: self::pattern
1456 ///
1457 /// # Examples
1458 ///
1459 /// Simple patterns:
1460 ///
1461 /// ```
1462 /// let s = "Löwe 老虎 Léopard Gepardi";
1463 ///
1464 /// assert_eq!(s.rfind('L'), Some(13));
1465 /// assert_eq!(s.rfind('é'), Some(14));
1466 /// assert_eq!(s.rfind("pard"), Some(24));
1467 /// ```
1468 ///
1469 /// More complex patterns with closures:
1470 ///
1471 /// ```
1472 /// let s = "Löwe 老虎 Léopard";
1473 ///
1474 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1475 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1476 /// ```
1477 ///
1478 /// Not finding the pattern:
1479 ///
1480 /// ```
1481 /// let s = "Löwe 老虎 Léopard";
1482 /// let x: &[_] = &['1', '2'];
1483 ///
1484 /// assert_eq!(s.rfind(x), None);
1485 /// ```
1486 #[stable(feature = "rust1", since = "1.0.0")]
1487 #[inline]
1488 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1489 where
1490 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1491 {
1492 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1493 }
1494
1495 /// Returns an iterator over substrings of this string slice, separated by
1496 /// characters matched by a pattern.
1497 ///
1498 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1499 /// function or closure that determines if a character matches.
1500 ///
1501 /// If there are no matches the full string slice is returned as the only
1502 /// item in the iterator.
1503 ///
1504 /// [`char`]: prim@char
1505 /// [pattern]: self::pattern
1506 ///
1507 /// # Iterator behavior
1508 ///
1509 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1510 /// allows a reverse search and forward/reverse search yields the same
1511 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1512 ///
1513 /// If the pattern allows a reverse search but its results might differ
1514 /// from a forward search, the [`rsplit`] method can be used.
1515 ///
1516 /// [`rsplit`]: str::rsplit
1517 ///
1518 /// # Examples
1519 ///
1520 /// Simple patterns:
1521 ///
1522 /// ```
1523 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1524 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1525 ///
1526 /// let v: Vec<&str> = "".split('X').collect();
1527 /// assert_eq!(v, [""]);
1528 ///
1529 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1530 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1531 ///
1532 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1533 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1534 ///
1535 /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1536 /// assert_eq!(v, ["AABBCC"]);
1537 ///
1538 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1539 /// assert_eq!(v, ["abc", "def", "ghi"]);
1540 ///
1541 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1542 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1543 /// ```
1544 ///
1545 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1546 ///
1547 /// ```
1548 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1549 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1550 /// ```
1551 ///
1552 /// A more complex pattern, using a closure:
1553 ///
1554 /// ```
1555 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1556 /// assert_eq!(v, ["abc", "def", "ghi"]);
1557 /// ```
1558 ///
1559 /// If a string contains multiple contiguous separators, you will end up
1560 /// with empty strings in the output:
1561 ///
1562 /// ```
1563 /// let x = "||||a||b|c".to_string();
1564 /// let d: Vec<_> = x.split('|').collect();
1565 ///
1566 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1567 /// ```
1568 ///
1569 /// Contiguous separators are separated by the empty string.
1570 ///
1571 /// ```
1572 /// let x = "(///)".to_string();
1573 /// let d: Vec<_> = x.split('/').collect();
1574 ///
1575 /// assert_eq!(d, &["(", "", "", ")"]);
1576 /// ```
1577 ///
1578 /// Separators at the start or end of a string are neighbored
1579 /// by empty strings.
1580 ///
1581 /// ```
1582 /// let d: Vec<_> = "010".split("0").collect();
1583 /// assert_eq!(d, &["", "1", ""]);
1584 /// ```
1585 ///
1586 /// When the empty string is used as a separator, it separates
1587 /// every character in the string, along with the beginning
1588 /// and end of the string.
1589 ///
1590 /// ```
1591 /// let f: Vec<_> = "rust".split("").collect();
1592 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1593 /// ```
1594 ///
1595 /// Contiguous separators can lead to possibly surprising behavior
1596 /// when whitespace is used as the separator. This code is correct:
1597 ///
1598 /// ```
1599 /// let x = " a b c".to_string();
1600 /// let d: Vec<_> = x.split(' ').collect();
1601 ///
1602 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1603 /// ```
1604 ///
1605 /// It does _not_ give you:
1606 ///
1607 /// ```,ignore
1608 /// assert_eq!(d, &["a", "b", "c"]);
1609 /// ```
1610 ///
1611 /// Use [`split_whitespace`] for this behavior.
1612 ///
1613 /// [`split_whitespace`]: str::split_whitespace
1614 #[stable(feature = "rust1", since = "1.0.0")]
1615 #[inline]
1616 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1617 Split(SplitInternal {
1618 start: 0,
1619 end: self.len(),
1620 matcher: pat.into_searcher(self),
1621 allow_trailing_empty: true,
1622 finished: false,
1623 })
1624 }
1625
1626 /// Returns an iterator over substrings of this string slice, separated by
1627 /// characters matched by a pattern.
1628 ///
1629 /// Differs from the iterator produced by `split` in that `split_inclusive`
1630 /// leaves the matched part as the terminator of the substring.
1631 ///
1632 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1633 /// function or closure that determines if a character matches.
1634 ///
1635 /// [`char`]: prim@char
1636 /// [pattern]: self::pattern
1637 ///
1638 /// # Examples
1639 ///
1640 /// ```
1641 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1642 /// .split_inclusive('\n').collect();
1643 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1644 /// ```
1645 ///
1646 /// If the last element of the string is matched,
1647 /// that element will be considered the terminator of the preceding substring.
1648 /// That substring will be the last item returned by the iterator.
1649 ///
1650 /// ```
1651 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1652 /// .split_inclusive('\n').collect();
1653 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1654 /// ```
1655 #[stable(feature = "split_inclusive", since = "1.51.0")]
1656 #[inline]
1657 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1658 SplitInclusive(SplitInternal {
1659 start: 0,
1660 end: self.len(),
1661 matcher: pat.into_searcher(self),
1662 allow_trailing_empty: false,
1663 finished: false,
1664 })
1665 }
1666
1667 /// Returns an iterator over substrings of the given string slice, separated
1668 /// by characters matched by a pattern and yielded in reverse order.
1669 ///
1670 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1671 /// function or closure that determines if a character matches.
1672 ///
1673 /// [`char`]: prim@char
1674 /// [pattern]: self::pattern
1675 ///
1676 /// # Iterator behavior
1677 ///
1678 /// The returned iterator requires that the pattern supports a reverse
1679 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1680 /// search yields the same elements.
1681 ///
1682 /// For iterating from the front, the [`split`] method can be used.
1683 ///
1684 /// [`split`]: str::split
1685 ///
1686 /// # Examples
1687 ///
1688 /// Simple patterns:
1689 ///
1690 /// ```
1691 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1692 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1693 ///
1694 /// let v: Vec<&str> = "".rsplit('X').collect();
1695 /// assert_eq!(v, [""]);
1696 ///
1697 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1698 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1699 ///
1700 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1701 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1702 /// ```
1703 ///
1704 /// A more complex pattern, using a closure:
1705 ///
1706 /// ```
1707 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1708 /// assert_eq!(v, ["ghi", "def", "abc"]);
1709 /// ```
1710 #[stable(feature = "rust1", since = "1.0.0")]
1711 #[inline]
1712 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1713 where
1714 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1715 {
1716 RSplit(self.split(pat).0)
1717 }
1718
1719 /// Returns an iterator over substrings of the given string slice, separated
1720 /// by characters matched by a pattern.
1721 ///
1722 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1723 /// function or closure that determines if a character matches.
1724 ///
1725 /// [`char`]: prim@char
1726 /// [pattern]: self::pattern
1727 ///
1728 /// Equivalent to [`split`], except that the trailing substring
1729 /// is skipped if empty.
1730 ///
1731 /// [`split`]: str::split
1732 ///
1733 /// This method can be used for string data that is _terminated_,
1734 /// rather than _separated_ by a pattern.
1735 ///
1736 /// # Iterator behavior
1737 ///
1738 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1739 /// allows a reverse search and forward/reverse search yields the same
1740 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1741 ///
1742 /// If the pattern allows a reverse search but its results might differ
1743 /// from a forward search, the [`rsplit_terminator`] method can be used.
1744 ///
1745 /// [`rsplit_terminator`]: str::rsplit_terminator
1746 ///
1747 /// # Examples
1748 ///
1749 /// ```
1750 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1751 /// assert_eq!(v, ["A", "B"]);
1752 ///
1753 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1754 /// assert_eq!(v, ["A", "", "B", ""]);
1755 ///
1756 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1757 /// assert_eq!(v, ["A", "B", "C", "D"]);
1758 /// ```
1759 #[stable(feature = "rust1", since = "1.0.0")]
1760 #[inline]
1761 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1762 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1763 }
1764
1765 /// Returns an iterator over substrings of `self`, separated by characters
1766 /// matched by a pattern and yielded in reverse order.
1767 ///
1768 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1769 /// function or closure that determines if a character matches.
1770 ///
1771 /// [`char`]: prim@char
1772 /// [pattern]: self::pattern
1773 ///
1774 /// Equivalent to [`split`], except that the trailing substring is
1775 /// skipped if empty.
1776 ///
1777 /// [`split`]: str::split
1778 ///
1779 /// This method can be used for string data that is _terminated_,
1780 /// rather than _separated_ by a pattern.
1781 ///
1782 /// # Iterator behavior
1783 ///
1784 /// The returned iterator requires that the pattern supports a
1785 /// reverse search, and it will be double ended if a forward/reverse
1786 /// search yields the same elements.
1787 ///
1788 /// For iterating from the front, the [`split_terminator`] method can be
1789 /// used.
1790 ///
1791 /// [`split_terminator`]: str::split_terminator
1792 ///
1793 /// # Examples
1794 ///
1795 /// ```
1796 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1797 /// assert_eq!(v, ["B", "A"]);
1798 ///
1799 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1800 /// assert_eq!(v, ["", "B", "", "A"]);
1801 ///
1802 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1803 /// assert_eq!(v, ["D", "C", "B", "A"]);
1804 /// ```
1805 #[stable(feature = "rust1", since = "1.0.0")]
1806 #[inline]
1807 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1808 where
1809 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1810 {
1811 RSplitTerminator(self.split_terminator(pat).0)
1812 }
1813
1814 /// Returns an iterator over substrings of the given string slice, separated
1815 /// by a pattern, restricted to returning at most `n` items.
1816 ///
1817 /// If `n` substrings are returned, the last substring (the `n`th substring)
1818 /// will contain the remainder of the string.
1819 ///
1820 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1821 /// function or closure that determines if a character matches.
1822 ///
1823 /// [`char`]: prim@char
1824 /// [pattern]: self::pattern
1825 ///
1826 /// # Iterator behavior
1827 ///
1828 /// The returned iterator will not be double ended, because it is
1829 /// not efficient to support.
1830 ///
1831 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1832 /// used.
1833 ///
1834 /// [`rsplitn`]: str::rsplitn
1835 ///
1836 /// # Examples
1837 ///
1838 /// Simple patterns:
1839 ///
1840 /// ```
1841 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1842 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1843 ///
1844 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1845 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1846 ///
1847 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1848 /// assert_eq!(v, ["abcXdef"]);
1849 ///
1850 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1851 /// assert_eq!(v, [""]);
1852 /// ```
1853 ///
1854 /// A more complex pattern, using a closure:
1855 ///
1856 /// ```
1857 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1858 /// assert_eq!(v, ["abc", "defXghi"]);
1859 /// ```
1860 #[stable(feature = "rust1", since = "1.0.0")]
1861 #[inline]
1862 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1863 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1864 }
1865
1866 /// Returns an iterator over substrings of this string slice, separated by a
1867 /// pattern, starting from the end of the string, restricted to returning at
1868 /// most `n` items.
1869 ///
1870 /// If `n` substrings are returned, the last substring (the `n`th substring)
1871 /// will contain the remainder of the string.
1872 ///
1873 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1874 /// function or closure that determines if a character matches.
1875 ///
1876 /// [`char`]: prim@char
1877 /// [pattern]: self::pattern
1878 ///
1879 /// # Iterator behavior
1880 ///
1881 /// The returned iterator will not be double ended, because it is not
1882 /// efficient to support.
1883 ///
1884 /// For splitting from the front, the [`splitn`] method can be used.
1885 ///
1886 /// [`splitn`]: str::splitn
1887 ///
1888 /// # Examples
1889 ///
1890 /// Simple patterns:
1891 ///
1892 /// ```
1893 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1894 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1895 ///
1896 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1897 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1898 ///
1899 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1900 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1901 /// ```
1902 ///
1903 /// A more complex pattern, using a closure:
1904 ///
1905 /// ```
1906 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1907 /// assert_eq!(v, ["ghi", "abc1def"]);
1908 /// ```
1909 #[stable(feature = "rust1", since = "1.0.0")]
1910 #[inline]
1911 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1912 where
1913 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1914 {
1915 RSplitN(self.splitn(n, pat).0)
1916 }
1917
1918 /// Splits the string on the first occurrence of the specified delimiter and
1919 /// returns prefix before delimiter and suffix after delimiter.
1920 ///
1921 /// # Examples
1922 ///
1923 /// ```
1924 /// assert_eq!("cfg".split_once('='), None);
1925 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1926 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1927 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1928 /// ```
1929 #[stable(feature = "str_split_once", since = "1.52.0")]
1930 #[inline]
1931 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1932 let (start, end) = delimiter.into_searcher(self).next_match()?;
1933 // SAFETY: `Searcher` is known to return valid indices.
1934 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1935 }
1936
1937 /// Splits the string on the last occurrence of the specified delimiter and
1938 /// returns prefix before delimiter and suffix after delimiter.
1939 ///
1940 /// # Examples
1941 ///
1942 /// ```
1943 /// assert_eq!("cfg".rsplit_once('='), None);
1944 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1945 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1946 /// ```
1947 #[stable(feature = "str_split_once", since = "1.52.0")]
1948 #[inline]
1949 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1950 where
1951 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1952 {
1953 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1954 // SAFETY: `Searcher` is known to return valid indices.
1955 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1956 }
1957
1958 /// Returns an iterator over the disjoint matches of a pattern within the
1959 /// given string slice.
1960 ///
1961 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1962 /// function or closure that determines if a character matches.
1963 ///
1964 /// [`char`]: prim@char
1965 /// [pattern]: self::pattern
1966 ///
1967 /// # Iterator behavior
1968 ///
1969 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1970 /// allows a reverse search and forward/reverse search yields the same
1971 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1972 ///
1973 /// If the pattern allows a reverse search but its results might differ
1974 /// from a forward search, the [`rmatches`] method can be used.
1975 ///
1976 /// [`rmatches`]: str::rmatches
1977 ///
1978 /// # Examples
1979 ///
1980 /// ```
1981 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1982 /// assert_eq!(v, ["abc", "abc", "abc"]);
1983 ///
1984 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1985 /// assert_eq!(v, ["1", "2", "3"]);
1986 /// ```
1987 #[stable(feature = "str_matches", since = "1.2.0")]
1988 #[inline]
1989 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
1990 Matches(MatchesInternal(pat.into_searcher(self)))
1991 }
1992
1993 /// Returns an iterator over the disjoint matches of a pattern within this
1994 /// string slice, yielded in reverse order.
1995 ///
1996 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1997 /// function or closure that determines if a character matches.
1998 ///
1999 /// [`char`]: prim@char
2000 /// [pattern]: self::pattern
2001 ///
2002 /// # Iterator behavior
2003 ///
2004 /// The returned iterator requires that the pattern supports a reverse
2005 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2006 /// search yields the same elements.
2007 ///
2008 /// For iterating from the front, the [`matches`] method can be used.
2009 ///
2010 /// [`matches`]: str::matches
2011 ///
2012 /// # Examples
2013 ///
2014 /// ```
2015 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2016 /// assert_eq!(v, ["abc", "abc", "abc"]);
2017 ///
2018 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2019 /// assert_eq!(v, ["3", "2", "1"]);
2020 /// ```
2021 #[stable(feature = "str_matches", since = "1.2.0")]
2022 #[inline]
2023 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2024 where
2025 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2026 {
2027 RMatches(self.matches(pat).0)
2028 }
2029
2030 /// Returns an iterator over the disjoint matches of a pattern within this string
2031 /// slice as well as the index that the match starts at.
2032 ///
2033 /// For matches of `pat` within `self` that overlap, only the indices
2034 /// corresponding to the first match are returned.
2035 ///
2036 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2037 /// function or closure that determines if a character matches.
2038 ///
2039 /// [`char`]: prim@char
2040 /// [pattern]: self::pattern
2041 ///
2042 /// # Iterator behavior
2043 ///
2044 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2045 /// allows a reverse search and forward/reverse search yields the same
2046 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2047 ///
2048 /// If the pattern allows a reverse search but its results might differ
2049 /// from a forward search, the [`rmatch_indices`] method can be used.
2050 ///
2051 /// [`rmatch_indices`]: str::rmatch_indices
2052 ///
2053 /// # Examples
2054 ///
2055 /// ```
2056 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2057 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2058 ///
2059 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2060 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2061 ///
2062 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2063 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2064 /// ```
2065 #[stable(feature = "str_match_indices", since = "1.5.0")]
2066 #[inline]
2067 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2068 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2069 }
2070
2071 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2072 /// yielded in reverse order along with the index of the match.
2073 ///
2074 /// For matches of `pat` within `self` that overlap, only the indices
2075 /// corresponding to the last match are returned.
2076 ///
2077 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2078 /// function or closure that determines if a character matches.
2079 ///
2080 /// [`char`]: prim@char
2081 /// [pattern]: self::pattern
2082 ///
2083 /// # Iterator behavior
2084 ///
2085 /// The returned iterator requires that the pattern supports a reverse
2086 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2087 /// search yields the same elements.
2088 ///
2089 /// For iterating from the front, the [`match_indices`] method can be used.
2090 ///
2091 /// [`match_indices`]: str::match_indices
2092 ///
2093 /// # Examples
2094 ///
2095 /// ```
2096 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2097 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2098 ///
2099 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2100 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2101 ///
2102 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2103 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2104 /// ```
2105 #[stable(feature = "str_match_indices", since = "1.5.0")]
2106 #[inline]
2107 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2108 where
2109 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2110 {
2111 RMatchIndices(self.match_indices(pat).0)
2112 }
2113
2114 /// Returns a string slice with leading and trailing whitespace removed.
2115 ///
2116 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2117 /// Core Property `White_Space`, which includes newlines.
2118 ///
2119 /// # Examples
2120 ///
2121 /// ```
2122 /// let s = "\n Hello\tworld\t\n";
2123 ///
2124 /// assert_eq!("Hello\tworld", s.trim());
2125 /// ```
2126 #[inline]
2127 #[must_use = "this returns the trimmed string as a slice, \
2128 without modifying the original"]
2129 #[stable(feature = "rust1", since = "1.0.0")]
2130 #[rustc_diagnostic_item = "str_trim"]
2131 pub fn trim(&self) -> &str {
2132 self.trim_matches(char::is_whitespace)
2133 }
2134
2135 /// Returns a string slice with leading whitespace removed.
2136 ///
2137 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2138 /// Core Property `White_Space`, which includes newlines.
2139 ///
2140 /// # Text directionality
2141 ///
2142 /// A string is a sequence of bytes. `start` in this context means the first
2143 /// position of that byte string; for a left-to-right language like English or
2144 /// Russian, this will be left side, and for right-to-left languages like
2145 /// Arabic or Hebrew, this will be the right side.
2146 ///
2147 /// # Examples
2148 ///
2149 /// Basic usage:
2150 ///
2151 /// ```
2152 /// let s = "\n Hello\tworld\t\n";
2153 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2154 /// ```
2155 ///
2156 /// Directionality:
2157 ///
2158 /// ```
2159 /// let s = " English ";
2160 /// assert!(Some('E') == s.trim_start().chars().next());
2161 ///
2162 /// let s = " עברית ";
2163 /// assert!(Some('ע') == s.trim_start().chars().next());
2164 /// ```
2165 #[inline]
2166 #[must_use = "this returns the trimmed string as a new slice, \
2167 without modifying the original"]
2168 #[stable(feature = "trim_direction", since = "1.30.0")]
2169 #[rustc_diagnostic_item = "str_trim_start"]
2170 pub fn trim_start(&self) -> &str {
2171 self.trim_start_matches(char::is_whitespace)
2172 }
2173
2174 /// Returns a string slice with trailing whitespace removed.
2175 ///
2176 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2177 /// Core Property `White_Space`, which includes newlines.
2178 ///
2179 /// # Text directionality
2180 ///
2181 /// A string is a sequence of bytes. `end` in this context means the last
2182 /// position of that byte string; for a left-to-right language like English or
2183 /// Russian, this will be right side, and for right-to-left languages like
2184 /// Arabic or Hebrew, this will be the left side.
2185 ///
2186 /// # Examples
2187 ///
2188 /// Basic usage:
2189 ///
2190 /// ```
2191 /// let s = "\n Hello\tworld\t\n";
2192 /// assert_eq!("\n Hello\tworld", s.trim_end());
2193 /// ```
2194 ///
2195 /// Directionality:
2196 ///
2197 /// ```
2198 /// let s = " English ";
2199 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2200 ///
2201 /// let s = " עברית ";
2202 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2203 /// ```
2204 #[inline]
2205 #[must_use = "this returns the trimmed string as a new slice, \
2206 without modifying the original"]
2207 #[stable(feature = "trim_direction", since = "1.30.0")]
2208 #[rustc_diagnostic_item = "str_trim_end"]
2209 pub fn trim_end(&self) -> &str {
2210 self.trim_end_matches(char::is_whitespace)
2211 }
2212
2213 /// Returns a string slice with leading whitespace removed.
2214 ///
2215 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2216 /// Core Property `White_Space`.
2217 ///
2218 /// # Text directionality
2219 ///
2220 /// A string is a sequence of bytes. 'Left' in this context means the first
2221 /// position of that byte string; for a language like Arabic or Hebrew
2222 /// which are 'right to left' rather than 'left to right', this will be
2223 /// the _right_ side, not the left.
2224 ///
2225 /// # Examples
2226 ///
2227 /// Basic usage:
2228 ///
2229 /// ```
2230 /// let s = " Hello\tworld\t";
2231 ///
2232 /// assert_eq!("Hello\tworld\t", s.trim_left());
2233 /// ```
2234 ///
2235 /// Directionality:
2236 ///
2237 /// ```
2238 /// let s = " English";
2239 /// assert!(Some('E') == s.trim_left().chars().next());
2240 ///
2241 /// let s = " עברית";
2242 /// assert!(Some('ע') == s.trim_left().chars().next());
2243 /// ```
2244 #[must_use = "this returns the trimmed string as a new slice, \
2245 without modifying the original"]
2246 #[inline]
2247 #[stable(feature = "rust1", since = "1.0.0")]
2248 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2249 pub fn trim_left(&self) -> &str {
2250 self.trim_start()
2251 }
2252
2253 /// Returns a string slice with trailing whitespace removed.
2254 ///
2255 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2256 /// Core Property `White_Space`.
2257 ///
2258 /// # Text directionality
2259 ///
2260 /// A string is a sequence of bytes. 'Right' in this context means the last
2261 /// position of that byte string; for a language like Arabic or Hebrew
2262 /// which are 'right to left' rather than 'left to right', this will be
2263 /// the _left_ side, not the right.
2264 ///
2265 /// # Examples
2266 ///
2267 /// Basic usage:
2268 ///
2269 /// ```
2270 /// let s = " Hello\tworld\t";
2271 ///
2272 /// assert_eq!(" Hello\tworld", s.trim_right());
2273 /// ```
2274 ///
2275 /// Directionality:
2276 ///
2277 /// ```
2278 /// let s = "English ";
2279 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2280 ///
2281 /// let s = "עברית ";
2282 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2283 /// ```
2284 #[must_use = "this returns the trimmed string as a new slice, \
2285 without modifying the original"]
2286 #[inline]
2287 #[stable(feature = "rust1", since = "1.0.0")]
2288 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2289 pub fn trim_right(&self) -> &str {
2290 self.trim_end()
2291 }
2292
2293 /// Returns a string slice with all prefixes and suffixes that match a
2294 /// pattern repeatedly removed.
2295 ///
2296 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2297 /// or closure that determines if a character matches.
2298 ///
2299 /// [`char`]: prim@char
2300 /// [pattern]: self::pattern
2301 ///
2302 /// # Examples
2303 ///
2304 /// Simple patterns:
2305 ///
2306 /// ```
2307 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2308 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2309 ///
2310 /// let x: &[_] = &['1', '2'];
2311 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2312 /// ```
2313 ///
2314 /// A more complex pattern, using a closure:
2315 ///
2316 /// ```
2317 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2318 /// ```
2319 #[must_use = "this returns the trimmed string as a new slice, \
2320 without modifying the original"]
2321 #[stable(feature = "rust1", since = "1.0.0")]
2322 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2323 where
2324 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2325 {
2326 let mut i = 0;
2327 let mut j = 0;
2328 let mut matcher = pat.into_searcher(self);
2329 if let Some((a, b)) = matcher.next_reject() {
2330 i = a;
2331 j = b; // Remember earliest known match, correct it below if
2332 // last match is different
2333 }
2334 if let Some((_, b)) = matcher.next_reject_back() {
2335 j = b;
2336 }
2337 // SAFETY: `Searcher` is known to return valid indices.
2338 unsafe { self.get_unchecked(i..j) }
2339 }
2340
2341 /// Returns a string slice with all prefixes that match a pattern
2342 /// repeatedly removed.
2343 ///
2344 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2345 /// function or closure that determines if a character matches.
2346 ///
2347 /// [`char`]: prim@char
2348 /// [pattern]: self::pattern
2349 ///
2350 /// # Text directionality
2351 ///
2352 /// A string is a sequence of bytes. `start` in this context means the first
2353 /// position of that byte string; for a left-to-right language like English or
2354 /// Russian, this will be left side, and for right-to-left languages like
2355 /// Arabic or Hebrew, this will be the right side.
2356 ///
2357 /// # Examples
2358 ///
2359 /// ```
2360 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2361 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2362 ///
2363 /// let x: &[_] = &['1', '2'];
2364 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2365 /// ```
2366 #[must_use = "this returns the trimmed string as a new slice, \
2367 without modifying the original"]
2368 #[stable(feature = "trim_direction", since = "1.30.0")]
2369 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2370 let mut i = self.len();
2371 let mut matcher = pat.into_searcher(self);
2372 if let Some((a, _)) = matcher.next_reject() {
2373 i = a;
2374 }
2375 // SAFETY: `Searcher` is known to return valid indices.
2376 unsafe { self.get_unchecked(i..self.len()) }
2377 }
2378
2379 /// Returns a string slice with the prefix removed.
2380 ///
2381 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2382 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2383 ///
2384 /// If the string does not start with `prefix`, returns `None`.
2385 ///
2386 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2387 /// function or closure that determines if a character matches.
2388 ///
2389 /// [`char`]: prim@char
2390 /// [pattern]: self::pattern
2391 /// [`trim_start_matches`]: Self::trim_start_matches
2392 ///
2393 /// # Examples
2394 ///
2395 /// ```
2396 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2397 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2398 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2399 /// ```
2400 #[must_use = "this returns the remaining substring as a new slice, \
2401 without modifying the original"]
2402 #[stable(feature = "str_strip", since = "1.45.0")]
2403 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2404 prefix.strip_prefix_of(self)
2405 }
2406
2407 /// Returns a string slice with the suffix removed.
2408 ///
2409 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2410 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2411 ///
2412 /// If the string does not end with `suffix`, returns `None`.
2413 ///
2414 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2415 /// function or closure that determines if a character matches.
2416 ///
2417 /// [`char`]: prim@char
2418 /// [pattern]: self::pattern
2419 /// [`trim_end_matches`]: Self::trim_end_matches
2420 ///
2421 /// # Examples
2422 ///
2423 /// ```
2424 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2425 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2426 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2427 /// ```
2428 #[must_use = "this returns the remaining substring as a new slice, \
2429 without modifying the original"]
2430 #[stable(feature = "str_strip", since = "1.45.0")]
2431 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2432 where
2433 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2434 {
2435 suffix.strip_suffix_of(self)
2436 }
2437
2438 /// Returns a string slice with the optional prefix removed.
2439 ///
2440 /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2441 /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2442 /// instead of returning [`Option<&str>`].
2443 ///
2444 /// If the string does not start with `prefix`, returns the original string unchanged.
2445 ///
2446 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2447 /// function or closure that determines if a character matches.
2448 ///
2449 /// [`char`]: prim@char
2450 /// [pattern]: self::pattern
2451 /// [`strip_prefix`]: Self::strip_prefix
2452 ///
2453 /// # Examples
2454 ///
2455 /// ```
2456 /// #![feature(trim_prefix_suffix)]
2457 ///
2458 /// // Prefix present - removes it
2459 /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2460 /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2461 ///
2462 /// // Prefix absent - returns original string
2463 /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2464 ///
2465 /// // Method chaining example
2466 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2467 /// ```
2468 #[must_use = "this returns the remaining substring as a new slice, \
2469 without modifying the original"]
2470 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2471 pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2472 prefix.strip_prefix_of(self).unwrap_or(self)
2473 }
2474
2475 /// Returns a string slice with the optional suffix removed.
2476 ///
2477 /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2478 /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2479 /// instead of returning [`Option<&str>`].
2480 ///
2481 /// If the string does not end with `suffix`, returns the original string unchanged.
2482 ///
2483 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2484 /// function or closure that determines if a character matches.
2485 ///
2486 /// [`char`]: prim@char
2487 /// [pattern]: self::pattern
2488 /// [`strip_suffix`]: Self::strip_suffix
2489 ///
2490 /// # Examples
2491 ///
2492 /// ```
2493 /// #![feature(trim_prefix_suffix)]
2494 ///
2495 /// // Suffix present - removes it
2496 /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2497 /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2498 ///
2499 /// // Suffix absent - returns original string
2500 /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2501 ///
2502 /// // Method chaining example
2503 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2504 /// ```
2505 #[must_use = "this returns the remaining substring as a new slice, \
2506 without modifying the original"]
2507 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2508 pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2509 where
2510 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2511 {
2512 suffix.strip_suffix_of(self).unwrap_or(self)
2513 }
2514
2515 /// Returns a string slice with all suffixes that match a pattern
2516 /// repeatedly removed.
2517 ///
2518 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2519 /// function or closure that determines if a character matches.
2520 ///
2521 /// [`char`]: prim@char
2522 /// [pattern]: self::pattern
2523 ///
2524 /// # Text directionality
2525 ///
2526 /// A string is a sequence of bytes. `end` in this context means the last
2527 /// position of that byte string; for a left-to-right language like English or
2528 /// Russian, this will be right side, and for right-to-left languages like
2529 /// Arabic or Hebrew, this will be the left side.
2530 ///
2531 /// # Examples
2532 ///
2533 /// Simple patterns:
2534 ///
2535 /// ```
2536 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2537 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2538 ///
2539 /// let x: &[_] = &['1', '2'];
2540 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2541 /// ```
2542 ///
2543 /// A more complex pattern, using a closure:
2544 ///
2545 /// ```
2546 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2547 /// ```
2548 #[must_use = "this returns the trimmed string as a new slice, \
2549 without modifying the original"]
2550 #[stable(feature = "trim_direction", since = "1.30.0")]
2551 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2552 where
2553 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2554 {
2555 let mut j = 0;
2556 let mut matcher = pat.into_searcher(self);
2557 if let Some((_, b)) = matcher.next_reject_back() {
2558 j = b;
2559 }
2560 // SAFETY: `Searcher` is known to return valid indices.
2561 unsafe { self.get_unchecked(0..j) }
2562 }
2563
2564 /// Returns a string slice with all prefixes that match a pattern
2565 /// repeatedly removed.
2566 ///
2567 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2568 /// function or closure that determines if a character matches.
2569 ///
2570 /// [`char`]: prim@char
2571 /// [pattern]: self::pattern
2572 ///
2573 /// # Text directionality
2574 ///
2575 /// A string is a sequence of bytes. 'Left' in this context means the first
2576 /// position of that byte string; for a language like Arabic or Hebrew
2577 /// which are 'right to left' rather than 'left to right', this will be
2578 /// the _right_ side, not the left.
2579 ///
2580 /// # Examples
2581 ///
2582 /// ```
2583 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2584 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2585 ///
2586 /// let x: &[_] = &['1', '2'];
2587 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2588 /// ```
2589 #[stable(feature = "rust1", since = "1.0.0")]
2590 #[deprecated(
2591 since = "1.33.0",
2592 note = "superseded by `trim_start_matches`",
2593 suggestion = "trim_start_matches"
2594 )]
2595 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2596 self.trim_start_matches(pat)
2597 }
2598
2599 /// Returns a string slice with all suffixes that match a pattern
2600 /// repeatedly removed.
2601 ///
2602 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2603 /// function or closure that determines if a character matches.
2604 ///
2605 /// [`char`]: prim@char
2606 /// [pattern]: self::pattern
2607 ///
2608 /// # Text directionality
2609 ///
2610 /// A string is a sequence of bytes. 'Right' in this context means the last
2611 /// position of that byte string; for a language like Arabic or Hebrew
2612 /// which are 'right to left' rather than 'left to right', this will be
2613 /// the _left_ side, not the right.
2614 ///
2615 /// # Examples
2616 ///
2617 /// Simple patterns:
2618 ///
2619 /// ```
2620 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2621 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2622 ///
2623 /// let x: &[_] = &['1', '2'];
2624 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2625 /// ```
2626 ///
2627 /// A more complex pattern, using a closure:
2628 ///
2629 /// ```
2630 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2631 /// ```
2632 #[stable(feature = "rust1", since = "1.0.0")]
2633 #[deprecated(
2634 since = "1.33.0",
2635 note = "superseded by `trim_end_matches`",
2636 suggestion = "trim_end_matches"
2637 )]
2638 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2639 where
2640 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2641 {
2642 self.trim_end_matches(pat)
2643 }
2644
2645 /// Parses this string slice into another type.
2646 ///
2647 /// Because `parse` is so general, it can cause problems with type
2648 /// inference. As such, `parse` is one of the few times you'll see
2649 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2650 /// helps the inference algorithm understand specifically which type
2651 /// you're trying to parse into.
2652 ///
2653 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2654
2655 ///
2656 /// # Errors
2657 ///
2658 /// Will return [`Err`] if it's not possible to parse this string slice into
2659 /// the desired type.
2660 ///
2661 /// [`Err`]: FromStr::Err
2662 ///
2663 /// # Examples
2664 ///
2665 /// Basic usage:
2666 ///
2667 /// ```
2668 /// let four: u32 = "4".parse().unwrap();
2669 ///
2670 /// assert_eq!(4, four);
2671 /// ```
2672 ///
2673 /// Using the 'turbofish' instead of annotating `four`:
2674 ///
2675 /// ```
2676 /// let four = "4".parse::<u32>();
2677 ///
2678 /// assert_eq!(Ok(4), four);
2679 /// ```
2680 ///
2681 /// Failing to parse:
2682 ///
2683 /// ```
2684 /// let nope = "j".parse::<u32>();
2685 ///
2686 /// assert!(nope.is_err());
2687 /// ```
2688 #[inline]
2689 #[stable(feature = "rust1", since = "1.0.0")]
2690 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2691 FromStr::from_str(self)
2692 }
2693
2694 /// Checks if all characters in this string are within the ASCII range.
2695 ///
2696 /// # Examples
2697 ///
2698 /// ```
2699 /// let ascii = "hello!\n";
2700 /// let non_ascii = "Grüße, Jürgen ❤";
2701 ///
2702 /// assert!(ascii.is_ascii());
2703 /// assert!(!non_ascii.is_ascii());
2704 /// ```
2705 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2706 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2707 #[must_use]
2708 #[inline]
2709 pub const fn is_ascii(&self) -> bool {
2710 // We can treat each byte as character here: all multibyte characters
2711 // start with a byte that is not in the ASCII range, so we will stop
2712 // there already.
2713 self.as_bytes().is_ascii()
2714 }
2715
2716 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2717 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2718 #[unstable(feature = "ascii_char", issue = "110998")]
2719 #[must_use]
2720 #[inline]
2721 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2722 // Like in `is_ascii`, we can work on the bytes directly.
2723 self.as_bytes().as_ascii()
2724 }
2725
2726 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2727 /// without checking whether they are valid.
2728 ///
2729 /// # Safety
2730 ///
2731 /// Every character in this string must be ASCII, or else this is UB.
2732 #[unstable(feature = "ascii_char", issue = "110998")]
2733 #[must_use]
2734 #[inline]
2735 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2736 assert_unsafe_precondition!(
2737 check_library_ub,
2738 "as_ascii_unchecked requires that the string is valid ASCII",
2739 (it: &str = self) => it.is_ascii()
2740 );
2741
2742 // SAFETY: the caller promised that every byte of this string slice
2743 // is ASCII.
2744 unsafe { self.as_bytes().as_ascii_unchecked() }
2745 }
2746
2747 /// Checks that two strings are an ASCII case-insensitive match.
2748 ///
2749 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2750 /// but without allocating and copying temporaries.
2751 ///
2752 /// # Examples
2753 ///
2754 /// ```
2755 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2756 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2757 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2758 /// ```
2759 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2760 #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2761 #[must_use]
2762 #[inline]
2763 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2764 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2765 }
2766
2767 /// Converts this string to its ASCII upper case equivalent in-place.
2768 ///
2769 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2770 /// but non-ASCII letters are unchanged.
2771 ///
2772 /// To return a new uppercased value without modifying the existing one, use
2773 /// [`to_ascii_uppercase()`].
2774 ///
2775 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2776 ///
2777 /// # Examples
2778 ///
2779 /// ```
2780 /// let mut s = String::from("Grüße, Jürgen ❤");
2781 ///
2782 /// s.make_ascii_uppercase();
2783 ///
2784 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2785 /// ```
2786 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2787 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2788 #[inline]
2789 pub const fn make_ascii_uppercase(&mut self) {
2790 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2791 let me = unsafe { self.as_bytes_mut() };
2792 me.make_ascii_uppercase()
2793 }
2794
2795 /// Converts this string to its ASCII lower case equivalent in-place.
2796 ///
2797 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2798 /// but non-ASCII letters are unchanged.
2799 ///
2800 /// To return a new lowercased value without modifying the existing one, use
2801 /// [`to_ascii_lowercase()`].
2802 ///
2803 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2804 ///
2805 /// # Examples
2806 ///
2807 /// ```
2808 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2809 ///
2810 /// s.make_ascii_lowercase();
2811 ///
2812 /// assert_eq!("grÜße, jÜrgen ❤", s);
2813 /// ```
2814 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2815 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2816 #[inline]
2817 pub const fn make_ascii_lowercase(&mut self) {
2818 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2819 let me = unsafe { self.as_bytes_mut() };
2820 me.make_ascii_lowercase()
2821 }
2822
2823 /// Returns a string slice with leading ASCII whitespace removed.
2824 ///
2825 /// 'Whitespace' refers to the definition used by
2826 /// [`u8::is_ascii_whitespace`].
2827 ///
2828 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2829 ///
2830 /// # Examples
2831 ///
2832 /// ```
2833 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2834 /// assert_eq!(" ".trim_ascii_start(), "");
2835 /// assert_eq!("".trim_ascii_start(), "");
2836 /// ```
2837 #[must_use = "this returns the trimmed string as a new slice, \
2838 without modifying the original"]
2839 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2840 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2841 #[inline]
2842 pub const fn trim_ascii_start(&self) -> &str {
2843 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2844 // UTF-8.
2845 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2846 }
2847
2848 /// Returns a string slice with trailing ASCII whitespace removed.
2849 ///
2850 /// 'Whitespace' refers to the definition used by
2851 /// [`u8::is_ascii_whitespace`].
2852 ///
2853 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2854 ///
2855 /// # Examples
2856 ///
2857 /// ```
2858 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2859 /// assert_eq!(" ".trim_ascii_end(), "");
2860 /// assert_eq!("".trim_ascii_end(), "");
2861 /// ```
2862 #[must_use = "this returns the trimmed string as a new slice, \
2863 without modifying the original"]
2864 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2865 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2866 #[inline]
2867 pub const fn trim_ascii_end(&self) -> &str {
2868 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2869 // UTF-8.
2870 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2871 }
2872
2873 /// Returns a string slice with leading and trailing ASCII whitespace
2874 /// removed.
2875 ///
2876 /// 'Whitespace' refers to the definition used by
2877 /// [`u8::is_ascii_whitespace`].
2878 ///
2879 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2880 ///
2881 /// # Examples
2882 ///
2883 /// ```
2884 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2885 /// assert_eq!(" ".trim_ascii(), "");
2886 /// assert_eq!("".trim_ascii(), "");
2887 /// ```
2888 #[must_use = "this returns the trimmed string as a new slice, \
2889 without modifying the original"]
2890 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2891 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2892 #[inline]
2893 pub const fn trim_ascii(&self) -> &str {
2894 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2895 // UTF-8.
2896 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2897 }
2898
2899 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2900 ///
2901 /// Note: only extended grapheme codepoints that begin the string will be
2902 /// escaped.
2903 ///
2904 /// # Examples
2905 ///
2906 /// As an iterator:
2907 ///
2908 /// ```
2909 /// for c in "❤\n!".escape_debug() {
2910 /// print!("{c}");
2911 /// }
2912 /// println!();
2913 /// ```
2914 ///
2915 /// Using `println!` directly:
2916 ///
2917 /// ```
2918 /// println!("{}", "❤\n!".escape_debug());
2919 /// ```
2920 ///
2921 ///
2922 /// Both are equivalent to:
2923 ///
2924 /// ```
2925 /// println!("❤\\n!");
2926 /// ```
2927 ///
2928 /// Using `to_string`:
2929 ///
2930 /// ```
2931 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2932 /// ```
2933 #[must_use = "this returns the escaped string as an iterator, \
2934 without modifying the original"]
2935 #[stable(feature = "str_escape", since = "1.34.0")]
2936 pub fn escape_debug(&self) -> EscapeDebug<'_> {
2937 let mut chars = self.chars();
2938 EscapeDebug {
2939 inner: chars
2940 .next()
2941 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2942 .into_iter()
2943 .flatten()
2944 .chain(chars.flat_map(CharEscapeDebugContinue)),
2945 }
2946 }
2947
2948 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2949 ///
2950 /// # Examples
2951 ///
2952 /// As an iterator:
2953 ///
2954 /// ```
2955 /// for c in "❤\n!".escape_default() {
2956 /// print!("{c}");
2957 /// }
2958 /// println!();
2959 /// ```
2960 ///
2961 /// Using `println!` directly:
2962 ///
2963 /// ```
2964 /// println!("{}", "❤\n!".escape_default());
2965 /// ```
2966 ///
2967 ///
2968 /// Both are equivalent to:
2969 ///
2970 /// ```
2971 /// println!("\\u{{2764}}\\n!");
2972 /// ```
2973 ///
2974 /// Using `to_string`:
2975 ///
2976 /// ```
2977 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2978 /// ```
2979 #[must_use = "this returns the escaped string as an iterator, \
2980 without modifying the original"]
2981 #[stable(feature = "str_escape", since = "1.34.0")]
2982 pub fn escape_default(&self) -> EscapeDefault<'_> {
2983 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2984 }
2985
2986 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2987 ///
2988 /// # Examples
2989 ///
2990 /// As an iterator:
2991 ///
2992 /// ```
2993 /// for c in "❤\n!".escape_unicode() {
2994 /// print!("{c}");
2995 /// }
2996 /// println!();
2997 /// ```
2998 ///
2999 /// Using `println!` directly:
3000 ///
3001 /// ```
3002 /// println!("{}", "❤\n!".escape_unicode());
3003 /// ```
3004 ///
3005 ///
3006 /// Both are equivalent to:
3007 ///
3008 /// ```
3009 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3010 /// ```
3011 ///
3012 /// Using `to_string`:
3013 ///
3014 /// ```
3015 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3016 /// ```
3017 #[must_use = "this returns the escaped string as an iterator, \
3018 without modifying the original"]
3019 #[stable(feature = "str_escape", since = "1.34.0")]
3020 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3021 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3022 }
3023
3024 /// Returns the range that a substring points to.
3025 ///
3026 /// Returns `None` if `substr` does not point within `self`.
3027 ///
3028 /// Unlike [`str::find`], **this does not search through the string**.
3029 /// Instead, it uses pointer arithmetic to find where in the string
3030 /// `substr` is derived from.
3031 ///
3032 /// This is useful for extending [`str::split`] and similar methods.
3033 ///
3034 /// Note that this method may return false positives (typically either
3035 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3036 /// zero-length `str` that points at the beginning or end of another,
3037 /// independent, `str`.
3038 ///
3039 /// # Examples
3040 /// ```
3041 /// #![feature(substr_range)]
3042 ///
3043 /// let data = "a, b, b, a";
3044 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3045 ///
3046 /// assert_eq!(iter.next(), Some(0..1));
3047 /// assert_eq!(iter.next(), Some(3..4));
3048 /// assert_eq!(iter.next(), Some(6..7));
3049 /// assert_eq!(iter.next(), Some(9..10));
3050 /// ```
3051 #[must_use]
3052 #[unstable(feature = "substr_range", issue = "126769")]
3053 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3054 self.as_bytes().subslice_range(substr.as_bytes())
3055 }
3056
3057 /// Returns the same string as a string slice `&str`.
3058 ///
3059 /// This method is redundant when used directly on `&str`, but
3060 /// it helps dereferencing other string-like types to string slices,
3061 /// for example references to `Box<str>` or `Arc<str>`.
3062 #[inline]
3063 #[unstable(feature = "str_as_str", issue = "130366")]
3064 pub fn as_str(&self) -> &str {
3065 self
3066 }
3067}
3068
3069#[stable(feature = "rust1", since = "1.0.0")]
3070impl AsRef<[u8]> for str {
3071 #[inline]
3072 fn as_ref(&self) -> &[u8] {
3073 self.as_bytes()
3074 }
3075}
3076
3077#[stable(feature = "rust1", since = "1.0.0")]
3078#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3079impl const Default for &str {
3080 /// Creates an empty str
3081 #[inline]
3082 fn default() -> Self {
3083 ""
3084 }
3085}
3086
3087#[stable(feature = "default_mut_str", since = "1.28.0")]
3088#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3089impl const Default for &mut str {
3090 /// Creates an empty mutable str
3091 #[inline]
3092 fn default() -> Self {
3093 // SAFETY: The empty string is valid UTF-8.
3094 unsafe { from_utf8_unchecked_mut(&mut []) }
3095 }
3096}
3097
3098impl_fn_for_zst! {
3099 /// A nameable, cloneable fn type
3100 #[derive(Clone)]
3101 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3102 let Some(line) = line.strip_suffix('\n') else { return line };
3103 let Some(line) = line.strip_suffix('\r') else { return line };
3104 line
3105 };
3106
3107 #[derive(Clone)]
3108 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3109 c.escape_debug_ext(EscapeDebugExtArgs {
3110 escape_grapheme_extended: false,
3111 escape_single_quote: true,
3112 escape_double_quote: true
3113 })
3114 };
3115
3116 #[derive(Clone)]
3117 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3118 c.escape_unicode()
3119 };
3120 #[derive(Clone)]
3121 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3122 c.escape_default()
3123 };
3124
3125 #[derive(Clone)]
3126 struct IsWhitespace impl Fn = |c: char| -> bool {
3127 c.is_whitespace()
3128 };
3129
3130 #[derive(Clone)]
3131 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3132 byte.is_ascii_whitespace()
3133 };
3134
3135 #[derive(Clone)]
3136 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3137 !s.is_empty()
3138 };
3139
3140 #[derive(Clone)]
3141 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3142 !s.is_empty()
3143 };
3144
3145 #[derive(Clone)]
3146 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3147 // SAFETY: not safe
3148 unsafe { from_utf8_unchecked(bytes) }
3149 };
3150}
3151
3152// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3153#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3154impl !crate::error::Error for &str {}