[go: up one dir, main page]

core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(feature = "panic_immediate_abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(feature = "panic_immediate_abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74    slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79    panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84    const MAX_DISPLAY_LENGTH: usize = 256;
85    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86    let s_trunc = &s[..trunc_len];
87    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89    // 1. out of bounds
90    if begin > s.len() || end > s.len() {
91        let oob_index = if begin > s.len() { begin } else { end };
92        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93    }
94
95    // 2. begin <= end
96    assert!(
97        begin <= end,
98        "begin <= end ({} <= {}) when slicing `{}`{}",
99        begin,
100        end,
101        s_trunc,
102        ellipsis
103    );
104
105    // 3. character boundary
106    let index = if !s.is_char_boundary(begin) { begin } else { end };
107    // find the character
108    let char_start = s.floor_char_boundary(index);
109    // `char_start` must be less than len and a char boundary
110    let ch = s[char_start..].chars().next().unwrap();
111    let char_range = char_start..char_start + ch.len_utf8();
112    panic!(
113        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114        index, ch, char_range, s_trunc, ellipsis
115    );
116}
117
118impl str {
119    /// Returns the length of `self`.
120    ///
121    /// This length is in bytes, not [`char`]s or graphemes. In other words,
122    /// it might not be what a human considers the length of the string.
123    ///
124    /// [`char`]: prim@char
125    ///
126    /// # Examples
127    ///
128    /// ```
129    /// let len = "foo".len();
130    /// assert_eq!(3, len);
131    ///
132    /// assert_eq!("ƒoo".len(), 4); // fancy f!
133    /// assert_eq!("ƒoo".chars().count(), 3);
134    /// ```
135    #[stable(feature = "rust1", since = "1.0.0")]
136    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137    #[rustc_diagnostic_item = "str_len"]
138    #[rustc_no_implicit_autorefs]
139    #[must_use]
140    #[inline]
141    pub const fn len(&self) -> usize {
142        self.as_bytes().len()
143    }
144
145    /// Returns `true` if `self` has a length of zero bytes.
146    ///
147    /// # Examples
148    ///
149    /// ```
150    /// let s = "";
151    /// assert!(s.is_empty());
152    ///
153    /// let s = "not empty";
154    /// assert!(!s.is_empty());
155    /// ```
156    #[stable(feature = "rust1", since = "1.0.0")]
157    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158    #[rustc_no_implicit_autorefs]
159    #[must_use]
160    #[inline]
161    pub const fn is_empty(&self) -> bool {
162        self.len() == 0
163    }
164
165    /// Converts a slice of bytes to a string slice.
166    ///
167    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171    /// UTF-8, and then does the conversion.
172    ///
173    /// [`&str`]: str
174    /// [byteslice]: prim@slice
175    ///
176    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177    /// incur the overhead of the validity check, there is an unsafe version of
178    /// this function, [`from_utf8_unchecked`], which has the same
179    /// behavior but skips the check.
180    ///
181    /// If you need a `String` instead of a `&str`, consider
182    /// [`String::from_utf8`][string].
183    ///
184    /// [string]: ../std/string/struct.String.html#method.from_utf8
185    ///
186    /// Because you can stack-allocate a `[u8; N]`, and you can take a
187    /// [`&[u8]`][byteslice] of it, this function is one way to have a
188    /// stack-allocated string. There is an example of this in the
189    /// examples section below.
190    ///
191    /// [byteslice]: slice
192    ///
193    /// # Errors
194    ///
195    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196    /// provided slice is not UTF-8.
197    ///
198    /// # Examples
199    ///
200    /// Basic usage:
201    ///
202    /// ```
203    /// // some bytes, in a vector
204    /// let sparkle_heart = vec![240, 159, 146, 150];
205    ///
206    /// // We can use the ? (try) operator to check if the bytes are valid
207    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208    ///
209    /// assert_eq!("💖", sparkle_heart);
210    /// # Ok::<_, std::str::Utf8Error>(())
211    /// ```
212    ///
213    /// Incorrect bytes:
214    ///
215    /// ```
216    /// // some invalid bytes, in a vector
217    /// let sparkle_heart = vec![0, 159, 146, 150];
218    ///
219    /// assert!(str::from_utf8(&sparkle_heart).is_err());
220    /// ```
221    ///
222    /// See the docs for [`Utf8Error`] for more details on the kinds of
223    /// errors that can be returned.
224    ///
225    /// A "stack allocated string":
226    ///
227    /// ```
228    /// // some bytes, in a stack-allocated array
229    /// let sparkle_heart = [240, 159, 146, 150];
230    ///
231    /// // We know these bytes are valid, so just use `unwrap()`.
232    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233    ///
234    /// assert_eq!("💖", sparkle_heart);
235    /// ```
236    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240        converts::from_utf8(v)
241    }
242
243    /// Converts a mutable slice of bytes to a mutable string slice.
244    ///
245    /// # Examples
246    ///
247    /// Basic usage:
248    ///
249    /// ```
250    /// // "Hello, Rust!" as a mutable vector
251    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252    ///
253    /// // As we know these bytes are valid, we can use `unwrap()`
254    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255    ///
256    /// assert_eq!("Hello, Rust!", outstr);
257    /// ```
258    ///
259    /// Incorrect bytes:
260    ///
261    /// ```
262    /// // Some invalid bytes in a mutable vector
263    /// let mut invalid = vec![128, 223];
264    ///
265    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266    /// ```
267    /// See the docs for [`Utf8Error`] for more details on the kinds of
268    /// errors that can be returned.
269    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270    #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273        converts::from_utf8_mut(v)
274    }
275
276    /// Converts a slice of bytes to a string slice without checking
277    /// that the string contains valid UTF-8.
278    ///
279    /// See the safe version, [`from_utf8`], for more information.
280    ///
281    /// # Safety
282    ///
283    /// The bytes passed in must be valid UTF-8.
284    ///
285    /// # Examples
286    ///
287    /// Basic usage:
288    ///
289    /// ```
290    /// // some bytes, in a vector
291    /// let sparkle_heart = vec![240, 159, 146, 150];
292    ///
293    /// let sparkle_heart = unsafe {
294    ///     str::from_utf8_unchecked(&sparkle_heart)
295    /// };
296    ///
297    /// assert_eq!("💖", sparkle_heart);
298    /// ```
299    #[inline]
300    #[must_use]
301    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306        unsafe { converts::from_utf8_unchecked(v) }
307    }
308
309    /// Converts a slice of bytes to a string slice without checking
310    /// that the string contains valid UTF-8; mutable version.
311    ///
312    /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313    ///
314    /// # Examples
315    ///
316    /// Basic usage:
317    ///
318    /// ```
319    /// let mut heart = vec![240, 159, 146, 150];
320    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321    ///
322    /// assert_eq!("💖", heart);
323    /// ```
324    #[inline]
325    #[must_use]
326    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331        unsafe { converts::from_utf8_unchecked_mut(v) }
332    }
333
334    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335    /// sequence or the end of the string.
336    ///
337    /// The start and end of the string (when `index == self.len()`) are
338    /// considered to be boundaries.
339    ///
340    /// Returns `false` if `index` is greater than `self.len()`.
341    ///
342    /// # Examples
343    ///
344    /// ```
345    /// let s = "Löwe 老虎 Léopard";
346    /// assert!(s.is_char_boundary(0));
347    /// // start of `老`
348    /// assert!(s.is_char_boundary(6));
349    /// assert!(s.is_char_boundary(s.len()));
350    ///
351    /// // second byte of `ö`
352    /// assert!(!s.is_char_boundary(2));
353    ///
354    /// // third byte of `老`
355    /// assert!(!s.is_char_boundary(8));
356    /// ```
357    #[must_use]
358    #[stable(feature = "is_char_boundary", since = "1.9.0")]
359    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360    #[inline]
361    pub const fn is_char_boundary(&self, index: usize) -> bool {
362        // 0 is always ok.
363        // Test for 0 explicitly so that it can optimize out the check
364        // easily and skip reading string data for that case.
365        // Note that optimizing `self.get(..index)` relies on this.
366        if index == 0 {
367            return true;
368        }
369
370        if index >= self.len() {
371            // For `true` we have two options:
372            //
373            // - index == self.len()
374            //   Empty strings are valid, so return true
375            // - index > self.len()
376            //   In this case return false
377            //
378            // The check is placed exactly here, because it improves generated
379            // code on higher opt-levels. See PR #84751 for more details.
380            index == self.len()
381        } else {
382            self.as_bytes()[index].is_utf8_char_boundary()
383        }
384    }
385
386    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387    ///
388    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389    /// exceed a given number of bytes. Note that this is done purely at the character level
390    /// and can still visually split graphemes, even though the underlying characters aren't
391    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
392    /// includes 🧑 (person) instead.
393    ///
394    /// [`is_char_boundary(x)`]: Self::is_char_boundary
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// #![feature(round_char_boundary)]
400    /// let s = "❤️🧡💛💚💙💜";
401    /// assert_eq!(s.len(), 26);
402    /// assert!(!s.is_char_boundary(13));
403    ///
404    /// let closest = s.floor_char_boundary(13);
405    /// assert_eq!(closest, 10);
406    /// assert_eq!(&s[..closest], "❤️🧡");
407    /// ```
408    #[unstable(feature = "round_char_boundary", issue = "93743")]
409    #[inline]
410    pub fn floor_char_boundary(&self, index: usize) -> usize {
411        if index >= self.len() {
412            self.len()
413        } else {
414            let lower_bound = index.saturating_sub(3);
415            let new_index = self.as_bytes()[lower_bound..=index]
416                .iter()
417                .rposition(|b| b.is_utf8_char_boundary());
418
419            // SAFETY: we know that the character boundary will be within four bytes
420            unsafe { lower_bound + new_index.unwrap_unchecked() }
421        }
422    }
423
424    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
425    ///
426    /// If `index` is greater than the length of the string, this returns the length of the string.
427    ///
428    /// This method is the natural complement to [`floor_char_boundary`]. See that method
429    /// for more details.
430    ///
431    /// [`floor_char_boundary`]: str::floor_char_boundary
432    /// [`is_char_boundary(x)`]: Self::is_char_boundary
433    ///
434    /// # Examples
435    ///
436    /// ```
437    /// #![feature(round_char_boundary)]
438    /// let s = "❤️🧡💛💚💙💜";
439    /// assert_eq!(s.len(), 26);
440    /// assert!(!s.is_char_boundary(13));
441    ///
442    /// let closest = s.ceil_char_boundary(13);
443    /// assert_eq!(closest, 14);
444    /// assert_eq!(&s[..closest], "❤️🧡💛");
445    /// ```
446    #[unstable(feature = "round_char_boundary", issue = "93743")]
447    #[inline]
448    pub fn ceil_char_boundary(&self, index: usize) -> usize {
449        if index >= self.len() {
450            self.len()
451        } else {
452            let upper_bound = Ord::min(index + 4, self.len());
453            self.as_bytes()[index..upper_bound]
454                .iter()
455                .position(|b| b.is_utf8_char_boundary())
456                .map_or(upper_bound, |pos| pos + index)
457        }
458    }
459
460    /// Converts a string slice to a byte slice. To convert the byte slice back
461    /// into a string slice, use the [`from_utf8`] function.
462    ///
463    /// # Examples
464    ///
465    /// ```
466    /// let bytes = "bors".as_bytes();
467    /// assert_eq!(b"bors", bytes);
468    /// ```
469    #[stable(feature = "rust1", since = "1.0.0")]
470    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
471    #[must_use]
472    #[inline(always)]
473    #[allow(unused_attributes)]
474    pub const fn as_bytes(&self) -> &[u8] {
475        // SAFETY: const sound because we transmute two types with the same layout
476        unsafe { mem::transmute(self) }
477    }
478
479    /// Converts a mutable string slice to a mutable byte slice.
480    ///
481    /// # Safety
482    ///
483    /// The caller must ensure that the content of the slice is valid UTF-8
484    /// before the borrow ends and the underlying `str` is used.
485    ///
486    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
487    ///
488    /// # Examples
489    ///
490    /// Basic usage:
491    ///
492    /// ```
493    /// let mut s = String::from("Hello");
494    /// let bytes = unsafe { s.as_bytes_mut() };
495    ///
496    /// assert_eq!(b"Hello", bytes);
497    /// ```
498    ///
499    /// Mutability:
500    ///
501    /// ```
502    /// let mut s = String::from("🗻∈🌏");
503    ///
504    /// unsafe {
505    ///     let bytes = s.as_bytes_mut();
506    ///
507    ///     bytes[0] = 0xF0;
508    ///     bytes[1] = 0x9F;
509    ///     bytes[2] = 0x8D;
510    ///     bytes[3] = 0x94;
511    /// }
512    ///
513    /// assert_eq!("🍔∈🌏", s);
514    /// ```
515    #[stable(feature = "str_mut_extras", since = "1.20.0")]
516    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
517    #[must_use]
518    #[inline(always)]
519    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
520        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
521        // has the same layout as `&[u8]` (only std can make this guarantee).
522        // The pointer dereference is safe since it comes from a mutable reference which
523        // is guaranteed to be valid for writes.
524        unsafe { &mut *(self as *mut str as *mut [u8]) }
525    }
526
527    /// Converts a string slice to a raw pointer.
528    ///
529    /// As string slices are a slice of bytes, the raw pointer points to a
530    /// [`u8`]. This pointer will be pointing to the first byte of the string
531    /// slice.
532    ///
533    /// The caller must ensure that the returned pointer is never written to.
534    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
535    ///
536    /// [`as_mut_ptr`]: str::as_mut_ptr
537    ///
538    /// # Examples
539    ///
540    /// ```
541    /// let s = "Hello";
542    /// let ptr = s.as_ptr();
543    /// ```
544    #[stable(feature = "rust1", since = "1.0.0")]
545    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
546    #[rustc_never_returns_null_ptr]
547    #[rustc_as_ptr]
548    #[must_use]
549    #[inline(always)]
550    pub const fn as_ptr(&self) -> *const u8 {
551        self as *const str as *const u8
552    }
553
554    /// Converts a mutable string slice to a raw pointer.
555    ///
556    /// As string slices are a slice of bytes, the raw pointer points to a
557    /// [`u8`]. This pointer will be pointing to the first byte of the string
558    /// slice.
559    ///
560    /// It is your responsibility to make sure that the string slice only gets
561    /// modified in a way that it remains valid UTF-8.
562    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
563    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
564    #[rustc_never_returns_null_ptr]
565    #[rustc_as_ptr]
566    #[must_use]
567    #[inline(always)]
568    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
569        self as *mut str as *mut u8
570    }
571
572    /// Returns a subslice of `str`.
573    ///
574    /// This is the non-panicking alternative to indexing the `str`. Returns
575    /// [`None`] whenever equivalent indexing operation would panic.
576    ///
577    /// # Examples
578    ///
579    /// ```
580    /// let v = String::from("🗻∈🌏");
581    ///
582    /// assert_eq!(Some("🗻"), v.get(0..4));
583    ///
584    /// // indices not on UTF-8 sequence boundaries
585    /// assert!(v.get(1..).is_none());
586    /// assert!(v.get(..8).is_none());
587    ///
588    /// // out of bounds
589    /// assert!(v.get(..42).is_none());
590    /// ```
591    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
592    #[inline]
593    pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
594        i.get(self)
595    }
596
597    /// Returns a mutable subslice of `str`.
598    ///
599    /// This is the non-panicking alternative to indexing the `str`. Returns
600    /// [`None`] whenever equivalent indexing operation would panic.
601    ///
602    /// # Examples
603    ///
604    /// ```
605    /// let mut v = String::from("hello");
606    /// // correct length
607    /// assert!(v.get_mut(0..5).is_some());
608    /// // out of bounds
609    /// assert!(v.get_mut(..42).is_none());
610    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
611    ///
612    /// assert_eq!("hello", v);
613    /// {
614    ///     let s = v.get_mut(0..2);
615    ///     let s = s.map(|s| {
616    ///         s.make_ascii_uppercase();
617    ///         &*s
618    ///     });
619    ///     assert_eq!(Some("HE"), s);
620    /// }
621    /// assert_eq!("HEllo", v);
622    /// ```
623    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
624    #[inline]
625    pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
626        i.get_mut(self)
627    }
628
629    /// Returns an unchecked subslice of `str`.
630    ///
631    /// This is the unchecked alternative to indexing the `str`.
632    ///
633    /// # Safety
634    ///
635    /// Callers of this function are responsible that these preconditions are
636    /// satisfied:
637    ///
638    /// * The starting index must not exceed the ending index;
639    /// * Indexes must be within bounds of the original slice;
640    /// * Indexes must lie on UTF-8 sequence boundaries.
641    ///
642    /// Failing that, the returned string slice may reference invalid memory or
643    /// violate the invariants communicated by the `str` type.
644    ///
645    /// # Examples
646    ///
647    /// ```
648    /// let v = "🗻∈🌏";
649    /// unsafe {
650    ///     assert_eq!("🗻", v.get_unchecked(0..4));
651    ///     assert_eq!("∈", v.get_unchecked(4..7));
652    ///     assert_eq!("🌏", v.get_unchecked(7..11));
653    /// }
654    /// ```
655    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
656    #[inline]
657    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
658        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
659        // the slice is dereferenceable because `self` is a safe reference.
660        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
661        unsafe { &*i.get_unchecked(self) }
662    }
663
664    /// Returns a mutable, unchecked subslice of `str`.
665    ///
666    /// This is the unchecked alternative to indexing the `str`.
667    ///
668    /// # Safety
669    ///
670    /// Callers of this function are responsible that these preconditions are
671    /// satisfied:
672    ///
673    /// * The starting index must not exceed the ending index;
674    /// * Indexes must be within bounds of the original slice;
675    /// * Indexes must lie on UTF-8 sequence boundaries.
676    ///
677    /// Failing that, the returned string slice may reference invalid memory or
678    /// violate the invariants communicated by the `str` type.
679    ///
680    /// # Examples
681    ///
682    /// ```
683    /// let mut v = String::from("🗻∈🌏");
684    /// unsafe {
685    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
686    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
687    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
688    /// }
689    /// ```
690    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
691    #[inline]
692    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
693        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
694        // the slice is dereferenceable because `self` is a safe reference.
695        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
696        unsafe { &mut *i.get_unchecked_mut(self) }
697    }
698
699    /// Creates a string slice from another string slice, bypassing safety
700    /// checks.
701    ///
702    /// This is generally not recommended, use with caution! For a safe
703    /// alternative see [`str`] and [`Index`].
704    ///
705    /// [`Index`]: crate::ops::Index
706    ///
707    /// This new slice goes from `begin` to `end`, including `begin` but
708    /// excluding `end`.
709    ///
710    /// To get a mutable string slice instead, see the
711    /// [`slice_mut_unchecked`] method.
712    ///
713    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
714    ///
715    /// # Safety
716    ///
717    /// Callers of this function are responsible that three preconditions are
718    /// satisfied:
719    ///
720    /// * `begin` must not exceed `end`.
721    /// * `begin` and `end` must be byte positions within the string slice.
722    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
723    ///
724    /// # Examples
725    ///
726    /// ```
727    /// let s = "Löwe 老虎 Léopard";
728    ///
729    /// unsafe {
730    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
731    /// }
732    ///
733    /// let s = "Hello, world!";
734    ///
735    /// unsafe {
736    ///     assert_eq!("world", s.slice_unchecked(7, 12));
737    /// }
738    /// ```
739    #[stable(feature = "rust1", since = "1.0.0")]
740    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
741    #[must_use]
742    #[inline]
743    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
744        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
745        // the slice is dereferenceable because `self` is a safe reference.
746        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
747        unsafe { &*(begin..end).get_unchecked(self) }
748    }
749
750    /// Creates a string slice from another string slice, bypassing safety
751    /// checks.
752    ///
753    /// This is generally not recommended, use with caution! For a safe
754    /// alternative see [`str`] and [`IndexMut`].
755    ///
756    /// [`IndexMut`]: crate::ops::IndexMut
757    ///
758    /// This new slice goes from `begin` to `end`, including `begin` but
759    /// excluding `end`.
760    ///
761    /// To get an immutable string slice instead, see the
762    /// [`slice_unchecked`] method.
763    ///
764    /// [`slice_unchecked`]: str::slice_unchecked
765    ///
766    /// # Safety
767    ///
768    /// Callers of this function are responsible that three preconditions are
769    /// satisfied:
770    ///
771    /// * `begin` must not exceed `end`.
772    /// * `begin` and `end` must be byte positions within the string slice.
773    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
774    #[stable(feature = "str_slice_mut", since = "1.5.0")]
775    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
776    #[inline]
777    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
778        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
779        // the slice is dereferenceable because `self` is a safe reference.
780        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
781        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
782    }
783
784    /// Divides one string slice into two at an index.
785    ///
786    /// The argument, `mid`, should be a byte offset from the start of the
787    /// string. It must also be on the boundary of a UTF-8 code point.
788    ///
789    /// The two slices returned go from the start of the string slice to `mid`,
790    /// and from `mid` to the end of the string slice.
791    ///
792    /// To get mutable string slices instead, see the [`split_at_mut`]
793    /// method.
794    ///
795    /// [`split_at_mut`]: str::split_at_mut
796    ///
797    /// # Panics
798    ///
799    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
800    /// the end of the last code point of the string slice.  For a non-panicking
801    /// alternative see [`split_at_checked`](str::split_at_checked).
802    ///
803    /// # Examples
804    ///
805    /// ```
806    /// let s = "Per Martin-Löf";
807    ///
808    /// let (first, last) = s.split_at(3);
809    ///
810    /// assert_eq!("Per", first);
811    /// assert_eq!(" Martin-Löf", last);
812    /// ```
813    #[inline]
814    #[must_use]
815    #[stable(feature = "str_split_at", since = "1.4.0")]
816    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
817    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
818        match self.split_at_checked(mid) {
819            None => slice_error_fail(self, 0, mid),
820            Some(pair) => pair,
821        }
822    }
823
824    /// Divides one mutable string slice into two at an index.
825    ///
826    /// The argument, `mid`, should be a byte offset from the start of the
827    /// string. It must also be on the boundary of a UTF-8 code point.
828    ///
829    /// The two slices returned go from the start of the string slice to `mid`,
830    /// and from `mid` to the end of the string slice.
831    ///
832    /// To get immutable string slices instead, see the [`split_at`] method.
833    ///
834    /// [`split_at`]: str::split_at
835    ///
836    /// # Panics
837    ///
838    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
839    /// the end of the last code point of the string slice.  For a non-panicking
840    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
841    ///
842    /// # Examples
843    ///
844    /// ```
845    /// let mut s = "Per Martin-Löf".to_string();
846    /// {
847    ///     let (first, last) = s.split_at_mut(3);
848    ///     first.make_ascii_uppercase();
849    ///     assert_eq!("PER", first);
850    ///     assert_eq!(" Martin-Löf", last);
851    /// }
852    /// assert_eq!("PER Martin-Löf", s);
853    /// ```
854    #[inline]
855    #[must_use]
856    #[stable(feature = "str_split_at", since = "1.4.0")]
857    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
858    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
859        // is_char_boundary checks that the index is in [0, .len()]
860        if self.is_char_boundary(mid) {
861            // SAFETY: just checked that `mid` is on a char boundary.
862            unsafe { self.split_at_mut_unchecked(mid) }
863        } else {
864            slice_error_fail(self, 0, mid)
865        }
866    }
867
868    /// Divides one string slice into two at an index.
869    ///
870    /// The argument, `mid`, should be a valid byte offset from the start of the
871    /// string. It must also be on the boundary of a UTF-8 code point. The
872    /// method returns `None` if that’s not the case.
873    ///
874    /// The two slices returned go from the start of the string slice to `mid`,
875    /// and from `mid` to the end of the string slice.
876    ///
877    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
878    /// method.
879    ///
880    /// [`split_at_mut_checked`]: str::split_at_mut_checked
881    ///
882    /// # Examples
883    ///
884    /// ```
885    /// let s = "Per Martin-Löf";
886    ///
887    /// let (first, last) = s.split_at_checked(3).unwrap();
888    /// assert_eq!("Per", first);
889    /// assert_eq!(" Martin-Löf", last);
890    ///
891    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
892    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
893    /// ```
894    #[inline]
895    #[must_use]
896    #[stable(feature = "split_at_checked", since = "1.80.0")]
897    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
898    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
899        // is_char_boundary checks that the index is in [0, .len()]
900        if self.is_char_boundary(mid) {
901            // SAFETY: just checked that `mid` is on a char boundary.
902            Some(unsafe { self.split_at_unchecked(mid) })
903        } else {
904            None
905        }
906    }
907
908    /// Divides one mutable string slice into two at an index.
909    ///
910    /// The argument, `mid`, should be a valid byte offset from the start of the
911    /// string. It must also be on the boundary of a UTF-8 code point. The
912    /// method returns `None` if that’s not the case.
913    ///
914    /// The two slices returned go from the start of the string slice to `mid`,
915    /// and from `mid` to the end of the string slice.
916    ///
917    /// To get immutable string slices instead, see the [`split_at_checked`] method.
918    ///
919    /// [`split_at_checked`]: str::split_at_checked
920    ///
921    /// # Examples
922    ///
923    /// ```
924    /// let mut s = "Per Martin-Löf".to_string();
925    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
926    ///     first.make_ascii_uppercase();
927    ///     assert_eq!("PER", first);
928    ///     assert_eq!(" Martin-Löf", last);
929    /// }
930    /// assert_eq!("PER Martin-Löf", s);
931    ///
932    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
933    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
934    /// ```
935    #[inline]
936    #[must_use]
937    #[stable(feature = "split_at_checked", since = "1.80.0")]
938    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
939    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
940        // is_char_boundary checks that the index is in [0, .len()]
941        if self.is_char_boundary(mid) {
942            // SAFETY: just checked that `mid` is on a char boundary.
943            Some(unsafe { self.split_at_mut_unchecked(mid) })
944        } else {
945            None
946        }
947    }
948
949    /// Divides one string slice into two at an index.
950    ///
951    /// # Safety
952    ///
953    /// The caller must ensure that `mid` is a valid byte offset from the start
954    /// of the string and falls on the boundary of a UTF-8 code point.
955    #[inline]
956    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
957        let len = self.len();
958        let ptr = self.as_ptr();
959        // SAFETY: caller guarantees `mid` is on a char boundary.
960        unsafe {
961            (
962                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
963                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
964            )
965        }
966    }
967
968    /// Divides one string slice into two at an index.
969    ///
970    /// # Safety
971    ///
972    /// The caller must ensure that `mid` is a valid byte offset from the start
973    /// of the string and falls on the boundary of a UTF-8 code point.
974    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
975        let len = self.len();
976        let ptr = self.as_mut_ptr();
977        // SAFETY: caller guarantees `mid` is on a char boundary.
978        unsafe {
979            (
980                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
981                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
982            )
983        }
984    }
985
986    /// Returns an iterator over the [`char`]s of a string slice.
987    ///
988    /// As a string slice consists of valid UTF-8, we can iterate through a
989    /// string slice by [`char`]. This method returns such an iterator.
990    ///
991    /// It's important to remember that [`char`] represents a Unicode Scalar
992    /// Value, and might not match your idea of what a 'character' is. Iteration
993    /// over grapheme clusters may be what you actually want. This functionality
994    /// is not provided by Rust's standard library, check crates.io instead.
995    ///
996    /// # Examples
997    ///
998    /// Basic usage:
999    ///
1000    /// ```
1001    /// let word = "goodbye";
1002    ///
1003    /// let count = word.chars().count();
1004    /// assert_eq!(7, count);
1005    ///
1006    /// let mut chars = word.chars();
1007    ///
1008    /// assert_eq!(Some('g'), chars.next());
1009    /// assert_eq!(Some('o'), chars.next());
1010    /// assert_eq!(Some('o'), chars.next());
1011    /// assert_eq!(Some('d'), chars.next());
1012    /// assert_eq!(Some('b'), chars.next());
1013    /// assert_eq!(Some('y'), chars.next());
1014    /// assert_eq!(Some('e'), chars.next());
1015    ///
1016    /// assert_eq!(None, chars.next());
1017    /// ```
1018    ///
1019    /// Remember, [`char`]s might not match your intuition about characters:
1020    ///
1021    /// [`char`]: prim@char
1022    ///
1023    /// ```
1024    /// let y = "y̆";
1025    ///
1026    /// let mut chars = y.chars();
1027    ///
1028    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1029    /// assert_eq!(Some('\u{0306}'), chars.next());
1030    ///
1031    /// assert_eq!(None, chars.next());
1032    /// ```
1033    #[stable(feature = "rust1", since = "1.0.0")]
1034    #[inline]
1035    #[rustc_diagnostic_item = "str_chars"]
1036    pub fn chars(&self) -> Chars<'_> {
1037        Chars { iter: self.as_bytes().iter() }
1038    }
1039
1040    /// Returns an iterator over the [`char`]s of a string slice, and their
1041    /// positions.
1042    ///
1043    /// As a string slice consists of valid UTF-8, we can iterate through a
1044    /// string slice by [`char`]. This method returns an iterator of both
1045    /// these [`char`]s, as well as their byte positions.
1046    ///
1047    /// The iterator yields tuples. The position is first, the [`char`] is
1048    /// second.
1049    ///
1050    /// # Examples
1051    ///
1052    /// Basic usage:
1053    ///
1054    /// ```
1055    /// let word = "goodbye";
1056    ///
1057    /// let count = word.char_indices().count();
1058    /// assert_eq!(7, count);
1059    ///
1060    /// let mut char_indices = word.char_indices();
1061    ///
1062    /// assert_eq!(Some((0, 'g')), char_indices.next());
1063    /// assert_eq!(Some((1, 'o')), char_indices.next());
1064    /// assert_eq!(Some((2, 'o')), char_indices.next());
1065    /// assert_eq!(Some((3, 'd')), char_indices.next());
1066    /// assert_eq!(Some((4, 'b')), char_indices.next());
1067    /// assert_eq!(Some((5, 'y')), char_indices.next());
1068    /// assert_eq!(Some((6, 'e')), char_indices.next());
1069    ///
1070    /// assert_eq!(None, char_indices.next());
1071    /// ```
1072    ///
1073    /// Remember, [`char`]s might not match your intuition about characters:
1074    ///
1075    /// [`char`]: prim@char
1076    ///
1077    /// ```
1078    /// let yes = "y̆es";
1079    ///
1080    /// let mut char_indices = yes.char_indices();
1081    ///
1082    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1083    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1084    ///
1085    /// // note the 3 here - the previous character took up two bytes
1086    /// assert_eq!(Some((3, 'e')), char_indices.next());
1087    /// assert_eq!(Some((4, 's')), char_indices.next());
1088    ///
1089    /// assert_eq!(None, char_indices.next());
1090    /// ```
1091    #[stable(feature = "rust1", since = "1.0.0")]
1092    #[inline]
1093    pub fn char_indices(&self) -> CharIndices<'_> {
1094        CharIndices { front_offset: 0, iter: self.chars() }
1095    }
1096
1097    /// Returns an iterator over the bytes of a string slice.
1098    ///
1099    /// As a string slice consists of a sequence of bytes, we can iterate
1100    /// through a string slice by byte. This method returns such an iterator.
1101    ///
1102    /// # Examples
1103    ///
1104    /// ```
1105    /// let mut bytes = "bors".bytes();
1106    ///
1107    /// assert_eq!(Some(b'b'), bytes.next());
1108    /// assert_eq!(Some(b'o'), bytes.next());
1109    /// assert_eq!(Some(b'r'), bytes.next());
1110    /// assert_eq!(Some(b's'), bytes.next());
1111    ///
1112    /// assert_eq!(None, bytes.next());
1113    /// ```
1114    #[stable(feature = "rust1", since = "1.0.0")]
1115    #[inline]
1116    pub fn bytes(&self) -> Bytes<'_> {
1117        Bytes(self.as_bytes().iter().copied())
1118    }
1119
1120    /// Splits a string slice by whitespace.
1121    ///
1122    /// The iterator returned will return string slices that are sub-slices of
1123    /// the original string slice, separated by any amount of whitespace.
1124    ///
1125    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1126    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1127    /// instead, use [`split_ascii_whitespace`].
1128    ///
1129    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1130    ///
1131    /// # Examples
1132    ///
1133    /// Basic usage:
1134    ///
1135    /// ```
1136    /// let mut iter = "A few words".split_whitespace();
1137    ///
1138    /// assert_eq!(Some("A"), iter.next());
1139    /// assert_eq!(Some("few"), iter.next());
1140    /// assert_eq!(Some("words"), iter.next());
1141    ///
1142    /// assert_eq!(None, iter.next());
1143    /// ```
1144    ///
1145    /// All kinds of whitespace are considered:
1146    ///
1147    /// ```
1148    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1149    /// assert_eq!(Some("Mary"), iter.next());
1150    /// assert_eq!(Some("had"), iter.next());
1151    /// assert_eq!(Some("a"), iter.next());
1152    /// assert_eq!(Some("little"), iter.next());
1153    /// assert_eq!(Some("lamb"), iter.next());
1154    ///
1155    /// assert_eq!(None, iter.next());
1156    /// ```
1157    ///
1158    /// If the string is empty or all whitespace, the iterator yields no string slices:
1159    /// ```
1160    /// assert_eq!("".split_whitespace().next(), None);
1161    /// assert_eq!("   ".split_whitespace().next(), None);
1162    /// ```
1163    #[must_use = "this returns the split string as an iterator, \
1164                  without modifying the original"]
1165    #[stable(feature = "split_whitespace", since = "1.1.0")]
1166    #[rustc_diagnostic_item = "str_split_whitespace"]
1167    #[inline]
1168    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1169        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1170    }
1171
1172    /// Splits a string slice by ASCII whitespace.
1173    ///
1174    /// The iterator returned will return string slices that are sub-slices of
1175    /// the original string slice, separated by any amount of ASCII whitespace.
1176    ///
1177    /// This uses the same definition as [`char::is_ascii_whitespace`].
1178    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1179    ///
1180    /// [`split_whitespace`]: str::split_whitespace
1181    ///
1182    /// # Examples
1183    ///
1184    /// Basic usage:
1185    ///
1186    /// ```
1187    /// let mut iter = "A few words".split_ascii_whitespace();
1188    ///
1189    /// assert_eq!(Some("A"), iter.next());
1190    /// assert_eq!(Some("few"), iter.next());
1191    /// assert_eq!(Some("words"), iter.next());
1192    ///
1193    /// assert_eq!(None, iter.next());
1194    /// ```
1195    ///
1196    /// Various kinds of ASCII whitespace are considered
1197    /// (see [`char::is_ascii_whitespace`]):
1198    ///
1199    /// ```
1200    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1201    /// assert_eq!(Some("Mary"), iter.next());
1202    /// assert_eq!(Some("had"), iter.next());
1203    /// assert_eq!(Some("a"), iter.next());
1204    /// assert_eq!(Some("little"), iter.next());
1205    /// assert_eq!(Some("lamb"), iter.next());
1206    ///
1207    /// assert_eq!(None, iter.next());
1208    /// ```
1209    ///
1210    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1211    /// ```
1212    /// assert_eq!("".split_ascii_whitespace().next(), None);
1213    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1214    /// ```
1215    #[must_use = "this returns the split string as an iterator, \
1216                  without modifying the original"]
1217    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1218    #[inline]
1219    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1220        let inner =
1221            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1222        SplitAsciiWhitespace { inner }
1223    }
1224
1225    /// Returns an iterator over the lines of a string, as string slices.
1226    ///
1227    /// Lines are split at line endings that are either newlines (`\n`) or
1228    /// sequences of a carriage return followed by a line feed (`\r\n`).
1229    ///
1230    /// Line terminators are not included in the lines returned by the iterator.
1231    ///
1232    /// Note that any carriage return (`\r`) not immediately followed by a
1233    /// line feed (`\n`) does not split a line. These carriage returns are
1234    /// thereby included in the produced lines.
1235    ///
1236    /// The final line ending is optional. A string that ends with a final line
1237    /// ending will return the same lines as an otherwise identical string
1238    /// without a final line ending.
1239    ///
1240    /// # Examples
1241    ///
1242    /// Basic usage:
1243    ///
1244    /// ```
1245    /// let text = "foo\r\nbar\n\nbaz\r";
1246    /// let mut lines = text.lines();
1247    ///
1248    /// assert_eq!(Some("foo"), lines.next());
1249    /// assert_eq!(Some("bar"), lines.next());
1250    /// assert_eq!(Some(""), lines.next());
1251    /// // Trailing carriage return is included in the last line
1252    /// assert_eq!(Some("baz\r"), lines.next());
1253    ///
1254    /// assert_eq!(None, lines.next());
1255    /// ```
1256    ///
1257    /// The final line does not require any ending:
1258    ///
1259    /// ```
1260    /// let text = "foo\nbar\n\r\nbaz";
1261    /// let mut lines = text.lines();
1262    ///
1263    /// assert_eq!(Some("foo"), lines.next());
1264    /// assert_eq!(Some("bar"), lines.next());
1265    /// assert_eq!(Some(""), lines.next());
1266    /// assert_eq!(Some("baz"), lines.next());
1267    ///
1268    /// assert_eq!(None, lines.next());
1269    /// ```
1270    #[stable(feature = "rust1", since = "1.0.0")]
1271    #[inline]
1272    pub fn lines(&self) -> Lines<'_> {
1273        Lines(self.split_inclusive('\n').map(LinesMap))
1274    }
1275
1276    /// Returns an iterator over the lines of a string.
1277    #[stable(feature = "rust1", since = "1.0.0")]
1278    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1279    #[inline]
1280    #[allow(deprecated)]
1281    pub fn lines_any(&self) -> LinesAny<'_> {
1282        LinesAny(self.lines())
1283    }
1284
1285    /// Returns an iterator of `u16` over the string encoded
1286    /// as native endian UTF-16 (without byte-order mark).
1287    ///
1288    /// # Examples
1289    ///
1290    /// ```
1291    /// let text = "Zażółć gęślą jaźń";
1292    ///
1293    /// let utf8_len = text.len();
1294    /// let utf16_len = text.encode_utf16().count();
1295    ///
1296    /// assert!(utf16_len <= utf8_len);
1297    /// ```
1298    #[must_use = "this returns the encoded string as an iterator, \
1299                  without modifying the original"]
1300    #[stable(feature = "encode_utf16", since = "1.8.0")]
1301    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1302        EncodeUtf16 { chars: self.chars(), extra: 0 }
1303    }
1304
1305    /// Returns `true` if the given pattern matches a sub-slice of
1306    /// this string slice.
1307    ///
1308    /// Returns `false` if it does not.
1309    ///
1310    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1311    /// function or closure that determines if a character matches.
1312    ///
1313    /// [`char`]: prim@char
1314    /// [pattern]: self::pattern
1315    ///
1316    /// # Examples
1317    ///
1318    /// ```
1319    /// let bananas = "bananas";
1320    ///
1321    /// assert!(bananas.contains("nana"));
1322    /// assert!(!bananas.contains("apples"));
1323    /// ```
1324    #[stable(feature = "rust1", since = "1.0.0")]
1325    #[inline]
1326    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1327        pat.is_contained_in(self)
1328    }
1329
1330    /// Returns `true` if the given pattern matches a prefix of this
1331    /// string slice.
1332    ///
1333    /// Returns `false` if it does not.
1334    ///
1335    /// The [pattern] can be a `&str`, in which case this function will return true if
1336    /// the `&str` is a prefix of this string slice.
1337    ///
1338    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1339    /// function or closure that determines if a character matches.
1340    /// These will only be checked against the first character of this string slice.
1341    /// Look at the second example below regarding behavior for slices of [`char`]s.
1342    ///
1343    /// [`char`]: prim@char
1344    /// [pattern]: self::pattern
1345    ///
1346    /// # Examples
1347    ///
1348    /// ```
1349    /// let bananas = "bananas";
1350    ///
1351    /// assert!(bananas.starts_with("bana"));
1352    /// assert!(!bananas.starts_with("nana"));
1353    /// ```
1354    ///
1355    /// ```
1356    /// let bananas = "bananas";
1357    ///
1358    /// // Note that both of these assert successfully.
1359    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1360    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1361    /// ```
1362    #[stable(feature = "rust1", since = "1.0.0")]
1363    #[rustc_diagnostic_item = "str_starts_with"]
1364    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1365        pat.is_prefix_of(self)
1366    }
1367
1368    /// Returns `true` if the given pattern matches a suffix of this
1369    /// string slice.
1370    ///
1371    /// Returns `false` if it does not.
1372    ///
1373    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1374    /// function or closure that determines if a character matches.
1375    ///
1376    /// [`char`]: prim@char
1377    /// [pattern]: self::pattern
1378    ///
1379    /// # Examples
1380    ///
1381    /// ```
1382    /// let bananas = "bananas";
1383    ///
1384    /// assert!(bananas.ends_with("anas"));
1385    /// assert!(!bananas.ends_with("nana"));
1386    /// ```
1387    #[stable(feature = "rust1", since = "1.0.0")]
1388    #[rustc_diagnostic_item = "str_ends_with"]
1389    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1390    where
1391        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1392    {
1393        pat.is_suffix_of(self)
1394    }
1395
1396    /// Returns the byte index of the first character of this string slice that
1397    /// matches the pattern.
1398    ///
1399    /// Returns [`None`] if the pattern doesn't match.
1400    ///
1401    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1402    /// function or closure that determines if a character matches.
1403    ///
1404    /// [`char`]: prim@char
1405    /// [pattern]: self::pattern
1406    ///
1407    /// # Examples
1408    ///
1409    /// Simple patterns:
1410    ///
1411    /// ```
1412    /// let s = "Löwe 老虎 Léopard Gepardi";
1413    ///
1414    /// assert_eq!(s.find('L'), Some(0));
1415    /// assert_eq!(s.find('é'), Some(14));
1416    /// assert_eq!(s.find("pard"), Some(17));
1417    /// ```
1418    ///
1419    /// More complex patterns using point-free style and closures:
1420    ///
1421    /// ```
1422    /// let s = "Löwe 老虎 Léopard";
1423    ///
1424    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1425    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1426    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1427    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1428    /// ```
1429    ///
1430    /// Not finding the pattern:
1431    ///
1432    /// ```
1433    /// let s = "Löwe 老虎 Léopard";
1434    /// let x: &[_] = &['1', '2'];
1435    ///
1436    /// assert_eq!(s.find(x), None);
1437    /// ```
1438    #[stable(feature = "rust1", since = "1.0.0")]
1439    #[inline]
1440    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1441        pat.into_searcher(self).next_match().map(|(i, _)| i)
1442    }
1443
1444    /// Returns the byte index for the first character of the last match of the pattern in
1445    /// this string slice.
1446    ///
1447    /// Returns [`None`] if the pattern doesn't match.
1448    ///
1449    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1450    /// function or closure that determines if a character matches.
1451    ///
1452    /// [`char`]: prim@char
1453    /// [pattern]: self::pattern
1454    ///
1455    /// # Examples
1456    ///
1457    /// Simple patterns:
1458    ///
1459    /// ```
1460    /// let s = "Löwe 老虎 Léopard Gepardi";
1461    ///
1462    /// assert_eq!(s.rfind('L'), Some(13));
1463    /// assert_eq!(s.rfind('é'), Some(14));
1464    /// assert_eq!(s.rfind("pard"), Some(24));
1465    /// ```
1466    ///
1467    /// More complex patterns with closures:
1468    ///
1469    /// ```
1470    /// let s = "Löwe 老虎 Léopard";
1471    ///
1472    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1473    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1474    /// ```
1475    ///
1476    /// Not finding the pattern:
1477    ///
1478    /// ```
1479    /// let s = "Löwe 老虎 Léopard";
1480    /// let x: &[_] = &['1', '2'];
1481    ///
1482    /// assert_eq!(s.rfind(x), None);
1483    /// ```
1484    #[stable(feature = "rust1", since = "1.0.0")]
1485    #[inline]
1486    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1487    where
1488        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1489    {
1490        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1491    }
1492
1493    /// Returns an iterator over substrings of this string slice, separated by
1494    /// characters matched by a pattern.
1495    ///
1496    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1497    /// function or closure that determines if a character matches.
1498    ///
1499    /// If there are no matches the full string slice is returned as the only
1500    /// item in the iterator.
1501    ///
1502    /// [`char`]: prim@char
1503    /// [pattern]: self::pattern
1504    ///
1505    /// # Iterator behavior
1506    ///
1507    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1508    /// allows a reverse search and forward/reverse search yields the same
1509    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1510    ///
1511    /// If the pattern allows a reverse search but its results might differ
1512    /// from a forward search, the [`rsplit`] method can be used.
1513    ///
1514    /// [`rsplit`]: str::rsplit
1515    ///
1516    /// # Examples
1517    ///
1518    /// Simple patterns:
1519    ///
1520    /// ```
1521    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1522    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1523    ///
1524    /// let v: Vec<&str> = "".split('X').collect();
1525    /// assert_eq!(v, [""]);
1526    ///
1527    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1528    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1529    ///
1530    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1531    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1532    ///
1533    /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1534    /// assert_eq!(v, ["AABBCC"]);
1535    ///
1536    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1537    /// assert_eq!(v, ["abc", "def", "ghi"]);
1538    ///
1539    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1540    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1541    /// ```
1542    ///
1543    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1544    ///
1545    /// ```
1546    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1547    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1548    /// ```
1549    ///
1550    /// A more complex pattern, using a closure:
1551    ///
1552    /// ```
1553    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1554    /// assert_eq!(v, ["abc", "def", "ghi"]);
1555    /// ```
1556    ///
1557    /// If a string contains multiple contiguous separators, you will end up
1558    /// with empty strings in the output:
1559    ///
1560    /// ```
1561    /// let x = "||||a||b|c".to_string();
1562    /// let d: Vec<_> = x.split('|').collect();
1563    ///
1564    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1565    /// ```
1566    ///
1567    /// Contiguous separators are separated by the empty string.
1568    ///
1569    /// ```
1570    /// let x = "(///)".to_string();
1571    /// let d: Vec<_> = x.split('/').collect();
1572    ///
1573    /// assert_eq!(d, &["(", "", "", ")"]);
1574    /// ```
1575    ///
1576    /// Separators at the start or end of a string are neighbored
1577    /// by empty strings.
1578    ///
1579    /// ```
1580    /// let d: Vec<_> = "010".split("0").collect();
1581    /// assert_eq!(d, &["", "1", ""]);
1582    /// ```
1583    ///
1584    /// When the empty string is used as a separator, it separates
1585    /// every character in the string, along with the beginning
1586    /// and end of the string.
1587    ///
1588    /// ```
1589    /// let f: Vec<_> = "rust".split("").collect();
1590    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1591    /// ```
1592    ///
1593    /// Contiguous separators can lead to possibly surprising behavior
1594    /// when whitespace is used as the separator. This code is correct:
1595    ///
1596    /// ```
1597    /// let x = "    a  b c".to_string();
1598    /// let d: Vec<_> = x.split(' ').collect();
1599    ///
1600    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1601    /// ```
1602    ///
1603    /// It does _not_ give you:
1604    ///
1605    /// ```,ignore
1606    /// assert_eq!(d, &["a", "b", "c"]);
1607    /// ```
1608    ///
1609    /// Use [`split_whitespace`] for this behavior.
1610    ///
1611    /// [`split_whitespace`]: str::split_whitespace
1612    #[stable(feature = "rust1", since = "1.0.0")]
1613    #[inline]
1614    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1615        Split(SplitInternal {
1616            start: 0,
1617            end: self.len(),
1618            matcher: pat.into_searcher(self),
1619            allow_trailing_empty: true,
1620            finished: false,
1621        })
1622    }
1623
1624    /// Returns an iterator over substrings of this string slice, separated by
1625    /// characters matched by a pattern.
1626    ///
1627    /// Differs from the iterator produced by `split` in that `split_inclusive`
1628    /// leaves the matched part as the terminator of the substring.
1629    ///
1630    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1631    /// function or closure that determines if a character matches.
1632    ///
1633    /// [`char`]: prim@char
1634    /// [pattern]: self::pattern
1635    ///
1636    /// # Examples
1637    ///
1638    /// ```
1639    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1640    ///     .split_inclusive('\n').collect();
1641    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1642    /// ```
1643    ///
1644    /// If the last element of the string is matched,
1645    /// that element will be considered the terminator of the preceding substring.
1646    /// That substring will be the last item returned by the iterator.
1647    ///
1648    /// ```
1649    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1650    ///     .split_inclusive('\n').collect();
1651    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1652    /// ```
1653    #[stable(feature = "split_inclusive", since = "1.51.0")]
1654    #[inline]
1655    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1656        SplitInclusive(SplitInternal {
1657            start: 0,
1658            end: self.len(),
1659            matcher: pat.into_searcher(self),
1660            allow_trailing_empty: false,
1661            finished: false,
1662        })
1663    }
1664
1665    /// Returns an iterator over substrings of the given string slice, separated
1666    /// by characters matched by a pattern and yielded in reverse order.
1667    ///
1668    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1669    /// function or closure that determines if a character matches.
1670    ///
1671    /// [`char`]: prim@char
1672    /// [pattern]: self::pattern
1673    ///
1674    /// # Iterator behavior
1675    ///
1676    /// The returned iterator requires that the pattern supports a reverse
1677    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1678    /// search yields the same elements.
1679    ///
1680    /// For iterating from the front, the [`split`] method can be used.
1681    ///
1682    /// [`split`]: str::split
1683    ///
1684    /// # Examples
1685    ///
1686    /// Simple patterns:
1687    ///
1688    /// ```
1689    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1690    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1691    ///
1692    /// let v: Vec<&str> = "".rsplit('X').collect();
1693    /// assert_eq!(v, [""]);
1694    ///
1695    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1696    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1697    ///
1698    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1699    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1700    /// ```
1701    ///
1702    /// A more complex pattern, using a closure:
1703    ///
1704    /// ```
1705    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1706    /// assert_eq!(v, ["ghi", "def", "abc"]);
1707    /// ```
1708    #[stable(feature = "rust1", since = "1.0.0")]
1709    #[inline]
1710    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1711    where
1712        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1713    {
1714        RSplit(self.split(pat).0)
1715    }
1716
1717    /// Returns an iterator over substrings of the given string slice, separated
1718    /// by characters matched by a pattern.
1719    ///
1720    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1721    /// function or closure that determines if a character matches.
1722    ///
1723    /// [`char`]: prim@char
1724    /// [pattern]: self::pattern
1725    ///
1726    /// Equivalent to [`split`], except that the trailing substring
1727    /// is skipped if empty.
1728    ///
1729    /// [`split`]: str::split
1730    ///
1731    /// This method can be used for string data that is _terminated_,
1732    /// rather than _separated_ by a pattern.
1733    ///
1734    /// # Iterator behavior
1735    ///
1736    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1737    /// allows a reverse search and forward/reverse search yields the same
1738    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1739    ///
1740    /// If the pattern allows a reverse search but its results might differ
1741    /// from a forward search, the [`rsplit_terminator`] method can be used.
1742    ///
1743    /// [`rsplit_terminator`]: str::rsplit_terminator
1744    ///
1745    /// # Examples
1746    ///
1747    /// ```
1748    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1749    /// assert_eq!(v, ["A", "B"]);
1750    ///
1751    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1752    /// assert_eq!(v, ["A", "", "B", ""]);
1753    ///
1754    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1755    /// assert_eq!(v, ["A", "B", "C", "D"]);
1756    /// ```
1757    #[stable(feature = "rust1", since = "1.0.0")]
1758    #[inline]
1759    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1760        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1761    }
1762
1763    /// Returns an iterator over substrings of `self`, separated by characters
1764    /// matched by a pattern and yielded in reverse order.
1765    ///
1766    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1767    /// function or closure that determines if a character matches.
1768    ///
1769    /// [`char`]: prim@char
1770    /// [pattern]: self::pattern
1771    ///
1772    /// Equivalent to [`split`], except that the trailing substring is
1773    /// skipped if empty.
1774    ///
1775    /// [`split`]: str::split
1776    ///
1777    /// This method can be used for string data that is _terminated_,
1778    /// rather than _separated_ by a pattern.
1779    ///
1780    /// # Iterator behavior
1781    ///
1782    /// The returned iterator requires that the pattern supports a
1783    /// reverse search, and it will be double ended if a forward/reverse
1784    /// search yields the same elements.
1785    ///
1786    /// For iterating from the front, the [`split_terminator`] method can be
1787    /// used.
1788    ///
1789    /// [`split_terminator`]: str::split_terminator
1790    ///
1791    /// # Examples
1792    ///
1793    /// ```
1794    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1795    /// assert_eq!(v, ["B", "A"]);
1796    ///
1797    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1798    /// assert_eq!(v, ["", "B", "", "A"]);
1799    ///
1800    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1801    /// assert_eq!(v, ["D", "C", "B", "A"]);
1802    /// ```
1803    #[stable(feature = "rust1", since = "1.0.0")]
1804    #[inline]
1805    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1806    where
1807        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1808    {
1809        RSplitTerminator(self.split_terminator(pat).0)
1810    }
1811
1812    /// Returns an iterator over substrings of the given string slice, separated
1813    /// by a pattern, restricted to returning at most `n` items.
1814    ///
1815    /// If `n` substrings are returned, the last substring (the `n`th substring)
1816    /// will contain the remainder of the string.
1817    ///
1818    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1819    /// function or closure that determines if a character matches.
1820    ///
1821    /// [`char`]: prim@char
1822    /// [pattern]: self::pattern
1823    ///
1824    /// # Iterator behavior
1825    ///
1826    /// The returned iterator will not be double ended, because it is
1827    /// not efficient to support.
1828    ///
1829    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1830    /// used.
1831    ///
1832    /// [`rsplitn`]: str::rsplitn
1833    ///
1834    /// # Examples
1835    ///
1836    /// Simple patterns:
1837    ///
1838    /// ```
1839    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1840    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1841    ///
1842    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1843    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1844    ///
1845    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1846    /// assert_eq!(v, ["abcXdef"]);
1847    ///
1848    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1849    /// assert_eq!(v, [""]);
1850    /// ```
1851    ///
1852    /// A more complex pattern, using a closure:
1853    ///
1854    /// ```
1855    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1856    /// assert_eq!(v, ["abc", "defXghi"]);
1857    /// ```
1858    #[stable(feature = "rust1", since = "1.0.0")]
1859    #[inline]
1860    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1861        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1862    }
1863
1864    /// Returns an iterator over substrings of this string slice, separated by a
1865    /// pattern, starting from the end of the string, restricted to returning at
1866    /// most `n` items.
1867    ///
1868    /// If `n` substrings are returned, the last substring (the `n`th substring)
1869    /// will contain the remainder of the string.
1870    ///
1871    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1872    /// function or closure that determines if a character matches.
1873    ///
1874    /// [`char`]: prim@char
1875    /// [pattern]: self::pattern
1876    ///
1877    /// # Iterator behavior
1878    ///
1879    /// The returned iterator will not be double ended, because it is not
1880    /// efficient to support.
1881    ///
1882    /// For splitting from the front, the [`splitn`] method can be used.
1883    ///
1884    /// [`splitn`]: str::splitn
1885    ///
1886    /// # Examples
1887    ///
1888    /// Simple patterns:
1889    ///
1890    /// ```
1891    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1892    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1893    ///
1894    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1895    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1896    ///
1897    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1898    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1899    /// ```
1900    ///
1901    /// A more complex pattern, using a closure:
1902    ///
1903    /// ```
1904    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1905    /// assert_eq!(v, ["ghi", "abc1def"]);
1906    /// ```
1907    #[stable(feature = "rust1", since = "1.0.0")]
1908    #[inline]
1909    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1910    where
1911        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1912    {
1913        RSplitN(self.splitn(n, pat).0)
1914    }
1915
1916    /// Splits the string on the first occurrence of the specified delimiter and
1917    /// returns prefix before delimiter and suffix after delimiter.
1918    ///
1919    /// # Examples
1920    ///
1921    /// ```
1922    /// assert_eq!("cfg".split_once('='), None);
1923    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1924    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1925    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1926    /// ```
1927    #[stable(feature = "str_split_once", since = "1.52.0")]
1928    #[inline]
1929    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1930        let (start, end) = delimiter.into_searcher(self).next_match()?;
1931        // SAFETY: `Searcher` is known to return valid indices.
1932        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1933    }
1934
1935    /// Splits the string on the last occurrence of the specified delimiter and
1936    /// returns prefix before delimiter and suffix after delimiter.
1937    ///
1938    /// # Examples
1939    ///
1940    /// ```
1941    /// assert_eq!("cfg".rsplit_once('='), None);
1942    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1943    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1944    /// ```
1945    #[stable(feature = "str_split_once", since = "1.52.0")]
1946    #[inline]
1947    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1948    where
1949        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1950    {
1951        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1952        // SAFETY: `Searcher` is known to return valid indices.
1953        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1954    }
1955
1956    /// Returns an iterator over the disjoint matches of a pattern within the
1957    /// given string slice.
1958    ///
1959    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1960    /// function or closure that determines if a character matches.
1961    ///
1962    /// [`char`]: prim@char
1963    /// [pattern]: self::pattern
1964    ///
1965    /// # Iterator behavior
1966    ///
1967    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1968    /// allows a reverse search and forward/reverse search yields the same
1969    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1970    ///
1971    /// If the pattern allows a reverse search but its results might differ
1972    /// from a forward search, the [`rmatches`] method can be used.
1973    ///
1974    /// [`rmatches`]: str::rmatches
1975    ///
1976    /// # Examples
1977    ///
1978    /// ```
1979    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1980    /// assert_eq!(v, ["abc", "abc", "abc"]);
1981    ///
1982    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1983    /// assert_eq!(v, ["1", "2", "3"]);
1984    /// ```
1985    #[stable(feature = "str_matches", since = "1.2.0")]
1986    #[inline]
1987    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
1988        Matches(MatchesInternal(pat.into_searcher(self)))
1989    }
1990
1991    /// Returns an iterator over the disjoint matches of a pattern within this
1992    /// string slice, yielded in reverse order.
1993    ///
1994    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1995    /// function or closure that determines if a character matches.
1996    ///
1997    /// [`char`]: prim@char
1998    /// [pattern]: self::pattern
1999    ///
2000    /// # Iterator behavior
2001    ///
2002    /// The returned iterator requires that the pattern supports a reverse
2003    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2004    /// search yields the same elements.
2005    ///
2006    /// For iterating from the front, the [`matches`] method can be used.
2007    ///
2008    /// [`matches`]: str::matches
2009    ///
2010    /// # Examples
2011    ///
2012    /// ```
2013    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2014    /// assert_eq!(v, ["abc", "abc", "abc"]);
2015    ///
2016    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2017    /// assert_eq!(v, ["3", "2", "1"]);
2018    /// ```
2019    #[stable(feature = "str_matches", since = "1.2.0")]
2020    #[inline]
2021    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2022    where
2023        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2024    {
2025        RMatches(self.matches(pat).0)
2026    }
2027
2028    /// Returns an iterator over the disjoint matches of a pattern within this string
2029    /// slice as well as the index that the match starts at.
2030    ///
2031    /// For matches of `pat` within `self` that overlap, only the indices
2032    /// corresponding to the first match are returned.
2033    ///
2034    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2035    /// function or closure that determines if a character matches.
2036    ///
2037    /// [`char`]: prim@char
2038    /// [pattern]: self::pattern
2039    ///
2040    /// # Iterator behavior
2041    ///
2042    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2043    /// allows a reverse search and forward/reverse search yields the same
2044    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2045    ///
2046    /// If the pattern allows a reverse search but its results might differ
2047    /// from a forward search, the [`rmatch_indices`] method can be used.
2048    ///
2049    /// [`rmatch_indices`]: str::rmatch_indices
2050    ///
2051    /// # Examples
2052    ///
2053    /// ```
2054    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2055    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2056    ///
2057    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2058    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2059    ///
2060    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2061    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2062    /// ```
2063    #[stable(feature = "str_match_indices", since = "1.5.0")]
2064    #[inline]
2065    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2066        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2067    }
2068
2069    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2070    /// yielded in reverse order along with the index of the match.
2071    ///
2072    /// For matches of `pat` within `self` that overlap, only the indices
2073    /// corresponding to the last match are returned.
2074    ///
2075    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2076    /// function or closure that determines if a character matches.
2077    ///
2078    /// [`char`]: prim@char
2079    /// [pattern]: self::pattern
2080    ///
2081    /// # Iterator behavior
2082    ///
2083    /// The returned iterator requires that the pattern supports a reverse
2084    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2085    /// search yields the same elements.
2086    ///
2087    /// For iterating from the front, the [`match_indices`] method can be used.
2088    ///
2089    /// [`match_indices`]: str::match_indices
2090    ///
2091    /// # Examples
2092    ///
2093    /// ```
2094    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2095    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2096    ///
2097    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2098    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2099    ///
2100    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2101    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2102    /// ```
2103    #[stable(feature = "str_match_indices", since = "1.5.0")]
2104    #[inline]
2105    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2106    where
2107        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2108    {
2109        RMatchIndices(self.match_indices(pat).0)
2110    }
2111
2112    /// Returns a string slice with leading and trailing whitespace removed.
2113    ///
2114    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2115    /// Core Property `White_Space`, which includes newlines.
2116    ///
2117    /// # Examples
2118    ///
2119    /// ```
2120    /// let s = "\n Hello\tworld\t\n";
2121    ///
2122    /// assert_eq!("Hello\tworld", s.trim());
2123    /// ```
2124    #[inline]
2125    #[must_use = "this returns the trimmed string as a slice, \
2126                  without modifying the original"]
2127    #[stable(feature = "rust1", since = "1.0.0")]
2128    #[rustc_diagnostic_item = "str_trim"]
2129    pub fn trim(&self) -> &str {
2130        self.trim_matches(char::is_whitespace)
2131    }
2132
2133    /// Returns a string slice with leading whitespace removed.
2134    ///
2135    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2136    /// Core Property `White_Space`, which includes newlines.
2137    ///
2138    /// # Text directionality
2139    ///
2140    /// A string is a sequence of bytes. `start` in this context means the first
2141    /// position of that byte string; for a left-to-right language like English or
2142    /// Russian, this will be left side, and for right-to-left languages like
2143    /// Arabic or Hebrew, this will be the right side.
2144    ///
2145    /// # Examples
2146    ///
2147    /// Basic usage:
2148    ///
2149    /// ```
2150    /// let s = "\n Hello\tworld\t\n";
2151    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2152    /// ```
2153    ///
2154    /// Directionality:
2155    ///
2156    /// ```
2157    /// let s = "  English  ";
2158    /// assert!(Some('E') == s.trim_start().chars().next());
2159    ///
2160    /// let s = "  עברית  ";
2161    /// assert!(Some('ע') == s.trim_start().chars().next());
2162    /// ```
2163    #[inline]
2164    #[must_use = "this returns the trimmed string as a new slice, \
2165                  without modifying the original"]
2166    #[stable(feature = "trim_direction", since = "1.30.0")]
2167    #[rustc_diagnostic_item = "str_trim_start"]
2168    pub fn trim_start(&self) -> &str {
2169        self.trim_start_matches(char::is_whitespace)
2170    }
2171
2172    /// Returns a string slice with trailing whitespace removed.
2173    ///
2174    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2175    /// Core Property `White_Space`, which includes newlines.
2176    ///
2177    /// # Text directionality
2178    ///
2179    /// A string is a sequence of bytes. `end` in this context means the last
2180    /// position of that byte string; for a left-to-right language like English or
2181    /// Russian, this will be right side, and for right-to-left languages like
2182    /// Arabic or Hebrew, this will be the left side.
2183    ///
2184    /// # Examples
2185    ///
2186    /// Basic usage:
2187    ///
2188    /// ```
2189    /// let s = "\n Hello\tworld\t\n";
2190    /// assert_eq!("\n Hello\tworld", s.trim_end());
2191    /// ```
2192    ///
2193    /// Directionality:
2194    ///
2195    /// ```
2196    /// let s = "  English  ";
2197    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2198    ///
2199    /// let s = "  עברית  ";
2200    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2201    /// ```
2202    #[inline]
2203    #[must_use = "this returns the trimmed string as a new slice, \
2204                  without modifying the original"]
2205    #[stable(feature = "trim_direction", since = "1.30.0")]
2206    #[rustc_diagnostic_item = "str_trim_end"]
2207    pub fn trim_end(&self) -> &str {
2208        self.trim_end_matches(char::is_whitespace)
2209    }
2210
2211    /// Returns a string slice with leading whitespace removed.
2212    ///
2213    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2214    /// Core Property `White_Space`.
2215    ///
2216    /// # Text directionality
2217    ///
2218    /// A string is a sequence of bytes. 'Left' in this context means the first
2219    /// position of that byte string; for a language like Arabic or Hebrew
2220    /// which are 'right to left' rather than 'left to right', this will be
2221    /// the _right_ side, not the left.
2222    ///
2223    /// # Examples
2224    ///
2225    /// Basic usage:
2226    ///
2227    /// ```
2228    /// let s = " Hello\tworld\t";
2229    ///
2230    /// assert_eq!("Hello\tworld\t", s.trim_left());
2231    /// ```
2232    ///
2233    /// Directionality:
2234    ///
2235    /// ```
2236    /// let s = "  English";
2237    /// assert!(Some('E') == s.trim_left().chars().next());
2238    ///
2239    /// let s = "  עברית";
2240    /// assert!(Some('ע') == s.trim_left().chars().next());
2241    /// ```
2242    #[must_use = "this returns the trimmed string as a new slice, \
2243                  without modifying the original"]
2244    #[inline]
2245    #[stable(feature = "rust1", since = "1.0.0")]
2246    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2247    pub fn trim_left(&self) -> &str {
2248        self.trim_start()
2249    }
2250
2251    /// Returns a string slice with trailing whitespace removed.
2252    ///
2253    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2254    /// Core Property `White_Space`.
2255    ///
2256    /// # Text directionality
2257    ///
2258    /// A string is a sequence of bytes. 'Right' in this context means the last
2259    /// position of that byte string; for a language like Arabic or Hebrew
2260    /// which are 'right to left' rather than 'left to right', this will be
2261    /// the _left_ side, not the right.
2262    ///
2263    /// # Examples
2264    ///
2265    /// Basic usage:
2266    ///
2267    /// ```
2268    /// let s = " Hello\tworld\t";
2269    ///
2270    /// assert_eq!(" Hello\tworld", s.trim_right());
2271    /// ```
2272    ///
2273    /// Directionality:
2274    ///
2275    /// ```
2276    /// let s = "English  ";
2277    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2278    ///
2279    /// let s = "עברית  ";
2280    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2281    /// ```
2282    #[must_use = "this returns the trimmed string as a new slice, \
2283                  without modifying the original"]
2284    #[inline]
2285    #[stable(feature = "rust1", since = "1.0.0")]
2286    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2287    pub fn trim_right(&self) -> &str {
2288        self.trim_end()
2289    }
2290
2291    /// Returns a string slice with all prefixes and suffixes that match a
2292    /// pattern repeatedly removed.
2293    ///
2294    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2295    /// or closure that determines if a character matches.
2296    ///
2297    /// [`char`]: prim@char
2298    /// [pattern]: self::pattern
2299    ///
2300    /// # Examples
2301    ///
2302    /// Simple patterns:
2303    ///
2304    /// ```
2305    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2306    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2307    ///
2308    /// let x: &[_] = &['1', '2'];
2309    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2310    /// ```
2311    ///
2312    /// A more complex pattern, using a closure:
2313    ///
2314    /// ```
2315    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2316    /// ```
2317    #[must_use = "this returns the trimmed string as a new slice, \
2318                  without modifying the original"]
2319    #[stable(feature = "rust1", since = "1.0.0")]
2320    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2321    where
2322        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2323    {
2324        let mut i = 0;
2325        let mut j = 0;
2326        let mut matcher = pat.into_searcher(self);
2327        if let Some((a, b)) = matcher.next_reject() {
2328            i = a;
2329            j = b; // Remember earliest known match, correct it below if
2330            // last match is different
2331        }
2332        if let Some((_, b)) = matcher.next_reject_back() {
2333            j = b;
2334        }
2335        // SAFETY: `Searcher` is known to return valid indices.
2336        unsafe { self.get_unchecked(i..j) }
2337    }
2338
2339    /// Returns a string slice with all prefixes that match a pattern
2340    /// repeatedly removed.
2341    ///
2342    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2343    /// function or closure that determines if a character matches.
2344    ///
2345    /// [`char`]: prim@char
2346    /// [pattern]: self::pattern
2347    ///
2348    /// # Text directionality
2349    ///
2350    /// A string is a sequence of bytes. `start` in this context means the first
2351    /// position of that byte string; for a left-to-right language like English or
2352    /// Russian, this will be left side, and for right-to-left languages like
2353    /// Arabic or Hebrew, this will be the right side.
2354    ///
2355    /// # Examples
2356    ///
2357    /// ```
2358    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2359    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2360    ///
2361    /// let x: &[_] = &['1', '2'];
2362    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2363    /// ```
2364    #[must_use = "this returns the trimmed string as a new slice, \
2365                  without modifying the original"]
2366    #[stable(feature = "trim_direction", since = "1.30.0")]
2367    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2368        let mut i = self.len();
2369        let mut matcher = pat.into_searcher(self);
2370        if let Some((a, _)) = matcher.next_reject() {
2371            i = a;
2372        }
2373        // SAFETY: `Searcher` is known to return valid indices.
2374        unsafe { self.get_unchecked(i..self.len()) }
2375    }
2376
2377    /// Returns a string slice with the prefix removed.
2378    ///
2379    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2380    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2381    ///
2382    /// If the string does not start with `prefix`, returns `None`.
2383    ///
2384    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2385    /// function or closure that determines if a character matches.
2386    ///
2387    /// [`char`]: prim@char
2388    /// [pattern]: self::pattern
2389    /// [`trim_start_matches`]: Self::trim_start_matches
2390    ///
2391    /// # Examples
2392    ///
2393    /// ```
2394    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2395    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2396    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2397    /// ```
2398    #[must_use = "this returns the remaining substring as a new slice, \
2399                  without modifying the original"]
2400    #[stable(feature = "str_strip", since = "1.45.0")]
2401    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2402        prefix.strip_prefix_of(self)
2403    }
2404
2405    /// Returns a string slice with the suffix removed.
2406    ///
2407    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2408    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2409    ///
2410    /// If the string does not end with `suffix`, returns `None`.
2411    ///
2412    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2413    /// function or closure that determines if a character matches.
2414    ///
2415    /// [`char`]: prim@char
2416    /// [pattern]: self::pattern
2417    /// [`trim_end_matches`]: Self::trim_end_matches
2418    ///
2419    /// # Examples
2420    ///
2421    /// ```
2422    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2423    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2424    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2425    /// ```
2426    #[must_use = "this returns the remaining substring as a new slice, \
2427                  without modifying the original"]
2428    #[stable(feature = "str_strip", since = "1.45.0")]
2429    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2430    where
2431        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2432    {
2433        suffix.strip_suffix_of(self)
2434    }
2435
2436    /// Returns a string slice with the optional prefix removed.
2437    ///
2438    /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2439    /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2440    /// instead of returning [`Option<&str>`].
2441    ///
2442    /// If the string does not start with `prefix`, returns the original string unchanged.
2443    ///
2444    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2445    /// function or closure that determines if a character matches.
2446    ///
2447    /// [`char`]: prim@char
2448    /// [pattern]: self::pattern
2449    /// [`strip_prefix`]: Self::strip_prefix
2450    ///
2451    /// # Examples
2452    ///
2453    /// ```
2454    /// #![feature(trim_prefix_suffix)]
2455    ///
2456    /// // Prefix present - removes it
2457    /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2458    /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2459    ///
2460    /// // Prefix absent - returns original string
2461    /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2462    ///
2463    /// // Method chaining example
2464    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2465    /// ```
2466    #[must_use = "this returns the remaining substring as a new slice, \
2467                  without modifying the original"]
2468    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2469    pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2470        prefix.strip_prefix_of(self).unwrap_or(self)
2471    }
2472
2473    /// Returns a string slice with the optional suffix removed.
2474    ///
2475    /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2476    /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2477    /// instead of returning [`Option<&str>`].
2478    ///
2479    /// If the string does not end with `suffix`, returns the original string unchanged.
2480    ///
2481    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2482    /// function or closure that determines if a character matches.
2483    ///
2484    /// [`char`]: prim@char
2485    /// [pattern]: self::pattern
2486    /// [`strip_suffix`]: Self::strip_suffix
2487    ///
2488    /// # Examples
2489    ///
2490    /// ```
2491    /// #![feature(trim_prefix_suffix)]
2492    ///
2493    /// // Suffix present - removes it
2494    /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2495    /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2496    ///
2497    /// // Suffix absent - returns original string
2498    /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2499    ///
2500    /// // Method chaining example
2501    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2502    /// ```
2503    #[must_use = "this returns the remaining substring as a new slice, \
2504                  without modifying the original"]
2505    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2506    pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2507    where
2508        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2509    {
2510        suffix.strip_suffix_of(self).unwrap_or(self)
2511    }
2512
2513    /// Returns a string slice with all suffixes that match a pattern
2514    /// repeatedly removed.
2515    ///
2516    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2517    /// function or closure that determines if a character matches.
2518    ///
2519    /// [`char`]: prim@char
2520    /// [pattern]: self::pattern
2521    ///
2522    /// # Text directionality
2523    ///
2524    /// A string is a sequence of bytes. `end` in this context means the last
2525    /// position of that byte string; for a left-to-right language like English or
2526    /// Russian, this will be right side, and for right-to-left languages like
2527    /// Arabic or Hebrew, this will be the left side.
2528    ///
2529    /// # Examples
2530    ///
2531    /// Simple patterns:
2532    ///
2533    /// ```
2534    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2535    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2536    ///
2537    /// let x: &[_] = &['1', '2'];
2538    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2539    /// ```
2540    ///
2541    /// A more complex pattern, using a closure:
2542    ///
2543    /// ```
2544    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2545    /// ```
2546    #[must_use = "this returns the trimmed string as a new slice, \
2547                  without modifying the original"]
2548    #[stable(feature = "trim_direction", since = "1.30.0")]
2549    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2550    where
2551        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2552    {
2553        let mut j = 0;
2554        let mut matcher = pat.into_searcher(self);
2555        if let Some((_, b)) = matcher.next_reject_back() {
2556            j = b;
2557        }
2558        // SAFETY: `Searcher` is known to return valid indices.
2559        unsafe { self.get_unchecked(0..j) }
2560    }
2561
2562    /// Returns a string slice with all prefixes that match a pattern
2563    /// repeatedly removed.
2564    ///
2565    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2566    /// function or closure that determines if a character matches.
2567    ///
2568    /// [`char`]: prim@char
2569    /// [pattern]: self::pattern
2570    ///
2571    /// # Text directionality
2572    ///
2573    /// A string is a sequence of bytes. 'Left' in this context means the first
2574    /// position of that byte string; for a language like Arabic or Hebrew
2575    /// which are 'right to left' rather than 'left to right', this will be
2576    /// the _right_ side, not the left.
2577    ///
2578    /// # Examples
2579    ///
2580    /// ```
2581    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2582    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2583    ///
2584    /// let x: &[_] = &['1', '2'];
2585    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2586    /// ```
2587    #[stable(feature = "rust1", since = "1.0.0")]
2588    #[deprecated(
2589        since = "1.33.0",
2590        note = "superseded by `trim_start_matches`",
2591        suggestion = "trim_start_matches"
2592    )]
2593    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2594        self.trim_start_matches(pat)
2595    }
2596
2597    /// Returns a string slice with all suffixes that match a pattern
2598    /// repeatedly removed.
2599    ///
2600    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2601    /// function or closure that determines if a character matches.
2602    ///
2603    /// [`char`]: prim@char
2604    /// [pattern]: self::pattern
2605    ///
2606    /// # Text directionality
2607    ///
2608    /// A string is a sequence of bytes. 'Right' in this context means the last
2609    /// position of that byte string; for a language like Arabic or Hebrew
2610    /// which are 'right to left' rather than 'left to right', this will be
2611    /// the _left_ side, not the right.
2612    ///
2613    /// # Examples
2614    ///
2615    /// Simple patterns:
2616    ///
2617    /// ```
2618    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2619    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2620    ///
2621    /// let x: &[_] = &['1', '2'];
2622    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2623    /// ```
2624    ///
2625    /// A more complex pattern, using a closure:
2626    ///
2627    /// ```
2628    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2629    /// ```
2630    #[stable(feature = "rust1", since = "1.0.0")]
2631    #[deprecated(
2632        since = "1.33.0",
2633        note = "superseded by `trim_end_matches`",
2634        suggestion = "trim_end_matches"
2635    )]
2636    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2637    where
2638        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2639    {
2640        self.trim_end_matches(pat)
2641    }
2642
2643    /// Parses this string slice into another type.
2644    ///
2645    /// Because `parse` is so general, it can cause problems with type
2646    /// inference. As such, `parse` is one of the few times you'll see
2647    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2648    /// helps the inference algorithm understand specifically which type
2649    /// you're trying to parse into.
2650    ///
2651    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2652
2653    ///
2654    /// # Errors
2655    ///
2656    /// Will return [`Err`] if it's not possible to parse this string slice into
2657    /// the desired type.
2658    ///
2659    /// [`Err`]: FromStr::Err
2660    ///
2661    /// # Examples
2662    ///
2663    /// Basic usage:
2664    ///
2665    /// ```
2666    /// let four: u32 = "4".parse().unwrap();
2667    ///
2668    /// assert_eq!(4, four);
2669    /// ```
2670    ///
2671    /// Using the 'turbofish' instead of annotating `four`:
2672    ///
2673    /// ```
2674    /// let four = "4".parse::<u32>();
2675    ///
2676    /// assert_eq!(Ok(4), four);
2677    /// ```
2678    ///
2679    /// Failing to parse:
2680    ///
2681    /// ```
2682    /// let nope = "j".parse::<u32>();
2683    ///
2684    /// assert!(nope.is_err());
2685    /// ```
2686    #[inline]
2687    #[stable(feature = "rust1", since = "1.0.0")]
2688    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2689        FromStr::from_str(self)
2690    }
2691
2692    /// Checks if all characters in this string are within the ASCII range.
2693    ///
2694    /// # Examples
2695    ///
2696    /// ```
2697    /// let ascii = "hello!\n";
2698    /// let non_ascii = "Grüße, Jürgen ❤";
2699    ///
2700    /// assert!(ascii.is_ascii());
2701    /// assert!(!non_ascii.is_ascii());
2702    /// ```
2703    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2704    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2705    #[must_use]
2706    #[inline]
2707    pub const fn is_ascii(&self) -> bool {
2708        // We can treat each byte as character here: all multibyte characters
2709        // start with a byte that is not in the ASCII range, so we will stop
2710        // there already.
2711        self.as_bytes().is_ascii()
2712    }
2713
2714    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2715    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2716    #[unstable(feature = "ascii_char", issue = "110998")]
2717    #[must_use]
2718    #[inline]
2719    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2720        // Like in `is_ascii`, we can work on the bytes directly.
2721        self.as_bytes().as_ascii()
2722    }
2723
2724    /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2725    /// without checking whether they are valid.
2726    ///
2727    /// # Safety
2728    ///
2729    /// Every character in this string must be ASCII, or else this is UB.
2730    #[unstable(feature = "ascii_char", issue = "110998")]
2731    #[must_use]
2732    #[inline]
2733    pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2734        assert_unsafe_precondition!(
2735            check_library_ub,
2736            "as_ascii_unchecked requires that the string is valid ASCII",
2737            (it: &str = self) => it.is_ascii()
2738        );
2739
2740        // SAFETY: the caller promised that every byte of this string slice
2741        // is ASCII.
2742        unsafe { self.as_bytes().as_ascii_unchecked() }
2743    }
2744
2745    /// Checks that two strings are an ASCII case-insensitive match.
2746    ///
2747    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2748    /// but without allocating and copying temporaries.
2749    ///
2750    /// # Examples
2751    ///
2752    /// ```
2753    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2754    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2755    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2756    /// ```
2757    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2758    #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2759    #[must_use]
2760    #[inline]
2761    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2762        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2763    }
2764
2765    /// Converts this string to its ASCII upper case equivalent in-place.
2766    ///
2767    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2768    /// but non-ASCII letters are unchanged.
2769    ///
2770    /// To return a new uppercased value without modifying the existing one, use
2771    /// [`to_ascii_uppercase()`].
2772    ///
2773    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2774    ///
2775    /// # Examples
2776    ///
2777    /// ```
2778    /// let mut s = String::from("Grüße, Jürgen ❤");
2779    ///
2780    /// s.make_ascii_uppercase();
2781    ///
2782    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2783    /// ```
2784    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2785    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2786    #[inline]
2787    pub const fn make_ascii_uppercase(&mut self) {
2788        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2789        let me = unsafe { self.as_bytes_mut() };
2790        me.make_ascii_uppercase()
2791    }
2792
2793    /// Converts this string to its ASCII lower case equivalent in-place.
2794    ///
2795    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2796    /// but non-ASCII letters are unchanged.
2797    ///
2798    /// To return a new lowercased value without modifying the existing one, use
2799    /// [`to_ascii_lowercase()`].
2800    ///
2801    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2802    ///
2803    /// # Examples
2804    ///
2805    /// ```
2806    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2807    ///
2808    /// s.make_ascii_lowercase();
2809    ///
2810    /// assert_eq!("grÜße, jÜrgen ❤", s);
2811    /// ```
2812    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2813    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2814    #[inline]
2815    pub const fn make_ascii_lowercase(&mut self) {
2816        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2817        let me = unsafe { self.as_bytes_mut() };
2818        me.make_ascii_lowercase()
2819    }
2820
2821    /// Returns a string slice with leading ASCII whitespace removed.
2822    ///
2823    /// 'Whitespace' refers to the definition used by
2824    /// [`u8::is_ascii_whitespace`].
2825    ///
2826    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2827    ///
2828    /// # Examples
2829    ///
2830    /// ```
2831    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2832    /// assert_eq!("  ".trim_ascii_start(), "");
2833    /// assert_eq!("".trim_ascii_start(), "");
2834    /// ```
2835    #[must_use = "this returns the trimmed string as a new slice, \
2836                  without modifying the original"]
2837    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2838    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2839    #[inline]
2840    pub const fn trim_ascii_start(&self) -> &str {
2841        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2842        // UTF-8.
2843        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2844    }
2845
2846    /// Returns a string slice with trailing ASCII whitespace removed.
2847    ///
2848    /// 'Whitespace' refers to the definition used by
2849    /// [`u8::is_ascii_whitespace`].
2850    ///
2851    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2852    ///
2853    /// # Examples
2854    ///
2855    /// ```
2856    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2857    /// assert_eq!("  ".trim_ascii_end(), "");
2858    /// assert_eq!("".trim_ascii_end(), "");
2859    /// ```
2860    #[must_use = "this returns the trimmed string as a new slice, \
2861                  without modifying the original"]
2862    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2863    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2864    #[inline]
2865    pub const fn trim_ascii_end(&self) -> &str {
2866        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2867        // UTF-8.
2868        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2869    }
2870
2871    /// Returns a string slice with leading and trailing ASCII whitespace
2872    /// removed.
2873    ///
2874    /// 'Whitespace' refers to the definition used by
2875    /// [`u8::is_ascii_whitespace`].
2876    ///
2877    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2878    ///
2879    /// # Examples
2880    ///
2881    /// ```
2882    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2883    /// assert_eq!("  ".trim_ascii(), "");
2884    /// assert_eq!("".trim_ascii(), "");
2885    /// ```
2886    #[must_use = "this returns the trimmed string as a new slice, \
2887                  without modifying the original"]
2888    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2889    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2890    #[inline]
2891    pub const fn trim_ascii(&self) -> &str {
2892        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2893        // UTF-8.
2894        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2895    }
2896
2897    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2898    ///
2899    /// Note: only extended grapheme codepoints that begin the string will be
2900    /// escaped.
2901    ///
2902    /// # Examples
2903    ///
2904    /// As an iterator:
2905    ///
2906    /// ```
2907    /// for c in "❤\n!".escape_debug() {
2908    ///     print!("{c}");
2909    /// }
2910    /// println!();
2911    /// ```
2912    ///
2913    /// Using `println!` directly:
2914    ///
2915    /// ```
2916    /// println!("{}", "❤\n!".escape_debug());
2917    /// ```
2918    ///
2919    ///
2920    /// Both are equivalent to:
2921    ///
2922    /// ```
2923    /// println!("❤\\n!");
2924    /// ```
2925    ///
2926    /// Using `to_string`:
2927    ///
2928    /// ```
2929    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2930    /// ```
2931    #[must_use = "this returns the escaped string as an iterator, \
2932                  without modifying the original"]
2933    #[stable(feature = "str_escape", since = "1.34.0")]
2934    pub fn escape_debug(&self) -> EscapeDebug<'_> {
2935        let mut chars = self.chars();
2936        EscapeDebug {
2937            inner: chars
2938                .next()
2939                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2940                .into_iter()
2941                .flatten()
2942                .chain(chars.flat_map(CharEscapeDebugContinue)),
2943        }
2944    }
2945
2946    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2947    ///
2948    /// # Examples
2949    ///
2950    /// As an iterator:
2951    ///
2952    /// ```
2953    /// for c in "❤\n!".escape_default() {
2954    ///     print!("{c}");
2955    /// }
2956    /// println!();
2957    /// ```
2958    ///
2959    /// Using `println!` directly:
2960    ///
2961    /// ```
2962    /// println!("{}", "❤\n!".escape_default());
2963    /// ```
2964    ///
2965    ///
2966    /// Both are equivalent to:
2967    ///
2968    /// ```
2969    /// println!("\\u{{2764}}\\n!");
2970    /// ```
2971    ///
2972    /// Using `to_string`:
2973    ///
2974    /// ```
2975    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2976    /// ```
2977    #[must_use = "this returns the escaped string as an iterator, \
2978                  without modifying the original"]
2979    #[stable(feature = "str_escape", since = "1.34.0")]
2980    pub fn escape_default(&self) -> EscapeDefault<'_> {
2981        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2982    }
2983
2984    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2985    ///
2986    /// # Examples
2987    ///
2988    /// As an iterator:
2989    ///
2990    /// ```
2991    /// for c in "❤\n!".escape_unicode() {
2992    ///     print!("{c}");
2993    /// }
2994    /// println!();
2995    /// ```
2996    ///
2997    /// Using `println!` directly:
2998    ///
2999    /// ```
3000    /// println!("{}", "❤\n!".escape_unicode());
3001    /// ```
3002    ///
3003    ///
3004    /// Both are equivalent to:
3005    ///
3006    /// ```
3007    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3008    /// ```
3009    ///
3010    /// Using `to_string`:
3011    ///
3012    /// ```
3013    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3014    /// ```
3015    #[must_use = "this returns the escaped string as an iterator, \
3016                  without modifying the original"]
3017    #[stable(feature = "str_escape", since = "1.34.0")]
3018    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3019        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3020    }
3021
3022    /// Returns the range that a substring points to.
3023    ///
3024    /// Returns `None` if `substr` does not point within `self`.
3025    ///
3026    /// Unlike [`str::find`], **this does not search through the string**.
3027    /// Instead, it uses pointer arithmetic to find where in the string
3028    /// `substr` is derived from.
3029    ///
3030    /// This is useful for extending [`str::split`] and similar methods.
3031    ///
3032    /// Note that this method may return false positives (typically either
3033    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3034    /// zero-length `str` that points at the beginning or end of another,
3035    /// independent, `str`.
3036    ///
3037    /// # Examples
3038    /// ```
3039    /// #![feature(substr_range)]
3040    ///
3041    /// let data = "a, b, b, a";
3042    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3043    ///
3044    /// assert_eq!(iter.next(), Some(0..1));
3045    /// assert_eq!(iter.next(), Some(3..4));
3046    /// assert_eq!(iter.next(), Some(6..7));
3047    /// assert_eq!(iter.next(), Some(9..10));
3048    /// ```
3049    #[must_use]
3050    #[unstable(feature = "substr_range", issue = "126769")]
3051    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3052        self.as_bytes().subslice_range(substr.as_bytes())
3053    }
3054
3055    /// Returns the same string as a string slice `&str`.
3056    ///
3057    /// This method is redundant when used directly on `&str`, but
3058    /// it helps dereferencing other string-like types to string slices,
3059    /// for example references to `Box<str>` or `Arc<str>`.
3060    #[inline]
3061    #[unstable(feature = "str_as_str", issue = "130366")]
3062    pub fn as_str(&self) -> &str {
3063        self
3064    }
3065}
3066
3067#[stable(feature = "rust1", since = "1.0.0")]
3068impl AsRef<[u8]> for str {
3069    #[inline]
3070    fn as_ref(&self) -> &[u8] {
3071        self.as_bytes()
3072    }
3073}
3074
3075#[stable(feature = "rust1", since = "1.0.0")]
3076#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3077impl const Default for &str {
3078    /// Creates an empty str
3079    #[inline]
3080    fn default() -> Self {
3081        ""
3082    }
3083}
3084
3085#[stable(feature = "default_mut_str", since = "1.28.0")]
3086#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3087impl const Default for &mut str {
3088    /// Creates an empty mutable str
3089    #[inline]
3090    fn default() -> Self {
3091        // SAFETY: The empty string is valid UTF-8.
3092        unsafe { from_utf8_unchecked_mut(&mut []) }
3093    }
3094}
3095
3096impl_fn_for_zst! {
3097    /// A nameable, cloneable fn type
3098    #[derive(Clone)]
3099    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3100        let Some(line) = line.strip_suffix('\n') else { return line };
3101        let Some(line) = line.strip_suffix('\r') else { return line };
3102        line
3103    };
3104
3105    #[derive(Clone)]
3106    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3107        c.escape_debug_ext(EscapeDebugExtArgs {
3108            escape_grapheme_extended: false,
3109            escape_single_quote: true,
3110            escape_double_quote: true
3111        })
3112    };
3113
3114    #[derive(Clone)]
3115    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3116        c.escape_unicode()
3117    };
3118    #[derive(Clone)]
3119    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3120        c.escape_default()
3121    };
3122
3123    #[derive(Clone)]
3124    struct IsWhitespace impl Fn = |c: char| -> bool {
3125        c.is_whitespace()
3126    };
3127
3128    #[derive(Clone)]
3129    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3130        byte.is_ascii_whitespace()
3131    };
3132
3133    #[derive(Clone)]
3134    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3135        !s.is_empty()
3136    };
3137
3138    #[derive(Clone)]
3139    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3140        !s.is_empty()
3141    };
3142
3143    #[derive(Clone)]
3144    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3145        // SAFETY: not safe
3146        unsafe { from_utf8_unchecked(bytes) }
3147    };
3148}
3149
3150// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3151#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3152impl !crate::error::Error for &str {}