core/convert/mod.rs
1//! Traits for conversions between types.
2//!
3//! The traits in this module provide a way to convert from one type to another type.
4//! Each trait serves a different purpose:
5//!
6//! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions
7//! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions
8//! - Implement the [`From`] trait for consuming value-to-value conversions
9//! - Implement the [`Into`] trait for consuming value-to-value conversions to types
10//! outside the current crate
11//! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`],
12//! but should be implemented when the conversion can fail.
13//!
14//! The traits in this module are often used as trait bounds for generic functions such that to
15//! arguments of multiple types are supported. See the documentation of each trait for examples.
16//!
17//! As a library author, you should always prefer implementing [`From<T>`][`From`] or
18//! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`],
19//! as [`From`] and [`TryFrom`] provide greater flexibility and offer
20//! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a
21//! blanket implementation in the standard library. When targeting a version prior to Rust 1.41, it
22//! may be necessary to implement [`Into`] or [`TryInto`] directly when converting to a type
23//! outside the current crate.
24//!
25//! # Generic Implementations
26//!
27//! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
28//! (but not generally for all [dereferenceable types][core::ops::Deref])
29//! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
30//! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
31//! - [`From`] and [`Into`] are reflexive, which means that all types can
32//! `into` themselves and `from` themselves
33//!
34//! See each trait for usage examples.
35
36#![stable(feature = "rust1", since = "1.0.0")]
37
38use crate::error::Error;
39use crate::fmt;
40use crate::hash::{Hash, Hasher};
41use crate::marker::PointeeSized;
42
43mod num;
44
45#[unstable(feature = "convert_float_to_int", issue = "67057")]
46pub use num::FloatToInt;
47
48/// The identity function.
49///
50/// Two things are important to note about this function:
51///
52/// - It is not always equivalent to a closure like `|x| x`, since the
53/// closure may coerce `x` into a different type.
54///
55/// - It moves the input `x` passed to the function.
56///
57/// While it might seem strange to have a function that just returns back the
58/// input, there are some interesting uses.
59///
60/// # Examples
61///
62/// Using `identity` to do nothing in a sequence of other, interesting,
63/// functions:
64///
65/// ```rust
66/// use std::convert::identity;
67///
68/// fn manipulation(x: u32) -> u32 {
69/// // Let's pretend that adding one is an interesting function.
70/// x + 1
71/// }
72///
73/// let _arr = &[identity, manipulation];
74/// ```
75///
76/// Using `identity` as a "do nothing" base case in a conditional:
77///
78/// ```rust
79/// use std::convert::identity;
80///
81/// # let condition = true;
82/// #
83/// # fn manipulation(x: u32) -> u32 { x + 1 }
84/// #
85/// let do_stuff = if condition { manipulation } else { identity };
86///
87/// // Do more interesting stuff...
88///
89/// let _results = do_stuff(42);
90/// ```
91///
92/// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`:
93///
94/// ```rust
95/// use std::convert::identity;
96///
97/// let iter = [Some(1), None, Some(3)].into_iter();
98/// let filtered = iter.filter_map(identity).collect::<Vec<_>>();
99/// assert_eq!(vec![1, 3], filtered);
100/// ```
101#[stable(feature = "convert_id", since = "1.33.0")]
102#[rustc_const_stable(feature = "const_identity", since = "1.33.0")]
103#[inline(always)]
104#[rustc_diagnostic_item = "convert_identity"]
105pub const fn identity<T>(x: T) -> T {
106 x
107}
108
109/// Used to do a cheap reference-to-reference conversion.
110///
111/// This trait is similar to [`AsMut`] which is used for converting between mutable references.
112/// If you need to do a costly conversion it is better to implement [`From`] with type
113/// `&T` or write a custom function.
114///
115/// # Relation to `Borrow`
116///
117/// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in a few aspects:
118///
119/// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
120/// a reference or a value. (See also note on `AsRef`'s reflexibility below.)
121/// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for a borrowed value are
122/// equivalent to those of the owned value. For this reason, if you want to
123/// borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
124///
125/// **Note: This trait must not fail**. If the conversion can fail, use a
126/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
127///
128/// # Generic Implementations
129///
130/// `AsRef` auto-dereferences if the inner type is a reference or a mutable reference
131/// (e.g.: `foo.as_ref()` will work the same if `foo` has type `&mut Foo` or `&&mut Foo`).
132///
133/// Note that due to historic reasons, the above currently does not hold generally for all
134/// [dereferenceable types], e.g. `foo.as_ref()` will *not* work the same as
135/// `Box::new(foo).as_ref()`. Instead, many smart pointers provide an `as_ref` implementation which
136/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
137/// reference-to-reference conversion for that value). However, [`AsRef::as_ref`] should not be
138/// used for the sole purpose of dereferencing; instead ['`Deref` coercion'] can be used:
139///
140/// [dereferenceable types]: core::ops::Deref
141/// [pointed-to value]: core::ops::Deref::Target
142/// ['`Deref` coercion']: core::ops::Deref#deref-coercion
143///
144/// ```
145/// let x = Box::new(5i32);
146/// // Avoid this:
147/// // let y: &i32 = x.as_ref();
148/// // Better just write:
149/// let y: &i32 = &x;
150/// ```
151///
152/// Types which implement [`Deref`] should consider implementing `AsRef<T>` as follows:
153///
154/// [`Deref`]: core::ops::Deref
155///
156/// ```
157/// # use core::ops::Deref;
158/// # struct SomeType;
159/// # impl Deref for SomeType {
160/// # type Target = [u8];
161/// # fn deref(&self) -> &[u8] {
162/// # &[]
163/// # }
164/// # }
165/// impl<T> AsRef<T> for SomeType
166/// where
167/// T: ?Sized,
168/// <SomeType as Deref>::Target: AsRef<T>,
169/// {
170/// fn as_ref(&self) -> &T {
171/// self.deref().as_ref()
172/// }
173/// }
174/// ```
175///
176/// # Reflexivity
177///
178/// Ideally, `AsRef` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsRef<T> for T`
179/// with [`as_ref`] simply returning its argument unchanged.
180/// Such a blanket implementation is currently *not* provided due to technical restrictions of
181/// Rust's type system (it would be overlapping with another existing blanket implementation for
182/// `&T where T: AsRef<U>` which allows `AsRef` to auto-dereference, see "Generic Implementations"
183/// above).
184///
185/// [`as_ref`]: AsRef::as_ref
186///
187/// A trivial implementation of `AsRef<T> for T` must be added explicitly for a particular type `T`
188/// where needed or desired. Note, however, that not all types from `std` contain such an
189/// implementation, and those cannot be added by external code due to orphan rules.
190///
191/// # Examples
192///
193/// By using trait bounds we can accept arguments of different types as long as they can be
194/// converted to the specified type `T`.
195///
196/// For example: By creating a generic function that takes an `AsRef<str>` we express that we
197/// want to accept all references that can be converted to [`&str`] as an argument.
198/// Since both [`String`] and [`&str`] implement `AsRef<str>` we can accept both as input argument.
199///
200/// [`&str`]: primitive@str
201/// [`Borrow`]: crate::borrow::Borrow
202/// [`Eq`]: crate::cmp::Eq
203/// [`Ord`]: crate::cmp::Ord
204/// [`String`]: ../../std/string/struct.String.html
205///
206/// ```
207/// fn is_hello<T: AsRef<str>>(s: T) {
208/// assert_eq!("hello", s.as_ref());
209/// }
210///
211/// let s = "hello";
212/// is_hello(s);
213///
214/// let s = "hello".to_string();
215/// is_hello(s);
216/// ```
217#[stable(feature = "rust1", since = "1.0.0")]
218#[rustc_diagnostic_item = "AsRef"]
219pub trait AsRef<T: PointeeSized>: PointeeSized {
220 /// Converts this type into a shared reference of the (usually inferred) input type.
221 #[stable(feature = "rust1", since = "1.0.0")]
222 fn as_ref(&self) -> &T;
223}
224
225/// Used to do a cheap mutable-to-mutable reference conversion.
226///
227/// This trait is similar to [`AsRef`] but used for converting between mutable
228/// references. If you need to do a costly conversion it is better to
229/// implement [`From`] with type `&mut T` or write a custom function.
230///
231/// **Note: This trait must not fail**. If the conversion can fail, use a
232/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
233///
234/// # Generic Implementations
235///
236/// `AsMut` auto-dereferences if the inner type is a mutable reference
237/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` or `&mut &mut Foo`).
238///
239/// Note that due to historic reasons, the above currently does not hold generally for all
240/// [mutably dereferenceable types], e.g. `foo.as_mut()` will *not* work the same as
241/// `Box::new(foo).as_mut()`. Instead, many smart pointers provide an `as_mut` implementation which
242/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
243/// reference-to-reference conversion for that value). However, [`AsMut::as_mut`] should not be
244/// used for the sole purpose of mutable dereferencing; instead ['`Deref` coercion'] can be used:
245///
246/// [mutably dereferenceable types]: core::ops::DerefMut
247/// [pointed-to value]: core::ops::Deref::Target
248/// ['`Deref` coercion']: core::ops::DerefMut#mutable-deref-coercion
249///
250/// ```
251/// let mut x = Box::new(5i32);
252/// // Avoid this:
253/// // let y: &mut i32 = x.as_mut();
254/// // Better just write:
255/// let y: &mut i32 = &mut x;
256/// ```
257///
258/// Types which implement [`DerefMut`] should consider to add an implementation of `AsMut<T>` as
259/// follows:
260///
261/// [`DerefMut`]: core::ops::DerefMut
262///
263/// ```
264/// # use core::ops::{Deref, DerefMut};
265/// # struct SomeType;
266/// # impl Deref for SomeType {
267/// # type Target = [u8];
268/// # fn deref(&self) -> &[u8] {
269/// # &[]
270/// # }
271/// # }
272/// # impl DerefMut for SomeType {
273/// # fn deref_mut(&mut self) -> &mut [u8] {
274/// # &mut []
275/// # }
276/// # }
277/// impl<T> AsMut<T> for SomeType
278/// where
279/// <SomeType as Deref>::Target: AsMut<T>,
280/// {
281/// fn as_mut(&mut self) -> &mut T {
282/// self.deref_mut().as_mut()
283/// }
284/// }
285/// ```
286///
287/// # Reflexivity
288///
289/// Ideally, `AsMut` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsMut<T> for T`
290/// with [`as_mut`] simply returning its argument unchanged.
291/// Such a blanket implementation is currently *not* provided due to technical restrictions of
292/// Rust's type system (it would be overlapping with another existing blanket implementation for
293/// `&mut T where T: AsMut<U>` which allows `AsMut` to auto-dereference, see "Generic
294/// Implementations" above).
295///
296/// [`as_mut`]: AsMut::as_mut
297///
298/// A trivial implementation of `AsMut<T> for T` must be added explicitly for a particular type `T`
299/// where needed or desired. Note, however, that not all types from `std` contain such an
300/// implementation, and those cannot be added by external code due to orphan rules.
301///
302/// # Examples
303///
304/// Using `AsMut` as trait bound for a generic function, we can accept all mutable references that
305/// can be converted to type `&mut T`. Unlike [dereference], which has a single [target type],
306/// there can be multiple implementations of `AsMut` for a type. In particular, `Vec<T>` implements
307/// both `AsMut<Vec<T>>` and `AsMut<[T]>`.
308///
309/// In the following, the example functions `caesar` and `null_terminate` provide a generic
310/// interface which work with any type that can be converted by cheap mutable-to-mutable conversion
311/// into a byte slice (`[u8]`) or byte vector (`Vec<u8>`), respectively.
312///
313/// [dereference]: core::ops::DerefMut
314/// [target type]: core::ops::Deref::Target
315///
316/// ```
317/// struct Document {
318/// info: String,
319/// content: Vec<u8>,
320/// }
321///
322/// impl<T: ?Sized> AsMut<T> for Document
323/// where
324/// Vec<u8>: AsMut<T>,
325/// {
326/// fn as_mut(&mut self) -> &mut T {
327/// self.content.as_mut()
328/// }
329/// }
330///
331/// fn caesar<T: AsMut<[u8]>>(data: &mut T, key: u8) {
332/// for byte in data.as_mut() {
333/// *byte = byte.wrapping_add(key);
334/// }
335/// }
336///
337/// fn null_terminate<T: AsMut<Vec<u8>>>(data: &mut T) {
338/// // Using a non-generic inner function, which contains most of the
339/// // functionality, helps to minimize monomorphization overhead.
340/// fn doit(data: &mut Vec<u8>) {
341/// let len = data.len();
342/// if len == 0 || data[len-1] != 0 {
343/// data.push(0);
344/// }
345/// }
346/// doit(data.as_mut());
347/// }
348///
349/// fn main() {
350/// let mut v: Vec<u8> = vec![1, 2, 3];
351/// caesar(&mut v, 5);
352/// assert_eq!(v, [6, 7, 8]);
353/// null_terminate(&mut v);
354/// assert_eq!(v, [6, 7, 8, 0]);
355/// let mut doc = Document {
356/// info: String::from("Example"),
357/// content: vec![17, 19, 8],
358/// };
359/// caesar(&mut doc, 1);
360/// assert_eq!(doc.content, [18, 20, 9]);
361/// null_terminate(&mut doc);
362/// assert_eq!(doc.content, [18, 20, 9, 0]);
363/// }
364/// ```
365///
366/// Note, however, that APIs don't need to be generic. In many cases taking a `&mut [u8]` or
367/// `&mut Vec<u8>`, for example, is the better choice (callers need to pass the correct type then).
368#[stable(feature = "rust1", since = "1.0.0")]
369#[rustc_diagnostic_item = "AsMut"]
370pub trait AsMut<T: PointeeSized>: PointeeSized {
371 /// Converts this type into a mutable reference of the (usually inferred) input type.
372 #[stable(feature = "rust1", since = "1.0.0")]
373 fn as_mut(&mut self) -> &mut T;
374}
375
376/// A value-to-value conversion that consumes the input value. The
377/// opposite of [`From`].
378///
379/// One should avoid implementing [`Into`] and implement [`From`] instead.
380/// Implementing [`From`] automatically provides one with an implementation of [`Into`]
381/// thanks to the blanket implementation in the standard library.
382///
383/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
384/// to ensure that types that only implement [`Into`] can be used as well.
385///
386/// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`].
387///
388/// # Generic Implementations
389///
390/// - [`From`]`<T> for U` implies `Into<U> for T`
391/// - [`Into`] is reflexive, which means that `Into<T> for T` is implemented
392///
393/// # Implementing [`Into`] for conversions to external types in old versions of Rust
394///
395/// Prior to Rust 1.41, if the destination type was not part of the current crate
396/// then you couldn't implement [`From`] directly.
397/// For example, take this code:
398///
399/// ```
400/// # #![allow(non_local_definitions)]
401/// struct Wrapper<T>(Vec<T>);
402/// impl<T> From<Wrapper<T>> for Vec<T> {
403/// fn from(w: Wrapper<T>) -> Vec<T> {
404/// w.0
405/// }
406/// }
407/// ```
408/// This will fail to compile in older versions of the language because Rust's orphaning rules
409/// used to be a little bit more strict. To bypass this, you could implement [`Into`] directly:
410///
411/// ```
412/// struct Wrapper<T>(Vec<T>);
413/// impl<T> Into<Vec<T>> for Wrapper<T> {
414/// fn into(self) -> Vec<T> {
415/// self.0
416/// }
417/// }
418/// ```
419///
420/// It is important to understand that [`Into`] does not provide a [`From`] implementation
421/// (as [`From`] does with [`Into`]). Therefore, you should always try to implement [`From`]
422/// and then fall back to [`Into`] if [`From`] can't be implemented.
423///
424/// # Examples
425///
426/// [`String`] implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>`:
427///
428/// In order to express that we want a generic function to take all arguments that can be
429/// converted to a specified type `T`, we can use a trait bound of [`Into`]`<T>`.
430/// For example: The function `is_hello` takes all arguments that can be converted into a
431/// [`Vec`]`<`[`u8`]`>`.
432///
433/// ```
434/// fn is_hello<T: Into<Vec<u8>>>(s: T) {
435/// let bytes = b"hello".to_vec();
436/// assert_eq!(bytes, s.into());
437/// }
438///
439/// let s = "hello".to_string();
440/// is_hello(s);
441/// ```
442///
443/// [`String`]: ../../std/string/struct.String.html
444/// [`Vec`]: ../../std/vec/struct.Vec.html
445#[rustc_diagnostic_item = "Into"]
446#[stable(feature = "rust1", since = "1.0.0")]
447#[doc(search_unbox)]
448#[rustc_const_unstable(feature = "const_from", issue = "143773")]
449#[const_trait]
450pub trait Into<T>: Sized {
451 /// Converts this type into the (usually inferred) input type.
452 #[must_use]
453 #[stable(feature = "rust1", since = "1.0.0")]
454 fn into(self) -> T;
455}
456
457/// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of
458/// [`Into`].
459///
460/// One should always prefer implementing `From` over [`Into`]
461/// because implementing `From` automatically provides one with an implementation of [`Into`]
462/// thanks to the blanket implementation in the standard library.
463///
464/// Only implement [`Into`] when targeting a version prior to Rust 1.41 and converting to a type
465/// outside the current crate.
466/// `From` was not able to do these types of conversions in earlier versions because of Rust's
467/// orphaning rules.
468/// See [`Into`] for more details.
469///
470/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
471/// to ensure that types that only implement [`Into`] can be used as well.
472///
473/// The `From` trait is also very useful when performing error handling. When constructing a function
474/// that is capable of failing, the return type will generally be of the form `Result<T, E>`.
475/// `From` simplifies error handling by allowing a function to return a single error type
476/// that encapsulates multiple error types. See the "Examples" section and [the book][book] for more
477/// details.
478///
479/// **Note: This trait must not fail**. The `From` trait is intended for perfect conversions.
480/// If the conversion can fail or is not perfect, use [`TryFrom`].
481///
482/// # Generic Implementations
483///
484/// - `From<T> for U` implies [`Into`]`<U> for T`
485/// - `From` is reflexive, which means that `From<T> for T` is implemented
486///
487/// # When to implement `From`
488///
489/// While there's no technical restrictions on which conversions can be done using
490/// a `From` implementation, the general expectation is that the conversions
491/// should typically be restricted as follows:
492///
493/// * The conversion is *infallible*: if the conversion can fail, use [`TryFrom`]
494/// instead; don't provide a `From` impl that panics.
495///
496/// * The conversion is *lossless*: semantically, it should not lose or discard
497/// information. For example, `i32: From<u16>` exists, where the original
498/// value can be recovered using `u16: TryFrom<i32>`. And `String: From<&str>`
499/// exists, where you can get something equivalent to the original value via
500/// `Deref`. But `From` cannot be used to convert from `u32` to `u16`, since
501/// that cannot succeed in a lossless way. (There's some wiggle room here for
502/// information not considered semantically relevant. For example,
503/// `Box<[T]>: From<Vec<T>>` exists even though it might not preserve capacity,
504/// like how two vectors can be equal despite differing capacities.)
505///
506/// * The conversion is *value-preserving*: the conceptual kind and meaning of
507/// the resulting value is the same, even though the Rust type and technical
508/// representation might be different. For example `-1_i8 as u8` is *lossless*,
509/// since `as` casting back can recover the original value, but that conversion
510/// is *not* available via `From` because `-1` and `255` are different conceptual
511/// values (despite being identical bit patterns technically). But
512/// `f32: From<i16>` *is* available because `1_i16` and `1.0_f32` are conceptually
513/// the same real number (despite having very different bit patterns technically).
514/// `String: From<char>` is available because they're both *text*, but
515/// `String: From<u32>` is *not* available, since `1` (a number) and `"1"`
516/// (text) are too different. (Converting values to text is instead covered
517/// by the [`Display`](crate::fmt::Display) trait.)
518///
519/// * The conversion is *obvious*: it's the only reasonable conversion between
520/// the two types. Otherwise it's better to have it be a named method or
521/// constructor, like how [`str::as_bytes`] is a method and how integers have
522/// methods like [`u32::from_ne_bytes`], [`u32::from_le_bytes`], and
523/// [`u32::from_be_bytes`], none of which are `From` implementations. Whereas
524/// there's only one reasonable way to wrap an [`Ipv6Addr`](crate::net::Ipv6Addr)
525/// into an [`IpAddr`](crate::net::IpAddr), thus `IpAddr: From<Ipv6Addr>` exists.
526///
527/// # Examples
528///
529/// [`String`] implements `From<&str>`:
530///
531/// An explicit conversion from a `&str` to a String is done as follows:
532///
533/// ```
534/// let string = "hello".to_string();
535/// let other_string = String::from("hello");
536///
537/// assert_eq!(string, other_string);
538/// ```
539///
540/// While performing error handling it is often useful to implement `From` for your own error type.
541/// By converting underlying error types to our own custom error type that encapsulates the
542/// underlying error type, we can return a single error type without losing information on the
543/// underlying cause. The '?' operator automatically converts the underlying error type to our
544/// custom error type with `From::from`.
545///
546/// ```
547/// use std::fs;
548/// use std::io;
549/// use std::num;
550///
551/// enum CliError {
552/// IoError(io::Error),
553/// ParseError(num::ParseIntError),
554/// }
555///
556/// impl From<io::Error> for CliError {
557/// fn from(error: io::Error) -> Self {
558/// CliError::IoError(error)
559/// }
560/// }
561///
562/// impl From<num::ParseIntError> for CliError {
563/// fn from(error: num::ParseIntError) -> Self {
564/// CliError::ParseError(error)
565/// }
566/// }
567///
568/// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> {
569/// let mut contents = fs::read_to_string(&file_name)?;
570/// let num: i32 = contents.trim().parse()?;
571/// Ok(num)
572/// }
573/// ```
574///
575/// [`String`]: ../../std/string/struct.String.html
576/// [`from`]: From::from
577/// [book]: ../../book/ch09-00-error-handling.html
578#[rustc_diagnostic_item = "From"]
579#[stable(feature = "rust1", since = "1.0.0")]
580#[rustc_on_unimplemented(on(
581 all(Self = "&str", T = "alloc::string::String"),
582 note = "to coerce a `{T}` into a `{Self}`, use `&*` as a prefix",
583))]
584#[doc(search_unbox)]
585#[rustc_const_unstable(feature = "const_from", issue = "143773")]
586#[const_trait]
587pub trait From<T>: Sized {
588 /// Converts to this type from the input type.
589 #[rustc_diagnostic_item = "from_fn"]
590 #[must_use]
591 #[stable(feature = "rust1", since = "1.0.0")]
592 fn from(value: T) -> Self;
593}
594
595/// An attempted conversion that consumes `self`, which may or may not be
596/// expensive.
597///
598/// Library authors should usually not directly implement this trait,
599/// but should prefer implementing the [`TryFrom`] trait, which offers
600/// greater flexibility and provides an equivalent `TryInto`
601/// implementation for free, thanks to a blanket implementation in the
602/// standard library. For more information on this, see the
603/// documentation for [`Into`].
604///
605/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function
606/// to ensure that types that only implement [`TryInto`] can be used as well.
607///
608/// # Implementing `TryInto`
609///
610/// This suffers the same restrictions and reasoning as implementing
611/// [`Into`], see there for details.
612#[rustc_diagnostic_item = "TryInto"]
613#[stable(feature = "try_from", since = "1.34.0")]
614#[rustc_const_unstable(feature = "const_from", issue = "143773")]
615#[const_trait]
616pub trait TryInto<T>: Sized {
617 /// The type returned in the event of a conversion error.
618 #[stable(feature = "try_from", since = "1.34.0")]
619 type Error;
620
621 /// Performs the conversion.
622 #[stable(feature = "try_from", since = "1.34.0")]
623 fn try_into(self) -> Result<T, Self::Error>;
624}
625
626/// Simple and safe type conversions that may fail in a controlled
627/// way under some circumstances. It is the reciprocal of [`TryInto`].
628///
629/// This is useful when you are doing a type conversion that may
630/// trivially succeed but may also need special handling.
631/// For example, there is no way to convert an [`i64`] into an [`i32`]
632/// using the [`From`] trait, because an [`i64`] may contain a value
633/// that an [`i32`] cannot represent and so the conversion would lose data.
634/// This might be handled by truncating the [`i64`] to an [`i32`] or by
635/// simply returning [`i32::MAX`], or by some other method. The [`From`]
636/// trait is intended for perfect conversions, so the `TryFrom` trait
637/// informs the programmer when a type conversion could go bad and lets
638/// them decide how to handle it.
639///
640/// # Generic Implementations
641///
642/// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T`
643/// - [`try_from`] is reflexive, which means that `TryFrom<T> for T`
644/// is implemented and cannot fail -- the associated `Error` type for
645/// calling `T::try_from()` on a value of type `T` is [`Infallible`].
646/// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be
647/// equivalent.
648///
649/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function
650/// to ensure that types that only implement [`TryInto`] can be used as well.
651///
652/// `TryFrom<T>` can be implemented as follows:
653///
654/// ```
655/// struct GreaterThanZero(i32);
656///
657/// impl TryFrom<i32> for GreaterThanZero {
658/// type Error = &'static str;
659///
660/// fn try_from(value: i32) -> Result<Self, Self::Error> {
661/// if value <= 0 {
662/// Err("GreaterThanZero only accepts values greater than zero!")
663/// } else {
664/// Ok(GreaterThanZero(value))
665/// }
666/// }
667/// }
668/// ```
669///
670/// # Examples
671///
672/// As described, [`i32`] implements `TryFrom<`[`i64`]`>`:
673///
674/// ```
675/// let big_number = 1_000_000_000_000i64;
676/// // Silently truncates `big_number`, requires detecting
677/// // and handling the truncation after the fact.
678/// let smaller_number = big_number as i32;
679/// assert_eq!(smaller_number, -727379968);
680///
681/// // Returns an error because `big_number` is too big to
682/// // fit in an `i32`.
683/// let try_smaller_number = i32::try_from(big_number);
684/// assert!(try_smaller_number.is_err());
685///
686/// // Returns `Ok(3)`.
687/// let try_successful_smaller_number = i32::try_from(3);
688/// assert!(try_successful_smaller_number.is_ok());
689/// ```
690///
691/// [`try_from`]: TryFrom::try_from
692#[rustc_diagnostic_item = "TryFrom"]
693#[stable(feature = "try_from", since = "1.34.0")]
694#[rustc_const_unstable(feature = "const_from", issue = "143773")]
695#[const_trait]
696pub trait TryFrom<T>: Sized {
697 /// The type returned in the event of a conversion error.
698 #[stable(feature = "try_from", since = "1.34.0")]
699 type Error;
700
701 /// Performs the conversion.
702 #[stable(feature = "try_from", since = "1.34.0")]
703 #[rustc_diagnostic_item = "try_from_fn"]
704 fn try_from(value: T) -> Result<Self, Self::Error>;
705}
706
707////////////////////////////////////////////////////////////////////////////////
708// GENERIC IMPLS
709////////////////////////////////////////////////////////////////////////////////
710
711// As lifts over &
712#[stable(feature = "rust1", since = "1.0.0")]
713impl<T: PointeeSized, U: PointeeSized> AsRef<U> for &T
714where
715 T: AsRef<U>,
716{
717 #[inline]
718 fn as_ref(&self) -> &U {
719 <T as AsRef<U>>::as_ref(*self)
720 }
721}
722
723// As lifts over &mut
724#[stable(feature = "rust1", since = "1.0.0")]
725impl<T: PointeeSized, U: PointeeSized> AsRef<U> for &mut T
726where
727 T: AsRef<U>,
728{
729 #[inline]
730 fn as_ref(&self) -> &U {
731 <T as AsRef<U>>::as_ref(*self)
732 }
733}
734
735// FIXME (#45742): replace the above impls for &/&mut with the following more general one:
736// // As lifts over Deref
737// impl<D: ?Sized + Deref<Target: AsRef<U>>, U: ?Sized> AsRef<U> for D {
738// fn as_ref(&self) -> &U {
739// self.deref().as_ref()
740// }
741// }
742
743// AsMut lifts over &mut
744#[stable(feature = "rust1", since = "1.0.0")]
745impl<T: PointeeSized, U: PointeeSized> AsMut<U> for &mut T
746where
747 T: AsMut<U>,
748{
749 #[inline]
750 fn as_mut(&mut self) -> &mut U {
751 (*self).as_mut()
752 }
753}
754
755// FIXME (#45742): replace the above impl for &mut with the following more general one:
756// // AsMut lifts over DerefMut
757// impl<D: ?Sized + Deref<Target: AsMut<U>>, U: ?Sized> AsMut<U> for D {
758// fn as_mut(&mut self) -> &mut U {
759// self.deref_mut().as_mut()
760// }
761// }
762
763// From implies Into
764#[stable(feature = "rust1", since = "1.0.0")]
765#[rustc_const_unstable(feature = "const_from", issue = "143773")]
766impl<T, U> const Into<U> for T
767where
768 U: ~const From<T>,
769{
770 /// Calls `U::from(self)`.
771 ///
772 /// That is, this conversion is whatever the implementation of
773 /// <code>[From]<T> for U</code> chooses to do.
774 #[inline]
775 #[track_caller]
776 fn into(self) -> U {
777 U::from(self)
778 }
779}
780
781// From (and thus Into) is reflexive
782#[stable(feature = "rust1", since = "1.0.0")]
783#[rustc_const_unstable(feature = "const_from", issue = "143773")]
784impl<T> const From<T> for T {
785 /// Returns the argument unchanged.
786 #[inline(always)]
787 fn from(t: T) -> T {
788 t
789 }
790}
791
792/// **Stability note:** This impl does not yet exist, but we are
793/// "reserving space" to add it in the future. See
794/// [rust-lang/rust#64715][#64715] for details.
795///
796/// [#64715]: https://github.com/rust-lang/rust/issues/64715
797#[stable(feature = "convert_infallible", since = "1.34.0")]
798#[rustc_reservation_impl = "permitting this impl would forbid us from adding \
799 `impl<T> From<!> for T` later; see rust-lang/rust#64715 for details"]
800#[rustc_const_unstable(feature = "const_from", issue = "143773")]
801impl<T> const From<!> for T {
802 fn from(t: !) -> T {
803 t
804 }
805}
806
807// TryFrom implies TryInto
808#[stable(feature = "try_from", since = "1.34.0")]
809#[rustc_const_unstable(feature = "const_from", issue = "143773")]
810impl<T, U> const TryInto<U> for T
811where
812 U: ~const TryFrom<T>,
813{
814 type Error = U::Error;
815
816 #[inline]
817 fn try_into(self) -> Result<U, U::Error> {
818 U::try_from(self)
819 }
820}
821
822// Infallible conversions are semantically equivalent to fallible conversions
823// with an uninhabited error type.
824#[stable(feature = "try_from", since = "1.34.0")]
825#[rustc_const_unstable(feature = "const_from", issue = "143773")]
826impl<T, U> const TryFrom<U> for T
827where
828 U: ~const Into<T>,
829{
830 type Error = Infallible;
831
832 #[inline]
833 fn try_from(value: U) -> Result<Self, Self::Error> {
834 Ok(U::into(value))
835 }
836}
837
838////////////////////////////////////////////////////////////////////////////////
839// CONCRETE IMPLS
840////////////////////////////////////////////////////////////////////////////////
841
842#[stable(feature = "rust1", since = "1.0.0")]
843impl<T> AsRef<[T]> for [T] {
844 #[inline(always)]
845 fn as_ref(&self) -> &[T] {
846 self
847 }
848}
849
850#[stable(feature = "rust1", since = "1.0.0")]
851impl<T> AsMut<[T]> for [T] {
852 #[inline(always)]
853 fn as_mut(&mut self) -> &mut [T] {
854 self
855 }
856}
857
858#[stable(feature = "rust1", since = "1.0.0")]
859impl AsRef<str> for str {
860 #[inline(always)]
861 fn as_ref(&self) -> &str {
862 self
863 }
864}
865
866#[stable(feature = "as_mut_str_for_str", since = "1.51.0")]
867impl AsMut<str> for str {
868 #[inline(always)]
869 fn as_mut(&mut self) -> &mut str {
870 self
871 }
872}
873
874////////////////////////////////////////////////////////////////////////////////
875// THE NO-ERROR ERROR TYPE
876////////////////////////////////////////////////////////////////////////////////
877
878/// The error type for errors that can never happen.
879///
880/// Since this enum has no variant, a value of this type can never actually exist.
881/// This can be useful for generic APIs that use [`Result`] and parameterize the error type,
882/// to indicate that the result is always [`Ok`].
883///
884/// For example, the [`TryFrom`] trait (conversion that returns a [`Result`])
885/// has a blanket implementation for all types where a reverse [`Into`] implementation exists.
886///
887/// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error)
888/// impl<T, U> TryFrom<U> for T where U: Into<T> {
889/// type Error = Infallible;
890///
891/// fn try_from(value: U) -> Result<Self, Infallible> {
892/// Ok(U::into(value)) // Never returns `Err`
893/// }
894/// }
895/// ```
896///
897/// # Future compatibility
898///
899/// This enum has the same role as [the `!` “never” type][never],
900/// which is unstable in this version of Rust.
901/// When `!` is stabilized, we plan to make `Infallible` a type alias to it:
902///
903/// ```ignore (illustrates future std change)
904/// pub type Infallible = !;
905/// ```
906///
907/// … and eventually deprecate `Infallible`.
908///
909/// However there is one case where `!` syntax can be used
910/// before `!` is stabilized as a full-fledged type: in the position of a function’s return type.
911/// Specifically, it is possible to have implementations for two different function pointer types:
912///
913/// ```
914/// trait MyTrait {}
915/// impl MyTrait for fn() -> ! {}
916/// impl MyTrait for fn() -> std::convert::Infallible {}
917/// ```
918///
919/// With `Infallible` being an enum, this code is valid.
920/// However when `Infallible` becomes an alias for the never type,
921/// the two `impl`s will start to overlap
922/// and therefore will be disallowed by the language’s trait coherence rules.
923#[stable(feature = "convert_infallible", since = "1.34.0")]
924#[derive(Copy)]
925pub enum Infallible {}
926
927#[stable(feature = "convert_infallible", since = "1.34.0")]
928impl Clone for Infallible {
929 fn clone(&self) -> Infallible {
930 match *self {}
931 }
932}
933
934#[stable(feature = "convert_infallible", since = "1.34.0")]
935impl fmt::Debug for Infallible {
936 fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
937 match *self {}
938 }
939}
940
941#[stable(feature = "convert_infallible", since = "1.34.0")]
942impl fmt::Display for Infallible {
943 fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
944 match *self {}
945 }
946}
947
948#[stable(feature = "str_parse_error2", since = "1.8.0")]
949impl Error for Infallible {
950 fn description(&self) -> &str {
951 match *self {}
952 }
953}
954
955#[stable(feature = "convert_infallible", since = "1.34.0")]
956impl PartialEq for Infallible {
957 fn eq(&self, _: &Infallible) -> bool {
958 match *self {}
959 }
960}
961
962#[stable(feature = "convert_infallible", since = "1.34.0")]
963impl Eq for Infallible {}
964
965#[stable(feature = "convert_infallible", since = "1.34.0")]
966impl PartialOrd for Infallible {
967 fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> {
968 match *self {}
969 }
970}
971
972#[stable(feature = "convert_infallible", since = "1.34.0")]
973impl Ord for Infallible {
974 fn cmp(&self, _other: &Self) -> crate::cmp::Ordering {
975 match *self {}
976 }
977}
978
979#[stable(feature = "convert_infallible", since = "1.34.0")]
980impl From<!> for Infallible {
981 #[inline]
982 fn from(x: !) -> Self {
983 x
984 }
985}
986
987#[stable(feature = "convert_infallible_hash", since = "1.44.0")]
988impl Hash for Infallible {
989 fn hash<H: Hasher>(&self, _: &mut H) {
990 match *self {}
991 }
992}