core/cmp.rs
1//! Utilities for comparing and ordering values.
2//!
3//! This module contains various tools for comparing and ordering values. In
4//! summary:
5//!
6//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
7//! `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
8//! partial equivalence relation.
9//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
10//! equivalence relation.
11//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
12//! partial orderings between values, respectively. Implementing them overloads
13//! the `<`, `<=`, `>`, and `>=` operators.
14//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
15//! [`PartialOrd`], and describes an ordering of two values (less, equal, or
16//! greater).
17//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
18//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
19//! to find the maximum or minimum of two values.
20//!
21//! For more details, see the respective documentation of each item in the list.
22//!
23//! [`max`]: Ord::max
24//! [`min`]: Ord::min
25
26#![stable(feature = "rust1", since = "1.0.0")]
27
28mod bytewise;
29pub(crate) use bytewise::BytewiseEq;
30
31use self::Ordering::*;
32use crate::marker::PointeeSized;
33use crate::ops::ControlFlow;
34
35/// Trait for comparisons using the equality operator.
36///
37/// Implementing this trait for types provides the `==` and `!=` operators for
38/// those types.
39///
40/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
41/// We use the easier-to-read infix notation in the remainder of this documentation.
42///
43/// This trait allows for comparisons using the equality operator, for types
44/// that do not have a full equivalence relation. For example, in floating point
45/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
46/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
47/// to a [partial equivalence relation].
48///
49/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
50///
51/// Implementations must ensure that `eq` and `ne` are consistent with each other:
52///
53/// - `a != b` if and only if `!(a == b)`.
54///
55/// The default implementation of `ne` provides this consistency and is almost
56/// always sufficient. It should not be overridden without very good reason.
57///
58/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
59/// be consistent with `PartialEq` (see the documentation of those traits for the exact
60/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
61/// manually implementing others.
62///
63/// The equality relation `==` must satisfy the following conditions
64/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
65///
66/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
67/// implies `b == a`**; and
68///
69/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
70/// PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
71/// This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
72/// `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
73///
74/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
75/// (transitive) impls are not forced to exist, but these requirements apply
76/// whenever they do exist.
77///
78/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
79/// specified, but users of the trait must ensure that such logic errors do *not* result in
80/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
81/// methods.
82///
83/// ## Cross-crate considerations
84///
85/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
86/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
87/// standard library). The recommendation is to never implement this trait for a foreign type. In
88/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
89/// *not* do `impl PartialEq<LocalType> for ForeignType`.
90///
91/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
92/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
93/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
94/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
95/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
96/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
97/// transitivity.
98///
99/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
100/// more `PartialEq` implementations can cause build failures in downstream crates.
101///
102/// ## Derivable
103///
104/// This trait can be used with `#[derive]`. When `derive`d on structs, two
105/// instances are equal if all fields are equal, and not equal if any fields
106/// are not equal. When `derive`d on enums, two instances are equal if they
107/// are the same variant and all fields are equal.
108///
109/// ## How can I implement `PartialEq`?
110///
111/// An example implementation for a domain in which two books are considered
112/// the same book if their ISBN matches, even if the formats differ:
113///
114/// ```
115/// enum BookFormat {
116/// Paperback,
117/// Hardback,
118/// Ebook,
119/// }
120///
121/// struct Book {
122/// isbn: i32,
123/// format: BookFormat,
124/// }
125///
126/// impl PartialEq for Book {
127/// fn eq(&self, other: &Self) -> bool {
128/// self.isbn == other.isbn
129/// }
130/// }
131///
132/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
133/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
134/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
135///
136/// assert!(b1 == b2);
137/// assert!(b1 != b3);
138/// ```
139///
140/// ## How can I compare two different types?
141///
142/// The type you can compare with is controlled by `PartialEq`'s type parameter.
143/// For example, let's tweak our previous code a bit:
144///
145/// ```
146/// // The derive implements <BookFormat> == <BookFormat> comparisons
147/// #[derive(PartialEq)]
148/// enum BookFormat {
149/// Paperback,
150/// Hardback,
151/// Ebook,
152/// }
153///
154/// struct Book {
155/// isbn: i32,
156/// format: BookFormat,
157/// }
158///
159/// // Implement <Book> == <BookFormat> comparisons
160/// impl PartialEq<BookFormat> for Book {
161/// fn eq(&self, other: &BookFormat) -> bool {
162/// self.format == *other
163/// }
164/// }
165///
166/// // Implement <BookFormat> == <Book> comparisons
167/// impl PartialEq<Book> for BookFormat {
168/// fn eq(&self, other: &Book) -> bool {
169/// *self == other.format
170/// }
171/// }
172///
173/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
174///
175/// assert!(b1 == BookFormat::Paperback);
176/// assert!(BookFormat::Ebook != b1);
177/// ```
178///
179/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
180/// we allow `BookFormat`s to be compared with `Book`s.
181///
182/// A comparison like the one above, which ignores some fields of the struct,
183/// can be dangerous. It can easily lead to an unintended violation of the
184/// requirements for a partial equivalence relation. For example, if we kept
185/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
186/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
187/// via the manual implementation from the first example) then the result would
188/// violate transitivity:
189///
190/// ```should_panic
191/// #[derive(PartialEq)]
192/// enum BookFormat {
193/// Paperback,
194/// Hardback,
195/// Ebook,
196/// }
197///
198/// #[derive(PartialEq)]
199/// struct Book {
200/// isbn: i32,
201/// format: BookFormat,
202/// }
203///
204/// impl PartialEq<BookFormat> for Book {
205/// fn eq(&self, other: &BookFormat) -> bool {
206/// self.format == *other
207/// }
208/// }
209///
210/// impl PartialEq<Book> for BookFormat {
211/// fn eq(&self, other: &Book) -> bool {
212/// *self == other.format
213/// }
214/// }
215///
216/// fn main() {
217/// let b1 = Book { isbn: 1, format: BookFormat::Paperback };
218/// let b2 = Book { isbn: 2, format: BookFormat::Paperback };
219///
220/// assert!(b1 == BookFormat::Paperback);
221/// assert!(BookFormat::Paperback == b2);
222///
223/// // The following should hold by transitivity but doesn't.
224/// assert!(b1 == b2); // <-- PANICS
225/// }
226/// ```
227///
228/// # Examples
229///
230/// ```
231/// let x: u32 = 0;
232/// let y: u32 = 1;
233///
234/// assert_eq!(x == y, false);
235/// assert_eq!(x.eq(&y), false);
236/// ```
237///
238/// [`eq`]: PartialEq::eq
239/// [`ne`]: PartialEq::ne
240#[lang = "eq"]
241#[stable(feature = "rust1", since = "1.0.0")]
242#[doc(alias = "==")]
243#[doc(alias = "!=")]
244#[rustc_on_unimplemented(
245 message = "can't compare `{Self}` with `{Rhs}`",
246 label = "no implementation for `{Self} == {Rhs}`",
247 append_const_msg
248)]
249#[rustc_diagnostic_item = "PartialEq"]
250pub trait PartialEq<Rhs: PointeeSized = Self>: PointeeSized {
251 /// Tests for `self` and `other` values to be equal, and is used by `==`.
252 #[must_use]
253 #[stable(feature = "rust1", since = "1.0.0")]
254 #[rustc_diagnostic_item = "cmp_partialeq_eq"]
255 fn eq(&self, other: &Rhs) -> bool;
256
257 /// Tests for `!=`. The default implementation is almost always sufficient,
258 /// and should not be overridden without very good reason.
259 #[inline]
260 #[must_use]
261 #[stable(feature = "rust1", since = "1.0.0")]
262 #[rustc_diagnostic_item = "cmp_partialeq_ne"]
263 fn ne(&self, other: &Rhs) -> bool {
264 !self.eq(other)
265 }
266}
267
268/// Derive macro generating an impl of the trait [`PartialEq`].
269/// The behavior of this macro is described in detail [here](PartialEq#derivable).
270#[rustc_builtin_macro]
271#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
272#[allow_internal_unstable(core_intrinsics, structural_match)]
273pub macro PartialEq($item:item) {
274 /* compiler built-in */
275}
276
277/// Trait for comparisons corresponding to [equivalence relations](
278/// https://en.wikipedia.org/wiki/Equivalence_relation).
279///
280/// The primary difference to [`PartialEq`] is the additional requirement for reflexivity. A type
281/// that implements [`PartialEq`] guarantees that for all `a`, `b` and `c`:
282///
283/// - symmetric: `a == b` implies `b == a` and `a != b` implies `!(a == b)`
284/// - transitive: `a == b` and `b == c` implies `a == c`
285///
286/// `Eq`, which builds on top of [`PartialEq`] also implies:
287///
288/// - reflexive: `a == a`
289///
290/// This property cannot be checked by the compiler, and therefore `Eq` is a trait without methods.
291///
292/// Violating this property is a logic error. The behavior resulting from a logic error is not
293/// specified, but users of the trait must ensure that such logic errors do *not* result in
294/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
295/// methods.
296///
297/// Floating point types such as [`f32`] and [`f64`] implement only [`PartialEq`] but *not* `Eq`
298/// because `NaN` != `NaN`.
299///
300/// ## Derivable
301///
302/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has no extra methods, it
303/// is only informing the compiler that this is an equivalence relation rather than a partial
304/// equivalence relation. Note that the `derive` strategy requires all fields are `Eq`, which isn't
305/// always desired.
306///
307/// ## How can I implement `Eq`?
308///
309/// If you cannot use the `derive` strategy, specify that your type implements `Eq`, which has no
310/// extra methods:
311///
312/// ```
313/// enum BookFormat {
314/// Paperback,
315/// Hardback,
316/// Ebook,
317/// }
318///
319/// struct Book {
320/// isbn: i32,
321/// format: BookFormat,
322/// }
323///
324/// impl PartialEq for Book {
325/// fn eq(&self, other: &Self) -> bool {
326/// self.isbn == other.isbn
327/// }
328/// }
329///
330/// impl Eq for Book {}
331/// ```
332#[doc(alias = "==")]
333#[doc(alias = "!=")]
334#[stable(feature = "rust1", since = "1.0.0")]
335#[rustc_diagnostic_item = "Eq"]
336pub trait Eq: PartialEq<Self> + PointeeSized {
337 // this method is used solely by `impl Eq or #[derive(Eq)]` to assert that every component of a
338 // type implements `Eq` itself. The current deriving infrastructure means doing this assertion
339 // without using a method on this trait is nearly impossible.
340 //
341 // This should never be implemented by hand.
342 #[doc(hidden)]
343 #[coverage(off)]
344 #[inline]
345 #[stable(feature = "rust1", since = "1.0.0")]
346 fn assert_receiver_is_total_eq(&self) {}
347}
348
349/// Derive macro generating an impl of the trait [`Eq`].
350#[rustc_builtin_macro]
351#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
352#[allow_internal_unstable(core_intrinsics, derive_eq, structural_match)]
353#[allow_internal_unstable(coverage_attribute)]
354pub macro Eq($item:item) {
355 /* compiler built-in */
356}
357
358// FIXME: this struct is used solely by #[derive] to
359// assert that every component of a type implements Eq.
360//
361// This struct should never appear in user code.
362#[doc(hidden)]
363#[allow(missing_debug_implementations)]
364#[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "none")]
365pub struct AssertParamIsEq<T: Eq + PointeeSized> {
366 _field: crate::marker::PhantomData<T>,
367}
368
369/// An `Ordering` is the result of a comparison between two values.
370///
371/// # Examples
372///
373/// ```
374/// use std::cmp::Ordering;
375///
376/// assert_eq!(1.cmp(&2), Ordering::Less);
377///
378/// assert_eq!(1.cmp(&1), Ordering::Equal);
379///
380/// assert_eq!(2.cmp(&1), Ordering::Greater);
381/// ```
382#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)]
383#[stable(feature = "rust1", since = "1.0.0")]
384// This is a lang item only so that `BinOp::Cmp` in MIR can return it.
385// It has no special behavior, but does require that the three variants
386// `Less`/`Equal`/`Greater` remain `-1_i8`/`0_i8`/`+1_i8` respectively.
387#[lang = "Ordering"]
388#[repr(i8)]
389pub enum Ordering {
390 /// An ordering where a compared value is less than another.
391 #[stable(feature = "rust1", since = "1.0.0")]
392 Less = -1,
393 /// An ordering where a compared value is equal to another.
394 #[stable(feature = "rust1", since = "1.0.0")]
395 Equal = 0,
396 /// An ordering where a compared value is greater than another.
397 #[stable(feature = "rust1", since = "1.0.0")]
398 Greater = 1,
399}
400
401impl Ordering {
402 #[inline]
403 const fn as_raw(self) -> i8 {
404 // FIXME(const-hack): just use `PartialOrd` against `Equal` once that's const
405 crate::intrinsics::discriminant_value(&self)
406 }
407
408 /// Returns `true` if the ordering is the `Equal` variant.
409 ///
410 /// # Examples
411 ///
412 /// ```
413 /// use std::cmp::Ordering;
414 ///
415 /// assert_eq!(Ordering::Less.is_eq(), false);
416 /// assert_eq!(Ordering::Equal.is_eq(), true);
417 /// assert_eq!(Ordering::Greater.is_eq(), false);
418 /// ```
419 #[inline]
420 #[must_use]
421 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
422 #[stable(feature = "ordering_helpers", since = "1.53.0")]
423 pub const fn is_eq(self) -> bool {
424 // All the `is_*` methods are implemented as comparisons against zero
425 // to follow how clang's libcxx implements their equivalents in
426 // <https://github.com/llvm/llvm-project/blob/60486292b79885b7800b082754153202bef5b1f0/libcxx/include/__compare/is_eq.h#L23-L28>
427
428 self.as_raw() == 0
429 }
430
431 /// Returns `true` if the ordering is not the `Equal` variant.
432 ///
433 /// # Examples
434 ///
435 /// ```
436 /// use std::cmp::Ordering;
437 ///
438 /// assert_eq!(Ordering::Less.is_ne(), true);
439 /// assert_eq!(Ordering::Equal.is_ne(), false);
440 /// assert_eq!(Ordering::Greater.is_ne(), true);
441 /// ```
442 #[inline]
443 #[must_use]
444 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
445 #[stable(feature = "ordering_helpers", since = "1.53.0")]
446 pub const fn is_ne(self) -> bool {
447 self.as_raw() != 0
448 }
449
450 /// Returns `true` if the ordering is the `Less` variant.
451 ///
452 /// # Examples
453 ///
454 /// ```
455 /// use std::cmp::Ordering;
456 ///
457 /// assert_eq!(Ordering::Less.is_lt(), true);
458 /// assert_eq!(Ordering::Equal.is_lt(), false);
459 /// assert_eq!(Ordering::Greater.is_lt(), false);
460 /// ```
461 #[inline]
462 #[must_use]
463 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
464 #[stable(feature = "ordering_helpers", since = "1.53.0")]
465 pub const fn is_lt(self) -> bool {
466 self.as_raw() < 0
467 }
468
469 /// Returns `true` if the ordering is the `Greater` variant.
470 ///
471 /// # Examples
472 ///
473 /// ```
474 /// use std::cmp::Ordering;
475 ///
476 /// assert_eq!(Ordering::Less.is_gt(), false);
477 /// assert_eq!(Ordering::Equal.is_gt(), false);
478 /// assert_eq!(Ordering::Greater.is_gt(), true);
479 /// ```
480 #[inline]
481 #[must_use]
482 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
483 #[stable(feature = "ordering_helpers", since = "1.53.0")]
484 pub const fn is_gt(self) -> bool {
485 self.as_raw() > 0
486 }
487
488 /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
489 ///
490 /// # Examples
491 ///
492 /// ```
493 /// use std::cmp::Ordering;
494 ///
495 /// assert_eq!(Ordering::Less.is_le(), true);
496 /// assert_eq!(Ordering::Equal.is_le(), true);
497 /// assert_eq!(Ordering::Greater.is_le(), false);
498 /// ```
499 #[inline]
500 #[must_use]
501 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
502 #[stable(feature = "ordering_helpers", since = "1.53.0")]
503 pub const fn is_le(self) -> bool {
504 self.as_raw() <= 0
505 }
506
507 /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
508 ///
509 /// # Examples
510 ///
511 /// ```
512 /// use std::cmp::Ordering;
513 ///
514 /// assert_eq!(Ordering::Less.is_ge(), false);
515 /// assert_eq!(Ordering::Equal.is_ge(), true);
516 /// assert_eq!(Ordering::Greater.is_ge(), true);
517 /// ```
518 #[inline]
519 #[must_use]
520 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
521 #[stable(feature = "ordering_helpers", since = "1.53.0")]
522 pub const fn is_ge(self) -> bool {
523 self.as_raw() >= 0
524 }
525
526 /// Reverses the `Ordering`.
527 ///
528 /// * `Less` becomes `Greater`.
529 /// * `Greater` becomes `Less`.
530 /// * `Equal` becomes `Equal`.
531 ///
532 /// # Examples
533 ///
534 /// Basic behavior:
535 ///
536 /// ```
537 /// use std::cmp::Ordering;
538 ///
539 /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
540 /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
541 /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
542 /// ```
543 ///
544 /// This method can be used to reverse a comparison:
545 ///
546 /// ```
547 /// let data: &mut [_] = &mut [2, 10, 5, 8];
548 ///
549 /// // sort the array from largest to smallest.
550 /// data.sort_by(|a, b| a.cmp(b).reverse());
551 ///
552 /// let b: &mut [_] = &mut [10, 8, 5, 2];
553 /// assert!(data == b);
554 /// ```
555 #[inline]
556 #[must_use]
557 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
558 #[stable(feature = "rust1", since = "1.0.0")]
559 pub const fn reverse(self) -> Ordering {
560 match self {
561 Less => Greater,
562 Equal => Equal,
563 Greater => Less,
564 }
565 }
566
567 /// Chains two orderings.
568 ///
569 /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
570 ///
571 /// # Examples
572 ///
573 /// ```
574 /// use std::cmp::Ordering;
575 ///
576 /// let result = Ordering::Equal.then(Ordering::Less);
577 /// assert_eq!(result, Ordering::Less);
578 ///
579 /// let result = Ordering::Less.then(Ordering::Equal);
580 /// assert_eq!(result, Ordering::Less);
581 ///
582 /// let result = Ordering::Less.then(Ordering::Greater);
583 /// assert_eq!(result, Ordering::Less);
584 ///
585 /// let result = Ordering::Equal.then(Ordering::Equal);
586 /// assert_eq!(result, Ordering::Equal);
587 ///
588 /// let x: (i64, i64, i64) = (1, 2, 7);
589 /// let y: (i64, i64, i64) = (1, 5, 3);
590 /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
591 ///
592 /// assert_eq!(result, Ordering::Less);
593 /// ```
594 #[inline]
595 #[must_use]
596 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
597 #[stable(feature = "ordering_chaining", since = "1.17.0")]
598 pub const fn then(self, other: Ordering) -> Ordering {
599 match self {
600 Equal => other,
601 _ => self,
602 }
603 }
604
605 /// Chains the ordering with the given function.
606 ///
607 /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
608 /// the result.
609 ///
610 /// # Examples
611 ///
612 /// ```
613 /// use std::cmp::Ordering;
614 ///
615 /// let result = Ordering::Equal.then_with(|| Ordering::Less);
616 /// assert_eq!(result, Ordering::Less);
617 ///
618 /// let result = Ordering::Less.then_with(|| Ordering::Equal);
619 /// assert_eq!(result, Ordering::Less);
620 ///
621 /// let result = Ordering::Less.then_with(|| Ordering::Greater);
622 /// assert_eq!(result, Ordering::Less);
623 ///
624 /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
625 /// assert_eq!(result, Ordering::Equal);
626 ///
627 /// let x: (i64, i64, i64) = (1, 2, 7);
628 /// let y: (i64, i64, i64) = (1, 5, 3);
629 /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
630 ///
631 /// assert_eq!(result, Ordering::Less);
632 /// ```
633 #[inline]
634 #[must_use]
635 #[stable(feature = "ordering_chaining", since = "1.17.0")]
636 pub fn then_with<F: FnOnce() -> Ordering>(self, f: F) -> Ordering {
637 match self {
638 Equal => f(),
639 _ => self,
640 }
641 }
642}
643
644/// A helper struct for reverse ordering.
645///
646/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
647/// can be used to reverse order a part of a key.
648///
649/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
650///
651/// # Examples
652///
653/// ```
654/// use std::cmp::Reverse;
655///
656/// let mut v = vec![1, 2, 3, 4, 5, 6];
657/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
658/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
659/// ```
660#[derive(PartialEq, Eq, Debug, Copy, Default, Hash)]
661#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
662#[repr(transparent)]
663pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
664
665#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
666impl<T: PartialOrd> PartialOrd for Reverse<T> {
667 #[inline]
668 fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
669 other.0.partial_cmp(&self.0)
670 }
671
672 #[inline]
673 fn lt(&self, other: &Self) -> bool {
674 other.0 < self.0
675 }
676 #[inline]
677 fn le(&self, other: &Self) -> bool {
678 other.0 <= self.0
679 }
680 #[inline]
681 fn gt(&self, other: &Self) -> bool {
682 other.0 > self.0
683 }
684 #[inline]
685 fn ge(&self, other: &Self) -> bool {
686 other.0 >= self.0
687 }
688}
689
690#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
691impl<T: Ord> Ord for Reverse<T> {
692 #[inline]
693 fn cmp(&self, other: &Reverse<T>) -> Ordering {
694 other.0.cmp(&self.0)
695 }
696}
697
698#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
699impl<T: Clone> Clone for Reverse<T> {
700 #[inline]
701 fn clone(&self) -> Reverse<T> {
702 Reverse(self.0.clone())
703 }
704
705 #[inline]
706 fn clone_from(&mut self, source: &Self) {
707 self.0.clone_from(&source.0)
708 }
709}
710
711/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
712///
713/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure `max`,
714/// `min`, and `clamp` are consistent with `cmp`:
715///
716/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
717/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
718/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
719/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp) (ensured by the default
720/// implementation).
721///
722/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
723/// specified, but users of the trait must ensure that such logic errors do *not* result in
724/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
725/// methods.
726///
727/// ## Corollaries
728///
729/// From the above and the requirements of `PartialOrd`, it follows that for all `a`, `b` and `c`:
730///
731/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
732/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and
733/// `>`.
734///
735/// Mathematically speaking, the `<` operator defines a strict [weak order]. In cases where `==`
736/// conforms to mathematical equality, it also defines a strict [total order].
737///
738/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
739/// [total order]: https://en.wikipedia.org/wiki/Total_order
740///
741/// ## Derivable
742///
743/// This trait can be used with `#[derive]`.
744///
745/// When `derive`d on structs, it will produce a
746/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
747/// top-to-bottom declaration order of the struct's members.
748///
749/// When `derive`d on enums, variants are ordered primarily by their discriminants. Secondarily,
750/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
751/// top, and largest for variants at the bottom. Here's an example:
752///
753/// ```
754/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
755/// enum E {
756/// Top,
757/// Bottom,
758/// }
759///
760/// assert!(E::Top < E::Bottom);
761/// ```
762///
763/// However, manually setting the discriminants can override this default behavior:
764///
765/// ```
766/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
767/// enum E {
768/// Top = 2,
769/// Bottom = 1,
770/// }
771///
772/// assert!(E::Bottom < E::Top);
773/// ```
774///
775/// ## Lexicographical comparison
776///
777/// Lexicographical comparison is an operation with the following properties:
778/// - Two sequences are compared element by element.
779/// - The first mismatching element defines which sequence is lexicographically less or greater
780/// than the other.
781/// - If one sequence is a prefix of another, the shorter sequence is lexicographically less than
782/// the other.
783/// - If two sequences have equivalent elements and are of the same length, then the sequences are
784/// lexicographically equal.
785/// - An empty sequence is lexicographically less than any non-empty sequence.
786/// - Two empty sequences are lexicographically equal.
787///
788/// ## How can I implement `Ord`?
789///
790/// `Ord` requires that the type also be [`PartialOrd`], [`PartialEq`], and [`Eq`].
791///
792/// Because `Ord` implies a stronger ordering relationship than [`PartialOrd`], and both `Ord` and
793/// [`PartialOrd`] must agree, you must choose how to implement `Ord` **first**. You can choose to
794/// derive it, or implement it manually. If you derive it, you should derive all four traits. If you
795/// implement it manually, you should manually implement all four traits, based on the
796/// implementation of `Ord`.
797///
798/// Here's an example where you want to define the `Character` comparison by `health` and
799/// `experience` only, disregarding the field `mana`:
800///
801/// ```
802/// use std::cmp::Ordering;
803///
804/// struct Character {
805/// health: u32,
806/// experience: u32,
807/// mana: f32,
808/// }
809///
810/// impl Ord for Character {
811/// fn cmp(&self, other: &Self) -> Ordering {
812/// self.experience
813/// .cmp(&other.experience)
814/// .then(self.health.cmp(&other.health))
815/// }
816/// }
817///
818/// impl PartialOrd for Character {
819/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
820/// Some(self.cmp(other))
821/// }
822/// }
823///
824/// impl PartialEq for Character {
825/// fn eq(&self, other: &Self) -> bool {
826/// self.health == other.health && self.experience == other.experience
827/// }
828/// }
829///
830/// impl Eq for Character {}
831/// ```
832///
833/// If all you need is to `slice::sort` a type by a field value, it can be simpler to use
834/// `slice::sort_by_key`.
835///
836/// ## Examples of incorrect `Ord` implementations
837///
838/// ```
839/// use std::cmp::Ordering;
840///
841/// #[derive(Debug)]
842/// struct Character {
843/// health: f32,
844/// }
845///
846/// impl Ord for Character {
847/// fn cmp(&self, other: &Self) -> std::cmp::Ordering {
848/// if self.health < other.health {
849/// Ordering::Less
850/// } else if self.health > other.health {
851/// Ordering::Greater
852/// } else {
853/// Ordering::Equal
854/// }
855/// }
856/// }
857///
858/// impl PartialOrd for Character {
859/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
860/// Some(self.cmp(other))
861/// }
862/// }
863///
864/// impl PartialEq for Character {
865/// fn eq(&self, other: &Self) -> bool {
866/// self.health == other.health
867/// }
868/// }
869///
870/// impl Eq for Character {}
871///
872/// let a = Character { health: 4.5 };
873/// let b = Character { health: f32::NAN };
874///
875/// // Mistake: floating-point values do not form a total order and using the built-in comparison
876/// // operands to implement `Ord` irregardless of that reality does not change it. Use
877/// // `f32::total_cmp` if you need a total order for floating-point values.
878///
879/// // Reflexivity requirement of `Ord` is not given.
880/// assert!(a == a);
881/// assert!(b != b);
882///
883/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
884/// // true, not both or neither.
885/// assert_eq!((a < b) as u8 + (b < a) as u8, 0);
886/// ```
887///
888/// ```
889/// use std::cmp::Ordering;
890///
891/// #[derive(Debug)]
892/// struct Character {
893/// health: u32,
894/// experience: u32,
895/// }
896///
897/// impl PartialOrd for Character {
898/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
899/// Some(self.cmp(other))
900/// }
901/// }
902///
903/// impl Ord for Character {
904/// fn cmp(&self, other: &Self) -> std::cmp::Ordering {
905/// if self.health < 50 {
906/// self.health.cmp(&other.health)
907/// } else {
908/// self.experience.cmp(&other.experience)
909/// }
910/// }
911/// }
912///
913/// // For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
914/// // ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
915/// impl PartialEq for Character {
916/// fn eq(&self, other: &Self) -> bool {
917/// self.cmp(other) == Ordering::Equal
918/// }
919/// }
920///
921/// impl Eq for Character {}
922///
923/// let a = Character {
924/// health: 3,
925/// experience: 5,
926/// };
927/// let b = Character {
928/// health: 10,
929/// experience: 77,
930/// };
931/// let c = Character {
932/// health: 143,
933/// experience: 2,
934/// };
935///
936/// // Mistake: The implementation of `Ord` compares different fields depending on the value of
937/// // `self.health`, the resulting order is not total.
938///
939/// // Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
940/// // c, by transitive property a must also be smaller than c.
941/// assert!(a < b && b < c && c < a);
942///
943/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
944/// // true, not both or neither.
945/// assert_eq!((a < c) as u8 + (c < a) as u8, 2);
946/// ```
947///
948/// The documentation of [`PartialOrd`] contains further examples, for example it's wrong for
949/// [`PartialOrd`] and [`PartialEq`] to disagree.
950///
951/// [`cmp`]: Ord::cmp
952#[doc(alias = "<")]
953#[doc(alias = ">")]
954#[doc(alias = "<=")]
955#[doc(alias = ">=")]
956#[stable(feature = "rust1", since = "1.0.0")]
957#[rustc_diagnostic_item = "Ord"]
958pub trait Ord: Eq + PartialOrd<Self> + PointeeSized {
959 /// This method returns an [`Ordering`] between `self` and `other`.
960 ///
961 /// By convention, `self.cmp(&other)` returns the ordering matching the expression
962 /// `self <operator> other` if true.
963 ///
964 /// # Examples
965 ///
966 /// ```
967 /// use std::cmp::Ordering;
968 ///
969 /// assert_eq!(5.cmp(&10), Ordering::Less);
970 /// assert_eq!(10.cmp(&5), Ordering::Greater);
971 /// assert_eq!(5.cmp(&5), Ordering::Equal);
972 /// ```
973 #[must_use]
974 #[stable(feature = "rust1", since = "1.0.0")]
975 #[rustc_diagnostic_item = "ord_cmp_method"]
976 fn cmp(&self, other: &Self) -> Ordering;
977
978 /// Compares and returns the maximum of two values.
979 ///
980 /// Returns the second argument if the comparison determines them to be equal.
981 ///
982 /// # Examples
983 ///
984 /// ```
985 /// assert_eq!(1.max(2), 2);
986 /// assert_eq!(2.max(2), 2);
987 /// ```
988 /// ```
989 /// use std::cmp::Ordering;
990 ///
991 /// #[derive(Eq)]
992 /// struct Equal(&'static str);
993 ///
994 /// impl PartialEq for Equal {
995 /// fn eq(&self, other: &Self) -> bool { true }
996 /// }
997 /// impl PartialOrd for Equal {
998 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
999 /// }
1000 /// impl Ord for Equal {
1001 /// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1002 /// }
1003 ///
1004 /// assert_eq!(Equal("self").max(Equal("other")).0, "other");
1005 /// ```
1006 #[stable(feature = "ord_max_min", since = "1.21.0")]
1007 #[inline]
1008 #[must_use]
1009 #[rustc_diagnostic_item = "cmp_ord_max"]
1010 fn max(self, other: Self) -> Self
1011 where
1012 Self: Sized,
1013 {
1014 if other < self { self } else { other }
1015 }
1016
1017 /// Compares and returns the minimum of two values.
1018 ///
1019 /// Returns the first argument if the comparison determines them to be equal.
1020 ///
1021 /// # Examples
1022 ///
1023 /// ```
1024 /// assert_eq!(1.min(2), 1);
1025 /// assert_eq!(2.min(2), 2);
1026 /// ```
1027 /// ```
1028 /// use std::cmp::Ordering;
1029 ///
1030 /// #[derive(Eq)]
1031 /// struct Equal(&'static str);
1032 ///
1033 /// impl PartialEq for Equal {
1034 /// fn eq(&self, other: &Self) -> bool { true }
1035 /// }
1036 /// impl PartialOrd for Equal {
1037 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1038 /// }
1039 /// impl Ord for Equal {
1040 /// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1041 /// }
1042 ///
1043 /// assert_eq!(Equal("self").min(Equal("other")).0, "self");
1044 /// ```
1045 #[stable(feature = "ord_max_min", since = "1.21.0")]
1046 #[inline]
1047 #[must_use]
1048 #[rustc_diagnostic_item = "cmp_ord_min"]
1049 fn min(self, other: Self) -> Self
1050 where
1051 Self: Sized,
1052 {
1053 if other < self { other } else { self }
1054 }
1055
1056 /// Restrict a value to a certain interval.
1057 ///
1058 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1059 /// less than `min`. Otherwise this returns `self`.
1060 ///
1061 /// # Panics
1062 ///
1063 /// Panics if `min > max`.
1064 ///
1065 /// # Examples
1066 ///
1067 /// ```
1068 /// assert_eq!((-3).clamp(-2, 1), -2);
1069 /// assert_eq!(0.clamp(-2, 1), 0);
1070 /// assert_eq!(2.clamp(-2, 1), 1);
1071 /// ```
1072 #[must_use]
1073 #[inline]
1074 #[stable(feature = "clamp", since = "1.50.0")]
1075 fn clamp(self, min: Self, max: Self) -> Self
1076 where
1077 Self: Sized,
1078 {
1079 assert!(min <= max);
1080 if self < min {
1081 min
1082 } else if self > max {
1083 max
1084 } else {
1085 self
1086 }
1087 }
1088}
1089
1090/// Derive macro generating an impl of the trait [`Ord`].
1091/// The behavior of this macro is described in detail [here](Ord#derivable).
1092#[rustc_builtin_macro]
1093#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1094#[allow_internal_unstable(core_intrinsics)]
1095pub macro Ord($item:item) {
1096 /* compiler built-in */
1097}
1098
1099/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
1100///
1101/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using the `<`, `<=`, `>`, and
1102/// `>=` operators, respectively.
1103///
1104/// This trait should **only** contain the comparison logic for a type **if one plans on only
1105/// implementing `PartialOrd` but not [`Ord`]**. Otherwise the comparison logic should be in [`Ord`]
1106/// and this trait implemented with `Some(self.cmp(other))`.
1107///
1108/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
1109/// The following conditions must hold:
1110///
1111/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
1112/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
1113/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
1114/// 4. `a <= b` if and only if `a < b || a == b`
1115/// 5. `a >= b` if and only if `a > b || a == b`
1116/// 6. `a != b` if and only if `!(a == b)`.
1117///
1118/// Conditions 2–5 above are ensured by the default implementation. Condition 6 is already ensured
1119/// by [`PartialEq`].
1120///
1121/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
1122/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's easy to
1123/// accidentally make them disagree by deriving some of the traits and manually implementing others.
1124///
1125/// The comparison relations must satisfy the following conditions (for all `a`, `b`, `c` of type
1126/// `A`, `B`, `C`):
1127///
1128/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A: PartialOrd<C>`, then `a
1129/// < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. This must also
1130/// work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`, `C:
1131/// PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
1132/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b >
1133/// a`.
1134///
1135/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>` (transitive) impls are not forced
1136/// to exist, but these requirements apply whenever they do exist.
1137///
1138/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
1139/// specified, but users of the trait must ensure that such logic errors do *not* result in
1140/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
1141/// methods.
1142///
1143/// ## Cross-crate considerations
1144///
1145/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
1146/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
1147/// standard library). The recommendation is to never implement this trait for a foreign type. In
1148/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
1149/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
1150///
1151/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
1152/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
1153/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
1154/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
1155/// defining `T` already knows about. This rules out transitive chains where downstream crates can
1156/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
1157/// transitivity.
1158///
1159/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
1160/// more `PartialOrd` implementations can cause build failures in downstream crates.
1161///
1162/// ## Corollaries
1163///
1164/// The following corollaries follow from the above requirements:
1165///
1166/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
1167/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
1168/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
1169///
1170/// ## Strict and non-strict partial orders
1171///
1172/// The `<` and `>` operators behave according to a *strict* partial order. However, `<=` and `>=`
1173/// do **not** behave according to a *non-strict* partial order. That is because mathematically, a
1174/// non-strict partial order would require reflexivity, i.e. `a <= a` would need to be true for
1175/// every `a`. This isn't always the case for types that implement `PartialOrd`, for example:
1176///
1177/// ```
1178/// let a = f64::sqrt(-1.0);
1179/// assert_eq!(a <= a, false);
1180/// ```
1181///
1182/// ## Derivable
1183///
1184/// This trait can be used with `#[derive]`.
1185///
1186/// When `derive`d on structs, it will produce a
1187/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
1188/// top-to-bottom declaration order of the struct's members.
1189///
1190/// When `derive`d on enums, variants are primarily ordered by their discriminants. Secondarily,
1191/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
1192/// top, and largest for variants at the bottom. Here's an example:
1193///
1194/// ```
1195/// #[derive(PartialEq, PartialOrd)]
1196/// enum E {
1197/// Top,
1198/// Bottom,
1199/// }
1200///
1201/// assert!(E::Top < E::Bottom);
1202/// ```
1203///
1204/// However, manually setting the discriminants can override this default behavior:
1205///
1206/// ```
1207/// #[derive(PartialEq, PartialOrd)]
1208/// enum E {
1209/// Top = 2,
1210/// Bottom = 1,
1211/// }
1212///
1213/// assert!(E::Bottom < E::Top);
1214/// ```
1215///
1216/// ## How can I implement `PartialOrd`?
1217///
1218/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
1219/// generated from default implementations.
1220///
1221/// However it remains possible to implement the others separately for types which do not have a
1222/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == false`
1223/// (cf. IEEE 754-2008 section 5.11).
1224///
1225/// `PartialOrd` requires your type to be [`PartialEq`].
1226///
1227/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
1228///
1229/// ```
1230/// use std::cmp::Ordering;
1231///
1232/// struct Person {
1233/// id: u32,
1234/// name: String,
1235/// height: u32,
1236/// }
1237///
1238/// impl PartialOrd for Person {
1239/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1240/// Some(self.cmp(other))
1241/// }
1242/// }
1243///
1244/// impl Ord for Person {
1245/// fn cmp(&self, other: &Self) -> Ordering {
1246/// self.height.cmp(&other.height)
1247/// }
1248/// }
1249///
1250/// impl PartialEq for Person {
1251/// fn eq(&self, other: &Self) -> bool {
1252/// self.height == other.height
1253/// }
1254/// }
1255///
1256/// impl Eq for Person {}
1257/// ```
1258///
1259/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here is an example of
1260/// `Person` types who have a floating-point `height` field that is the only field to be used for
1261/// sorting:
1262///
1263/// ```
1264/// use std::cmp::Ordering;
1265///
1266/// struct Person {
1267/// id: u32,
1268/// name: String,
1269/// height: f64,
1270/// }
1271///
1272/// impl PartialOrd for Person {
1273/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1274/// self.height.partial_cmp(&other.height)
1275/// }
1276/// }
1277///
1278/// impl PartialEq for Person {
1279/// fn eq(&self, other: &Self) -> bool {
1280/// self.height == other.height
1281/// }
1282/// }
1283/// ```
1284///
1285/// ## Examples of incorrect `PartialOrd` implementations
1286///
1287/// ```
1288/// use std::cmp::Ordering;
1289///
1290/// #[derive(PartialEq, Debug)]
1291/// struct Character {
1292/// health: u32,
1293/// experience: u32,
1294/// }
1295///
1296/// impl PartialOrd for Character {
1297/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1298/// Some(self.health.cmp(&other.health))
1299/// }
1300/// }
1301///
1302/// let a = Character {
1303/// health: 10,
1304/// experience: 5,
1305/// };
1306/// let b = Character {
1307/// health: 10,
1308/// experience: 77,
1309/// };
1310///
1311/// // Mistake: `PartialEq` and `PartialOrd` disagree with each other.
1312///
1313/// assert_eq!(a.partial_cmp(&b).unwrap(), Ordering::Equal); // a == b according to `PartialOrd`.
1314/// assert_ne!(a, b); // a != b according to `PartialEq`.
1315/// ```
1316///
1317/// # Examples
1318///
1319/// ```
1320/// let x: u32 = 0;
1321/// let y: u32 = 1;
1322///
1323/// assert_eq!(x < y, true);
1324/// assert_eq!(x.lt(&y), true);
1325/// ```
1326///
1327/// [`partial_cmp`]: PartialOrd::partial_cmp
1328/// [`cmp`]: Ord::cmp
1329#[lang = "partial_ord"]
1330#[stable(feature = "rust1", since = "1.0.0")]
1331#[doc(alias = ">")]
1332#[doc(alias = "<")]
1333#[doc(alias = "<=")]
1334#[doc(alias = ">=")]
1335#[rustc_on_unimplemented(
1336 message = "can't compare `{Self}` with `{Rhs}`",
1337 label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
1338 append_const_msg
1339)]
1340#[rustc_diagnostic_item = "PartialOrd"]
1341#[allow(multiple_supertrait_upcastable)] // FIXME(sized_hierarchy): remove this
1342pub trait PartialOrd<Rhs: PointeeSized = Self>: PartialEq<Rhs> + PointeeSized {
1343 /// This method returns an ordering between `self` and `other` values if one exists.
1344 ///
1345 /// # Examples
1346 ///
1347 /// ```
1348 /// use std::cmp::Ordering;
1349 ///
1350 /// let result = 1.0.partial_cmp(&2.0);
1351 /// assert_eq!(result, Some(Ordering::Less));
1352 ///
1353 /// let result = 1.0.partial_cmp(&1.0);
1354 /// assert_eq!(result, Some(Ordering::Equal));
1355 ///
1356 /// let result = 2.0.partial_cmp(&1.0);
1357 /// assert_eq!(result, Some(Ordering::Greater));
1358 /// ```
1359 ///
1360 /// When comparison is impossible:
1361 ///
1362 /// ```
1363 /// let result = f64::NAN.partial_cmp(&1.0);
1364 /// assert_eq!(result, None);
1365 /// ```
1366 #[must_use]
1367 #[stable(feature = "rust1", since = "1.0.0")]
1368 #[rustc_diagnostic_item = "cmp_partialord_cmp"]
1369 fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
1370
1371 /// Tests less than (for `self` and `other`) and is used by the `<` operator.
1372 ///
1373 /// # Examples
1374 ///
1375 /// ```
1376 /// assert_eq!(1.0 < 1.0, false);
1377 /// assert_eq!(1.0 < 2.0, true);
1378 /// assert_eq!(2.0 < 1.0, false);
1379 /// ```
1380 #[inline]
1381 #[must_use]
1382 #[stable(feature = "rust1", since = "1.0.0")]
1383 #[rustc_diagnostic_item = "cmp_partialord_lt"]
1384 fn lt(&self, other: &Rhs) -> bool {
1385 self.partial_cmp(other).is_some_and(Ordering::is_lt)
1386 }
1387
1388 /// Tests less than or equal to (for `self` and `other`) and is used by the
1389 /// `<=` operator.
1390 ///
1391 /// # Examples
1392 ///
1393 /// ```
1394 /// assert_eq!(1.0 <= 1.0, true);
1395 /// assert_eq!(1.0 <= 2.0, true);
1396 /// assert_eq!(2.0 <= 1.0, false);
1397 /// ```
1398 #[inline]
1399 #[must_use]
1400 #[stable(feature = "rust1", since = "1.0.0")]
1401 #[rustc_diagnostic_item = "cmp_partialord_le"]
1402 fn le(&self, other: &Rhs) -> bool {
1403 self.partial_cmp(other).is_some_and(Ordering::is_le)
1404 }
1405
1406 /// Tests greater than (for `self` and `other`) and is used by the `>`
1407 /// operator.
1408 ///
1409 /// # Examples
1410 ///
1411 /// ```
1412 /// assert_eq!(1.0 > 1.0, false);
1413 /// assert_eq!(1.0 > 2.0, false);
1414 /// assert_eq!(2.0 > 1.0, true);
1415 /// ```
1416 #[inline]
1417 #[must_use]
1418 #[stable(feature = "rust1", since = "1.0.0")]
1419 #[rustc_diagnostic_item = "cmp_partialord_gt"]
1420 fn gt(&self, other: &Rhs) -> bool {
1421 self.partial_cmp(other).is_some_and(Ordering::is_gt)
1422 }
1423
1424 /// Tests greater than or equal to (for `self` and `other`) and is used by
1425 /// the `>=` operator.
1426 ///
1427 /// # Examples
1428 ///
1429 /// ```
1430 /// assert_eq!(1.0 >= 1.0, true);
1431 /// assert_eq!(1.0 >= 2.0, false);
1432 /// assert_eq!(2.0 >= 1.0, true);
1433 /// ```
1434 #[inline]
1435 #[must_use]
1436 #[stable(feature = "rust1", since = "1.0.0")]
1437 #[rustc_diagnostic_item = "cmp_partialord_ge"]
1438 fn ge(&self, other: &Rhs) -> bool {
1439 self.partial_cmp(other).is_some_and(Ordering::is_ge)
1440 }
1441
1442 /// If `self == other`, returns `ControlFlow::Continue(())`.
1443 /// Otherwise, returns `ControlFlow::Break(self < other)`.
1444 ///
1445 /// This is useful for chaining together calls when implementing a lexical
1446 /// `PartialOrd::lt`, as it allows types (like primitives) which can cheaply
1447 /// check `==` and `<` separately to do rather than needing to calculate
1448 /// (then optimize out) the three-way `Ordering` result.
1449 #[inline]
1450 #[must_use]
1451 // Added to improve the behaviour of tuples; not necessarily stabilization-track.
1452 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1453 #[doc(hidden)]
1454 fn __chaining_lt(&self, other: &Rhs) -> ControlFlow<bool> {
1455 default_chaining_impl(self, other, Ordering::is_lt)
1456 }
1457
1458 /// Same as `__chaining_lt`, but for `<=` instead of `<`.
1459 #[inline]
1460 #[must_use]
1461 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1462 #[doc(hidden)]
1463 fn __chaining_le(&self, other: &Rhs) -> ControlFlow<bool> {
1464 default_chaining_impl(self, other, Ordering::is_le)
1465 }
1466
1467 /// Same as `__chaining_lt`, but for `>` instead of `<`.
1468 #[inline]
1469 #[must_use]
1470 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1471 #[doc(hidden)]
1472 fn __chaining_gt(&self, other: &Rhs) -> ControlFlow<bool> {
1473 default_chaining_impl(self, other, Ordering::is_gt)
1474 }
1475
1476 /// Same as `__chaining_lt`, but for `>=` instead of `<`.
1477 #[inline]
1478 #[must_use]
1479 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1480 #[doc(hidden)]
1481 fn __chaining_ge(&self, other: &Rhs) -> ControlFlow<bool> {
1482 default_chaining_impl(self, other, Ordering::is_ge)
1483 }
1484}
1485
1486fn default_chaining_impl<T: PointeeSized, U: PointeeSized>(
1487 lhs: &T,
1488 rhs: &U,
1489 p: impl FnOnce(Ordering) -> bool,
1490) -> ControlFlow<bool>
1491where
1492 T: PartialOrd<U>,
1493{
1494 // It's important that this only call `partial_cmp` once, not call `eq` then
1495 // one of the relational operators. We don't want to `bcmp`-then-`memcp` a
1496 // `String`, for example, or similarly for other data structures (#108157).
1497 match <T as PartialOrd<U>>::partial_cmp(lhs, rhs) {
1498 Some(Equal) => ControlFlow::Continue(()),
1499 Some(c) => ControlFlow::Break(p(c)),
1500 None => ControlFlow::Break(false),
1501 }
1502}
1503
1504/// Derive macro generating an impl of the trait [`PartialOrd`].
1505/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
1506#[rustc_builtin_macro]
1507#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1508#[allow_internal_unstable(core_intrinsics)]
1509pub macro PartialOrd($item:item) {
1510 /* compiler built-in */
1511}
1512
1513/// Compares and returns the minimum of two values.
1514///
1515/// Returns the first argument if the comparison determines them to be equal.
1516///
1517/// Internally uses an alias to [`Ord::min`].
1518///
1519/// # Examples
1520///
1521/// ```
1522/// use std::cmp;
1523///
1524/// assert_eq!(cmp::min(1, 2), 1);
1525/// assert_eq!(cmp::min(2, 2), 2);
1526/// ```
1527/// ```
1528/// use std::cmp::{self, Ordering};
1529///
1530/// #[derive(Eq)]
1531/// struct Equal(&'static str);
1532///
1533/// impl PartialEq for Equal {
1534/// fn eq(&self, other: &Self) -> bool { true }
1535/// }
1536/// impl PartialOrd for Equal {
1537/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1538/// }
1539/// impl Ord for Equal {
1540/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1541/// }
1542///
1543/// assert_eq!(cmp::min(Equal("v1"), Equal("v2")).0, "v1");
1544/// ```
1545#[inline]
1546#[must_use]
1547#[stable(feature = "rust1", since = "1.0.0")]
1548#[rustc_diagnostic_item = "cmp_min"]
1549pub fn min<T: Ord>(v1: T, v2: T) -> T {
1550 v1.min(v2)
1551}
1552
1553/// Returns the minimum of two values with respect to the specified comparison function.
1554///
1555/// Returns the first argument if the comparison determines them to be equal.
1556///
1557/// # Examples
1558///
1559/// ```
1560/// use std::cmp;
1561///
1562/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1563///
1564/// let result = cmp::min_by(2, -1, abs_cmp);
1565/// assert_eq!(result, -1);
1566///
1567/// let result = cmp::min_by(2, -3, abs_cmp);
1568/// assert_eq!(result, 2);
1569///
1570/// let result = cmp::min_by(1, -1, abs_cmp);
1571/// assert_eq!(result, 1);
1572/// ```
1573#[inline]
1574#[must_use]
1575#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1576pub fn min_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
1577 if compare(&v2, &v1).is_lt() { v2 } else { v1 }
1578}
1579
1580/// Returns the element that gives the minimum value from the specified function.
1581///
1582/// Returns the first argument if the comparison determines them to be equal.
1583///
1584/// # Examples
1585///
1586/// ```
1587/// use std::cmp;
1588///
1589/// let result = cmp::min_by_key(2, -1, |x: &i32| x.abs());
1590/// assert_eq!(result, -1);
1591///
1592/// let result = cmp::min_by_key(2, -3, |x: &i32| x.abs());
1593/// assert_eq!(result, 2);
1594///
1595/// let result = cmp::min_by_key(1, -1, |x: &i32| x.abs());
1596/// assert_eq!(result, 1);
1597/// ```
1598#[inline]
1599#[must_use]
1600#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1601pub fn min_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
1602 if f(&v2) < f(&v1) { v2 } else { v1 }
1603}
1604
1605/// Compares and returns the maximum of two values.
1606///
1607/// Returns the second argument if the comparison determines them to be equal.
1608///
1609/// Internally uses an alias to [`Ord::max`].
1610///
1611/// # Examples
1612///
1613/// ```
1614/// use std::cmp;
1615///
1616/// assert_eq!(cmp::max(1, 2), 2);
1617/// assert_eq!(cmp::max(2, 2), 2);
1618/// ```
1619/// ```
1620/// use std::cmp::{self, Ordering};
1621///
1622/// #[derive(Eq)]
1623/// struct Equal(&'static str);
1624///
1625/// impl PartialEq for Equal {
1626/// fn eq(&self, other: &Self) -> bool { true }
1627/// }
1628/// impl PartialOrd for Equal {
1629/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1630/// }
1631/// impl Ord for Equal {
1632/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1633/// }
1634///
1635/// assert_eq!(cmp::max(Equal("v1"), Equal("v2")).0, "v2");
1636/// ```
1637#[inline]
1638#[must_use]
1639#[stable(feature = "rust1", since = "1.0.0")]
1640#[rustc_diagnostic_item = "cmp_max"]
1641pub fn max<T: Ord>(v1: T, v2: T) -> T {
1642 v1.max(v2)
1643}
1644
1645/// Returns the maximum of two values with respect to the specified comparison function.
1646///
1647/// Returns the second argument if the comparison determines them to be equal.
1648///
1649/// # Examples
1650///
1651/// ```
1652/// use std::cmp;
1653///
1654/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1655///
1656/// let result = cmp::max_by(3, -2, abs_cmp) ;
1657/// assert_eq!(result, 3);
1658///
1659/// let result = cmp::max_by(1, -2, abs_cmp);
1660/// assert_eq!(result, -2);
1661///
1662/// let result = cmp::max_by(1, -1, abs_cmp);
1663/// assert_eq!(result, -1);
1664/// ```
1665#[inline]
1666#[must_use]
1667#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1668pub fn max_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
1669 if compare(&v2, &v1).is_lt() { v1 } else { v2 }
1670}
1671
1672/// Returns the element that gives the maximum value from the specified function.
1673///
1674/// Returns the second argument if the comparison determines them to be equal.
1675///
1676/// # Examples
1677///
1678/// ```
1679/// use std::cmp;
1680///
1681/// let result = cmp::max_by_key(3, -2, |x: &i32| x.abs());
1682/// assert_eq!(result, 3);
1683///
1684/// let result = cmp::max_by_key(1, -2, |x: &i32| x.abs());
1685/// assert_eq!(result, -2);
1686///
1687/// let result = cmp::max_by_key(1, -1, |x: &i32| x.abs());
1688/// assert_eq!(result, -1);
1689/// ```
1690#[inline]
1691#[must_use]
1692#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1693pub fn max_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
1694 if f(&v2) < f(&v1) { v1 } else { v2 }
1695}
1696
1697/// Compares and sorts two values, returning minimum and maximum.
1698///
1699/// Returns `[v1, v2]` if the comparison determines them to be equal.
1700///
1701/// # Examples
1702///
1703/// ```
1704/// #![feature(cmp_minmax)]
1705/// use std::cmp;
1706///
1707/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
1708/// assert_eq!(cmp::minmax(2, 1), [1, 2]);
1709///
1710/// // You can destructure the result using array patterns
1711/// let [min, max] = cmp::minmax(42, 17);
1712/// assert_eq!(min, 17);
1713/// assert_eq!(max, 42);
1714/// ```
1715/// ```
1716/// #![feature(cmp_minmax)]
1717/// use std::cmp::{self, Ordering};
1718///
1719/// #[derive(Eq)]
1720/// struct Equal(&'static str);
1721///
1722/// impl PartialEq for Equal {
1723/// fn eq(&self, other: &Self) -> bool { true }
1724/// }
1725/// impl PartialOrd for Equal {
1726/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1727/// }
1728/// impl Ord for Equal {
1729/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1730/// }
1731///
1732/// assert_eq!(cmp::minmax(Equal("v1"), Equal("v2")).map(|v| v.0), ["v1", "v2"]);
1733/// ```
1734#[inline]
1735#[must_use]
1736#[unstable(feature = "cmp_minmax", issue = "115939")]
1737pub fn minmax<T>(v1: T, v2: T) -> [T; 2]
1738where
1739 T: Ord,
1740{
1741 if v2 < v1 { [v2, v1] } else { [v1, v2] }
1742}
1743
1744/// Returns minimum and maximum values with respect to the specified comparison function.
1745///
1746/// Returns `[v1, v2]` if the comparison determines them to be equal.
1747///
1748/// # Examples
1749///
1750/// ```
1751/// #![feature(cmp_minmax)]
1752/// use std::cmp;
1753///
1754/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1755///
1756/// assert_eq!(cmp::minmax_by(-2, 1, abs_cmp), [1, -2]);
1757/// assert_eq!(cmp::minmax_by(-1, 2, abs_cmp), [-1, 2]);
1758/// assert_eq!(cmp::minmax_by(-2, 2, abs_cmp), [-2, 2]);
1759///
1760/// // You can destructure the result using array patterns
1761/// let [min, max] = cmp::minmax_by(-42, 17, abs_cmp);
1762/// assert_eq!(min, 17);
1763/// assert_eq!(max, -42);
1764/// ```
1765#[inline]
1766#[must_use]
1767#[unstable(feature = "cmp_minmax", issue = "115939")]
1768pub fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
1769where
1770 F: FnOnce(&T, &T) -> Ordering,
1771{
1772 if compare(&v2, &v1).is_lt() { [v2, v1] } else { [v1, v2] }
1773}
1774
1775/// Returns minimum and maximum values with respect to the specified key function.
1776///
1777/// Returns `[v1, v2]` if the comparison determines them to be equal.
1778///
1779/// # Examples
1780///
1781/// ```
1782/// #![feature(cmp_minmax)]
1783/// use std::cmp;
1784///
1785/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
1786/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
1787///
1788/// // You can destructure the result using array patterns
1789/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
1790/// assert_eq!(min, 17);
1791/// assert_eq!(max, -42);
1792/// ```
1793#[inline]
1794#[must_use]
1795#[unstable(feature = "cmp_minmax", issue = "115939")]
1796pub fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
1797where
1798 F: FnMut(&T) -> K,
1799 K: Ord,
1800{
1801 if f(&v2) < f(&v1) { [v2, v1] } else { [v1, v2] }
1802}
1803
1804// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1805mod impls {
1806 use crate::cmp::Ordering::{self, Equal, Greater, Less};
1807 use crate::hint::unreachable_unchecked;
1808 use crate::marker::PointeeSized;
1809 use crate::ops::ControlFlow::{self, Break, Continue};
1810
1811 macro_rules! partial_eq_impl {
1812 ($($t:ty)*) => ($(
1813 #[stable(feature = "rust1", since = "1.0.0")]
1814 impl PartialEq for $t {
1815 #[inline]
1816 fn eq(&self, other: &Self) -> bool { *self == *other }
1817 #[inline]
1818 fn ne(&self, other: &Self) -> bool { *self != *other }
1819 }
1820 )*)
1821 }
1822
1823 #[stable(feature = "rust1", since = "1.0.0")]
1824 impl PartialEq for () {
1825 #[inline]
1826 fn eq(&self, _other: &()) -> bool {
1827 true
1828 }
1829 #[inline]
1830 fn ne(&self, _other: &()) -> bool {
1831 false
1832 }
1833 }
1834
1835 partial_eq_impl! {
1836 bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f16 f32 f64 f128
1837 }
1838
1839 macro_rules! eq_impl {
1840 ($($t:ty)*) => ($(
1841 #[stable(feature = "rust1", since = "1.0.0")]
1842 impl Eq for $t {}
1843 )*)
1844 }
1845
1846 eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1847
1848 #[rustfmt::skip]
1849 macro_rules! partial_ord_methods_primitive_impl {
1850 () => {
1851 #[inline(always)]
1852 fn lt(&self, other: &Self) -> bool { *self < *other }
1853 #[inline(always)]
1854 fn le(&self, other: &Self) -> bool { *self <= *other }
1855 #[inline(always)]
1856 fn gt(&self, other: &Self) -> bool { *self > *other }
1857 #[inline(always)]
1858 fn ge(&self, other: &Self) -> bool { *self >= *other }
1859
1860 // These implementations are the same for `Ord` or `PartialOrd` types
1861 // because if either is NAN the `==` test will fail so we end up in
1862 // the `Break` case and the comparison will correctly return `false`.
1863
1864 #[inline]
1865 fn __chaining_lt(&self, other: &Self) -> ControlFlow<bool> {
1866 let (lhs, rhs) = (*self, *other);
1867 if lhs == rhs { Continue(()) } else { Break(lhs < rhs) }
1868 }
1869 #[inline]
1870 fn __chaining_le(&self, other: &Self) -> ControlFlow<bool> {
1871 let (lhs, rhs) = (*self, *other);
1872 if lhs == rhs { Continue(()) } else { Break(lhs <= rhs) }
1873 }
1874 #[inline]
1875 fn __chaining_gt(&self, other: &Self) -> ControlFlow<bool> {
1876 let (lhs, rhs) = (*self, *other);
1877 if lhs == rhs { Continue(()) } else { Break(lhs > rhs) }
1878 }
1879 #[inline]
1880 fn __chaining_ge(&self, other: &Self) -> ControlFlow<bool> {
1881 let (lhs, rhs) = (*self, *other);
1882 if lhs == rhs { Continue(()) } else { Break(lhs >= rhs) }
1883 }
1884 };
1885 }
1886
1887 macro_rules! partial_ord_impl {
1888 ($($t:ty)*) => ($(
1889 #[stable(feature = "rust1", since = "1.0.0")]
1890 impl PartialOrd for $t {
1891 #[inline]
1892 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1893 match (*self <= *other, *self >= *other) {
1894 (false, false) => None,
1895 (false, true) => Some(Greater),
1896 (true, false) => Some(Less),
1897 (true, true) => Some(Equal),
1898 }
1899 }
1900
1901 partial_ord_methods_primitive_impl!();
1902 }
1903 )*)
1904 }
1905
1906 #[stable(feature = "rust1", since = "1.0.0")]
1907 impl PartialOrd for () {
1908 #[inline]
1909 fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1910 Some(Equal)
1911 }
1912 }
1913
1914 #[stable(feature = "rust1", since = "1.0.0")]
1915 impl PartialOrd for bool {
1916 #[inline]
1917 fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1918 Some(self.cmp(other))
1919 }
1920
1921 partial_ord_methods_primitive_impl!();
1922 }
1923
1924 partial_ord_impl! { f16 f32 f64 f128 }
1925
1926 macro_rules! ord_impl {
1927 ($($t:ty)*) => ($(
1928 #[stable(feature = "rust1", since = "1.0.0")]
1929 impl PartialOrd for $t {
1930 #[inline]
1931 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1932 Some(crate::intrinsics::three_way_compare(*self, *other))
1933 }
1934
1935 partial_ord_methods_primitive_impl!();
1936 }
1937
1938 #[stable(feature = "rust1", since = "1.0.0")]
1939 impl Ord for $t {
1940 #[inline]
1941 fn cmp(&self, other: &Self) -> Ordering {
1942 crate::intrinsics::three_way_compare(*self, *other)
1943 }
1944 }
1945 )*)
1946 }
1947
1948 #[stable(feature = "rust1", since = "1.0.0")]
1949 impl Ord for () {
1950 #[inline]
1951 fn cmp(&self, _other: &()) -> Ordering {
1952 Equal
1953 }
1954 }
1955
1956 #[stable(feature = "rust1", since = "1.0.0")]
1957 impl Ord for bool {
1958 #[inline]
1959 fn cmp(&self, other: &bool) -> Ordering {
1960 // Casting to i8's and converting the difference to an Ordering generates
1961 // more optimal assembly.
1962 // See <https://github.com/rust-lang/rust/issues/66780> for more info.
1963 match (*self as i8) - (*other as i8) {
1964 -1 => Less,
1965 0 => Equal,
1966 1 => Greater,
1967 // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
1968 _ => unsafe { unreachable_unchecked() },
1969 }
1970 }
1971
1972 #[inline]
1973 fn min(self, other: bool) -> bool {
1974 self & other
1975 }
1976
1977 #[inline]
1978 fn max(self, other: bool) -> bool {
1979 self | other
1980 }
1981
1982 #[inline]
1983 fn clamp(self, min: bool, max: bool) -> bool {
1984 assert!(min <= max);
1985 self.max(min).min(max)
1986 }
1987 }
1988
1989 ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1990
1991 #[unstable(feature = "never_type", issue = "35121")]
1992 impl PartialEq for ! {
1993 #[inline]
1994 fn eq(&self, _: &!) -> bool {
1995 *self
1996 }
1997 }
1998
1999 #[unstable(feature = "never_type", issue = "35121")]
2000 impl Eq for ! {}
2001
2002 #[unstable(feature = "never_type", issue = "35121")]
2003 impl PartialOrd for ! {
2004 #[inline]
2005 fn partial_cmp(&self, _: &!) -> Option<Ordering> {
2006 *self
2007 }
2008 }
2009
2010 #[unstable(feature = "never_type", issue = "35121")]
2011 impl Ord for ! {
2012 #[inline]
2013 fn cmp(&self, _: &!) -> Ordering {
2014 *self
2015 }
2016 }
2017
2018 // & pointers
2019
2020 #[stable(feature = "rust1", since = "1.0.0")]
2021 impl<A: PointeeSized, B: PointeeSized> PartialEq<&B> for &A
2022 where
2023 A: PartialEq<B>,
2024 {
2025 #[inline]
2026 fn eq(&self, other: &&B) -> bool {
2027 PartialEq::eq(*self, *other)
2028 }
2029 #[inline]
2030 fn ne(&self, other: &&B) -> bool {
2031 PartialEq::ne(*self, *other)
2032 }
2033 }
2034 #[stable(feature = "rust1", since = "1.0.0")]
2035 impl<A: PointeeSized, B: PointeeSized> PartialOrd<&B> for &A
2036 where
2037 A: PartialOrd<B>,
2038 {
2039 #[inline]
2040 fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
2041 PartialOrd::partial_cmp(*self, *other)
2042 }
2043 #[inline]
2044 fn lt(&self, other: &&B) -> bool {
2045 PartialOrd::lt(*self, *other)
2046 }
2047 #[inline]
2048 fn le(&self, other: &&B) -> bool {
2049 PartialOrd::le(*self, *other)
2050 }
2051 #[inline]
2052 fn gt(&self, other: &&B) -> bool {
2053 PartialOrd::gt(*self, *other)
2054 }
2055 #[inline]
2056 fn ge(&self, other: &&B) -> bool {
2057 PartialOrd::ge(*self, *other)
2058 }
2059 #[inline]
2060 fn __chaining_lt(&self, other: &&B) -> ControlFlow<bool> {
2061 PartialOrd::__chaining_lt(*self, *other)
2062 }
2063 #[inline]
2064 fn __chaining_le(&self, other: &&B) -> ControlFlow<bool> {
2065 PartialOrd::__chaining_le(*self, *other)
2066 }
2067 #[inline]
2068 fn __chaining_gt(&self, other: &&B) -> ControlFlow<bool> {
2069 PartialOrd::__chaining_gt(*self, *other)
2070 }
2071 #[inline]
2072 fn __chaining_ge(&self, other: &&B) -> ControlFlow<bool> {
2073 PartialOrd::__chaining_ge(*self, *other)
2074 }
2075 }
2076 #[stable(feature = "rust1", since = "1.0.0")]
2077 impl<A: PointeeSized> Ord for &A
2078 where
2079 A: Ord,
2080 {
2081 #[inline]
2082 fn cmp(&self, other: &Self) -> Ordering {
2083 Ord::cmp(*self, *other)
2084 }
2085 }
2086 #[stable(feature = "rust1", since = "1.0.0")]
2087 impl<A: PointeeSized> Eq for &A where A: Eq {}
2088
2089 // &mut pointers
2090
2091 #[stable(feature = "rust1", since = "1.0.0")]
2092 impl<A: PointeeSized, B: PointeeSized> PartialEq<&mut B> for &mut A
2093 where
2094 A: PartialEq<B>,
2095 {
2096 #[inline]
2097 fn eq(&self, other: &&mut B) -> bool {
2098 PartialEq::eq(*self, *other)
2099 }
2100 #[inline]
2101 fn ne(&self, other: &&mut B) -> bool {
2102 PartialEq::ne(*self, *other)
2103 }
2104 }
2105 #[stable(feature = "rust1", since = "1.0.0")]
2106 impl<A: PointeeSized, B: PointeeSized> PartialOrd<&mut B> for &mut A
2107 where
2108 A: PartialOrd<B>,
2109 {
2110 #[inline]
2111 fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
2112 PartialOrd::partial_cmp(*self, *other)
2113 }
2114 #[inline]
2115 fn lt(&self, other: &&mut B) -> bool {
2116 PartialOrd::lt(*self, *other)
2117 }
2118 #[inline]
2119 fn le(&self, other: &&mut B) -> bool {
2120 PartialOrd::le(*self, *other)
2121 }
2122 #[inline]
2123 fn gt(&self, other: &&mut B) -> bool {
2124 PartialOrd::gt(*self, *other)
2125 }
2126 #[inline]
2127 fn ge(&self, other: &&mut B) -> bool {
2128 PartialOrd::ge(*self, *other)
2129 }
2130 #[inline]
2131 fn __chaining_lt(&self, other: &&mut B) -> ControlFlow<bool> {
2132 PartialOrd::__chaining_lt(*self, *other)
2133 }
2134 #[inline]
2135 fn __chaining_le(&self, other: &&mut B) -> ControlFlow<bool> {
2136 PartialOrd::__chaining_le(*self, *other)
2137 }
2138 #[inline]
2139 fn __chaining_gt(&self, other: &&mut B) -> ControlFlow<bool> {
2140 PartialOrd::__chaining_gt(*self, *other)
2141 }
2142 #[inline]
2143 fn __chaining_ge(&self, other: &&mut B) -> ControlFlow<bool> {
2144 PartialOrd::__chaining_ge(*self, *other)
2145 }
2146 }
2147 #[stable(feature = "rust1", since = "1.0.0")]
2148 impl<A: PointeeSized> Ord for &mut A
2149 where
2150 A: Ord,
2151 {
2152 #[inline]
2153 fn cmp(&self, other: &Self) -> Ordering {
2154 Ord::cmp(*self, *other)
2155 }
2156 }
2157 #[stable(feature = "rust1", since = "1.0.0")]
2158 impl<A: PointeeSized> Eq for &mut A where A: Eq {}
2159
2160 #[stable(feature = "rust1", since = "1.0.0")]
2161 impl<A: PointeeSized, B: PointeeSized> PartialEq<&mut B> for &A
2162 where
2163 A: PartialEq<B>,
2164 {
2165 #[inline]
2166 fn eq(&self, other: &&mut B) -> bool {
2167 PartialEq::eq(*self, *other)
2168 }
2169 #[inline]
2170 fn ne(&self, other: &&mut B) -> bool {
2171 PartialEq::ne(*self, *other)
2172 }
2173 }
2174
2175 #[stable(feature = "rust1", since = "1.0.0")]
2176 impl<A: PointeeSized, B: PointeeSized> PartialEq<&B> for &mut A
2177 where
2178 A: PartialEq<B>,
2179 {
2180 #[inline]
2181 fn eq(&self, other: &&B) -> bool {
2182 PartialEq::eq(*self, *other)
2183 }
2184 #[inline]
2185 fn ne(&self, other: &&B) -> bool {
2186 PartialEq::ne(*self, *other)
2187 }
2188 }
2189}