alloc/string.rs
1//! A UTF-8βencoded, growable string.
2//!
3//! This module contains the [`String`] type, the [`ToString`] trait for
4//! converting to strings, and several error types that may result from
5//! working with [`String`]s.
6//!
7//! # Examples
8//!
9//! There are multiple ways to create a new [`String`] from a string literal:
10//!
11//! ```
12//! let s = "Hello".to_string();
13//!
14//! let s = String::from("world");
15//! let s: String = "also this".into();
16//! ```
17//!
18//! You can create a new [`String`] from an existing one by concatenating with
19//! `+`:
20//!
21//! ```
22//! let s = "Hello".to_string();
23//!
24//! let message = s + " world!";
25//! ```
26//!
27//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
28//! it. You can do the reverse too.
29//!
30//! ```
31//! let sparkle_heart = vec![240, 159, 146, 150];
32//!
33//! // We know these bytes are valid, so we'll use `unwrap()`.
34//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
35//!
36//! assert_eq!("π", sparkle_heart);
37//!
38//! let bytes = sparkle_heart.into_bytes();
39//!
40//! assert_eq!(bytes, [240, 159, 146, 150]);
41//! ```
42
43#![stable(feature = "rust1", since = "1.0.0")]
44
45use core::error::Error;
46use core::iter::FusedIterator;
47#[cfg(not(no_global_oom_handling))]
48use core::iter::from_fn;
49#[cfg(not(no_global_oom_handling))]
50use core::ops::Add;
51#[cfg(not(no_global_oom_handling))]
52use core::ops::AddAssign;
53#[cfg(not(no_global_oom_handling))]
54use core::ops::Bound::{Excluded, Included, Unbounded};
55use core::ops::{self, Range, RangeBounds};
56use core::str::pattern::{Pattern, Utf8Pattern};
57use core::{fmt, hash, ptr, slice};
58
59#[cfg(not(no_global_oom_handling))]
60use crate::alloc::Allocator;
61#[cfg(not(no_global_oom_handling))]
62use crate::borrow::{Cow, ToOwned};
63use crate::boxed::Box;
64use crate::collections::TryReserveError;
65use crate::str::{self, CharIndices, Chars, Utf8Error, from_utf8_unchecked_mut};
66#[cfg(not(no_global_oom_handling))]
67use crate::str::{FromStr, from_boxed_utf8_unchecked};
68use crate::vec::{self, Vec};
69
70/// A UTF-8βencoded, growable string.
71///
72/// `String` is the most common string type. It has ownership over the contents
73/// of the string, stored in a heap-allocated buffer (see [Representation](#representation)).
74/// It is closely related to its borrowed counterpart, the primitive [`str`].
75///
76/// # Examples
77///
78/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
79///
80/// [`String::from`]: From::from
81///
82/// ```
83/// let hello = String::from("Hello, world!");
84/// ```
85///
86/// You can append a [`char`] to a `String` with the [`push`] method, and
87/// append a [`&str`] with the [`push_str`] method:
88///
89/// ```
90/// let mut hello = String::from("Hello, ");
91///
92/// hello.push('w');
93/// hello.push_str("orld!");
94/// ```
95///
96/// [`push`]: String::push
97/// [`push_str`]: String::push_str
98///
99/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
100/// the [`from_utf8`] method:
101///
102/// ```
103/// // some bytes, in a vector
104/// let sparkle_heart = vec![240, 159, 146, 150];
105///
106/// // We know these bytes are valid, so we'll use `unwrap()`.
107/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
108///
109/// assert_eq!("π", sparkle_heart);
110/// ```
111///
112/// [`from_utf8`]: String::from_utf8
113///
114/// # UTF-8
115///
116/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
117/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
118/// is a variable width encoding, `String`s are typically smaller than an array of
119/// the same `char`s:
120///
121/// ```
122/// // `s` is ASCII which represents each `char` as one byte
123/// let s = "hello";
124/// assert_eq!(s.len(), 5);
125///
126/// // A `char` array with the same contents would be longer because
127/// // every `char` is four bytes
128/// let s = ['h', 'e', 'l', 'l', 'o'];
129/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
130/// assert_eq!(size, 20);
131///
132/// // However, for non-ASCII strings, the difference will be smaller
133/// // and sometimes they are the same
134/// let s = "πππππ";
135/// assert_eq!(s.len(), 20);
136///
137/// let s = ['π', 'π', 'π', 'π', 'π'];
138/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
139/// assert_eq!(size, 20);
140/// ```
141///
142/// This raises interesting questions as to how `s[i]` should work.
143/// What should `i` be here? Several options include byte indices and
144/// `char` indices but, because of UTF-8 encoding, only byte indices
145/// would provide constant time indexing. Getting the `i`th `char`, for
146/// example, is available using [`chars`]:
147///
148/// ```
149/// let s = "hello";
150/// let third_character = s.chars().nth(2);
151/// assert_eq!(third_character, Some('l'));
152///
153/// let s = "πππππ";
154/// let third_character = s.chars().nth(2);
155/// assert_eq!(third_character, Some('π'));
156/// ```
157///
158/// Next, what should `s[i]` return? Because indexing returns a reference
159/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
160/// Since we're only providing one index, `&u8` makes the most sense but that
161/// might not be what the user expects and can be explicitly achieved with
162/// [`as_bytes()`]:
163///
164/// ```
165/// // The first byte is 104 - the byte value of `'h'`
166/// let s = "hello";
167/// assert_eq!(s.as_bytes()[0], 104);
168/// // or
169/// assert_eq!(s.as_bytes()[0], b'h');
170///
171/// // The first byte is 240 which isn't obviously useful
172/// let s = "πππππ";
173/// assert_eq!(s.as_bytes()[0], 240);
174/// ```
175///
176/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
177/// forbidden:
178///
179/// ```compile_fail,E0277
180/// let s = "hello";
181///
182/// // The following will not compile!
183/// println!("The first letter of s is {}", s[0]);
184/// ```
185///
186/// It is more clear, however, how `&s[i..j]` should work (that is,
187/// indexing with a range). It should accept byte indices (to be constant-time)
188/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
189/// Note this will panic if the byte indices provided are not character
190/// boundaries - see [`is_char_boundary`] for more details. See the implementations
191/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
192/// version of string slicing, see [`get`].
193///
194/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
195/// [`SliceIndex<str>`]: core::slice::SliceIndex
196/// [`as_bytes()`]: str::as_bytes
197/// [`get`]: str::get
198/// [`is_char_boundary`]: str::is_char_boundary
199///
200/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
201/// codepoints of the string, respectively. To iterate over codepoints along
202/// with byte indices, use [`char_indices`].
203///
204/// [`bytes`]: str::bytes
205/// [`chars`]: str::chars
206/// [`char_indices`]: str::char_indices
207///
208/// # Deref
209///
210/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
211/// methods. In addition, this means that you can pass a `String` to a
212/// function which takes a [`&str`] by using an ampersand (`&`):
213///
214/// ```
215/// fn takes_str(s: &str) { }
216///
217/// let s = String::from("Hello");
218///
219/// takes_str(&s);
220/// ```
221///
222/// This will create a [`&str`] from the `String` and pass it in. This
223/// conversion is very inexpensive, and so generally, functions will accept
224/// [`&str`]s as arguments unless they need a `String` for some specific
225/// reason.
226///
227/// In certain cases Rust doesn't have enough information to make this
228/// conversion, known as [`Deref`] coercion. In the following example a string
229/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
230/// `example_func` takes anything that implements the trait. In this case Rust
231/// would need to make two implicit conversions, which Rust doesn't have the
232/// means to do. For that reason, the following example will not compile.
233///
234/// ```compile_fail,E0277
235/// trait TraitExample {}
236///
237/// impl<'a> TraitExample for &'a str {}
238///
239/// fn example_func<A: TraitExample>(example_arg: A) {}
240///
241/// let example_string = String::from("example_string");
242/// example_func(&example_string);
243/// ```
244///
245/// There are two options that would work instead. The first would be to
246/// change the line `example_func(&example_string);` to
247/// `example_func(example_string.as_str());`, using the method [`as_str()`]
248/// to explicitly extract the string slice containing the string. The second
249/// way changes `example_func(&example_string);` to
250/// `example_func(&*example_string);`. In this case we are dereferencing a
251/// `String` to a [`str`], then referencing the [`str`] back to
252/// [`&str`]. The second way is more idiomatic, however both work to do the
253/// conversion explicitly rather than relying on the implicit conversion.
254///
255/// # Representation
256///
257/// A `String` is made up of three components: a pointer to some bytes, a
258/// length, and a capacity. The pointer points to the internal buffer which `String`
259/// uses to store its data. The length is the number of bytes currently stored
260/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
261/// the length will always be less than or equal to the capacity.
262///
263/// This buffer is always stored on the heap.
264///
265/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
266/// methods:
267///
268/// ```
269/// use std::mem;
270///
271/// let story = String::from("Once upon a time...");
272///
273// FIXME Update this when vec_into_raw_parts is stabilized
274/// // Prevent automatically dropping the String's data
275/// let mut story = mem::ManuallyDrop::new(story);
276///
277/// let ptr = story.as_mut_ptr();
278/// let len = story.len();
279/// let capacity = story.capacity();
280///
281/// // story has nineteen bytes
282/// assert_eq!(19, len);
283///
284/// // We can re-build a String out of ptr, len, and capacity. This is all
285/// // unsafe because we are responsible for making sure the components are
286/// // valid:
287/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
288///
289/// assert_eq!(String::from("Once upon a time..."), s);
290/// ```
291///
292/// [`as_ptr`]: str::as_ptr
293/// [`len`]: String::len
294/// [`capacity`]: String::capacity
295///
296/// If a `String` has enough capacity, adding elements to it will not
297/// re-allocate. For example, consider this program:
298///
299/// ```
300/// let mut s = String::new();
301///
302/// println!("{}", s.capacity());
303///
304/// for _ in 0..5 {
305/// s.push_str("hello");
306/// println!("{}", s.capacity());
307/// }
308/// ```
309///
310/// This will output the following:
311///
312/// ```text
313/// 0
314/// 8
315/// 16
316/// 16
317/// 32
318/// 32
319/// ```
320///
321/// At first, we have no memory allocated at all, but as we append to the
322/// string, it increases its capacity appropriately. If we instead use the
323/// [`with_capacity`] method to allocate the correct capacity initially:
324///
325/// ```
326/// let mut s = String::with_capacity(25);
327///
328/// println!("{}", s.capacity());
329///
330/// for _ in 0..5 {
331/// s.push_str("hello");
332/// println!("{}", s.capacity());
333/// }
334/// ```
335///
336/// [`with_capacity`]: String::with_capacity
337///
338/// We end up with a different output:
339///
340/// ```text
341/// 25
342/// 25
343/// 25
344/// 25
345/// 25
346/// 25
347/// ```
348///
349/// Here, there's no need to allocate more memory inside the loop.
350///
351/// [str]: prim@str "str"
352/// [`str`]: prim@str "str"
353/// [`&str`]: prim@str "&str"
354/// [Deref]: core::ops::Deref "ops::Deref"
355/// [`Deref`]: core::ops::Deref "ops::Deref"
356/// [`as_str()`]: String::as_str
357#[derive(PartialEq, PartialOrd, Eq, Ord)]
358#[stable(feature = "rust1", since = "1.0.0")]
359#[lang = "String"]
360pub struct String {
361 vec: Vec<u8>,
362}
363
364/// A possible error value when converting a `String` from a UTF-8 byte vector.
365///
366/// This type is the error type for the [`from_utf8`] method on [`String`]. It
367/// is designed in such a way to carefully avoid reallocations: the
368/// [`into_bytes`] method will give back the byte vector that was used in the
369/// conversion attempt.
370///
371/// [`from_utf8`]: String::from_utf8
372/// [`into_bytes`]: FromUtf8Error::into_bytes
373///
374/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
375/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
376/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
377/// through the [`utf8_error`] method.
378///
379/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
380/// [`std::str`]: core::str "std::str"
381/// [`&str`]: prim@str "&str"
382/// [`utf8_error`]: FromUtf8Error::utf8_error
383///
384/// # Examples
385///
386/// ```
387/// // some invalid bytes, in a vector
388/// let bytes = vec![0, 159];
389///
390/// let value = String::from_utf8(bytes);
391///
392/// assert!(value.is_err());
393/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
394/// ```
395#[stable(feature = "rust1", since = "1.0.0")]
396#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
397#[derive(Debug, PartialEq, Eq)]
398pub struct FromUtf8Error {
399 bytes: Vec<u8>,
400 error: Utf8Error,
401}
402
403/// A possible error value when converting a `String` from a UTF-16 byte slice.
404///
405/// This type is the error type for the [`from_utf16`] method on [`String`].
406///
407/// [`from_utf16`]: String::from_utf16
408///
409/// # Examples
410///
411/// ```
412/// // πmu<invalid>ic
413/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
414/// 0xD800, 0x0069, 0x0063];
415///
416/// assert!(String::from_utf16(v).is_err());
417/// ```
418#[stable(feature = "rust1", since = "1.0.0")]
419#[derive(Debug)]
420pub struct FromUtf16Error(());
421
422impl String {
423 /// Creates a new empty `String`.
424 ///
425 /// Given that the `String` is empty, this will not allocate any initial
426 /// buffer. While that means that this initial operation is very
427 /// inexpensive, it may cause excessive allocation later when you add
428 /// data. If you have an idea of how much data the `String` will hold,
429 /// consider the [`with_capacity`] method to prevent excessive
430 /// re-allocation.
431 ///
432 /// [`with_capacity`]: String::with_capacity
433 ///
434 /// # Examples
435 ///
436 /// ```
437 /// let s = String::new();
438 /// ```
439 #[inline]
440 #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
441 #[rustc_diagnostic_item = "string_new"]
442 #[stable(feature = "rust1", since = "1.0.0")]
443 #[must_use]
444 pub const fn new() -> String {
445 String { vec: Vec::new() }
446 }
447
448 /// Creates a new empty `String` with at least the specified capacity.
449 ///
450 /// `String`s have an internal buffer to hold their data. The capacity is
451 /// the length of that buffer, and can be queried with the [`capacity`]
452 /// method. This method creates an empty `String`, but one with an initial
453 /// buffer that can hold at least `capacity` bytes. This is useful when you
454 /// may be appending a bunch of data to the `String`, reducing the number of
455 /// reallocations it needs to do.
456 ///
457 /// [`capacity`]: String::capacity
458 ///
459 /// If the given capacity is `0`, no allocation will occur, and this method
460 /// is identical to the [`new`] method.
461 ///
462 /// [`new`]: String::new
463 ///
464 /// # Examples
465 ///
466 /// ```
467 /// let mut s = String::with_capacity(10);
468 ///
469 /// // The String contains no chars, even though it has capacity for more
470 /// assert_eq!(s.len(), 0);
471 ///
472 /// // These are all done without reallocating...
473 /// let cap = s.capacity();
474 /// for _ in 0..10 {
475 /// s.push('a');
476 /// }
477 ///
478 /// assert_eq!(s.capacity(), cap);
479 ///
480 /// // ...but this may make the string reallocate
481 /// s.push('a');
482 /// ```
483 #[cfg(not(no_global_oom_handling))]
484 #[inline]
485 #[stable(feature = "rust1", since = "1.0.0")]
486 #[must_use]
487 pub fn with_capacity(capacity: usize) -> String {
488 String { vec: Vec::with_capacity(capacity) }
489 }
490
491 /// Creates a new empty `String` with at least the specified capacity.
492 ///
493 /// # Errors
494 ///
495 /// Returns [`Err`] if the capacity exceeds `isize::MAX` bytes,
496 /// or if the memory allocator reports failure.
497 ///
498 #[inline]
499 #[unstable(feature = "try_with_capacity", issue = "91913")]
500 pub fn try_with_capacity(capacity: usize) -> Result<String, TryReserveError> {
501 Ok(String { vec: Vec::try_with_capacity(capacity)? })
502 }
503
504 /// Converts a vector of bytes to a `String`.
505 ///
506 /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
507 /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
508 /// two. Not all byte slices are valid `String`s, however: `String`
509 /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
510 /// the bytes are valid UTF-8, and then does the conversion.
511 ///
512 /// If you are sure that the byte slice is valid UTF-8, and you don't want
513 /// to incur the overhead of the validity check, there is an unsafe version
514 /// of this function, [`from_utf8_unchecked`], which has the same behavior
515 /// but skips the check.
516 ///
517 /// This method will take care to not copy the vector, for efficiency's
518 /// sake.
519 ///
520 /// If you need a [`&str`] instead of a `String`, consider
521 /// [`str::from_utf8`].
522 ///
523 /// The inverse of this method is [`into_bytes`].
524 ///
525 /// # Errors
526 ///
527 /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
528 /// provided bytes are not UTF-8. The vector you moved in is also included.
529 ///
530 /// # Examples
531 ///
532 /// Basic usage:
533 ///
534 /// ```
535 /// // some bytes, in a vector
536 /// let sparkle_heart = vec![240, 159, 146, 150];
537 ///
538 /// // We know these bytes are valid, so we'll use `unwrap()`.
539 /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
540 ///
541 /// assert_eq!("π", sparkle_heart);
542 /// ```
543 ///
544 /// Incorrect bytes:
545 ///
546 /// ```
547 /// // some invalid bytes, in a vector
548 /// let sparkle_heart = vec![0, 159, 146, 150];
549 ///
550 /// assert!(String::from_utf8(sparkle_heart).is_err());
551 /// ```
552 ///
553 /// See the docs for [`FromUtf8Error`] for more details on what you can do
554 /// with this error.
555 ///
556 /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
557 /// [`Vec<u8>`]: crate::vec::Vec "Vec"
558 /// [`&str`]: prim@str "&str"
559 /// [`into_bytes`]: String::into_bytes
560 #[inline]
561 #[stable(feature = "rust1", since = "1.0.0")]
562 #[rustc_diagnostic_item = "string_from_utf8"]
563 pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
564 match str::from_utf8(&vec) {
565 Ok(..) => Ok(String { vec }),
566 Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
567 }
568 }
569
570 /// Converts a slice of bytes to a string, including invalid characters.
571 ///
572 /// Strings are made of bytes ([`u8`]), and a slice of bytes
573 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
574 /// between the two. Not all byte slices are valid strings, however: strings
575 /// are required to be valid UTF-8. During this conversion,
576 /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
577 /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: οΏ½
578 ///
579 /// [byteslice]: prim@slice
580 /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
581 ///
582 /// If you are sure that the byte slice is valid UTF-8, and you don't want
583 /// to incur the overhead of the conversion, there is an unsafe version
584 /// of this function, [`from_utf8_unchecked`], which has the same behavior
585 /// but skips the checks.
586 ///
587 /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
588 ///
589 /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
590 /// UTF-8, then we need to insert the replacement characters, which will
591 /// change the size of the string, and hence, require a `String`. But if
592 /// it's already valid UTF-8, we don't need a new allocation. This return
593 /// type allows us to handle both cases.
594 ///
595 /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
596 ///
597 /// # Examples
598 ///
599 /// Basic usage:
600 ///
601 /// ```
602 /// // some bytes, in a vector
603 /// let sparkle_heart = vec![240, 159, 146, 150];
604 ///
605 /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
606 ///
607 /// assert_eq!("π", sparkle_heart);
608 /// ```
609 ///
610 /// Incorrect bytes:
611 ///
612 /// ```
613 /// // some invalid bytes
614 /// let input = b"Hello \xF0\x90\x80World";
615 /// let output = String::from_utf8_lossy(input);
616 ///
617 /// assert_eq!("Hello οΏ½World", output);
618 /// ```
619 #[must_use]
620 #[cfg(not(no_global_oom_handling))]
621 #[stable(feature = "rust1", since = "1.0.0")]
622 pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
623 let mut iter = v.utf8_chunks();
624
625 let first_valid = if let Some(chunk) = iter.next() {
626 let valid = chunk.valid();
627 if chunk.invalid().is_empty() {
628 debug_assert_eq!(valid.len(), v.len());
629 return Cow::Borrowed(valid);
630 }
631 valid
632 } else {
633 return Cow::Borrowed("");
634 };
635
636 const REPLACEMENT: &str = "\u{FFFD}";
637
638 let mut res = String::with_capacity(v.len());
639 res.push_str(first_valid);
640 res.push_str(REPLACEMENT);
641
642 for chunk in iter {
643 res.push_str(chunk.valid());
644 if !chunk.invalid().is_empty() {
645 res.push_str(REPLACEMENT);
646 }
647 }
648
649 Cow::Owned(res)
650 }
651
652 /// Converts a [`Vec<u8>`] to a `String`, substituting invalid UTF-8
653 /// sequences with replacement characters.
654 ///
655 /// See [`from_utf8_lossy`] for more details.
656 ///
657 /// [`from_utf8_lossy`]: String::from_utf8_lossy
658 ///
659 /// Note that this function does not guarantee reuse of the original `Vec`
660 /// allocation.
661 ///
662 /// # Examples
663 ///
664 /// Basic usage:
665 ///
666 /// ```
667 /// #![feature(string_from_utf8_lossy_owned)]
668 /// // some bytes, in a vector
669 /// let sparkle_heart = vec![240, 159, 146, 150];
670 ///
671 /// let sparkle_heart = String::from_utf8_lossy_owned(sparkle_heart);
672 ///
673 /// assert_eq!(String::from("π"), sparkle_heart);
674 /// ```
675 ///
676 /// Incorrect bytes:
677 ///
678 /// ```
679 /// #![feature(string_from_utf8_lossy_owned)]
680 /// // some invalid bytes
681 /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
682 /// let output = String::from_utf8_lossy_owned(input);
683 ///
684 /// assert_eq!(String::from("Hello οΏ½World"), output);
685 /// ```
686 #[must_use]
687 #[cfg(not(no_global_oom_handling))]
688 #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
689 pub fn from_utf8_lossy_owned(v: Vec<u8>) -> String {
690 if let Cow::Owned(string) = String::from_utf8_lossy(&v) {
691 string
692 } else {
693 // SAFETY: `String::from_utf8_lossy`'s contract ensures that if
694 // it returns a `Cow::Borrowed`, it is a valid UTF-8 string.
695 // Otherwise, it returns a new allocation of an owned `String`, with
696 // replacement characters for invalid sequences, which is returned
697 // above.
698 unsafe { String::from_utf8_unchecked(v) }
699 }
700 }
701
702 /// Decode a native endian UTF-16βencoded vector `v` into a `String`,
703 /// returning [`Err`] if `v` contains any invalid data.
704 ///
705 /// # Examples
706 ///
707 /// ```
708 /// // πmusic
709 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
710 /// 0x0073, 0x0069, 0x0063];
711 /// assert_eq!(String::from("πmusic"),
712 /// String::from_utf16(v).unwrap());
713 ///
714 /// // πmu<invalid>ic
715 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
716 /// 0xD800, 0x0069, 0x0063];
717 /// assert!(String::from_utf16(v).is_err());
718 /// ```
719 #[cfg(not(no_global_oom_handling))]
720 #[stable(feature = "rust1", since = "1.0.0")]
721 pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
722 // This isn't done via collect::<Result<_, _>>() for performance reasons.
723 // FIXME: the function can be simplified again when #48994 is closed.
724 let mut ret = String::with_capacity(v.len());
725 for c in char::decode_utf16(v.iter().cloned()) {
726 if let Ok(c) = c {
727 ret.push(c);
728 } else {
729 return Err(FromUtf16Error(()));
730 }
731 }
732 Ok(ret)
733 }
734
735 /// Decode a native endian UTF-16βencoded slice `v` into a `String`,
736 /// replacing invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
737 ///
738 /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
739 /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
740 /// conversion requires a memory allocation.
741 ///
742 /// [`from_utf8_lossy`]: String::from_utf8_lossy
743 /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
744 /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
745 ///
746 /// # Examples
747 ///
748 /// ```
749 /// // πmus<invalid>ic<invalid>
750 /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
751 /// 0x0073, 0xDD1E, 0x0069, 0x0063,
752 /// 0xD834];
753 ///
754 /// assert_eq!(String::from("πmus\u{FFFD}ic\u{FFFD}"),
755 /// String::from_utf16_lossy(v));
756 /// ```
757 #[cfg(not(no_global_oom_handling))]
758 #[must_use]
759 #[inline]
760 #[stable(feature = "rust1", since = "1.0.0")]
761 pub fn from_utf16_lossy(v: &[u16]) -> String {
762 char::decode_utf16(v.iter().cloned())
763 .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
764 .collect()
765 }
766
767 /// Decode a UTF-16LEβencoded vector `v` into a `String`,
768 /// returning [`Err`] if `v` contains any invalid data.
769 ///
770 /// # Examples
771 ///
772 /// Basic usage:
773 ///
774 /// ```
775 /// #![feature(str_from_utf16_endian)]
776 /// // πmusic
777 /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
778 /// 0x73, 0x00, 0x69, 0x00, 0x63, 0x00];
779 /// assert_eq!(String::from("πmusic"),
780 /// String::from_utf16le(v).unwrap());
781 ///
782 /// // πmu<invalid>ic
783 /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
784 /// 0x00, 0xD8, 0x69, 0x00, 0x63, 0x00];
785 /// assert!(String::from_utf16le(v).is_err());
786 /// ```
787 #[cfg(not(no_global_oom_handling))]
788 #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
789 pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error> {
790 if v.len() % 2 != 0 {
791 return Err(FromUtf16Error(()));
792 }
793 match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
794 (true, ([], v, [])) => Self::from_utf16(v),
795 _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_le_bytes))
796 .collect::<Result<_, _>>()
797 .map_err(|_| FromUtf16Error(())),
798 }
799 }
800
801 /// Decode a UTF-16LEβencoded slice `v` into a `String`, replacing
802 /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
803 ///
804 /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
805 /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
806 /// conversion requires a memory allocation.
807 ///
808 /// [`from_utf8_lossy`]: String::from_utf8_lossy
809 /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
810 /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
811 ///
812 /// # Examples
813 ///
814 /// Basic usage:
815 ///
816 /// ```
817 /// #![feature(str_from_utf16_endian)]
818 /// // πmus<invalid>ic<invalid>
819 /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
820 /// 0x73, 0x00, 0x1E, 0xDD, 0x69, 0x00, 0x63, 0x00,
821 /// 0x34, 0xD8];
822 ///
823 /// assert_eq!(String::from("πmus\u{FFFD}ic\u{FFFD}"),
824 /// String::from_utf16le_lossy(v));
825 /// ```
826 #[cfg(not(no_global_oom_handling))]
827 #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
828 pub fn from_utf16le_lossy(v: &[u8]) -> String {
829 match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
830 (true, ([], v, [])) => Self::from_utf16_lossy(v),
831 (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
832 _ => {
833 let mut iter = v.array_chunks::<2>();
834 let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_le_bytes))
835 .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
836 .collect();
837 if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
838 }
839 }
840 }
841
842 /// Decode a UTF-16BEβencoded vector `v` into a `String`,
843 /// returning [`Err`] if `v` contains any invalid data.
844 ///
845 /// # Examples
846 ///
847 /// Basic usage:
848 ///
849 /// ```
850 /// #![feature(str_from_utf16_endian)]
851 /// // πmusic
852 /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
853 /// 0x00, 0x73, 0x00, 0x69, 0x00, 0x63];
854 /// assert_eq!(String::from("πmusic"),
855 /// String::from_utf16be(v).unwrap());
856 ///
857 /// // πmu<invalid>ic
858 /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
859 /// 0xD8, 0x00, 0x00, 0x69, 0x00, 0x63];
860 /// assert!(String::from_utf16be(v).is_err());
861 /// ```
862 #[cfg(not(no_global_oom_handling))]
863 #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
864 pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error> {
865 if v.len() % 2 != 0 {
866 return Err(FromUtf16Error(()));
867 }
868 match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
869 (true, ([], v, [])) => Self::from_utf16(v),
870 _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_be_bytes))
871 .collect::<Result<_, _>>()
872 .map_err(|_| FromUtf16Error(())),
873 }
874 }
875
876 /// Decode a UTF-16BEβencoded slice `v` into a `String`, replacing
877 /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
878 ///
879 /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
880 /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
881 /// conversion requires a memory allocation.
882 ///
883 /// [`from_utf8_lossy`]: String::from_utf8_lossy
884 /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
885 /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
886 ///
887 /// # Examples
888 ///
889 /// Basic usage:
890 ///
891 /// ```
892 /// #![feature(str_from_utf16_endian)]
893 /// // πmus<invalid>ic<invalid>
894 /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
895 /// 0x00, 0x73, 0xDD, 0x1E, 0x00, 0x69, 0x00, 0x63,
896 /// 0xD8, 0x34];
897 ///
898 /// assert_eq!(String::from("πmus\u{FFFD}ic\u{FFFD}"),
899 /// String::from_utf16be_lossy(v));
900 /// ```
901 #[cfg(not(no_global_oom_handling))]
902 #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
903 pub fn from_utf16be_lossy(v: &[u8]) -> String {
904 match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
905 (true, ([], v, [])) => Self::from_utf16_lossy(v),
906 (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
907 _ => {
908 let mut iter = v.array_chunks::<2>();
909 let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_be_bytes))
910 .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
911 .collect();
912 if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
913 }
914 }
915 }
916
917 /// Decomposes a `String` into its raw components: `(pointer, length, capacity)`.
918 ///
919 /// Returns the raw pointer to the underlying data, the length of
920 /// the string (in bytes), and the allocated capacity of the data
921 /// (in bytes). These are the same arguments in the same order as
922 /// the arguments to [`from_raw_parts`].
923 ///
924 /// After calling this function, the caller is responsible for the
925 /// memory previously managed by the `String`. The only way to do
926 /// this is to convert the raw pointer, length, and capacity back
927 /// into a `String` with the [`from_raw_parts`] function, allowing
928 /// the destructor to perform the cleanup.
929 ///
930 /// [`from_raw_parts`]: String::from_raw_parts
931 ///
932 /// # Examples
933 ///
934 /// ```
935 /// #![feature(vec_into_raw_parts)]
936 /// let s = String::from("hello");
937 ///
938 /// let (ptr, len, cap) = s.into_raw_parts();
939 ///
940 /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
941 /// assert_eq!(rebuilt, "hello");
942 /// ```
943 #[must_use = "losing the pointer will leak memory"]
944 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
945 pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
946 self.vec.into_raw_parts()
947 }
948
949 /// Creates a new `String` from a pointer, a length and a capacity.
950 ///
951 /// # Safety
952 ///
953 /// This is highly unsafe, due to the number of invariants that aren't
954 /// checked:
955 ///
956 /// * all safety requirements for [`Vec::<u8>::from_raw_parts`].
957 /// * all safety requirements for [`String::from_utf8_unchecked`].
958 ///
959 /// Violating these may cause problems like corrupting the allocator's
960 /// internal data structures. For example, it is normally **not** safe to
961 /// build a `String` from a pointer to a C `char` array containing UTF-8
962 /// _unless_ you are certain that array was originally allocated by the
963 /// Rust standard library's allocator.
964 ///
965 /// The ownership of `buf` is effectively transferred to the
966 /// `String` which may then deallocate, reallocate or change the
967 /// contents of memory pointed to by the pointer at will. Ensure
968 /// that nothing else uses the pointer after calling this
969 /// function.
970 ///
971 /// # Examples
972 ///
973 /// ```
974 /// use std::mem;
975 ///
976 /// unsafe {
977 /// let s = String::from("hello");
978 ///
979 // FIXME Update this when vec_into_raw_parts is stabilized
980 /// // Prevent automatically dropping the String's data
981 /// let mut s = mem::ManuallyDrop::new(s);
982 ///
983 /// let ptr = s.as_mut_ptr();
984 /// let len = s.len();
985 /// let capacity = s.capacity();
986 ///
987 /// let s = String::from_raw_parts(ptr, len, capacity);
988 ///
989 /// assert_eq!(String::from("hello"), s);
990 /// }
991 /// ```
992 #[inline]
993 #[stable(feature = "rust1", since = "1.0.0")]
994 pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
995 unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
996 }
997
998 /// Converts a vector of bytes to a `String` without checking that the
999 /// string contains valid UTF-8.
1000 ///
1001 /// See the safe version, [`from_utf8`], for more details.
1002 ///
1003 /// [`from_utf8`]: String::from_utf8
1004 ///
1005 /// # Safety
1006 ///
1007 /// This function is unsafe because it does not check that the bytes passed
1008 /// to it are valid UTF-8. If this constraint is violated, it may cause
1009 /// memory unsafety issues with future users of the `String`, as the rest of
1010 /// the standard library assumes that `String`s are valid UTF-8.
1011 ///
1012 /// # Examples
1013 ///
1014 /// ```
1015 /// // some bytes, in a vector
1016 /// let sparkle_heart = vec![240, 159, 146, 150];
1017 ///
1018 /// let sparkle_heart = unsafe {
1019 /// String::from_utf8_unchecked(sparkle_heart)
1020 /// };
1021 ///
1022 /// assert_eq!("π", sparkle_heart);
1023 /// ```
1024 #[inline]
1025 #[must_use]
1026 #[stable(feature = "rust1", since = "1.0.0")]
1027 pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
1028 String { vec: bytes }
1029 }
1030
1031 /// Converts a `String` into a byte vector.
1032 ///
1033 /// This consumes the `String`, so we do not need to copy its contents.
1034 ///
1035 /// # Examples
1036 ///
1037 /// ```
1038 /// let s = String::from("hello");
1039 /// let bytes = s.into_bytes();
1040 ///
1041 /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
1042 /// ```
1043 #[inline]
1044 #[must_use = "`self` will be dropped if the result is not used"]
1045 #[stable(feature = "rust1", since = "1.0.0")]
1046 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1047 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1048 pub const fn into_bytes(self) -> Vec<u8> {
1049 self.vec
1050 }
1051
1052 /// Extracts a string slice containing the entire `String`.
1053 ///
1054 /// # Examples
1055 ///
1056 /// ```
1057 /// let s = String::from("foo");
1058 ///
1059 /// assert_eq!("foo", s.as_str());
1060 /// ```
1061 #[inline]
1062 #[must_use]
1063 #[stable(feature = "string_as_str", since = "1.7.0")]
1064 #[rustc_diagnostic_item = "string_as_str"]
1065 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1066 pub const fn as_str(&self) -> &str {
1067 // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1068 // at construction.
1069 unsafe { str::from_utf8_unchecked(self.vec.as_slice()) }
1070 }
1071
1072 /// Converts a `String` into a mutable string slice.
1073 ///
1074 /// # Examples
1075 ///
1076 /// ```
1077 /// let mut s = String::from("foobar");
1078 /// let s_mut_str = s.as_mut_str();
1079 ///
1080 /// s_mut_str.make_ascii_uppercase();
1081 ///
1082 /// assert_eq!("FOOBAR", s_mut_str);
1083 /// ```
1084 #[inline]
1085 #[must_use]
1086 #[stable(feature = "string_as_str", since = "1.7.0")]
1087 #[rustc_diagnostic_item = "string_as_mut_str"]
1088 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1089 pub const fn as_mut_str(&mut self) -> &mut str {
1090 // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1091 // at construction.
1092 unsafe { str::from_utf8_unchecked_mut(self.vec.as_mut_slice()) }
1093 }
1094
1095 /// Appends a given string slice onto the end of this `String`.
1096 ///
1097 /// # Examples
1098 ///
1099 /// ```
1100 /// let mut s = String::from("foo");
1101 ///
1102 /// s.push_str("bar");
1103 ///
1104 /// assert_eq!("foobar", s);
1105 /// ```
1106 #[cfg(not(no_global_oom_handling))]
1107 #[inline]
1108 #[stable(feature = "rust1", since = "1.0.0")]
1109 #[rustc_confusables("append", "push")]
1110 #[rustc_diagnostic_item = "string_push_str"]
1111 pub fn push_str(&mut self, string: &str) {
1112 self.vec.extend_from_slice(string.as_bytes())
1113 }
1114
1115 /// Copies elements from `src` range to the end of the string.
1116 ///
1117 /// # Panics
1118 ///
1119 /// Panics if the starting point or end point do not lie on a [`char`]
1120 /// boundary, or if they're out of bounds.
1121 ///
1122 /// # Examples
1123 ///
1124 /// ```
1125 /// let mut string = String::from("abcde");
1126 ///
1127 /// string.extend_from_within(2..);
1128 /// assert_eq!(string, "abcdecde");
1129 ///
1130 /// string.extend_from_within(..2);
1131 /// assert_eq!(string, "abcdecdeab");
1132 ///
1133 /// string.extend_from_within(4..8);
1134 /// assert_eq!(string, "abcdecdeabecde");
1135 /// ```
1136 #[cfg(not(no_global_oom_handling))]
1137 #[stable(feature = "string_extend_from_within", since = "1.87.0")]
1138 pub fn extend_from_within<R>(&mut self, src: R)
1139 where
1140 R: RangeBounds<usize>,
1141 {
1142 let src @ Range { start, end } = slice::range(src, ..self.len());
1143
1144 assert!(self.is_char_boundary(start));
1145 assert!(self.is_char_boundary(end));
1146
1147 self.vec.extend_from_within(src);
1148 }
1149
1150 /// Returns this `String`'s capacity, in bytes.
1151 ///
1152 /// # Examples
1153 ///
1154 /// ```
1155 /// let s = String::with_capacity(10);
1156 ///
1157 /// assert!(s.capacity() >= 10);
1158 /// ```
1159 #[inline]
1160 #[must_use]
1161 #[stable(feature = "rust1", since = "1.0.0")]
1162 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1163 pub const fn capacity(&self) -> usize {
1164 self.vec.capacity()
1165 }
1166
1167 /// Reserves capacity for at least `additional` bytes more than the
1168 /// current length. The allocator may reserve more space to speculatively
1169 /// avoid frequent allocations. After calling `reserve`,
1170 /// capacity will be greater than or equal to `self.len() + additional`.
1171 /// Does nothing if capacity is already sufficient.
1172 ///
1173 /// # Panics
1174 ///
1175 /// Panics if the new capacity overflows [`usize`].
1176 ///
1177 /// # Examples
1178 ///
1179 /// Basic usage:
1180 ///
1181 /// ```
1182 /// let mut s = String::new();
1183 ///
1184 /// s.reserve(10);
1185 ///
1186 /// assert!(s.capacity() >= 10);
1187 /// ```
1188 ///
1189 /// This might not actually increase the capacity:
1190 ///
1191 /// ```
1192 /// let mut s = String::with_capacity(10);
1193 /// s.push('a');
1194 /// s.push('b');
1195 ///
1196 /// // s now has a length of 2 and a capacity of at least 10
1197 /// let capacity = s.capacity();
1198 /// assert_eq!(2, s.len());
1199 /// assert!(capacity >= 10);
1200 ///
1201 /// // Since we already have at least an extra 8 capacity, calling this...
1202 /// s.reserve(8);
1203 ///
1204 /// // ... doesn't actually increase.
1205 /// assert_eq!(capacity, s.capacity());
1206 /// ```
1207 #[cfg(not(no_global_oom_handling))]
1208 #[inline]
1209 #[stable(feature = "rust1", since = "1.0.0")]
1210 pub fn reserve(&mut self, additional: usize) {
1211 self.vec.reserve(additional)
1212 }
1213
1214 /// Reserves the minimum capacity for at least `additional` bytes more than
1215 /// the current length. Unlike [`reserve`], this will not
1216 /// deliberately over-allocate to speculatively avoid frequent allocations.
1217 /// After calling `reserve_exact`, capacity will be greater than or equal to
1218 /// `self.len() + additional`. Does nothing if the capacity is already
1219 /// sufficient.
1220 ///
1221 /// [`reserve`]: String::reserve
1222 ///
1223 /// # Panics
1224 ///
1225 /// Panics if the new capacity overflows [`usize`].
1226 ///
1227 /// # Examples
1228 ///
1229 /// Basic usage:
1230 ///
1231 /// ```
1232 /// let mut s = String::new();
1233 ///
1234 /// s.reserve_exact(10);
1235 ///
1236 /// assert!(s.capacity() >= 10);
1237 /// ```
1238 ///
1239 /// This might not actually increase the capacity:
1240 ///
1241 /// ```
1242 /// let mut s = String::with_capacity(10);
1243 /// s.push('a');
1244 /// s.push('b');
1245 ///
1246 /// // s now has a length of 2 and a capacity of at least 10
1247 /// let capacity = s.capacity();
1248 /// assert_eq!(2, s.len());
1249 /// assert!(capacity >= 10);
1250 ///
1251 /// // Since we already have at least an extra 8 capacity, calling this...
1252 /// s.reserve_exact(8);
1253 ///
1254 /// // ... doesn't actually increase.
1255 /// assert_eq!(capacity, s.capacity());
1256 /// ```
1257 #[cfg(not(no_global_oom_handling))]
1258 #[inline]
1259 #[stable(feature = "rust1", since = "1.0.0")]
1260 pub fn reserve_exact(&mut self, additional: usize) {
1261 self.vec.reserve_exact(additional)
1262 }
1263
1264 /// Tries to reserve capacity for at least `additional` bytes more than the
1265 /// current length. The allocator may reserve more space to speculatively
1266 /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1267 /// greater than or equal to `self.len() + additional` if it returns
1268 /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1269 /// preserves the contents even if an error occurs.
1270 ///
1271 /// # Errors
1272 ///
1273 /// If the capacity overflows, or the allocator reports a failure, then an error
1274 /// is returned.
1275 ///
1276 /// # Examples
1277 ///
1278 /// ```
1279 /// use std::collections::TryReserveError;
1280 ///
1281 /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1282 /// let mut output = String::new();
1283 ///
1284 /// // Pre-reserve the memory, exiting if we can't
1285 /// output.try_reserve(data.len())?;
1286 ///
1287 /// // Now we know this can't OOM in the middle of our complex work
1288 /// output.push_str(data);
1289 ///
1290 /// Ok(output)
1291 /// }
1292 /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1293 /// ```
1294 #[stable(feature = "try_reserve", since = "1.57.0")]
1295 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1296 self.vec.try_reserve(additional)
1297 }
1298
1299 /// Tries to reserve the minimum capacity for at least `additional` bytes
1300 /// more than the current length. Unlike [`try_reserve`], this will not
1301 /// deliberately over-allocate to speculatively avoid frequent allocations.
1302 /// After calling `try_reserve_exact`, capacity will be greater than or
1303 /// equal to `self.len() + additional` if it returns `Ok(())`.
1304 /// Does nothing if the capacity is already sufficient.
1305 ///
1306 /// Note that the allocator may give the collection more space than it
1307 /// requests. Therefore, capacity can not be relied upon to be precisely
1308 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1309 ///
1310 /// [`try_reserve`]: String::try_reserve
1311 ///
1312 /// # Errors
1313 ///
1314 /// If the capacity overflows, or the allocator reports a failure, then an error
1315 /// is returned.
1316 ///
1317 /// # Examples
1318 ///
1319 /// ```
1320 /// use std::collections::TryReserveError;
1321 ///
1322 /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1323 /// let mut output = String::new();
1324 ///
1325 /// // Pre-reserve the memory, exiting if we can't
1326 /// output.try_reserve_exact(data.len())?;
1327 ///
1328 /// // Now we know this can't OOM in the middle of our complex work
1329 /// output.push_str(data);
1330 ///
1331 /// Ok(output)
1332 /// }
1333 /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1334 /// ```
1335 #[stable(feature = "try_reserve", since = "1.57.0")]
1336 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1337 self.vec.try_reserve_exact(additional)
1338 }
1339
1340 /// Shrinks the capacity of this `String` to match its length.
1341 ///
1342 /// # Examples
1343 ///
1344 /// ```
1345 /// let mut s = String::from("foo");
1346 ///
1347 /// s.reserve(100);
1348 /// assert!(s.capacity() >= 100);
1349 ///
1350 /// s.shrink_to_fit();
1351 /// assert_eq!(3, s.capacity());
1352 /// ```
1353 #[cfg(not(no_global_oom_handling))]
1354 #[inline]
1355 #[stable(feature = "rust1", since = "1.0.0")]
1356 pub fn shrink_to_fit(&mut self) {
1357 self.vec.shrink_to_fit()
1358 }
1359
1360 /// Shrinks the capacity of this `String` with a lower bound.
1361 ///
1362 /// The capacity will remain at least as large as both the length
1363 /// and the supplied value.
1364 ///
1365 /// If the current capacity is less than the lower limit, this is a no-op.
1366 ///
1367 /// # Examples
1368 ///
1369 /// ```
1370 /// let mut s = String::from("foo");
1371 ///
1372 /// s.reserve(100);
1373 /// assert!(s.capacity() >= 100);
1374 ///
1375 /// s.shrink_to(10);
1376 /// assert!(s.capacity() >= 10);
1377 /// s.shrink_to(0);
1378 /// assert!(s.capacity() >= 3);
1379 /// ```
1380 #[cfg(not(no_global_oom_handling))]
1381 #[inline]
1382 #[stable(feature = "shrink_to", since = "1.56.0")]
1383 pub fn shrink_to(&mut self, min_capacity: usize) {
1384 self.vec.shrink_to(min_capacity)
1385 }
1386
1387 /// Appends the given [`char`] to the end of this `String`.
1388 ///
1389 /// # Examples
1390 ///
1391 /// ```
1392 /// let mut s = String::from("abc");
1393 ///
1394 /// s.push('1');
1395 /// s.push('2');
1396 /// s.push('3');
1397 ///
1398 /// assert_eq!("abc123", s);
1399 /// ```
1400 #[cfg(not(no_global_oom_handling))]
1401 #[inline]
1402 #[stable(feature = "rust1", since = "1.0.0")]
1403 pub fn push(&mut self, ch: char) {
1404 let len = self.len();
1405 let ch_len = ch.len_utf8();
1406 self.reserve(ch_len);
1407
1408 // SAFETY: Just reserved capacity for at least the length needed to encode `ch`.
1409 unsafe {
1410 core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(self.len()));
1411 self.vec.set_len(len + ch_len);
1412 }
1413 }
1414
1415 /// Returns a byte slice of this `String`'s contents.
1416 ///
1417 /// The inverse of this method is [`from_utf8`].
1418 ///
1419 /// [`from_utf8`]: String::from_utf8
1420 ///
1421 /// # Examples
1422 ///
1423 /// ```
1424 /// let s = String::from("hello");
1425 ///
1426 /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
1427 /// ```
1428 #[inline]
1429 #[must_use]
1430 #[stable(feature = "rust1", since = "1.0.0")]
1431 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1432 pub const fn as_bytes(&self) -> &[u8] {
1433 self.vec.as_slice()
1434 }
1435
1436 /// Shortens this `String` to the specified length.
1437 ///
1438 /// If `new_len` is greater than or equal to the string's current length, this has no
1439 /// effect.
1440 ///
1441 /// Note that this method has no effect on the allocated capacity
1442 /// of the string
1443 ///
1444 /// # Panics
1445 ///
1446 /// Panics if `new_len` does not lie on a [`char`] boundary.
1447 ///
1448 /// # Examples
1449 ///
1450 /// ```
1451 /// let mut s = String::from("hello");
1452 ///
1453 /// s.truncate(2);
1454 ///
1455 /// assert_eq!("he", s);
1456 /// ```
1457 #[inline]
1458 #[stable(feature = "rust1", since = "1.0.0")]
1459 pub fn truncate(&mut self, new_len: usize) {
1460 if new_len <= self.len() {
1461 assert!(self.is_char_boundary(new_len));
1462 self.vec.truncate(new_len)
1463 }
1464 }
1465
1466 /// Removes the last character from the string buffer and returns it.
1467 ///
1468 /// Returns [`None`] if this `String` is empty.
1469 ///
1470 /// # Examples
1471 ///
1472 /// ```
1473 /// let mut s = String::from("abΔ");
1474 ///
1475 /// assert_eq!(s.pop(), Some('Δ'));
1476 /// assert_eq!(s.pop(), Some('b'));
1477 /// assert_eq!(s.pop(), Some('a'));
1478 ///
1479 /// assert_eq!(s.pop(), None);
1480 /// ```
1481 #[inline]
1482 #[stable(feature = "rust1", since = "1.0.0")]
1483 pub fn pop(&mut self) -> Option<char> {
1484 let ch = self.chars().rev().next()?;
1485 let newlen = self.len() - ch.len_utf8();
1486 unsafe {
1487 self.vec.set_len(newlen);
1488 }
1489 Some(ch)
1490 }
1491
1492 /// Removes a [`char`] from this `String` at byte position `idx` and returns it.
1493 ///
1494 /// Copies all bytes after the removed char to new positions.
1495 ///
1496 /// Note that calling this in a loop can result in quadratic behavior.
1497 ///
1498 /// # Panics
1499 ///
1500 /// Panics if `idx` is larger than or equal to the `String`'s length,
1501 /// or if it does not lie on a [`char`] boundary.
1502 ///
1503 /// # Examples
1504 ///
1505 /// ```
1506 /// let mut s = String::from("abΓ§");
1507 ///
1508 /// assert_eq!(s.remove(0), 'a');
1509 /// assert_eq!(s.remove(1), 'Γ§');
1510 /// assert_eq!(s.remove(0), 'b');
1511 /// ```
1512 #[inline]
1513 #[stable(feature = "rust1", since = "1.0.0")]
1514 #[rustc_confusables("delete", "take")]
1515 pub fn remove(&mut self, idx: usize) -> char {
1516 let ch = match self[idx..].chars().next() {
1517 Some(ch) => ch,
1518 None => panic!("cannot remove a char from the end of a string"),
1519 };
1520
1521 let next = idx + ch.len_utf8();
1522 let len = self.len();
1523 unsafe {
1524 ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
1525 self.vec.set_len(len - (next - idx));
1526 }
1527 ch
1528 }
1529
1530 /// Remove all matches of pattern `pat` in the `String`.
1531 ///
1532 /// # Examples
1533 ///
1534 /// ```
1535 /// #![feature(string_remove_matches)]
1536 /// let mut s = String::from("Trees are not green, the sky is not blue.");
1537 /// s.remove_matches("not ");
1538 /// assert_eq!("Trees are green, the sky is blue.", s);
1539 /// ```
1540 ///
1541 /// Matches will be detected and removed iteratively, so in cases where
1542 /// patterns overlap, only the first pattern will be removed:
1543 ///
1544 /// ```
1545 /// #![feature(string_remove_matches)]
1546 /// let mut s = String::from("banana");
1547 /// s.remove_matches("ana");
1548 /// assert_eq!("bna", s);
1549 /// ```
1550 #[cfg(not(no_global_oom_handling))]
1551 #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
1552 pub fn remove_matches<P: Pattern>(&mut self, pat: P) {
1553 use core::str::pattern::Searcher;
1554
1555 let rejections = {
1556 let mut searcher = pat.into_searcher(self);
1557 // Per Searcher::next:
1558 //
1559 // A Match result needs to contain the whole matched pattern,
1560 // however Reject results may be split up into arbitrary many
1561 // adjacent fragments. Both ranges may have zero length.
1562 //
1563 // In practice the implementation of Searcher::next_match tends to
1564 // be more efficient, so we use it here and do some work to invert
1565 // matches into rejections since that's what we want to copy below.
1566 let mut front = 0;
1567 let rejections: Vec<_> = from_fn(|| {
1568 let (start, end) = searcher.next_match()?;
1569 let prev_front = front;
1570 front = end;
1571 Some((prev_front, start))
1572 })
1573 .collect();
1574 rejections.into_iter().chain(core::iter::once((front, self.len())))
1575 };
1576
1577 let mut len = 0;
1578 let ptr = self.vec.as_mut_ptr();
1579
1580 for (start, end) in rejections {
1581 let count = end - start;
1582 if start != len {
1583 // SAFETY: per Searcher::next:
1584 //
1585 // The stream of Match and Reject values up to a Done will
1586 // contain index ranges that are adjacent, non-overlapping,
1587 // covering the whole haystack, and laying on utf8
1588 // boundaries.
1589 unsafe {
1590 ptr::copy(ptr.add(start), ptr.add(len), count);
1591 }
1592 }
1593 len += count;
1594 }
1595
1596 unsafe {
1597 self.vec.set_len(len);
1598 }
1599 }
1600
1601 /// Retains only the characters specified by the predicate.
1602 ///
1603 /// In other words, remove all characters `c` such that `f(c)` returns `false`.
1604 /// This method operates in place, visiting each character exactly once in the
1605 /// original order, and preserves the order of the retained characters.
1606 ///
1607 /// # Examples
1608 ///
1609 /// ```
1610 /// let mut s = String::from("f_o_ob_ar");
1611 ///
1612 /// s.retain(|c| c != '_');
1613 ///
1614 /// assert_eq!(s, "foobar");
1615 /// ```
1616 ///
1617 /// Because the elements are visited exactly once in the original order,
1618 /// external state may be used to decide which elements to keep.
1619 ///
1620 /// ```
1621 /// let mut s = String::from("abcde");
1622 /// let keep = [false, true, true, false, true];
1623 /// let mut iter = keep.iter();
1624 /// s.retain(|_| *iter.next().unwrap());
1625 /// assert_eq!(s, "bce");
1626 /// ```
1627 #[inline]
1628 #[stable(feature = "string_retain", since = "1.26.0")]
1629 pub fn retain<F>(&mut self, mut f: F)
1630 where
1631 F: FnMut(char) -> bool,
1632 {
1633 struct SetLenOnDrop<'a> {
1634 s: &'a mut String,
1635 idx: usize,
1636 del_bytes: usize,
1637 }
1638
1639 impl<'a> Drop for SetLenOnDrop<'a> {
1640 fn drop(&mut self) {
1641 let new_len = self.idx - self.del_bytes;
1642 debug_assert!(new_len <= self.s.len());
1643 unsafe { self.s.vec.set_len(new_len) };
1644 }
1645 }
1646
1647 let len = self.len();
1648 let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
1649
1650 while guard.idx < len {
1651 let ch =
1652 // SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
1653 // is in bound. `self` is valid UTF-8 like string and the returned slice starts at
1654 // a unicode code point so the `Chars` always return one character.
1655 unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
1656 let ch_len = ch.len_utf8();
1657
1658 if !f(ch) {
1659 guard.del_bytes += ch_len;
1660 } else if guard.del_bytes > 0 {
1661 // SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
1662 // bytes that are erased from the string so the resulting `guard.idx -
1663 // guard.del_bytes` always represent a valid unicode code point.
1664 //
1665 // `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
1666 // is safe.
1667 ch.encode_utf8(unsafe {
1668 crate::slice::from_raw_parts_mut(
1669 guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
1670 ch.len_utf8(),
1671 )
1672 });
1673 }
1674
1675 // Point idx to the next char
1676 guard.idx += ch_len;
1677 }
1678
1679 drop(guard);
1680 }
1681
1682 /// Inserts a character into this `String` at byte position `idx`.
1683 ///
1684 /// Reallocates if `self.capacity()` is insufficient, which may involve copying all
1685 /// `self.capacity()` bytes. Makes space for the insertion by copying all bytes of
1686 /// `&self[idx..]` to new positions.
1687 ///
1688 /// Note that calling this in a loop can result in quadratic behavior.
1689 ///
1690 /// # Panics
1691 ///
1692 /// Panics if `idx` is larger than the `String`'s length, or if it does not
1693 /// lie on a [`char`] boundary.
1694 ///
1695 /// # Examples
1696 ///
1697 /// ```
1698 /// let mut s = String::with_capacity(3);
1699 ///
1700 /// s.insert(0, 'f');
1701 /// s.insert(1, 'o');
1702 /// s.insert(2, 'o');
1703 ///
1704 /// assert_eq!("foo", s);
1705 /// ```
1706 #[cfg(not(no_global_oom_handling))]
1707 #[inline]
1708 #[stable(feature = "rust1", since = "1.0.0")]
1709 #[rustc_confusables("set")]
1710 pub fn insert(&mut self, idx: usize, ch: char) {
1711 assert!(self.is_char_boundary(idx));
1712
1713 let len = self.len();
1714 let ch_len = ch.len_utf8();
1715 self.reserve(ch_len);
1716
1717 // SAFETY: Move the bytes starting from `idx` to their new location `ch_len`
1718 // bytes ahead. This is safe because sufficient capacity was reserved, and `idx`
1719 // is a char boundary.
1720 unsafe {
1721 ptr::copy(
1722 self.vec.as_ptr().add(idx),
1723 self.vec.as_mut_ptr().add(idx + ch_len),
1724 len - idx,
1725 );
1726 }
1727
1728 // SAFETY: Encode the character into the vacated region if `idx != len`,
1729 // or into the uninitialized spare capacity otherwise.
1730 unsafe {
1731 core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(idx));
1732 }
1733
1734 // SAFETY: Update the length to include the newly added bytes.
1735 unsafe {
1736 self.vec.set_len(len + ch_len);
1737 }
1738 }
1739
1740 /// Inserts a string slice into this `String` at byte position `idx`.
1741 ///
1742 /// Reallocates if `self.capacity()` is insufficient, which may involve copying all
1743 /// `self.capacity()` bytes. Makes space for the insertion by copying all bytes of
1744 /// `&self[idx..]` to new positions.
1745 ///
1746 /// Note that calling this in a loop can result in quadratic behavior.
1747 ///
1748 /// # Panics
1749 ///
1750 /// Panics if `idx` is larger than the `String`'s length, or if it does not
1751 /// lie on a [`char`] boundary.
1752 ///
1753 /// # Examples
1754 ///
1755 /// ```
1756 /// let mut s = String::from("bar");
1757 ///
1758 /// s.insert_str(0, "foo");
1759 ///
1760 /// assert_eq!("foobar", s);
1761 /// ```
1762 #[cfg(not(no_global_oom_handling))]
1763 #[inline]
1764 #[stable(feature = "insert_str", since = "1.16.0")]
1765 #[rustc_diagnostic_item = "string_insert_str"]
1766 pub fn insert_str(&mut self, idx: usize, string: &str) {
1767 assert!(self.is_char_boundary(idx));
1768
1769 let len = self.len();
1770 let amt = string.len();
1771 self.reserve(amt);
1772
1773 // SAFETY: Move the bytes starting from `idx` to their new location `amt` bytes
1774 // ahead. This is safe because sufficient capacity was just reserved, and `idx`
1775 // is a char boundary.
1776 unsafe {
1777 ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
1778 }
1779
1780 // SAFETY: Copy the new string slice into the vacated region if `idx != len`,
1781 // or into the uninitialized spare capacity otherwise. The borrow checker
1782 // ensures that the source and destination do not overlap.
1783 unsafe {
1784 ptr::copy_nonoverlapping(string.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
1785 }
1786
1787 // SAFETY: Update the length to include the newly added bytes.
1788 unsafe {
1789 self.vec.set_len(len + amt);
1790 }
1791 }
1792
1793 /// Returns a mutable reference to the contents of this `String`.
1794 ///
1795 /// # Safety
1796 ///
1797 /// This function is unsafe because the returned `&mut Vec` allows writing
1798 /// bytes which are not valid UTF-8. If this constraint is violated, using
1799 /// the original `String` after dropping the `&mut Vec` may violate memory
1800 /// safety, as the rest of the standard library assumes that `String`s are
1801 /// valid UTF-8.
1802 ///
1803 /// # Examples
1804 ///
1805 /// ```
1806 /// let mut s = String::from("hello");
1807 ///
1808 /// unsafe {
1809 /// let vec = s.as_mut_vec();
1810 /// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1811 ///
1812 /// vec.reverse();
1813 /// }
1814 /// assert_eq!(s, "olleh");
1815 /// ```
1816 #[inline]
1817 #[stable(feature = "rust1", since = "1.0.0")]
1818 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1819 pub const unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1820 &mut self.vec
1821 }
1822
1823 /// Returns the length of this `String`, in bytes, not [`char`]s or
1824 /// graphemes. In other words, it might not be what a human considers the
1825 /// length of the string.
1826 ///
1827 /// # Examples
1828 ///
1829 /// ```
1830 /// let a = String::from("foo");
1831 /// assert_eq!(a.len(), 3);
1832 ///
1833 /// let fancy_f = String::from("Ζoo");
1834 /// assert_eq!(fancy_f.len(), 4);
1835 /// assert_eq!(fancy_f.chars().count(), 3);
1836 /// ```
1837 #[inline]
1838 #[must_use]
1839 #[stable(feature = "rust1", since = "1.0.0")]
1840 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1841 #[rustc_confusables("length", "size")]
1842 #[rustc_no_implicit_autorefs]
1843 pub const fn len(&self) -> usize {
1844 self.vec.len()
1845 }
1846
1847 /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
1848 ///
1849 /// # Examples
1850 ///
1851 /// ```
1852 /// let mut v = String::new();
1853 /// assert!(v.is_empty());
1854 ///
1855 /// v.push('a');
1856 /// assert!(!v.is_empty());
1857 /// ```
1858 #[inline]
1859 #[must_use]
1860 #[stable(feature = "rust1", since = "1.0.0")]
1861 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1862 #[rustc_no_implicit_autorefs]
1863 pub const fn is_empty(&self) -> bool {
1864 self.len() == 0
1865 }
1866
1867 /// Splits the string into two at the given byte index.
1868 ///
1869 /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
1870 /// the returned `String` contains bytes `[at, len)`. `at` must be on the
1871 /// boundary of a UTF-8 code point.
1872 ///
1873 /// Note that the capacity of `self` does not change.
1874 ///
1875 /// # Panics
1876 ///
1877 /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
1878 /// code point of the string.
1879 ///
1880 /// # Examples
1881 ///
1882 /// ```
1883 /// # fn main() {
1884 /// let mut hello = String::from("Hello, World!");
1885 /// let world = hello.split_off(7);
1886 /// assert_eq!(hello, "Hello, ");
1887 /// assert_eq!(world, "World!");
1888 /// # }
1889 /// ```
1890 #[cfg(not(no_global_oom_handling))]
1891 #[inline]
1892 #[stable(feature = "string_split_off", since = "1.16.0")]
1893 #[must_use = "use `.truncate()` if you don't need the other half"]
1894 pub fn split_off(&mut self, at: usize) -> String {
1895 assert!(self.is_char_boundary(at));
1896 let other = self.vec.split_off(at);
1897 unsafe { String::from_utf8_unchecked(other) }
1898 }
1899
1900 /// Truncates this `String`, removing all contents.
1901 ///
1902 /// While this means the `String` will have a length of zero, it does not
1903 /// touch its capacity.
1904 ///
1905 /// # Examples
1906 ///
1907 /// ```
1908 /// let mut s = String::from("foo");
1909 ///
1910 /// s.clear();
1911 ///
1912 /// assert!(s.is_empty());
1913 /// assert_eq!(0, s.len());
1914 /// assert_eq!(3, s.capacity());
1915 /// ```
1916 #[inline]
1917 #[stable(feature = "rust1", since = "1.0.0")]
1918 pub fn clear(&mut self) {
1919 self.vec.clear()
1920 }
1921
1922 /// Removes the specified range from the string in bulk, returning all
1923 /// removed characters as an iterator.
1924 ///
1925 /// The returned iterator keeps a mutable borrow on the string to optimize
1926 /// its implementation.
1927 ///
1928 /// # Panics
1929 ///
1930 /// Panics if the starting point or end point do not lie on a [`char`]
1931 /// boundary, or if they're out of bounds.
1932 ///
1933 /// # Leaking
1934 ///
1935 /// If the returned iterator goes out of scope without being dropped (due to
1936 /// [`core::mem::forget`], for example), the string may still contain a copy
1937 /// of any drained characters, or may have lost characters arbitrarily,
1938 /// including characters outside the range.
1939 ///
1940 /// # Examples
1941 ///
1942 /// ```
1943 /// let mut s = String::from("Ξ± is alpha, Ξ² is beta");
1944 /// let beta_offset = s.find('Ξ²').unwrap_or(s.len());
1945 ///
1946 /// // Remove the range up until the Ξ² from the string
1947 /// let t: String = s.drain(..beta_offset).collect();
1948 /// assert_eq!(t, "Ξ± is alpha, ");
1949 /// assert_eq!(s, "Ξ² is beta");
1950 ///
1951 /// // A full range clears the string, like `clear()` does
1952 /// s.drain(..);
1953 /// assert_eq!(s, "");
1954 /// ```
1955 #[stable(feature = "drain", since = "1.6.0")]
1956 pub fn drain<R>(&mut self, range: R) -> Drain<'_>
1957 where
1958 R: RangeBounds<usize>,
1959 {
1960 // Memory safety
1961 //
1962 // The String version of Drain does not have the memory safety issues
1963 // of the vector version. The data is just plain bytes.
1964 // Because the range removal happens in Drop, if the Drain iterator is leaked,
1965 // the removal will not happen.
1966 let Range { start, end } = slice::range(range, ..self.len());
1967 assert!(self.is_char_boundary(start));
1968 assert!(self.is_char_boundary(end));
1969
1970 // Take out two simultaneous borrows. The &mut String won't be accessed
1971 // until iteration is over, in Drop.
1972 let self_ptr = self as *mut _;
1973 // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
1974 let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
1975
1976 Drain { start, end, iter: chars_iter, string: self_ptr }
1977 }
1978
1979 /// Converts a `String` into an iterator over the [`char`]s of the string.
1980 ///
1981 /// As a string consists of valid UTF-8, we can iterate through a string
1982 /// by [`char`]. This method returns such an iterator.
1983 ///
1984 /// It's important to remember that [`char`] represents a Unicode Scalar
1985 /// Value, and might not match your idea of what a 'character' is. Iteration
1986 /// over grapheme clusters may be what you actually want. That functionality
1987 /// is not provided by Rust's standard library, check crates.io instead.
1988 ///
1989 /// # Examples
1990 ///
1991 /// Basic usage:
1992 ///
1993 /// ```
1994 /// #![feature(string_into_chars)]
1995 ///
1996 /// let word = String::from("goodbye");
1997 ///
1998 /// let mut chars = word.into_chars();
1999 ///
2000 /// assert_eq!(Some('g'), chars.next());
2001 /// assert_eq!(Some('o'), chars.next());
2002 /// assert_eq!(Some('o'), chars.next());
2003 /// assert_eq!(Some('d'), chars.next());
2004 /// assert_eq!(Some('b'), chars.next());
2005 /// assert_eq!(Some('y'), chars.next());
2006 /// assert_eq!(Some('e'), chars.next());
2007 ///
2008 /// assert_eq!(None, chars.next());
2009 /// ```
2010 ///
2011 /// Remember, [`char`]s might not match your intuition about characters:
2012 ///
2013 /// ```
2014 /// #![feature(string_into_chars)]
2015 ///
2016 /// let y = String::from("yΜ");
2017 ///
2018 /// let mut chars = y.into_chars();
2019 ///
2020 /// assert_eq!(Some('y'), chars.next()); // not 'yΜ'
2021 /// assert_eq!(Some('\u{0306}'), chars.next());
2022 ///
2023 /// assert_eq!(None, chars.next());
2024 /// ```
2025 ///
2026 /// [`char`]: prim@char
2027 #[inline]
2028 #[must_use = "`self` will be dropped if the result is not used"]
2029 #[unstable(feature = "string_into_chars", issue = "133125")]
2030 pub fn into_chars(self) -> IntoChars {
2031 IntoChars { bytes: self.into_bytes().into_iter() }
2032 }
2033
2034 /// Removes the specified range in the string,
2035 /// and replaces it with the given string.
2036 /// The given string doesn't need to be the same length as the range.
2037 ///
2038 /// # Panics
2039 ///
2040 /// Panics if the starting point or end point do not lie on a [`char`]
2041 /// boundary, or if they're out of bounds.
2042 ///
2043 /// # Examples
2044 ///
2045 /// ```
2046 /// let mut s = String::from("Ξ± is alpha, Ξ² is beta");
2047 /// let beta_offset = s.find('Ξ²').unwrap_or(s.len());
2048 ///
2049 /// // Replace the range up until the Ξ² from the string
2050 /// s.replace_range(..beta_offset, "Ξ is capital alpha; ");
2051 /// assert_eq!(s, "Ξ is capital alpha; Ξ² is beta");
2052 /// ```
2053 #[cfg(not(no_global_oom_handling))]
2054 #[stable(feature = "splice", since = "1.27.0")]
2055 pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
2056 where
2057 R: RangeBounds<usize>,
2058 {
2059 // Memory safety
2060 //
2061 // Replace_range does not have the memory safety issues of a vector Splice.
2062 // of the vector version. The data is just plain bytes.
2063
2064 // WARNING: Inlining this variable would be unsound (#81138)
2065 let start = range.start_bound();
2066 match start {
2067 Included(&n) => assert!(self.is_char_boundary(n)),
2068 Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
2069 Unbounded => {}
2070 };
2071 // WARNING: Inlining this variable would be unsound (#81138)
2072 let end = range.end_bound();
2073 match end {
2074 Included(&n) => assert!(self.is_char_boundary(n + 1)),
2075 Excluded(&n) => assert!(self.is_char_boundary(n)),
2076 Unbounded => {}
2077 };
2078
2079 // Using `range` again would be unsound (#81138)
2080 // We assume the bounds reported by `range` remain the same, but
2081 // an adversarial implementation could change between calls
2082 unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
2083 }
2084
2085 /// Converts this `String` into a <code>[Box]<[str]></code>.
2086 ///
2087 /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
2088 /// Note that this call may reallocate and copy the bytes of the string.
2089 ///
2090 /// [`shrink_to_fit`]: String::shrink_to_fit
2091 /// [str]: prim@str "str"
2092 ///
2093 /// # Examples
2094 ///
2095 /// ```
2096 /// let s = String::from("hello");
2097 ///
2098 /// let b = s.into_boxed_str();
2099 /// ```
2100 #[cfg(not(no_global_oom_handling))]
2101 #[stable(feature = "box_str", since = "1.4.0")]
2102 #[must_use = "`self` will be dropped if the result is not used"]
2103 #[inline]
2104 pub fn into_boxed_str(self) -> Box<str> {
2105 let slice = self.vec.into_boxed_slice();
2106 unsafe { from_boxed_utf8_unchecked(slice) }
2107 }
2108
2109 /// Consumes and leaks the `String`, returning a mutable reference to the contents,
2110 /// `&'a mut str`.
2111 ///
2112 /// The caller has free choice over the returned lifetime, including `'static`. Indeed,
2113 /// this function is ideally used for data that lives for the remainder of the program's life,
2114 /// as dropping the returned reference will cause a memory leak.
2115 ///
2116 /// It does not reallocate or shrink the `String`, so the leaked allocation may include unused
2117 /// capacity that is not part of the returned slice. If you want to discard excess capacity,
2118 /// call [`into_boxed_str`], and then [`Box::leak`] instead. However, keep in mind that
2119 /// trimming the capacity may result in a reallocation and copy.
2120 ///
2121 /// [`into_boxed_str`]: Self::into_boxed_str
2122 ///
2123 /// # Examples
2124 ///
2125 /// ```
2126 /// let x = String::from("bucket");
2127 /// let static_ref: &'static mut str = x.leak();
2128 /// assert_eq!(static_ref, "bucket");
2129 /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2130 /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2131 /// # drop(unsafe { Box::from_raw(static_ref) });
2132 /// ```
2133 #[stable(feature = "string_leak", since = "1.72.0")]
2134 #[inline]
2135 pub fn leak<'a>(self) -> &'a mut str {
2136 let slice = self.vec.leak();
2137 unsafe { from_utf8_unchecked_mut(slice) }
2138 }
2139}
2140
2141impl FromUtf8Error {
2142 /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
2143 ///
2144 /// # Examples
2145 ///
2146 /// ```
2147 /// // some invalid bytes, in a vector
2148 /// let bytes = vec![0, 159];
2149 ///
2150 /// let value = String::from_utf8(bytes);
2151 ///
2152 /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
2153 /// ```
2154 #[must_use]
2155 #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
2156 pub fn as_bytes(&self) -> &[u8] {
2157 &self.bytes[..]
2158 }
2159
2160 /// Converts the bytes into a `String` lossily, substituting invalid UTF-8
2161 /// sequences with replacement characters.
2162 ///
2163 /// See [`String::from_utf8_lossy`] for more details on replacement of
2164 /// invalid sequences, and [`String::from_utf8_lossy_owned`] for the
2165 /// `String` function which corresponds to this function.
2166 ///
2167 /// # Examples
2168 ///
2169 /// ```
2170 /// #![feature(string_from_utf8_lossy_owned)]
2171 /// // some invalid bytes
2172 /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
2173 /// let output = String::from_utf8(input).unwrap_or_else(|e| e.into_utf8_lossy());
2174 ///
2175 /// assert_eq!(String::from("Hello οΏ½World"), output);
2176 /// ```
2177 #[must_use]
2178 #[cfg(not(no_global_oom_handling))]
2179 #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
2180 pub fn into_utf8_lossy(self) -> String {
2181 const REPLACEMENT: &str = "\u{FFFD}";
2182
2183 let mut res = {
2184 let mut v = Vec::with_capacity(self.bytes.len());
2185
2186 // `Utf8Error::valid_up_to` returns the maximum index of validated
2187 // UTF-8 bytes. Copy the valid bytes into the output buffer.
2188 v.extend_from_slice(&self.bytes[..self.error.valid_up_to()]);
2189
2190 // SAFETY: This is safe because the only bytes present in the buffer
2191 // were validated as UTF-8 by the call to `String::from_utf8` which
2192 // produced this `FromUtf8Error`.
2193 unsafe { String::from_utf8_unchecked(v) }
2194 };
2195
2196 let iter = self.bytes[self.error.valid_up_to()..].utf8_chunks();
2197
2198 for chunk in iter {
2199 res.push_str(chunk.valid());
2200 if !chunk.invalid().is_empty() {
2201 res.push_str(REPLACEMENT);
2202 }
2203 }
2204
2205 res
2206 }
2207
2208 /// Returns the bytes that were attempted to convert to a `String`.
2209 ///
2210 /// This method is carefully constructed to avoid allocation. It will
2211 /// consume the error, moving out the bytes, so that a copy of the bytes
2212 /// does not need to be made.
2213 ///
2214 /// # Examples
2215 ///
2216 /// ```
2217 /// // some invalid bytes, in a vector
2218 /// let bytes = vec![0, 159];
2219 ///
2220 /// let value = String::from_utf8(bytes);
2221 ///
2222 /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
2223 /// ```
2224 #[must_use = "`self` will be dropped if the result is not used"]
2225 #[stable(feature = "rust1", since = "1.0.0")]
2226 pub fn into_bytes(self) -> Vec<u8> {
2227 self.bytes
2228 }
2229
2230 /// Fetch a `Utf8Error` to get more details about the conversion failure.
2231 ///
2232 /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
2233 /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
2234 /// an analogue to `FromUtf8Error`. See its documentation for more details
2235 /// on using it.
2236 ///
2237 /// [`std::str`]: core::str "std::str"
2238 /// [`&str`]: prim@str "&str"
2239 ///
2240 /// # Examples
2241 ///
2242 /// ```
2243 /// // some invalid bytes, in a vector
2244 /// let bytes = vec![0, 159];
2245 ///
2246 /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
2247 ///
2248 /// // the first byte is invalid here
2249 /// assert_eq!(1, error.valid_up_to());
2250 /// ```
2251 #[must_use]
2252 #[stable(feature = "rust1", since = "1.0.0")]
2253 pub fn utf8_error(&self) -> Utf8Error {
2254 self.error
2255 }
2256}
2257
2258#[stable(feature = "rust1", since = "1.0.0")]
2259impl fmt::Display for FromUtf8Error {
2260 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2261 fmt::Display::fmt(&self.error, f)
2262 }
2263}
2264
2265#[stable(feature = "rust1", since = "1.0.0")]
2266impl fmt::Display for FromUtf16Error {
2267 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2268 fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
2269 }
2270}
2271
2272#[stable(feature = "rust1", since = "1.0.0")]
2273impl Error for FromUtf8Error {
2274 #[allow(deprecated)]
2275 fn description(&self) -> &str {
2276 "invalid utf-8"
2277 }
2278}
2279
2280#[stable(feature = "rust1", since = "1.0.0")]
2281impl Error for FromUtf16Error {
2282 #[allow(deprecated)]
2283 fn description(&self) -> &str {
2284 "invalid utf-16"
2285 }
2286}
2287
2288#[cfg(not(no_global_oom_handling))]
2289#[stable(feature = "rust1", since = "1.0.0")]
2290impl Clone for String {
2291 fn clone(&self) -> Self {
2292 String { vec: self.vec.clone() }
2293 }
2294
2295 /// Clones the contents of `source` into `self`.
2296 ///
2297 /// This method is preferred over simply assigning `source.clone()` to `self`,
2298 /// as it avoids reallocation if possible.
2299 fn clone_from(&mut self, source: &Self) {
2300 self.vec.clone_from(&source.vec);
2301 }
2302}
2303
2304#[cfg(not(no_global_oom_handling))]
2305#[stable(feature = "rust1", since = "1.0.0")]
2306impl FromIterator<char> for String {
2307 fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
2308 let mut buf = String::new();
2309 buf.extend(iter);
2310 buf
2311 }
2312}
2313
2314#[cfg(not(no_global_oom_handling))]
2315#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
2316impl<'a> FromIterator<&'a char> for String {
2317 fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
2318 let mut buf = String::new();
2319 buf.extend(iter);
2320 buf
2321 }
2322}
2323
2324#[cfg(not(no_global_oom_handling))]
2325#[stable(feature = "rust1", since = "1.0.0")]
2326impl<'a> FromIterator<&'a str> for String {
2327 fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
2328 let mut buf = String::new();
2329 buf.extend(iter);
2330 buf
2331 }
2332}
2333
2334#[cfg(not(no_global_oom_handling))]
2335#[stable(feature = "extend_string", since = "1.4.0")]
2336impl FromIterator<String> for String {
2337 fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
2338 let mut iterator = iter.into_iter();
2339
2340 // Because we're iterating over `String`s, we can avoid at least
2341 // one allocation by getting the first string from the iterator
2342 // and appending to it all the subsequent strings.
2343 match iterator.next() {
2344 None => String::new(),
2345 Some(mut buf) => {
2346 buf.extend(iterator);
2347 buf
2348 }
2349 }
2350 }
2351}
2352
2353#[cfg(not(no_global_oom_handling))]
2354#[stable(feature = "box_str2", since = "1.45.0")]
2355impl<A: Allocator> FromIterator<Box<str, A>> for String {
2356 fn from_iter<I: IntoIterator<Item = Box<str, A>>>(iter: I) -> String {
2357 let mut buf = String::new();
2358 buf.extend(iter);
2359 buf
2360 }
2361}
2362
2363#[cfg(not(no_global_oom_handling))]
2364#[stable(feature = "herd_cows", since = "1.19.0")]
2365impl<'a> FromIterator<Cow<'a, str>> for String {
2366 fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
2367 let mut iterator = iter.into_iter();
2368
2369 // Because we're iterating over CoWs, we can (potentially) avoid at least
2370 // one allocation by getting the first item and appending to it all the
2371 // subsequent items.
2372 match iterator.next() {
2373 None => String::new(),
2374 Some(cow) => {
2375 let mut buf = cow.into_owned();
2376 buf.extend(iterator);
2377 buf
2378 }
2379 }
2380 }
2381}
2382
2383#[cfg(not(no_global_oom_handling))]
2384#[stable(feature = "rust1", since = "1.0.0")]
2385impl Extend<char> for String {
2386 fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
2387 let iterator = iter.into_iter();
2388 let (lower_bound, _) = iterator.size_hint();
2389 self.reserve(lower_bound);
2390 iterator.for_each(move |c| self.push(c));
2391 }
2392
2393 #[inline]
2394 fn extend_one(&mut self, c: char) {
2395 self.push(c);
2396 }
2397
2398 #[inline]
2399 fn extend_reserve(&mut self, additional: usize) {
2400 self.reserve(additional);
2401 }
2402}
2403
2404#[cfg(not(no_global_oom_handling))]
2405#[stable(feature = "extend_ref", since = "1.2.0")]
2406impl<'a> Extend<&'a char> for String {
2407 fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
2408 self.extend(iter.into_iter().cloned());
2409 }
2410
2411 #[inline]
2412 fn extend_one(&mut self, &c: &'a char) {
2413 self.push(c);
2414 }
2415
2416 #[inline]
2417 fn extend_reserve(&mut self, additional: usize) {
2418 self.reserve(additional);
2419 }
2420}
2421
2422#[cfg(not(no_global_oom_handling))]
2423#[stable(feature = "rust1", since = "1.0.0")]
2424impl<'a> Extend<&'a str> for String {
2425 fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
2426 iter.into_iter().for_each(move |s| self.push_str(s));
2427 }
2428
2429 #[inline]
2430 fn extend_one(&mut self, s: &'a str) {
2431 self.push_str(s);
2432 }
2433}
2434
2435#[cfg(not(no_global_oom_handling))]
2436#[stable(feature = "box_str2", since = "1.45.0")]
2437impl<A: Allocator> Extend<Box<str, A>> for String {
2438 fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2439 iter.into_iter().for_each(move |s| self.push_str(&s));
2440 }
2441}
2442
2443#[cfg(not(no_global_oom_handling))]
2444#[stable(feature = "extend_string", since = "1.4.0")]
2445impl Extend<String> for String {
2446 fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
2447 iter.into_iter().for_each(move |s| self.push_str(&s));
2448 }
2449
2450 #[inline]
2451 fn extend_one(&mut self, s: String) {
2452 self.push_str(&s);
2453 }
2454}
2455
2456#[cfg(not(no_global_oom_handling))]
2457#[stable(feature = "herd_cows", since = "1.19.0")]
2458impl<'a> Extend<Cow<'a, str>> for String {
2459 fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
2460 iter.into_iter().for_each(move |s| self.push_str(&s));
2461 }
2462
2463 #[inline]
2464 fn extend_one(&mut self, s: Cow<'a, str>) {
2465 self.push_str(&s);
2466 }
2467}
2468
2469#[cfg(not(no_global_oom_handling))]
2470#[unstable(feature = "ascii_char", issue = "110998")]
2471impl Extend<core::ascii::Char> for String {
2472 fn extend<I: IntoIterator<Item = core::ascii::Char>>(&mut self, iter: I) {
2473 self.vec.extend(iter.into_iter().map(|c| c.to_u8()));
2474 }
2475
2476 #[inline]
2477 fn extend_one(&mut self, c: core::ascii::Char) {
2478 self.vec.push(c.to_u8());
2479 }
2480}
2481
2482#[cfg(not(no_global_oom_handling))]
2483#[unstable(feature = "ascii_char", issue = "110998")]
2484impl<'a> Extend<&'a core::ascii::Char> for String {
2485 fn extend<I: IntoIterator<Item = &'a core::ascii::Char>>(&mut self, iter: I) {
2486 self.extend(iter.into_iter().cloned());
2487 }
2488
2489 #[inline]
2490 fn extend_one(&mut self, c: &'a core::ascii::Char) {
2491 self.vec.push(c.to_u8());
2492 }
2493}
2494
2495/// A convenience impl that delegates to the impl for `&str`.
2496///
2497/// # Examples
2498///
2499/// ```
2500/// assert_eq!(String::from("Hello world").find("world"), Some(6));
2501/// ```
2502#[unstable(
2503 feature = "pattern",
2504 reason = "API not fully fleshed out and ready to be stabilized",
2505 issue = "27721"
2506)]
2507impl<'b> Pattern for &'b String {
2508 type Searcher<'a> = <&'b str as Pattern>::Searcher<'a>;
2509
2510 fn into_searcher(self, haystack: &str) -> <&'b str as Pattern>::Searcher<'_> {
2511 self[..].into_searcher(haystack)
2512 }
2513
2514 #[inline]
2515 fn is_contained_in(self, haystack: &str) -> bool {
2516 self[..].is_contained_in(haystack)
2517 }
2518
2519 #[inline]
2520 fn is_prefix_of(self, haystack: &str) -> bool {
2521 self[..].is_prefix_of(haystack)
2522 }
2523
2524 #[inline]
2525 fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
2526 self[..].strip_prefix_of(haystack)
2527 }
2528
2529 #[inline]
2530 fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
2531 where
2532 Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2533 {
2534 self[..].is_suffix_of(haystack)
2535 }
2536
2537 #[inline]
2538 fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
2539 where
2540 Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2541 {
2542 self[..].strip_suffix_of(haystack)
2543 }
2544
2545 #[inline]
2546 fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
2547 Some(Utf8Pattern::StringPattern(self.as_bytes()))
2548 }
2549}
2550
2551macro_rules! impl_eq {
2552 ($lhs:ty, $rhs: ty) => {
2553 #[stable(feature = "rust1", since = "1.0.0")]
2554 #[allow(unused_lifetimes)]
2555 impl<'a, 'b> PartialEq<$rhs> for $lhs {
2556 #[inline]
2557 fn eq(&self, other: &$rhs) -> bool {
2558 PartialEq::eq(&self[..], &other[..])
2559 }
2560 #[inline]
2561 fn ne(&self, other: &$rhs) -> bool {
2562 PartialEq::ne(&self[..], &other[..])
2563 }
2564 }
2565
2566 #[stable(feature = "rust1", since = "1.0.0")]
2567 #[allow(unused_lifetimes)]
2568 impl<'a, 'b> PartialEq<$lhs> for $rhs {
2569 #[inline]
2570 fn eq(&self, other: &$lhs) -> bool {
2571 PartialEq::eq(&self[..], &other[..])
2572 }
2573 #[inline]
2574 fn ne(&self, other: &$lhs) -> bool {
2575 PartialEq::ne(&self[..], &other[..])
2576 }
2577 }
2578 };
2579}
2580
2581impl_eq! { String, str }
2582impl_eq! { String, &'a str }
2583#[cfg(not(no_global_oom_handling))]
2584impl_eq! { Cow<'a, str>, str }
2585#[cfg(not(no_global_oom_handling))]
2586impl_eq! { Cow<'a, str>, &'b str }
2587#[cfg(not(no_global_oom_handling))]
2588impl_eq! { Cow<'a, str>, String }
2589
2590#[stable(feature = "rust1", since = "1.0.0")]
2591impl Default for String {
2592 /// Creates an empty `String`.
2593 #[inline]
2594 fn default() -> String {
2595 String::new()
2596 }
2597}
2598
2599#[stable(feature = "rust1", since = "1.0.0")]
2600impl fmt::Display for String {
2601 #[inline]
2602 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2603 fmt::Display::fmt(&**self, f)
2604 }
2605}
2606
2607#[stable(feature = "rust1", since = "1.0.0")]
2608impl fmt::Debug for String {
2609 #[inline]
2610 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2611 fmt::Debug::fmt(&**self, f)
2612 }
2613}
2614
2615#[stable(feature = "rust1", since = "1.0.0")]
2616impl hash::Hash for String {
2617 #[inline]
2618 fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
2619 (**self).hash(hasher)
2620 }
2621}
2622
2623/// Implements the `+` operator for concatenating two strings.
2624///
2625/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
2626/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
2627/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
2628/// repeated concatenation.
2629///
2630/// The string on the right-hand side is only borrowed; its contents are copied into the returned
2631/// `String`.
2632///
2633/// # Examples
2634///
2635/// Concatenating two `String`s takes the first by value and borrows the second:
2636///
2637/// ```
2638/// let a = String::from("hello");
2639/// let b = String::from(" world");
2640/// let c = a + &b;
2641/// // `a` is moved and can no longer be used here.
2642/// ```
2643///
2644/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
2645///
2646/// ```
2647/// let a = String::from("hello");
2648/// let b = String::from(" world");
2649/// let c = a.clone() + &b;
2650/// // `a` is still valid here.
2651/// ```
2652///
2653/// Concatenating `&str` slices can be done by converting the first to a `String`:
2654///
2655/// ```
2656/// let a = "hello";
2657/// let b = " world";
2658/// let c = a.to_string() + b;
2659/// ```
2660#[cfg(not(no_global_oom_handling))]
2661#[stable(feature = "rust1", since = "1.0.0")]
2662impl Add<&str> for String {
2663 type Output = String;
2664
2665 #[inline]
2666 fn add(mut self, other: &str) -> String {
2667 self.push_str(other);
2668 self
2669 }
2670}
2671
2672/// Implements the `+=` operator for appending to a `String`.
2673///
2674/// This has the same behavior as the [`push_str`][String::push_str] method.
2675#[cfg(not(no_global_oom_handling))]
2676#[stable(feature = "stringaddassign", since = "1.12.0")]
2677impl AddAssign<&str> for String {
2678 #[inline]
2679 fn add_assign(&mut self, other: &str) {
2680 self.push_str(other);
2681 }
2682}
2683
2684#[stable(feature = "rust1", since = "1.0.0")]
2685impl<I> ops::Index<I> for String
2686where
2687 I: slice::SliceIndex<str>,
2688{
2689 type Output = I::Output;
2690
2691 #[inline]
2692 fn index(&self, index: I) -> &I::Output {
2693 index.index(self.as_str())
2694 }
2695}
2696
2697#[stable(feature = "rust1", since = "1.0.0")]
2698impl<I> ops::IndexMut<I> for String
2699where
2700 I: slice::SliceIndex<str>,
2701{
2702 #[inline]
2703 fn index_mut(&mut self, index: I) -> &mut I::Output {
2704 index.index_mut(self.as_mut_str())
2705 }
2706}
2707
2708#[stable(feature = "rust1", since = "1.0.0")]
2709impl ops::Deref for String {
2710 type Target = str;
2711
2712 #[inline]
2713 fn deref(&self) -> &str {
2714 self.as_str()
2715 }
2716}
2717
2718#[unstable(feature = "deref_pure_trait", issue = "87121")]
2719unsafe impl ops::DerefPure for String {}
2720
2721#[stable(feature = "derefmut_for_string", since = "1.3.0")]
2722impl ops::DerefMut for String {
2723 #[inline]
2724 fn deref_mut(&mut self) -> &mut str {
2725 self.as_mut_str()
2726 }
2727}
2728
2729/// A type alias for [`Infallible`].
2730///
2731/// This alias exists for backwards compatibility, and may be eventually deprecated.
2732///
2733/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
2734#[stable(feature = "str_parse_error", since = "1.5.0")]
2735pub type ParseError = core::convert::Infallible;
2736
2737#[cfg(not(no_global_oom_handling))]
2738#[stable(feature = "rust1", since = "1.0.0")]
2739impl FromStr for String {
2740 type Err = core::convert::Infallible;
2741 #[inline]
2742 fn from_str(s: &str) -> Result<String, Self::Err> {
2743 Ok(String::from(s))
2744 }
2745}
2746
2747/// A trait for converting a value to a `String`.
2748///
2749/// This trait is automatically implemented for any type which implements the
2750/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
2751/// [`Display`] should be implemented instead, and you get the `ToString`
2752/// implementation for free.
2753///
2754/// [`Display`]: fmt::Display
2755#[rustc_diagnostic_item = "ToString"]
2756#[stable(feature = "rust1", since = "1.0.0")]
2757pub trait ToString {
2758 /// Converts the given value to a `String`.
2759 ///
2760 /// # Examples
2761 ///
2762 /// ```
2763 /// let i = 5;
2764 /// let five = String::from("5");
2765 ///
2766 /// assert_eq!(five, i.to_string());
2767 /// ```
2768 #[rustc_conversion_suggestion]
2769 #[stable(feature = "rust1", since = "1.0.0")]
2770 #[rustc_diagnostic_item = "to_string_method"]
2771 fn to_string(&self) -> String;
2772}
2773
2774/// # Panics
2775///
2776/// In this implementation, the `to_string` method panics
2777/// if the `Display` implementation returns an error.
2778/// This indicates an incorrect `Display` implementation
2779/// since `fmt::Write for String` never returns an error itself.
2780#[cfg(not(no_global_oom_handling))]
2781#[stable(feature = "rust1", since = "1.0.0")]
2782impl<T: fmt::Display + ?Sized> ToString for T {
2783 #[inline]
2784 fn to_string(&self) -> String {
2785 <Self as SpecToString>::spec_to_string(self)
2786 }
2787}
2788
2789#[cfg(not(no_global_oom_handling))]
2790trait SpecToString {
2791 fn spec_to_string(&self) -> String;
2792}
2793
2794#[cfg(not(no_global_oom_handling))]
2795impl<T: fmt::Display + ?Sized> SpecToString for T {
2796 // A common guideline is to not inline generic functions. However,
2797 // removing `#[inline]` from this method causes non-negligible regressions.
2798 // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
2799 // to try to remove it.
2800 #[inline]
2801 default fn spec_to_string(&self) -> String {
2802 let mut buf = String::new();
2803 let mut formatter =
2804 core::fmt::Formatter::new(&mut buf, core::fmt::FormattingOptions::new());
2805 // Bypass format_args!() to avoid write_str with zero-length strs
2806 fmt::Display::fmt(self, &mut formatter)
2807 .expect("a Display implementation returned an error unexpectedly");
2808 buf
2809 }
2810}
2811
2812#[cfg(not(no_global_oom_handling))]
2813impl SpecToString for core::ascii::Char {
2814 #[inline]
2815 fn spec_to_string(&self) -> String {
2816 self.as_str().to_owned()
2817 }
2818}
2819
2820#[cfg(not(no_global_oom_handling))]
2821impl SpecToString for char {
2822 #[inline]
2823 fn spec_to_string(&self) -> String {
2824 String::from(self.encode_utf8(&mut [0; char::MAX_LEN_UTF8]))
2825 }
2826}
2827
2828#[cfg(not(no_global_oom_handling))]
2829impl SpecToString for bool {
2830 #[inline]
2831 fn spec_to_string(&self) -> String {
2832 String::from(if *self { "true" } else { "false" })
2833 }
2834}
2835
2836macro_rules! impl_to_string {
2837 ($($signed:ident, $unsigned:ident,)*) => {
2838 $(
2839 #[cfg(not(no_global_oom_handling))]
2840 #[cfg(not(feature = "optimize_for_size"))]
2841 impl SpecToString for $signed {
2842 #[inline]
2843 fn spec_to_string(&self) -> String {
2844 const SIZE: usize = $signed::MAX.ilog(10) as usize + 1;
2845 let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE];
2846 // Only difference between signed and unsigned are these 8 lines.
2847 let mut out;
2848 if *self < 0 {
2849 out = String::with_capacity(SIZE + 1);
2850 out.push('-');
2851 } else {
2852 out = String::with_capacity(SIZE);
2853 }
2854
2855 out.push_str(self.unsigned_abs()._fmt(&mut buf));
2856 out
2857 }
2858 }
2859 #[cfg(not(no_global_oom_handling))]
2860 #[cfg(not(feature = "optimize_for_size"))]
2861 impl SpecToString for $unsigned {
2862 #[inline]
2863 fn spec_to_string(&self) -> String {
2864 const SIZE: usize = $unsigned::MAX.ilog(10) as usize + 1;
2865 let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE];
2866
2867 self._fmt(&mut buf).to_string()
2868 }
2869 }
2870 )*
2871 }
2872}
2873
2874impl_to_string! {
2875 i8, u8,
2876 i16, u16,
2877 i32, u32,
2878 i64, u64,
2879 isize, usize,
2880}
2881
2882#[cfg(not(no_global_oom_handling))]
2883#[cfg(feature = "optimize_for_size")]
2884impl SpecToString for u8 {
2885 #[inline]
2886 fn spec_to_string(&self) -> String {
2887 let mut buf = String::with_capacity(3);
2888 let mut n = *self;
2889 if n >= 10 {
2890 if n >= 100 {
2891 buf.push((b'0' + n / 100) as char);
2892 n %= 100;
2893 }
2894 buf.push((b'0' + n / 10) as char);
2895 n %= 10;
2896 }
2897 buf.push((b'0' + n) as char);
2898 buf
2899 }
2900}
2901
2902#[cfg(not(no_global_oom_handling))]
2903#[cfg(feature = "optimize_for_size")]
2904impl SpecToString for i8 {
2905 #[inline]
2906 fn spec_to_string(&self) -> String {
2907 let mut buf = String::with_capacity(4);
2908 if self.is_negative() {
2909 buf.push('-');
2910 }
2911 let mut n = self.unsigned_abs();
2912 if n >= 10 {
2913 if n >= 100 {
2914 buf.push('1');
2915 n -= 100;
2916 }
2917 buf.push((b'0' + n / 10) as char);
2918 n %= 10;
2919 }
2920 buf.push((b'0' + n) as char);
2921 buf
2922 }
2923}
2924
2925// Generic/generated code can sometimes have multiple, nested references
2926// for strings, including `&&&str`s that would never be written
2927// by hand. This macro generates twelve layers of nested `&`-impl
2928// for primitive strings.
2929#[cfg(not(no_global_oom_handling))]
2930macro_rules! to_string_str_wrap_in_ref {
2931 {x $($x:ident)*} => {
2932 &to_string_str_wrap_in_ref! { $($x)* }
2933 };
2934 {} => { str };
2935}
2936#[cfg(not(no_global_oom_handling))]
2937macro_rules! to_string_expr_wrap_in_deref {
2938 {$self:expr ; x $($x:ident)*} => {
2939 *(to_string_expr_wrap_in_deref! { $self ; $($x)* })
2940 };
2941 {$self:expr ;} => { $self };
2942}
2943#[cfg(not(no_global_oom_handling))]
2944macro_rules! to_string_str {
2945 {$($($x:ident)*),+} => {
2946 $(
2947 impl SpecToString for to_string_str_wrap_in_ref!($($x)*) {
2948 #[inline]
2949 fn spec_to_string(&self) -> String {
2950 String::from(to_string_expr_wrap_in_deref!(self ; $($x)*))
2951 }
2952 }
2953 )+
2954 };
2955}
2956
2957#[cfg(not(no_global_oom_handling))]
2958to_string_str! {
2959 x x x x x x x x x x x x,
2960 x x x x x x x x x x x,
2961 x x x x x x x x x x,
2962 x x x x x x x x x,
2963 x x x x x x x x,
2964 x x x x x x x,
2965 x x x x x x,
2966 x x x x x,
2967 x x x x,
2968 x x x,
2969 x x,
2970 x,
2971}
2972
2973#[cfg(not(no_global_oom_handling))]
2974impl SpecToString for Cow<'_, str> {
2975 #[inline]
2976 fn spec_to_string(&self) -> String {
2977 self[..].to_owned()
2978 }
2979}
2980
2981#[cfg(not(no_global_oom_handling))]
2982impl SpecToString for String {
2983 #[inline]
2984 fn spec_to_string(&self) -> String {
2985 self.to_owned()
2986 }
2987}
2988
2989#[cfg(not(no_global_oom_handling))]
2990impl SpecToString for fmt::Arguments<'_> {
2991 #[inline]
2992 fn spec_to_string(&self) -> String {
2993 crate::fmt::format(*self)
2994 }
2995}
2996
2997#[stable(feature = "rust1", since = "1.0.0")]
2998impl AsRef<str> for String {
2999 #[inline]
3000 fn as_ref(&self) -> &str {
3001 self
3002 }
3003}
3004
3005#[stable(feature = "string_as_mut", since = "1.43.0")]
3006impl AsMut<str> for String {
3007 #[inline]
3008 fn as_mut(&mut self) -> &mut str {
3009 self
3010 }
3011}
3012
3013#[stable(feature = "rust1", since = "1.0.0")]
3014impl AsRef<[u8]> for String {
3015 #[inline]
3016 fn as_ref(&self) -> &[u8] {
3017 self.as_bytes()
3018 }
3019}
3020
3021#[cfg(not(no_global_oom_handling))]
3022#[stable(feature = "rust1", since = "1.0.0")]
3023impl From<&str> for String {
3024 /// Converts a `&str` into a [`String`].
3025 ///
3026 /// The result is allocated on the heap.
3027 #[inline]
3028 fn from(s: &str) -> String {
3029 s.to_owned()
3030 }
3031}
3032
3033#[cfg(not(no_global_oom_handling))]
3034#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
3035impl From<&mut str> for String {
3036 /// Converts a `&mut str` into a [`String`].
3037 ///
3038 /// The result is allocated on the heap.
3039 #[inline]
3040 fn from(s: &mut str) -> String {
3041 s.to_owned()
3042 }
3043}
3044
3045#[cfg(not(no_global_oom_handling))]
3046#[stable(feature = "from_ref_string", since = "1.35.0")]
3047impl From<&String> for String {
3048 /// Converts a `&String` into a [`String`].
3049 ///
3050 /// This clones `s` and returns the clone.
3051 #[inline]
3052 fn from(s: &String) -> String {
3053 s.clone()
3054 }
3055}
3056
3057// note: test pulls in std, which causes errors here
3058#[stable(feature = "string_from_box", since = "1.18.0")]
3059impl From<Box<str>> for String {
3060 /// Converts the given boxed `str` slice to a [`String`].
3061 /// It is notable that the `str` slice is owned.
3062 ///
3063 /// # Examples
3064 ///
3065 /// ```
3066 /// let s1: String = String::from("hello world");
3067 /// let s2: Box<str> = s1.into_boxed_str();
3068 /// let s3: String = String::from(s2);
3069 ///
3070 /// assert_eq!("hello world", s3)
3071 /// ```
3072 fn from(s: Box<str>) -> String {
3073 s.into_string()
3074 }
3075}
3076
3077#[cfg(not(no_global_oom_handling))]
3078#[stable(feature = "box_from_str", since = "1.20.0")]
3079impl From<String> for Box<str> {
3080 /// Converts the given [`String`] to a boxed `str` slice that is owned.
3081 ///
3082 /// # Examples
3083 ///
3084 /// ```
3085 /// let s1: String = String::from("hello world");
3086 /// let s2: Box<str> = Box::from(s1);
3087 /// let s3: String = String::from(s2);
3088 ///
3089 /// assert_eq!("hello world", s3)
3090 /// ```
3091 fn from(s: String) -> Box<str> {
3092 s.into_boxed_str()
3093 }
3094}
3095
3096#[cfg(not(no_global_oom_handling))]
3097#[stable(feature = "string_from_cow_str", since = "1.14.0")]
3098impl<'a> From<Cow<'a, str>> for String {
3099 /// Converts a clone-on-write string to an owned
3100 /// instance of [`String`].
3101 ///
3102 /// This extracts the owned string,
3103 /// clones the string if it is not already owned.
3104 ///
3105 /// # Example
3106 ///
3107 /// ```
3108 /// # use std::borrow::Cow;
3109 /// // If the string is not owned...
3110 /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3111 /// // It will allocate on the heap and copy the string.
3112 /// let owned: String = String::from(cow);
3113 /// assert_eq!(&owned[..], "eggplant");
3114 /// ```
3115 fn from(s: Cow<'a, str>) -> String {
3116 s.into_owned()
3117 }
3118}
3119
3120#[cfg(not(no_global_oom_handling))]
3121#[stable(feature = "rust1", since = "1.0.0")]
3122impl<'a> From<&'a str> for Cow<'a, str> {
3123 /// Converts a string slice into a [`Borrowed`] variant.
3124 /// No heap allocation is performed, and the string
3125 /// is not copied.
3126 ///
3127 /// # Example
3128 ///
3129 /// ```
3130 /// # use std::borrow::Cow;
3131 /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
3132 /// ```
3133 ///
3134 /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3135 #[inline]
3136 fn from(s: &'a str) -> Cow<'a, str> {
3137 Cow::Borrowed(s)
3138 }
3139}
3140
3141#[cfg(not(no_global_oom_handling))]
3142#[stable(feature = "rust1", since = "1.0.0")]
3143impl<'a> From<String> for Cow<'a, str> {
3144 /// Converts a [`String`] into an [`Owned`] variant.
3145 /// No heap allocation is performed, and the string
3146 /// is not copied.
3147 ///
3148 /// # Example
3149 ///
3150 /// ```
3151 /// # use std::borrow::Cow;
3152 /// let s = "eggplant".to_string();
3153 /// let s2 = "eggplant".to_string();
3154 /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
3155 /// ```
3156 ///
3157 /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
3158 #[inline]
3159 fn from(s: String) -> Cow<'a, str> {
3160 Cow::Owned(s)
3161 }
3162}
3163
3164#[cfg(not(no_global_oom_handling))]
3165#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
3166impl<'a> From<&'a String> for Cow<'a, str> {
3167 /// Converts a [`String`] reference into a [`Borrowed`] variant.
3168 /// No heap allocation is performed, and the string
3169 /// is not copied.
3170 ///
3171 /// # Example
3172 ///
3173 /// ```
3174 /// # use std::borrow::Cow;
3175 /// let s = "eggplant".to_string();
3176 /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
3177 /// ```
3178 ///
3179 /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3180 #[inline]
3181 fn from(s: &'a String) -> Cow<'a, str> {
3182 Cow::Borrowed(s.as_str())
3183 }
3184}
3185
3186#[cfg(not(no_global_oom_handling))]
3187#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3188impl<'a> FromIterator<char> for Cow<'a, str> {
3189 fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
3190 Cow::Owned(FromIterator::from_iter(it))
3191 }
3192}
3193
3194#[cfg(not(no_global_oom_handling))]
3195#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3196impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
3197 fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
3198 Cow::Owned(FromIterator::from_iter(it))
3199 }
3200}
3201
3202#[cfg(not(no_global_oom_handling))]
3203#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3204impl<'a> FromIterator<String> for Cow<'a, str> {
3205 fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
3206 Cow::Owned(FromIterator::from_iter(it))
3207 }
3208}
3209
3210#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
3211impl From<String> for Vec<u8> {
3212 /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
3213 ///
3214 /// # Examples
3215 ///
3216 /// ```
3217 /// let s1 = String::from("hello world");
3218 /// let v1 = Vec::from(s1);
3219 ///
3220 /// for b in v1 {
3221 /// println!("{b}");
3222 /// }
3223 /// ```
3224 fn from(string: String) -> Vec<u8> {
3225 string.into_bytes()
3226 }
3227}
3228
3229#[stable(feature = "try_from_vec_u8_for_string", since = "1.87.0")]
3230impl TryFrom<Vec<u8>> for String {
3231 type Error = FromUtf8Error;
3232 /// Converts the given [`Vec<u8>`] into a [`String`] if it contains valid UTF-8 data.
3233 ///
3234 /// # Examples
3235 ///
3236 /// ```
3237 /// let s1 = b"hello world".to_vec();
3238 /// let v1 = String::try_from(s1).unwrap();
3239 /// assert_eq!(v1, "hello world");
3240 ///
3241 /// ```
3242 fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
3243 Self::from_utf8(bytes)
3244 }
3245}
3246
3247#[cfg(not(no_global_oom_handling))]
3248#[stable(feature = "rust1", since = "1.0.0")]
3249impl fmt::Write for String {
3250 #[inline]
3251 fn write_str(&mut self, s: &str) -> fmt::Result {
3252 self.push_str(s);
3253 Ok(())
3254 }
3255
3256 #[inline]
3257 fn write_char(&mut self, c: char) -> fmt::Result {
3258 self.push(c);
3259 Ok(())
3260 }
3261}
3262
3263/// An iterator over the [`char`]s of a string.
3264///
3265/// This struct is created by the [`into_chars`] method on [`String`].
3266/// See its documentation for more.
3267///
3268/// [`char`]: prim@char
3269/// [`into_chars`]: String::into_chars
3270#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
3271#[must_use = "iterators are lazy and do nothing unless consumed"]
3272#[unstable(feature = "string_into_chars", issue = "133125")]
3273pub struct IntoChars {
3274 bytes: vec::IntoIter<u8>,
3275}
3276
3277#[unstable(feature = "string_into_chars", issue = "133125")]
3278impl fmt::Debug for IntoChars {
3279 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3280 f.debug_tuple("IntoChars").field(&self.as_str()).finish()
3281 }
3282}
3283
3284impl IntoChars {
3285 /// Views the underlying data as a subslice of the original data.
3286 ///
3287 /// # Examples
3288 ///
3289 /// ```
3290 /// #![feature(string_into_chars)]
3291 ///
3292 /// let mut chars = String::from("abc").into_chars();
3293 ///
3294 /// assert_eq!(chars.as_str(), "abc");
3295 /// chars.next();
3296 /// assert_eq!(chars.as_str(), "bc");
3297 /// chars.next();
3298 /// chars.next();
3299 /// assert_eq!(chars.as_str(), "");
3300 /// ```
3301 #[unstable(feature = "string_into_chars", issue = "133125")]
3302 #[must_use]
3303 #[inline]
3304 pub fn as_str(&self) -> &str {
3305 // SAFETY: `bytes` is a valid UTF-8 string.
3306 unsafe { str::from_utf8_unchecked(self.bytes.as_slice()) }
3307 }
3308
3309 /// Consumes the `IntoChars`, returning the remaining string.
3310 ///
3311 /// # Examples
3312 ///
3313 /// ```
3314 /// #![feature(string_into_chars)]
3315 ///
3316 /// let chars = String::from("abc").into_chars();
3317 /// assert_eq!(chars.into_string(), "abc");
3318 ///
3319 /// let mut chars = String::from("def").into_chars();
3320 /// chars.next();
3321 /// assert_eq!(chars.into_string(), "ef");
3322 /// ```
3323 #[cfg(not(no_global_oom_handling))]
3324 #[unstable(feature = "string_into_chars", issue = "133125")]
3325 #[inline]
3326 pub fn into_string(self) -> String {
3327 // Safety: `bytes` are kept in UTF-8 form, only removing whole `char`s at a time.
3328 unsafe { String::from_utf8_unchecked(self.bytes.collect()) }
3329 }
3330
3331 #[inline]
3332 fn iter(&self) -> CharIndices<'_> {
3333 self.as_str().char_indices()
3334 }
3335}
3336
3337#[unstable(feature = "string_into_chars", issue = "133125")]
3338impl Iterator for IntoChars {
3339 type Item = char;
3340
3341 #[inline]
3342 fn next(&mut self) -> Option<char> {
3343 let mut iter = self.iter();
3344 match iter.next() {
3345 None => None,
3346 Some((_, ch)) => {
3347 let offset = iter.offset();
3348 // `offset` is a valid index.
3349 let _ = self.bytes.advance_by(offset);
3350 Some(ch)
3351 }
3352 }
3353 }
3354
3355 #[inline]
3356 fn count(self) -> usize {
3357 self.iter().count()
3358 }
3359
3360 #[inline]
3361 fn size_hint(&self) -> (usize, Option<usize>) {
3362 self.iter().size_hint()
3363 }
3364
3365 #[inline]
3366 fn last(mut self) -> Option<char> {
3367 self.next_back()
3368 }
3369}
3370
3371#[unstable(feature = "string_into_chars", issue = "133125")]
3372impl DoubleEndedIterator for IntoChars {
3373 #[inline]
3374 fn next_back(&mut self) -> Option<char> {
3375 let len = self.as_str().len();
3376 let mut iter = self.iter();
3377 match iter.next_back() {
3378 None => None,
3379 Some((idx, ch)) => {
3380 // `idx` is a valid index.
3381 let _ = self.bytes.advance_back_by(len - idx);
3382 Some(ch)
3383 }
3384 }
3385 }
3386}
3387
3388#[unstable(feature = "string_into_chars", issue = "133125")]
3389impl FusedIterator for IntoChars {}
3390
3391/// A draining iterator for `String`.
3392///
3393/// This struct is created by the [`drain`] method on [`String`]. See its
3394/// documentation for more.
3395///
3396/// [`drain`]: String::drain
3397#[stable(feature = "drain", since = "1.6.0")]
3398pub struct Drain<'a> {
3399 /// Will be used as &'a mut String in the destructor
3400 string: *mut String,
3401 /// Start of part to remove
3402 start: usize,
3403 /// End of part to remove
3404 end: usize,
3405 /// Current remaining range to remove
3406 iter: Chars<'a>,
3407}
3408
3409#[stable(feature = "collection_debug", since = "1.17.0")]
3410impl fmt::Debug for Drain<'_> {
3411 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3412 f.debug_tuple("Drain").field(&self.as_str()).finish()
3413 }
3414}
3415
3416#[stable(feature = "drain", since = "1.6.0")]
3417unsafe impl Sync for Drain<'_> {}
3418#[stable(feature = "drain", since = "1.6.0")]
3419unsafe impl Send for Drain<'_> {}
3420
3421#[stable(feature = "drain", since = "1.6.0")]
3422impl Drop for Drain<'_> {
3423 fn drop(&mut self) {
3424 unsafe {
3425 // Use Vec::drain. "Reaffirm" the bounds checks to avoid
3426 // panic code being inserted again.
3427 let self_vec = (*self.string).as_mut_vec();
3428 if self.start <= self.end && self.end <= self_vec.len() {
3429 self_vec.drain(self.start..self.end);
3430 }
3431 }
3432 }
3433}
3434
3435impl<'a> Drain<'a> {
3436 /// Returns the remaining (sub)string of this iterator as a slice.
3437 ///
3438 /// # Examples
3439 ///
3440 /// ```
3441 /// let mut s = String::from("abc");
3442 /// let mut drain = s.drain(..);
3443 /// assert_eq!(drain.as_str(), "abc");
3444 /// let _ = drain.next().unwrap();
3445 /// assert_eq!(drain.as_str(), "bc");
3446 /// ```
3447 #[must_use]
3448 #[stable(feature = "string_drain_as_str", since = "1.55.0")]
3449 pub fn as_str(&self) -> &str {
3450 self.iter.as_str()
3451 }
3452}
3453
3454#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3455impl<'a> AsRef<str> for Drain<'a> {
3456 fn as_ref(&self) -> &str {
3457 self.as_str()
3458 }
3459}
3460
3461#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3462impl<'a> AsRef<[u8]> for Drain<'a> {
3463 fn as_ref(&self) -> &[u8] {
3464 self.as_str().as_bytes()
3465 }
3466}
3467
3468#[stable(feature = "drain", since = "1.6.0")]
3469impl Iterator for Drain<'_> {
3470 type Item = char;
3471
3472 #[inline]
3473 fn next(&mut self) -> Option<char> {
3474 self.iter.next()
3475 }
3476
3477 fn size_hint(&self) -> (usize, Option<usize>) {
3478 self.iter.size_hint()
3479 }
3480
3481 #[inline]
3482 fn last(mut self) -> Option<char> {
3483 self.next_back()
3484 }
3485}
3486
3487#[stable(feature = "drain", since = "1.6.0")]
3488impl DoubleEndedIterator for Drain<'_> {
3489 #[inline]
3490 fn next_back(&mut self) -> Option<char> {
3491 self.iter.next_back()
3492 }
3493}
3494
3495#[stable(feature = "fused", since = "1.26.0")]
3496impl FusedIterator for Drain<'_> {}
3497
3498#[cfg(not(no_global_oom_handling))]
3499#[stable(feature = "from_char_for_string", since = "1.46.0")]
3500impl From<char> for String {
3501 /// Allocates an owned [`String`] from a single character.
3502 ///
3503 /// # Example
3504 /// ```rust
3505 /// let c: char = 'a';
3506 /// let s: String = String::from(c);
3507 /// assert_eq!("a", &s[..]);
3508 /// ```
3509 #[inline]
3510 fn from(c: char) -> Self {
3511 c.to_string()
3512 }
3513}