[go: up one dir, main page]

alloc/
string.rs

1//! A UTF-8–encoded, growable string.
2//!
3//! This module contains the [`String`] type, the [`ToString`] trait for
4//! converting to strings, and several error types that may result from
5//! working with [`String`]s.
6//!
7//! # Examples
8//!
9//! There are multiple ways to create a new [`String`] from a string literal:
10//!
11//! ```
12//! let s = "Hello".to_string();
13//!
14//! let s = String::from("world");
15//! let s: String = "also this".into();
16//! ```
17//!
18//! You can create a new [`String`] from an existing one by concatenating with
19//! `+`:
20//!
21//! ```
22//! let s = "Hello".to_string();
23//!
24//! let message = s + " world!";
25//! ```
26//!
27//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
28//! it. You can do the reverse too.
29//!
30//! ```
31//! let sparkle_heart = vec![240, 159, 146, 150];
32//!
33//! // We know these bytes are valid, so we'll use `unwrap()`.
34//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
35//!
36//! assert_eq!("πŸ’–", sparkle_heart);
37//!
38//! let bytes = sparkle_heart.into_bytes();
39//!
40//! assert_eq!(bytes, [240, 159, 146, 150]);
41//! ```
42
43#![stable(feature = "rust1", since = "1.0.0")]
44
45use core::error::Error;
46use core::iter::FusedIterator;
47#[cfg(not(no_global_oom_handling))]
48use core::iter::from_fn;
49#[cfg(not(no_global_oom_handling))]
50use core::ops::Add;
51#[cfg(not(no_global_oom_handling))]
52use core::ops::AddAssign;
53#[cfg(not(no_global_oom_handling))]
54use core::ops::Bound::{Excluded, Included, Unbounded};
55use core::ops::{self, Range, RangeBounds};
56use core::str::pattern::{Pattern, Utf8Pattern};
57use core::{fmt, hash, ptr, slice};
58
59#[cfg(not(no_global_oom_handling))]
60use crate::alloc::Allocator;
61#[cfg(not(no_global_oom_handling))]
62use crate::borrow::{Cow, ToOwned};
63use crate::boxed::Box;
64use crate::collections::TryReserveError;
65use crate::str::{self, CharIndices, Chars, Utf8Error, from_utf8_unchecked_mut};
66#[cfg(not(no_global_oom_handling))]
67use crate::str::{FromStr, from_boxed_utf8_unchecked};
68use crate::vec::{self, Vec};
69
70/// A UTF-8–encoded, growable string.
71///
72/// `String` is the most common string type. It has ownership over the contents
73/// of the string, stored in a heap-allocated buffer (see [Representation](#representation)).
74/// It is closely related to its borrowed counterpart, the primitive [`str`].
75///
76/// # Examples
77///
78/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
79///
80/// [`String::from`]: From::from
81///
82/// ```
83/// let hello = String::from("Hello, world!");
84/// ```
85///
86/// You can append a [`char`] to a `String` with the [`push`] method, and
87/// append a [`&str`] with the [`push_str`] method:
88///
89/// ```
90/// let mut hello = String::from("Hello, ");
91///
92/// hello.push('w');
93/// hello.push_str("orld!");
94/// ```
95///
96/// [`push`]: String::push
97/// [`push_str`]: String::push_str
98///
99/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
100/// the [`from_utf8`] method:
101///
102/// ```
103/// // some bytes, in a vector
104/// let sparkle_heart = vec![240, 159, 146, 150];
105///
106/// // We know these bytes are valid, so we'll use `unwrap()`.
107/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
108///
109/// assert_eq!("πŸ’–", sparkle_heart);
110/// ```
111///
112/// [`from_utf8`]: String::from_utf8
113///
114/// # UTF-8
115///
116/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
117/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
118/// is a variable width encoding, `String`s are typically smaller than an array of
119/// the same `char`s:
120///
121/// ```
122/// // `s` is ASCII which represents each `char` as one byte
123/// let s = "hello";
124/// assert_eq!(s.len(), 5);
125///
126/// // A `char` array with the same contents would be longer because
127/// // every `char` is four bytes
128/// let s = ['h', 'e', 'l', 'l', 'o'];
129/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
130/// assert_eq!(size, 20);
131///
132/// // However, for non-ASCII strings, the difference will be smaller
133/// // and sometimes they are the same
134/// let s = "πŸ’–πŸ’–πŸ’–πŸ’–πŸ’–";
135/// assert_eq!(s.len(), 20);
136///
137/// let s = ['πŸ’–', 'πŸ’–', 'πŸ’–', 'πŸ’–', 'πŸ’–'];
138/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
139/// assert_eq!(size, 20);
140/// ```
141///
142/// This raises interesting questions as to how `s[i]` should work.
143/// What should `i` be here? Several options include byte indices and
144/// `char` indices but, because of UTF-8 encoding, only byte indices
145/// would provide constant time indexing. Getting the `i`th `char`, for
146/// example, is available using [`chars`]:
147///
148/// ```
149/// let s = "hello";
150/// let third_character = s.chars().nth(2);
151/// assert_eq!(third_character, Some('l'));
152///
153/// let s = "πŸ’–πŸ’–πŸ’–πŸ’–πŸ’–";
154/// let third_character = s.chars().nth(2);
155/// assert_eq!(third_character, Some('πŸ’–'));
156/// ```
157///
158/// Next, what should `s[i]` return? Because indexing returns a reference
159/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
160/// Since we're only providing one index, `&u8` makes the most sense but that
161/// might not be what the user expects and can be explicitly achieved with
162/// [`as_bytes()`]:
163///
164/// ```
165/// // The first byte is 104 - the byte value of `'h'`
166/// let s = "hello";
167/// assert_eq!(s.as_bytes()[0], 104);
168/// // or
169/// assert_eq!(s.as_bytes()[0], b'h');
170///
171/// // The first byte is 240 which isn't obviously useful
172/// let s = "πŸ’–πŸ’–πŸ’–πŸ’–πŸ’–";
173/// assert_eq!(s.as_bytes()[0], 240);
174/// ```
175///
176/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
177/// forbidden:
178///
179/// ```compile_fail,E0277
180/// let s = "hello";
181///
182/// // The following will not compile!
183/// println!("The first letter of s is {}", s[0]);
184/// ```
185///
186/// It is more clear, however, how `&s[i..j]` should work (that is,
187/// indexing with a range). It should accept byte indices (to be constant-time)
188/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
189/// Note this will panic if the byte indices provided are not character
190/// boundaries - see [`is_char_boundary`] for more details. See the implementations
191/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
192/// version of string slicing, see [`get`].
193///
194/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
195/// [`SliceIndex<str>`]: core::slice::SliceIndex
196/// [`as_bytes()`]: str::as_bytes
197/// [`get`]: str::get
198/// [`is_char_boundary`]: str::is_char_boundary
199///
200/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
201/// codepoints of the string, respectively. To iterate over codepoints along
202/// with byte indices, use [`char_indices`].
203///
204/// [`bytes`]: str::bytes
205/// [`chars`]: str::chars
206/// [`char_indices`]: str::char_indices
207///
208/// # Deref
209///
210/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
211/// methods. In addition, this means that you can pass a `String` to a
212/// function which takes a [`&str`] by using an ampersand (`&`):
213///
214/// ```
215/// fn takes_str(s: &str) { }
216///
217/// let s = String::from("Hello");
218///
219/// takes_str(&s);
220/// ```
221///
222/// This will create a [`&str`] from the `String` and pass it in. This
223/// conversion is very inexpensive, and so generally, functions will accept
224/// [`&str`]s as arguments unless they need a `String` for some specific
225/// reason.
226///
227/// In certain cases Rust doesn't have enough information to make this
228/// conversion, known as [`Deref`] coercion. In the following example a string
229/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
230/// `example_func` takes anything that implements the trait. In this case Rust
231/// would need to make two implicit conversions, which Rust doesn't have the
232/// means to do. For that reason, the following example will not compile.
233///
234/// ```compile_fail,E0277
235/// trait TraitExample {}
236///
237/// impl<'a> TraitExample for &'a str {}
238///
239/// fn example_func<A: TraitExample>(example_arg: A) {}
240///
241/// let example_string = String::from("example_string");
242/// example_func(&example_string);
243/// ```
244///
245/// There are two options that would work instead. The first would be to
246/// change the line `example_func(&example_string);` to
247/// `example_func(example_string.as_str());`, using the method [`as_str()`]
248/// to explicitly extract the string slice containing the string. The second
249/// way changes `example_func(&example_string);` to
250/// `example_func(&*example_string);`. In this case we are dereferencing a
251/// `String` to a [`str`], then referencing the [`str`] back to
252/// [`&str`]. The second way is more idiomatic, however both work to do the
253/// conversion explicitly rather than relying on the implicit conversion.
254///
255/// # Representation
256///
257/// A `String` is made up of three components: a pointer to some bytes, a
258/// length, and a capacity. The pointer points to the internal buffer which `String`
259/// uses to store its data. The length is the number of bytes currently stored
260/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
261/// the length will always be less than or equal to the capacity.
262///
263/// This buffer is always stored on the heap.
264///
265/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
266/// methods:
267///
268/// ```
269/// use std::mem;
270///
271/// let story = String::from("Once upon a time...");
272///
273// FIXME Update this when vec_into_raw_parts is stabilized
274/// // Prevent automatically dropping the String's data
275/// let mut story = mem::ManuallyDrop::new(story);
276///
277/// let ptr = story.as_mut_ptr();
278/// let len = story.len();
279/// let capacity = story.capacity();
280///
281/// // story has nineteen bytes
282/// assert_eq!(19, len);
283///
284/// // We can re-build a String out of ptr, len, and capacity. This is all
285/// // unsafe because we are responsible for making sure the components are
286/// // valid:
287/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
288///
289/// assert_eq!(String::from("Once upon a time..."), s);
290/// ```
291///
292/// [`as_ptr`]: str::as_ptr
293/// [`len`]: String::len
294/// [`capacity`]: String::capacity
295///
296/// If a `String` has enough capacity, adding elements to it will not
297/// re-allocate. For example, consider this program:
298///
299/// ```
300/// let mut s = String::new();
301///
302/// println!("{}", s.capacity());
303///
304/// for _ in 0..5 {
305///     s.push_str("hello");
306///     println!("{}", s.capacity());
307/// }
308/// ```
309///
310/// This will output the following:
311///
312/// ```text
313/// 0
314/// 8
315/// 16
316/// 16
317/// 32
318/// 32
319/// ```
320///
321/// At first, we have no memory allocated at all, but as we append to the
322/// string, it increases its capacity appropriately. If we instead use the
323/// [`with_capacity`] method to allocate the correct capacity initially:
324///
325/// ```
326/// let mut s = String::with_capacity(25);
327///
328/// println!("{}", s.capacity());
329///
330/// for _ in 0..5 {
331///     s.push_str("hello");
332///     println!("{}", s.capacity());
333/// }
334/// ```
335///
336/// [`with_capacity`]: String::with_capacity
337///
338/// We end up with a different output:
339///
340/// ```text
341/// 25
342/// 25
343/// 25
344/// 25
345/// 25
346/// 25
347/// ```
348///
349/// Here, there's no need to allocate more memory inside the loop.
350///
351/// [str]: prim@str "str"
352/// [`str`]: prim@str "str"
353/// [`&str`]: prim@str "&str"
354/// [Deref]: core::ops::Deref "ops::Deref"
355/// [`Deref`]: core::ops::Deref "ops::Deref"
356/// [`as_str()`]: String::as_str
357#[derive(PartialEq, PartialOrd, Eq, Ord)]
358#[stable(feature = "rust1", since = "1.0.0")]
359#[lang = "String"]
360pub struct String {
361    vec: Vec<u8>,
362}
363
364/// A possible error value when converting a `String` from a UTF-8 byte vector.
365///
366/// This type is the error type for the [`from_utf8`] method on [`String`]. It
367/// is designed in such a way to carefully avoid reallocations: the
368/// [`into_bytes`] method will give back the byte vector that was used in the
369/// conversion attempt.
370///
371/// [`from_utf8`]: String::from_utf8
372/// [`into_bytes`]: FromUtf8Error::into_bytes
373///
374/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
375/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
376/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
377/// through the [`utf8_error`] method.
378///
379/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
380/// [`std::str`]: core::str "std::str"
381/// [`&str`]: prim@str "&str"
382/// [`utf8_error`]: FromUtf8Error::utf8_error
383///
384/// # Examples
385///
386/// ```
387/// // some invalid bytes, in a vector
388/// let bytes = vec![0, 159];
389///
390/// let value = String::from_utf8(bytes);
391///
392/// assert!(value.is_err());
393/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
394/// ```
395#[stable(feature = "rust1", since = "1.0.0")]
396#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
397#[derive(Debug, PartialEq, Eq)]
398pub struct FromUtf8Error {
399    bytes: Vec<u8>,
400    error: Utf8Error,
401}
402
403/// A possible error value when converting a `String` from a UTF-16 byte slice.
404///
405/// This type is the error type for the [`from_utf16`] method on [`String`].
406///
407/// [`from_utf16`]: String::from_utf16
408///
409/// # Examples
410///
411/// ```
412/// // π„žmu<invalid>ic
413/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
414///           0xD800, 0x0069, 0x0063];
415///
416/// assert!(String::from_utf16(v).is_err());
417/// ```
418#[stable(feature = "rust1", since = "1.0.0")]
419#[derive(Debug)]
420pub struct FromUtf16Error(());
421
422impl String {
423    /// Creates a new empty `String`.
424    ///
425    /// Given that the `String` is empty, this will not allocate any initial
426    /// buffer. While that means that this initial operation is very
427    /// inexpensive, it may cause excessive allocation later when you add
428    /// data. If you have an idea of how much data the `String` will hold,
429    /// consider the [`with_capacity`] method to prevent excessive
430    /// re-allocation.
431    ///
432    /// [`with_capacity`]: String::with_capacity
433    ///
434    /// # Examples
435    ///
436    /// ```
437    /// let s = String::new();
438    /// ```
439    #[inline]
440    #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
441    #[rustc_diagnostic_item = "string_new"]
442    #[stable(feature = "rust1", since = "1.0.0")]
443    #[must_use]
444    pub const fn new() -> String {
445        String { vec: Vec::new() }
446    }
447
448    /// Creates a new empty `String` with at least the specified capacity.
449    ///
450    /// `String`s have an internal buffer to hold their data. The capacity is
451    /// the length of that buffer, and can be queried with the [`capacity`]
452    /// method. This method creates an empty `String`, but one with an initial
453    /// buffer that can hold at least `capacity` bytes. This is useful when you
454    /// may be appending a bunch of data to the `String`, reducing the number of
455    /// reallocations it needs to do.
456    ///
457    /// [`capacity`]: String::capacity
458    ///
459    /// If the given capacity is `0`, no allocation will occur, and this method
460    /// is identical to the [`new`] method.
461    ///
462    /// [`new`]: String::new
463    ///
464    /// # Examples
465    ///
466    /// ```
467    /// let mut s = String::with_capacity(10);
468    ///
469    /// // The String contains no chars, even though it has capacity for more
470    /// assert_eq!(s.len(), 0);
471    ///
472    /// // These are all done without reallocating...
473    /// let cap = s.capacity();
474    /// for _ in 0..10 {
475    ///     s.push('a');
476    /// }
477    ///
478    /// assert_eq!(s.capacity(), cap);
479    ///
480    /// // ...but this may make the string reallocate
481    /// s.push('a');
482    /// ```
483    #[cfg(not(no_global_oom_handling))]
484    #[inline]
485    #[stable(feature = "rust1", since = "1.0.0")]
486    #[must_use]
487    pub fn with_capacity(capacity: usize) -> String {
488        String { vec: Vec::with_capacity(capacity) }
489    }
490
491    /// Creates a new empty `String` with at least the specified capacity.
492    ///
493    /// # Errors
494    ///
495    /// Returns [`Err`] if the capacity exceeds `isize::MAX` bytes,
496    /// or if the memory allocator reports failure.
497    ///
498    #[inline]
499    #[unstable(feature = "try_with_capacity", issue = "91913")]
500    pub fn try_with_capacity(capacity: usize) -> Result<String, TryReserveError> {
501        Ok(String { vec: Vec::try_with_capacity(capacity)? })
502    }
503
504    /// Converts a vector of bytes to a `String`.
505    ///
506    /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
507    /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
508    /// two. Not all byte slices are valid `String`s, however: `String`
509    /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
510    /// the bytes are valid UTF-8, and then does the conversion.
511    ///
512    /// If you are sure that the byte slice is valid UTF-8, and you don't want
513    /// to incur the overhead of the validity check, there is an unsafe version
514    /// of this function, [`from_utf8_unchecked`], which has the same behavior
515    /// but skips the check.
516    ///
517    /// This method will take care to not copy the vector, for efficiency's
518    /// sake.
519    ///
520    /// If you need a [`&str`] instead of a `String`, consider
521    /// [`str::from_utf8`].
522    ///
523    /// The inverse of this method is [`into_bytes`].
524    ///
525    /// # Errors
526    ///
527    /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
528    /// provided bytes are not UTF-8. The vector you moved in is also included.
529    ///
530    /// # Examples
531    ///
532    /// Basic usage:
533    ///
534    /// ```
535    /// // some bytes, in a vector
536    /// let sparkle_heart = vec![240, 159, 146, 150];
537    ///
538    /// // We know these bytes are valid, so we'll use `unwrap()`.
539    /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
540    ///
541    /// assert_eq!("πŸ’–", sparkle_heart);
542    /// ```
543    ///
544    /// Incorrect bytes:
545    ///
546    /// ```
547    /// // some invalid bytes, in a vector
548    /// let sparkle_heart = vec![0, 159, 146, 150];
549    ///
550    /// assert!(String::from_utf8(sparkle_heart).is_err());
551    /// ```
552    ///
553    /// See the docs for [`FromUtf8Error`] for more details on what you can do
554    /// with this error.
555    ///
556    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
557    /// [`Vec<u8>`]: crate::vec::Vec "Vec"
558    /// [`&str`]: prim@str "&str"
559    /// [`into_bytes`]: String::into_bytes
560    #[inline]
561    #[stable(feature = "rust1", since = "1.0.0")]
562    #[rustc_diagnostic_item = "string_from_utf8"]
563    pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
564        match str::from_utf8(&vec) {
565            Ok(..) => Ok(String { vec }),
566            Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
567        }
568    }
569
570    /// Converts a slice of bytes to a string, including invalid characters.
571    ///
572    /// Strings are made of bytes ([`u8`]), and a slice of bytes
573    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
574    /// between the two. Not all byte slices are valid strings, however: strings
575    /// are required to be valid UTF-8. During this conversion,
576    /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
577    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: οΏ½
578    ///
579    /// [byteslice]: prim@slice
580    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
581    ///
582    /// If you are sure that the byte slice is valid UTF-8, and you don't want
583    /// to incur the overhead of the conversion, there is an unsafe version
584    /// of this function, [`from_utf8_unchecked`], which has the same behavior
585    /// but skips the checks.
586    ///
587    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
588    ///
589    /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
590    /// UTF-8, then we need to insert the replacement characters, which will
591    /// change the size of the string, and hence, require a `String`. But if
592    /// it's already valid UTF-8, we don't need a new allocation. This return
593    /// type allows us to handle both cases.
594    ///
595    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
596    ///
597    /// # Examples
598    ///
599    /// Basic usage:
600    ///
601    /// ```
602    /// // some bytes, in a vector
603    /// let sparkle_heart = vec![240, 159, 146, 150];
604    ///
605    /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
606    ///
607    /// assert_eq!("πŸ’–", sparkle_heart);
608    /// ```
609    ///
610    /// Incorrect bytes:
611    ///
612    /// ```
613    /// // some invalid bytes
614    /// let input = b"Hello \xF0\x90\x80World";
615    /// let output = String::from_utf8_lossy(input);
616    ///
617    /// assert_eq!("Hello οΏ½World", output);
618    /// ```
619    #[must_use]
620    #[cfg(not(no_global_oom_handling))]
621    #[stable(feature = "rust1", since = "1.0.0")]
622    pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
623        let mut iter = v.utf8_chunks();
624
625        let first_valid = if let Some(chunk) = iter.next() {
626            let valid = chunk.valid();
627            if chunk.invalid().is_empty() {
628                debug_assert_eq!(valid.len(), v.len());
629                return Cow::Borrowed(valid);
630            }
631            valid
632        } else {
633            return Cow::Borrowed("");
634        };
635
636        const REPLACEMENT: &str = "\u{FFFD}";
637
638        let mut res = String::with_capacity(v.len());
639        res.push_str(first_valid);
640        res.push_str(REPLACEMENT);
641
642        for chunk in iter {
643            res.push_str(chunk.valid());
644            if !chunk.invalid().is_empty() {
645                res.push_str(REPLACEMENT);
646            }
647        }
648
649        Cow::Owned(res)
650    }
651
652    /// Converts a [`Vec<u8>`] to a `String`, substituting invalid UTF-8
653    /// sequences with replacement characters.
654    ///
655    /// See [`from_utf8_lossy`] for more details.
656    ///
657    /// [`from_utf8_lossy`]: String::from_utf8_lossy
658    ///
659    /// Note that this function does not guarantee reuse of the original `Vec`
660    /// allocation.
661    ///
662    /// # Examples
663    ///
664    /// Basic usage:
665    ///
666    /// ```
667    /// #![feature(string_from_utf8_lossy_owned)]
668    /// // some bytes, in a vector
669    /// let sparkle_heart = vec![240, 159, 146, 150];
670    ///
671    /// let sparkle_heart = String::from_utf8_lossy_owned(sparkle_heart);
672    ///
673    /// assert_eq!(String::from("πŸ’–"), sparkle_heart);
674    /// ```
675    ///
676    /// Incorrect bytes:
677    ///
678    /// ```
679    /// #![feature(string_from_utf8_lossy_owned)]
680    /// // some invalid bytes
681    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
682    /// let output = String::from_utf8_lossy_owned(input);
683    ///
684    /// assert_eq!(String::from("Hello οΏ½World"), output);
685    /// ```
686    #[must_use]
687    #[cfg(not(no_global_oom_handling))]
688    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
689    pub fn from_utf8_lossy_owned(v: Vec<u8>) -> String {
690        if let Cow::Owned(string) = String::from_utf8_lossy(&v) {
691            string
692        } else {
693            // SAFETY: `String::from_utf8_lossy`'s contract ensures that if
694            // it returns a `Cow::Borrowed`, it is a valid UTF-8 string.
695            // Otherwise, it returns a new allocation of an owned `String`, with
696            // replacement characters for invalid sequences, which is returned
697            // above.
698            unsafe { String::from_utf8_unchecked(v) }
699        }
700    }
701
702    /// Decode a native endian UTF-16–encoded vector `v` into a `String`,
703    /// returning [`Err`] if `v` contains any invalid data.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// // π„žmusic
709    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
710    ///           0x0073, 0x0069, 0x0063];
711    /// assert_eq!(String::from("π„žmusic"),
712    ///            String::from_utf16(v).unwrap());
713    ///
714    /// // π„žmu<invalid>ic
715    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
716    ///           0xD800, 0x0069, 0x0063];
717    /// assert!(String::from_utf16(v).is_err());
718    /// ```
719    #[cfg(not(no_global_oom_handling))]
720    #[stable(feature = "rust1", since = "1.0.0")]
721    pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
722        // This isn't done via collect::<Result<_, _>>() for performance reasons.
723        // FIXME: the function can be simplified again when #48994 is closed.
724        let mut ret = String::with_capacity(v.len());
725        for c in char::decode_utf16(v.iter().cloned()) {
726            if let Ok(c) = c {
727                ret.push(c);
728            } else {
729                return Err(FromUtf16Error(()));
730            }
731        }
732        Ok(ret)
733    }
734
735    /// Decode a native endian UTF-16–encoded slice `v` into a `String`,
736    /// replacing invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
737    ///
738    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
739    /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
740    /// conversion requires a memory allocation.
741    ///
742    /// [`from_utf8_lossy`]: String::from_utf8_lossy
743    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
744    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
745    ///
746    /// # Examples
747    ///
748    /// ```
749    /// // π„žmus<invalid>ic<invalid>
750    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
751    ///           0x0073, 0xDD1E, 0x0069, 0x0063,
752    ///           0xD834];
753    ///
754    /// assert_eq!(String::from("π„žmus\u{FFFD}ic\u{FFFD}"),
755    ///            String::from_utf16_lossy(v));
756    /// ```
757    #[cfg(not(no_global_oom_handling))]
758    #[must_use]
759    #[inline]
760    #[stable(feature = "rust1", since = "1.0.0")]
761    pub fn from_utf16_lossy(v: &[u16]) -> String {
762        char::decode_utf16(v.iter().cloned())
763            .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
764            .collect()
765    }
766
767    /// Decode a UTF-16LE–encoded vector `v` into a `String`,
768    /// returning [`Err`] if `v` contains any invalid data.
769    ///
770    /// # Examples
771    ///
772    /// Basic usage:
773    ///
774    /// ```
775    /// #![feature(str_from_utf16_endian)]
776    /// // π„žmusic
777    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
778    ///           0x73, 0x00, 0x69, 0x00, 0x63, 0x00];
779    /// assert_eq!(String::from("π„žmusic"),
780    ///            String::from_utf16le(v).unwrap());
781    ///
782    /// // π„žmu<invalid>ic
783    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
784    ///           0x00, 0xD8, 0x69, 0x00, 0x63, 0x00];
785    /// assert!(String::from_utf16le(v).is_err());
786    /// ```
787    #[cfg(not(no_global_oom_handling))]
788    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
789    pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error> {
790        if v.len() % 2 != 0 {
791            return Err(FromUtf16Error(()));
792        }
793        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
794            (true, ([], v, [])) => Self::from_utf16(v),
795            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_le_bytes))
796                .collect::<Result<_, _>>()
797                .map_err(|_| FromUtf16Error(())),
798        }
799    }
800
801    /// Decode a UTF-16LE–encoded slice `v` into a `String`, replacing
802    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
803    ///
804    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
805    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
806    /// conversion requires a memory allocation.
807    ///
808    /// [`from_utf8_lossy`]: String::from_utf8_lossy
809    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
810    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
811    ///
812    /// # Examples
813    ///
814    /// Basic usage:
815    ///
816    /// ```
817    /// #![feature(str_from_utf16_endian)]
818    /// // π„žmus<invalid>ic<invalid>
819    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
820    ///           0x73, 0x00, 0x1E, 0xDD, 0x69, 0x00, 0x63, 0x00,
821    ///           0x34, 0xD8];
822    ///
823    /// assert_eq!(String::from("π„žmus\u{FFFD}ic\u{FFFD}"),
824    ///            String::from_utf16le_lossy(v));
825    /// ```
826    #[cfg(not(no_global_oom_handling))]
827    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
828    pub fn from_utf16le_lossy(v: &[u8]) -> String {
829        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
830            (true, ([], v, [])) => Self::from_utf16_lossy(v),
831            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
832            _ => {
833                let mut iter = v.array_chunks::<2>();
834                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_le_bytes))
835                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
836                    .collect();
837                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
838            }
839        }
840    }
841
842    /// Decode a UTF-16BE–encoded vector `v` into a `String`,
843    /// returning [`Err`] if `v` contains any invalid data.
844    ///
845    /// # Examples
846    ///
847    /// Basic usage:
848    ///
849    /// ```
850    /// #![feature(str_from_utf16_endian)]
851    /// // π„žmusic
852    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
853    ///           0x00, 0x73, 0x00, 0x69, 0x00, 0x63];
854    /// assert_eq!(String::from("π„žmusic"),
855    ///            String::from_utf16be(v).unwrap());
856    ///
857    /// // π„žmu<invalid>ic
858    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
859    ///           0xD8, 0x00, 0x00, 0x69, 0x00, 0x63];
860    /// assert!(String::from_utf16be(v).is_err());
861    /// ```
862    #[cfg(not(no_global_oom_handling))]
863    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
864    pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error> {
865        if v.len() % 2 != 0 {
866            return Err(FromUtf16Error(()));
867        }
868        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
869            (true, ([], v, [])) => Self::from_utf16(v),
870            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_be_bytes))
871                .collect::<Result<_, _>>()
872                .map_err(|_| FromUtf16Error(())),
873        }
874    }
875
876    /// Decode a UTF-16BE–encoded slice `v` into a `String`, replacing
877    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
878    ///
879    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
880    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
881    /// conversion requires a memory allocation.
882    ///
883    /// [`from_utf8_lossy`]: String::from_utf8_lossy
884    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
885    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
886    ///
887    /// # Examples
888    ///
889    /// Basic usage:
890    ///
891    /// ```
892    /// #![feature(str_from_utf16_endian)]
893    /// // π„žmus<invalid>ic<invalid>
894    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
895    ///           0x00, 0x73, 0xDD, 0x1E, 0x00, 0x69, 0x00, 0x63,
896    ///           0xD8, 0x34];
897    ///
898    /// assert_eq!(String::from("π„žmus\u{FFFD}ic\u{FFFD}"),
899    ///            String::from_utf16be_lossy(v));
900    /// ```
901    #[cfg(not(no_global_oom_handling))]
902    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
903    pub fn from_utf16be_lossy(v: &[u8]) -> String {
904        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
905            (true, ([], v, [])) => Self::from_utf16_lossy(v),
906            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
907            _ => {
908                let mut iter = v.array_chunks::<2>();
909                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_be_bytes))
910                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
911                    .collect();
912                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
913            }
914        }
915    }
916
917    /// Decomposes a `String` into its raw components: `(pointer, length, capacity)`.
918    ///
919    /// Returns the raw pointer to the underlying data, the length of
920    /// the string (in bytes), and the allocated capacity of the data
921    /// (in bytes). These are the same arguments in the same order as
922    /// the arguments to [`from_raw_parts`].
923    ///
924    /// After calling this function, the caller is responsible for the
925    /// memory previously managed by the `String`. The only way to do
926    /// this is to convert the raw pointer, length, and capacity back
927    /// into a `String` with the [`from_raw_parts`] function, allowing
928    /// the destructor to perform the cleanup.
929    ///
930    /// [`from_raw_parts`]: String::from_raw_parts
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(vec_into_raw_parts)]
936    /// let s = String::from("hello");
937    ///
938    /// let (ptr, len, cap) = s.into_raw_parts();
939    ///
940    /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
941    /// assert_eq!(rebuilt, "hello");
942    /// ```
943    #[must_use = "losing the pointer will leak memory"]
944    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
945    pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
946        self.vec.into_raw_parts()
947    }
948
949    /// Creates a new `String` from a pointer, a length and a capacity.
950    ///
951    /// # Safety
952    ///
953    /// This is highly unsafe, due to the number of invariants that aren't
954    /// checked:
955    ///
956    /// * all safety requirements for [`Vec::<u8>::from_raw_parts`].
957    /// * all safety requirements for [`String::from_utf8_unchecked`].
958    ///
959    /// Violating these may cause problems like corrupting the allocator's
960    /// internal data structures. For example, it is normally **not** safe to
961    /// build a `String` from a pointer to a C `char` array containing UTF-8
962    /// _unless_ you are certain that array was originally allocated by the
963    /// Rust standard library's allocator.
964    ///
965    /// The ownership of `buf` is effectively transferred to the
966    /// `String` which may then deallocate, reallocate or change the
967    /// contents of memory pointed to by the pointer at will. Ensure
968    /// that nothing else uses the pointer after calling this
969    /// function.
970    ///
971    /// # Examples
972    ///
973    /// ```
974    /// use std::mem;
975    ///
976    /// unsafe {
977    ///     let s = String::from("hello");
978    ///
979    // FIXME Update this when vec_into_raw_parts is stabilized
980    ///     // Prevent automatically dropping the String's data
981    ///     let mut s = mem::ManuallyDrop::new(s);
982    ///
983    ///     let ptr = s.as_mut_ptr();
984    ///     let len = s.len();
985    ///     let capacity = s.capacity();
986    ///
987    ///     let s = String::from_raw_parts(ptr, len, capacity);
988    ///
989    ///     assert_eq!(String::from("hello"), s);
990    /// }
991    /// ```
992    #[inline]
993    #[stable(feature = "rust1", since = "1.0.0")]
994    pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
995        unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
996    }
997
998    /// Converts a vector of bytes to a `String` without checking that the
999    /// string contains valid UTF-8.
1000    ///
1001    /// See the safe version, [`from_utf8`], for more details.
1002    ///
1003    /// [`from_utf8`]: String::from_utf8
1004    ///
1005    /// # Safety
1006    ///
1007    /// This function is unsafe because it does not check that the bytes passed
1008    /// to it are valid UTF-8. If this constraint is violated, it may cause
1009    /// memory unsafety issues with future users of the `String`, as the rest of
1010    /// the standard library assumes that `String`s are valid UTF-8.
1011    ///
1012    /// # Examples
1013    ///
1014    /// ```
1015    /// // some bytes, in a vector
1016    /// let sparkle_heart = vec![240, 159, 146, 150];
1017    ///
1018    /// let sparkle_heart = unsafe {
1019    ///     String::from_utf8_unchecked(sparkle_heart)
1020    /// };
1021    ///
1022    /// assert_eq!("πŸ’–", sparkle_heart);
1023    /// ```
1024    #[inline]
1025    #[must_use]
1026    #[stable(feature = "rust1", since = "1.0.0")]
1027    pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
1028        String { vec: bytes }
1029    }
1030
1031    /// Converts a `String` into a byte vector.
1032    ///
1033    /// This consumes the `String`, so we do not need to copy its contents.
1034    ///
1035    /// # Examples
1036    ///
1037    /// ```
1038    /// let s = String::from("hello");
1039    /// let bytes = s.into_bytes();
1040    ///
1041    /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
1042    /// ```
1043    #[inline]
1044    #[must_use = "`self` will be dropped if the result is not used"]
1045    #[stable(feature = "rust1", since = "1.0.0")]
1046    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1047    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1048    pub const fn into_bytes(self) -> Vec<u8> {
1049        self.vec
1050    }
1051
1052    /// Extracts a string slice containing the entire `String`.
1053    ///
1054    /// # Examples
1055    ///
1056    /// ```
1057    /// let s = String::from("foo");
1058    ///
1059    /// assert_eq!("foo", s.as_str());
1060    /// ```
1061    #[inline]
1062    #[must_use]
1063    #[stable(feature = "string_as_str", since = "1.7.0")]
1064    #[rustc_diagnostic_item = "string_as_str"]
1065    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1066    pub const fn as_str(&self) -> &str {
1067        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1068        // at construction.
1069        unsafe { str::from_utf8_unchecked(self.vec.as_slice()) }
1070    }
1071
1072    /// Converts a `String` into a mutable string slice.
1073    ///
1074    /// # Examples
1075    ///
1076    /// ```
1077    /// let mut s = String::from("foobar");
1078    /// let s_mut_str = s.as_mut_str();
1079    ///
1080    /// s_mut_str.make_ascii_uppercase();
1081    ///
1082    /// assert_eq!("FOOBAR", s_mut_str);
1083    /// ```
1084    #[inline]
1085    #[must_use]
1086    #[stable(feature = "string_as_str", since = "1.7.0")]
1087    #[rustc_diagnostic_item = "string_as_mut_str"]
1088    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1089    pub const fn as_mut_str(&mut self) -> &mut str {
1090        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1091        // at construction.
1092        unsafe { str::from_utf8_unchecked_mut(self.vec.as_mut_slice()) }
1093    }
1094
1095    /// Appends a given string slice onto the end of this `String`.
1096    ///
1097    /// # Examples
1098    ///
1099    /// ```
1100    /// let mut s = String::from("foo");
1101    ///
1102    /// s.push_str("bar");
1103    ///
1104    /// assert_eq!("foobar", s);
1105    /// ```
1106    #[cfg(not(no_global_oom_handling))]
1107    #[inline]
1108    #[stable(feature = "rust1", since = "1.0.0")]
1109    #[rustc_confusables("append", "push")]
1110    #[rustc_diagnostic_item = "string_push_str"]
1111    pub fn push_str(&mut self, string: &str) {
1112        self.vec.extend_from_slice(string.as_bytes())
1113    }
1114
1115    /// Copies elements from `src` range to the end of the string.
1116    ///
1117    /// # Panics
1118    ///
1119    /// Panics if the starting point or end point do not lie on a [`char`]
1120    /// boundary, or if they're out of bounds.
1121    ///
1122    /// # Examples
1123    ///
1124    /// ```
1125    /// let mut string = String::from("abcde");
1126    ///
1127    /// string.extend_from_within(2..);
1128    /// assert_eq!(string, "abcdecde");
1129    ///
1130    /// string.extend_from_within(..2);
1131    /// assert_eq!(string, "abcdecdeab");
1132    ///
1133    /// string.extend_from_within(4..8);
1134    /// assert_eq!(string, "abcdecdeabecde");
1135    /// ```
1136    #[cfg(not(no_global_oom_handling))]
1137    #[stable(feature = "string_extend_from_within", since = "1.87.0")]
1138    pub fn extend_from_within<R>(&mut self, src: R)
1139    where
1140        R: RangeBounds<usize>,
1141    {
1142        let src @ Range { start, end } = slice::range(src, ..self.len());
1143
1144        assert!(self.is_char_boundary(start));
1145        assert!(self.is_char_boundary(end));
1146
1147        self.vec.extend_from_within(src);
1148    }
1149
1150    /// Returns this `String`'s capacity, in bytes.
1151    ///
1152    /// # Examples
1153    ///
1154    /// ```
1155    /// let s = String::with_capacity(10);
1156    ///
1157    /// assert!(s.capacity() >= 10);
1158    /// ```
1159    #[inline]
1160    #[must_use]
1161    #[stable(feature = "rust1", since = "1.0.0")]
1162    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1163    pub const fn capacity(&self) -> usize {
1164        self.vec.capacity()
1165    }
1166
1167    /// Reserves capacity for at least `additional` bytes more than the
1168    /// current length. The allocator may reserve more space to speculatively
1169    /// avoid frequent allocations. After calling `reserve`,
1170    /// capacity will be greater than or equal to `self.len() + additional`.
1171    /// Does nothing if capacity is already sufficient.
1172    ///
1173    /// # Panics
1174    ///
1175    /// Panics if the new capacity overflows [`usize`].
1176    ///
1177    /// # Examples
1178    ///
1179    /// Basic usage:
1180    ///
1181    /// ```
1182    /// let mut s = String::new();
1183    ///
1184    /// s.reserve(10);
1185    ///
1186    /// assert!(s.capacity() >= 10);
1187    /// ```
1188    ///
1189    /// This might not actually increase the capacity:
1190    ///
1191    /// ```
1192    /// let mut s = String::with_capacity(10);
1193    /// s.push('a');
1194    /// s.push('b');
1195    ///
1196    /// // s now has a length of 2 and a capacity of at least 10
1197    /// let capacity = s.capacity();
1198    /// assert_eq!(2, s.len());
1199    /// assert!(capacity >= 10);
1200    ///
1201    /// // Since we already have at least an extra 8 capacity, calling this...
1202    /// s.reserve(8);
1203    ///
1204    /// // ... doesn't actually increase.
1205    /// assert_eq!(capacity, s.capacity());
1206    /// ```
1207    #[cfg(not(no_global_oom_handling))]
1208    #[inline]
1209    #[stable(feature = "rust1", since = "1.0.0")]
1210    pub fn reserve(&mut self, additional: usize) {
1211        self.vec.reserve(additional)
1212    }
1213
1214    /// Reserves the minimum capacity for at least `additional` bytes more than
1215    /// the current length. Unlike [`reserve`], this will not
1216    /// deliberately over-allocate to speculatively avoid frequent allocations.
1217    /// After calling `reserve_exact`, capacity will be greater than or equal to
1218    /// `self.len() + additional`. Does nothing if the capacity is already
1219    /// sufficient.
1220    ///
1221    /// [`reserve`]: String::reserve
1222    ///
1223    /// # Panics
1224    ///
1225    /// Panics if the new capacity overflows [`usize`].
1226    ///
1227    /// # Examples
1228    ///
1229    /// Basic usage:
1230    ///
1231    /// ```
1232    /// let mut s = String::new();
1233    ///
1234    /// s.reserve_exact(10);
1235    ///
1236    /// assert!(s.capacity() >= 10);
1237    /// ```
1238    ///
1239    /// This might not actually increase the capacity:
1240    ///
1241    /// ```
1242    /// let mut s = String::with_capacity(10);
1243    /// s.push('a');
1244    /// s.push('b');
1245    ///
1246    /// // s now has a length of 2 and a capacity of at least 10
1247    /// let capacity = s.capacity();
1248    /// assert_eq!(2, s.len());
1249    /// assert!(capacity >= 10);
1250    ///
1251    /// // Since we already have at least an extra 8 capacity, calling this...
1252    /// s.reserve_exact(8);
1253    ///
1254    /// // ... doesn't actually increase.
1255    /// assert_eq!(capacity, s.capacity());
1256    /// ```
1257    #[cfg(not(no_global_oom_handling))]
1258    #[inline]
1259    #[stable(feature = "rust1", since = "1.0.0")]
1260    pub fn reserve_exact(&mut self, additional: usize) {
1261        self.vec.reserve_exact(additional)
1262    }
1263
1264    /// Tries to reserve capacity for at least `additional` bytes more than the
1265    /// current length. The allocator may reserve more space to speculatively
1266    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1267    /// greater than or equal to `self.len() + additional` if it returns
1268    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1269    /// preserves the contents even if an error occurs.
1270    ///
1271    /// # Errors
1272    ///
1273    /// If the capacity overflows, or the allocator reports a failure, then an error
1274    /// is returned.
1275    ///
1276    /// # Examples
1277    ///
1278    /// ```
1279    /// use std::collections::TryReserveError;
1280    ///
1281    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1282    ///     let mut output = String::new();
1283    ///
1284    ///     // Pre-reserve the memory, exiting if we can't
1285    ///     output.try_reserve(data.len())?;
1286    ///
1287    ///     // Now we know this can't OOM in the middle of our complex work
1288    ///     output.push_str(data);
1289    ///
1290    ///     Ok(output)
1291    /// }
1292    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1293    /// ```
1294    #[stable(feature = "try_reserve", since = "1.57.0")]
1295    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1296        self.vec.try_reserve(additional)
1297    }
1298
1299    /// Tries to reserve the minimum capacity for at least `additional` bytes
1300    /// more than the current length. Unlike [`try_reserve`], this will not
1301    /// deliberately over-allocate to speculatively avoid frequent allocations.
1302    /// After calling `try_reserve_exact`, capacity will be greater than or
1303    /// equal to `self.len() + additional` if it returns `Ok(())`.
1304    /// Does nothing if the capacity is already sufficient.
1305    ///
1306    /// Note that the allocator may give the collection more space than it
1307    /// requests. Therefore, capacity can not be relied upon to be precisely
1308    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1309    ///
1310    /// [`try_reserve`]: String::try_reserve
1311    ///
1312    /// # Errors
1313    ///
1314    /// If the capacity overflows, or the allocator reports a failure, then an error
1315    /// is returned.
1316    ///
1317    /// # Examples
1318    ///
1319    /// ```
1320    /// use std::collections::TryReserveError;
1321    ///
1322    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1323    ///     let mut output = String::new();
1324    ///
1325    ///     // Pre-reserve the memory, exiting if we can't
1326    ///     output.try_reserve_exact(data.len())?;
1327    ///
1328    ///     // Now we know this can't OOM in the middle of our complex work
1329    ///     output.push_str(data);
1330    ///
1331    ///     Ok(output)
1332    /// }
1333    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1334    /// ```
1335    #[stable(feature = "try_reserve", since = "1.57.0")]
1336    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1337        self.vec.try_reserve_exact(additional)
1338    }
1339
1340    /// Shrinks the capacity of this `String` to match its length.
1341    ///
1342    /// # Examples
1343    ///
1344    /// ```
1345    /// let mut s = String::from("foo");
1346    ///
1347    /// s.reserve(100);
1348    /// assert!(s.capacity() >= 100);
1349    ///
1350    /// s.shrink_to_fit();
1351    /// assert_eq!(3, s.capacity());
1352    /// ```
1353    #[cfg(not(no_global_oom_handling))]
1354    #[inline]
1355    #[stable(feature = "rust1", since = "1.0.0")]
1356    pub fn shrink_to_fit(&mut self) {
1357        self.vec.shrink_to_fit()
1358    }
1359
1360    /// Shrinks the capacity of this `String` with a lower bound.
1361    ///
1362    /// The capacity will remain at least as large as both the length
1363    /// and the supplied value.
1364    ///
1365    /// If the current capacity is less than the lower limit, this is a no-op.
1366    ///
1367    /// # Examples
1368    ///
1369    /// ```
1370    /// let mut s = String::from("foo");
1371    ///
1372    /// s.reserve(100);
1373    /// assert!(s.capacity() >= 100);
1374    ///
1375    /// s.shrink_to(10);
1376    /// assert!(s.capacity() >= 10);
1377    /// s.shrink_to(0);
1378    /// assert!(s.capacity() >= 3);
1379    /// ```
1380    #[cfg(not(no_global_oom_handling))]
1381    #[inline]
1382    #[stable(feature = "shrink_to", since = "1.56.0")]
1383    pub fn shrink_to(&mut self, min_capacity: usize) {
1384        self.vec.shrink_to(min_capacity)
1385    }
1386
1387    /// Appends the given [`char`] to the end of this `String`.
1388    ///
1389    /// # Examples
1390    ///
1391    /// ```
1392    /// let mut s = String::from("abc");
1393    ///
1394    /// s.push('1');
1395    /// s.push('2');
1396    /// s.push('3');
1397    ///
1398    /// assert_eq!("abc123", s);
1399    /// ```
1400    #[cfg(not(no_global_oom_handling))]
1401    #[inline]
1402    #[stable(feature = "rust1", since = "1.0.0")]
1403    pub fn push(&mut self, ch: char) {
1404        let len = self.len();
1405        let ch_len = ch.len_utf8();
1406        self.reserve(ch_len);
1407
1408        // SAFETY: Just reserved capacity for at least the length needed to encode `ch`.
1409        unsafe {
1410            core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(self.len()));
1411            self.vec.set_len(len + ch_len);
1412        }
1413    }
1414
1415    /// Returns a byte slice of this `String`'s contents.
1416    ///
1417    /// The inverse of this method is [`from_utf8`].
1418    ///
1419    /// [`from_utf8`]: String::from_utf8
1420    ///
1421    /// # Examples
1422    ///
1423    /// ```
1424    /// let s = String::from("hello");
1425    ///
1426    /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
1427    /// ```
1428    #[inline]
1429    #[must_use]
1430    #[stable(feature = "rust1", since = "1.0.0")]
1431    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1432    pub const fn as_bytes(&self) -> &[u8] {
1433        self.vec.as_slice()
1434    }
1435
1436    /// Shortens this `String` to the specified length.
1437    ///
1438    /// If `new_len` is greater than or equal to the string's current length, this has no
1439    /// effect.
1440    ///
1441    /// Note that this method has no effect on the allocated capacity
1442    /// of the string
1443    ///
1444    /// # Panics
1445    ///
1446    /// Panics if `new_len` does not lie on a [`char`] boundary.
1447    ///
1448    /// # Examples
1449    ///
1450    /// ```
1451    /// let mut s = String::from("hello");
1452    ///
1453    /// s.truncate(2);
1454    ///
1455    /// assert_eq!("he", s);
1456    /// ```
1457    #[inline]
1458    #[stable(feature = "rust1", since = "1.0.0")]
1459    pub fn truncate(&mut self, new_len: usize) {
1460        if new_len <= self.len() {
1461            assert!(self.is_char_boundary(new_len));
1462            self.vec.truncate(new_len)
1463        }
1464    }
1465
1466    /// Removes the last character from the string buffer and returns it.
1467    ///
1468    /// Returns [`None`] if this `String` is empty.
1469    ///
1470    /// # Examples
1471    ///
1472    /// ```
1473    /// let mut s = String::from("abč");
1474    ///
1475    /// assert_eq!(s.pop(), Some('č'));
1476    /// assert_eq!(s.pop(), Some('b'));
1477    /// assert_eq!(s.pop(), Some('a'));
1478    ///
1479    /// assert_eq!(s.pop(), None);
1480    /// ```
1481    #[inline]
1482    #[stable(feature = "rust1", since = "1.0.0")]
1483    pub fn pop(&mut self) -> Option<char> {
1484        let ch = self.chars().rev().next()?;
1485        let newlen = self.len() - ch.len_utf8();
1486        unsafe {
1487            self.vec.set_len(newlen);
1488        }
1489        Some(ch)
1490    }
1491
1492    /// Removes a [`char`] from this `String` at byte position `idx` and returns it.
1493    ///
1494    /// Copies all bytes after the removed char to new positions.
1495    ///
1496    /// Note that calling this in a loop can result in quadratic behavior.
1497    ///
1498    /// # Panics
1499    ///
1500    /// Panics if `idx` is larger than or equal to the `String`'s length,
1501    /// or if it does not lie on a [`char`] boundary.
1502    ///
1503    /// # Examples
1504    ///
1505    /// ```
1506    /// let mut s = String::from("abΓ§");
1507    ///
1508    /// assert_eq!(s.remove(0), 'a');
1509    /// assert_eq!(s.remove(1), 'Γ§');
1510    /// assert_eq!(s.remove(0), 'b');
1511    /// ```
1512    #[inline]
1513    #[stable(feature = "rust1", since = "1.0.0")]
1514    #[rustc_confusables("delete", "take")]
1515    pub fn remove(&mut self, idx: usize) -> char {
1516        let ch = match self[idx..].chars().next() {
1517            Some(ch) => ch,
1518            None => panic!("cannot remove a char from the end of a string"),
1519        };
1520
1521        let next = idx + ch.len_utf8();
1522        let len = self.len();
1523        unsafe {
1524            ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
1525            self.vec.set_len(len - (next - idx));
1526        }
1527        ch
1528    }
1529
1530    /// Remove all matches of pattern `pat` in the `String`.
1531    ///
1532    /// # Examples
1533    ///
1534    /// ```
1535    /// #![feature(string_remove_matches)]
1536    /// let mut s = String::from("Trees are not green, the sky is not blue.");
1537    /// s.remove_matches("not ");
1538    /// assert_eq!("Trees are green, the sky is blue.", s);
1539    /// ```
1540    ///
1541    /// Matches will be detected and removed iteratively, so in cases where
1542    /// patterns overlap, only the first pattern will be removed:
1543    ///
1544    /// ```
1545    /// #![feature(string_remove_matches)]
1546    /// let mut s = String::from("banana");
1547    /// s.remove_matches("ana");
1548    /// assert_eq!("bna", s);
1549    /// ```
1550    #[cfg(not(no_global_oom_handling))]
1551    #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
1552    pub fn remove_matches<P: Pattern>(&mut self, pat: P) {
1553        use core::str::pattern::Searcher;
1554
1555        let rejections = {
1556            let mut searcher = pat.into_searcher(self);
1557            // Per Searcher::next:
1558            //
1559            // A Match result needs to contain the whole matched pattern,
1560            // however Reject results may be split up into arbitrary many
1561            // adjacent fragments. Both ranges may have zero length.
1562            //
1563            // In practice the implementation of Searcher::next_match tends to
1564            // be more efficient, so we use it here and do some work to invert
1565            // matches into rejections since that's what we want to copy below.
1566            let mut front = 0;
1567            let rejections: Vec<_> = from_fn(|| {
1568                let (start, end) = searcher.next_match()?;
1569                let prev_front = front;
1570                front = end;
1571                Some((prev_front, start))
1572            })
1573            .collect();
1574            rejections.into_iter().chain(core::iter::once((front, self.len())))
1575        };
1576
1577        let mut len = 0;
1578        let ptr = self.vec.as_mut_ptr();
1579
1580        for (start, end) in rejections {
1581            let count = end - start;
1582            if start != len {
1583                // SAFETY: per Searcher::next:
1584                //
1585                // The stream of Match and Reject values up to a Done will
1586                // contain index ranges that are adjacent, non-overlapping,
1587                // covering the whole haystack, and laying on utf8
1588                // boundaries.
1589                unsafe {
1590                    ptr::copy(ptr.add(start), ptr.add(len), count);
1591                }
1592            }
1593            len += count;
1594        }
1595
1596        unsafe {
1597            self.vec.set_len(len);
1598        }
1599    }
1600
1601    /// Retains only the characters specified by the predicate.
1602    ///
1603    /// In other words, remove all characters `c` such that `f(c)` returns `false`.
1604    /// This method operates in place, visiting each character exactly once in the
1605    /// original order, and preserves the order of the retained characters.
1606    ///
1607    /// # Examples
1608    ///
1609    /// ```
1610    /// let mut s = String::from("f_o_ob_ar");
1611    ///
1612    /// s.retain(|c| c != '_');
1613    ///
1614    /// assert_eq!(s, "foobar");
1615    /// ```
1616    ///
1617    /// Because the elements are visited exactly once in the original order,
1618    /// external state may be used to decide which elements to keep.
1619    ///
1620    /// ```
1621    /// let mut s = String::from("abcde");
1622    /// let keep = [false, true, true, false, true];
1623    /// let mut iter = keep.iter();
1624    /// s.retain(|_| *iter.next().unwrap());
1625    /// assert_eq!(s, "bce");
1626    /// ```
1627    #[inline]
1628    #[stable(feature = "string_retain", since = "1.26.0")]
1629    pub fn retain<F>(&mut self, mut f: F)
1630    where
1631        F: FnMut(char) -> bool,
1632    {
1633        struct SetLenOnDrop<'a> {
1634            s: &'a mut String,
1635            idx: usize,
1636            del_bytes: usize,
1637        }
1638
1639        impl<'a> Drop for SetLenOnDrop<'a> {
1640            fn drop(&mut self) {
1641                let new_len = self.idx - self.del_bytes;
1642                debug_assert!(new_len <= self.s.len());
1643                unsafe { self.s.vec.set_len(new_len) };
1644            }
1645        }
1646
1647        let len = self.len();
1648        let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
1649
1650        while guard.idx < len {
1651            let ch =
1652                // SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
1653                // is in bound. `self` is valid UTF-8 like string and the returned slice starts at
1654                // a unicode code point so the `Chars` always return one character.
1655                unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
1656            let ch_len = ch.len_utf8();
1657
1658            if !f(ch) {
1659                guard.del_bytes += ch_len;
1660            } else if guard.del_bytes > 0 {
1661                // SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
1662                // bytes that are erased from the string so the resulting `guard.idx -
1663                // guard.del_bytes` always represent a valid unicode code point.
1664                //
1665                // `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
1666                // is safe.
1667                ch.encode_utf8(unsafe {
1668                    crate::slice::from_raw_parts_mut(
1669                        guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
1670                        ch.len_utf8(),
1671                    )
1672                });
1673            }
1674
1675            // Point idx to the next char
1676            guard.idx += ch_len;
1677        }
1678
1679        drop(guard);
1680    }
1681
1682    /// Inserts a character into this `String` at byte position `idx`.
1683    ///
1684    /// Reallocates if `self.capacity()` is insufficient, which may involve copying all
1685    /// `self.capacity()` bytes. Makes space for the insertion by copying all bytes of
1686    /// `&self[idx..]` to new positions.
1687    ///
1688    /// Note that calling this in a loop can result in quadratic behavior.
1689    ///
1690    /// # Panics
1691    ///
1692    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1693    /// lie on a [`char`] boundary.
1694    ///
1695    /// # Examples
1696    ///
1697    /// ```
1698    /// let mut s = String::with_capacity(3);
1699    ///
1700    /// s.insert(0, 'f');
1701    /// s.insert(1, 'o');
1702    /// s.insert(2, 'o');
1703    ///
1704    /// assert_eq!("foo", s);
1705    /// ```
1706    #[cfg(not(no_global_oom_handling))]
1707    #[inline]
1708    #[stable(feature = "rust1", since = "1.0.0")]
1709    #[rustc_confusables("set")]
1710    pub fn insert(&mut self, idx: usize, ch: char) {
1711        assert!(self.is_char_boundary(idx));
1712
1713        let len = self.len();
1714        let ch_len = ch.len_utf8();
1715        self.reserve(ch_len);
1716
1717        // SAFETY: Move the bytes starting from `idx` to their new location `ch_len`
1718        // bytes ahead. This is safe because sufficient capacity was reserved, and `idx`
1719        // is a char boundary.
1720        unsafe {
1721            ptr::copy(
1722                self.vec.as_ptr().add(idx),
1723                self.vec.as_mut_ptr().add(idx + ch_len),
1724                len - idx,
1725            );
1726        }
1727
1728        // SAFETY: Encode the character into the vacated region if `idx != len`,
1729        // or into the uninitialized spare capacity otherwise.
1730        unsafe {
1731            core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(idx));
1732        }
1733
1734        // SAFETY: Update the length to include the newly added bytes.
1735        unsafe {
1736            self.vec.set_len(len + ch_len);
1737        }
1738    }
1739
1740    /// Inserts a string slice into this `String` at byte position `idx`.
1741    ///
1742    /// Reallocates if `self.capacity()` is insufficient, which may involve copying all
1743    /// `self.capacity()` bytes. Makes space for the insertion by copying all bytes of
1744    /// `&self[idx..]` to new positions.
1745    ///
1746    /// Note that calling this in a loop can result in quadratic behavior.
1747    ///
1748    /// # Panics
1749    ///
1750    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1751    /// lie on a [`char`] boundary.
1752    ///
1753    /// # Examples
1754    ///
1755    /// ```
1756    /// let mut s = String::from("bar");
1757    ///
1758    /// s.insert_str(0, "foo");
1759    ///
1760    /// assert_eq!("foobar", s);
1761    /// ```
1762    #[cfg(not(no_global_oom_handling))]
1763    #[inline]
1764    #[stable(feature = "insert_str", since = "1.16.0")]
1765    #[rustc_diagnostic_item = "string_insert_str"]
1766    pub fn insert_str(&mut self, idx: usize, string: &str) {
1767        assert!(self.is_char_boundary(idx));
1768
1769        let len = self.len();
1770        let amt = string.len();
1771        self.reserve(amt);
1772
1773        // SAFETY: Move the bytes starting from `idx` to their new location `amt` bytes
1774        // ahead. This is safe because sufficient capacity was just reserved, and `idx`
1775        // is a char boundary.
1776        unsafe {
1777            ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
1778        }
1779
1780        // SAFETY: Copy the new string slice into the vacated region if `idx != len`,
1781        // or into the uninitialized spare capacity otherwise. The borrow checker
1782        // ensures that the source and destination do not overlap.
1783        unsafe {
1784            ptr::copy_nonoverlapping(string.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
1785        }
1786
1787        // SAFETY: Update the length to include the newly added bytes.
1788        unsafe {
1789            self.vec.set_len(len + amt);
1790        }
1791    }
1792
1793    /// Returns a mutable reference to the contents of this `String`.
1794    ///
1795    /// # Safety
1796    ///
1797    /// This function is unsafe because the returned `&mut Vec` allows writing
1798    /// bytes which are not valid UTF-8. If this constraint is violated, using
1799    /// the original `String` after dropping the `&mut Vec` may violate memory
1800    /// safety, as the rest of the standard library assumes that `String`s are
1801    /// valid UTF-8.
1802    ///
1803    /// # Examples
1804    ///
1805    /// ```
1806    /// let mut s = String::from("hello");
1807    ///
1808    /// unsafe {
1809    ///     let vec = s.as_mut_vec();
1810    ///     assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1811    ///
1812    ///     vec.reverse();
1813    /// }
1814    /// assert_eq!(s, "olleh");
1815    /// ```
1816    #[inline]
1817    #[stable(feature = "rust1", since = "1.0.0")]
1818    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1819    pub const unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1820        &mut self.vec
1821    }
1822
1823    /// Returns the length of this `String`, in bytes, not [`char`]s or
1824    /// graphemes. In other words, it might not be what a human considers the
1825    /// length of the string.
1826    ///
1827    /// # Examples
1828    ///
1829    /// ```
1830    /// let a = String::from("foo");
1831    /// assert_eq!(a.len(), 3);
1832    ///
1833    /// let fancy_f = String::from("Ζ’oo");
1834    /// assert_eq!(fancy_f.len(), 4);
1835    /// assert_eq!(fancy_f.chars().count(), 3);
1836    /// ```
1837    #[inline]
1838    #[must_use]
1839    #[stable(feature = "rust1", since = "1.0.0")]
1840    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1841    #[rustc_confusables("length", "size")]
1842    #[rustc_no_implicit_autorefs]
1843    pub const fn len(&self) -> usize {
1844        self.vec.len()
1845    }
1846
1847    /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
1848    ///
1849    /// # Examples
1850    ///
1851    /// ```
1852    /// let mut v = String::new();
1853    /// assert!(v.is_empty());
1854    ///
1855    /// v.push('a');
1856    /// assert!(!v.is_empty());
1857    /// ```
1858    #[inline]
1859    #[must_use]
1860    #[stable(feature = "rust1", since = "1.0.0")]
1861    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1862    #[rustc_no_implicit_autorefs]
1863    pub const fn is_empty(&self) -> bool {
1864        self.len() == 0
1865    }
1866
1867    /// Splits the string into two at the given byte index.
1868    ///
1869    /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
1870    /// the returned `String` contains bytes `[at, len)`. `at` must be on the
1871    /// boundary of a UTF-8 code point.
1872    ///
1873    /// Note that the capacity of `self` does not change.
1874    ///
1875    /// # Panics
1876    ///
1877    /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
1878    /// code point of the string.
1879    ///
1880    /// # Examples
1881    ///
1882    /// ```
1883    /// # fn main() {
1884    /// let mut hello = String::from("Hello, World!");
1885    /// let world = hello.split_off(7);
1886    /// assert_eq!(hello, "Hello, ");
1887    /// assert_eq!(world, "World!");
1888    /// # }
1889    /// ```
1890    #[cfg(not(no_global_oom_handling))]
1891    #[inline]
1892    #[stable(feature = "string_split_off", since = "1.16.0")]
1893    #[must_use = "use `.truncate()` if you don't need the other half"]
1894    pub fn split_off(&mut self, at: usize) -> String {
1895        assert!(self.is_char_boundary(at));
1896        let other = self.vec.split_off(at);
1897        unsafe { String::from_utf8_unchecked(other) }
1898    }
1899
1900    /// Truncates this `String`, removing all contents.
1901    ///
1902    /// While this means the `String` will have a length of zero, it does not
1903    /// touch its capacity.
1904    ///
1905    /// # Examples
1906    ///
1907    /// ```
1908    /// let mut s = String::from("foo");
1909    ///
1910    /// s.clear();
1911    ///
1912    /// assert!(s.is_empty());
1913    /// assert_eq!(0, s.len());
1914    /// assert_eq!(3, s.capacity());
1915    /// ```
1916    #[inline]
1917    #[stable(feature = "rust1", since = "1.0.0")]
1918    pub fn clear(&mut self) {
1919        self.vec.clear()
1920    }
1921
1922    /// Removes the specified range from the string in bulk, returning all
1923    /// removed characters as an iterator.
1924    ///
1925    /// The returned iterator keeps a mutable borrow on the string to optimize
1926    /// its implementation.
1927    ///
1928    /// # Panics
1929    ///
1930    /// Panics if the starting point or end point do not lie on a [`char`]
1931    /// boundary, or if they're out of bounds.
1932    ///
1933    /// # Leaking
1934    ///
1935    /// If the returned iterator goes out of scope without being dropped (due to
1936    /// [`core::mem::forget`], for example), the string may still contain a copy
1937    /// of any drained characters, or may have lost characters arbitrarily,
1938    /// including characters outside the range.
1939    ///
1940    /// # Examples
1941    ///
1942    /// ```
1943    /// let mut s = String::from("Ξ± is alpha, Ξ² is beta");
1944    /// let beta_offset = s.find('Ξ²').unwrap_or(s.len());
1945    ///
1946    /// // Remove the range up until the Ξ² from the string
1947    /// let t: String = s.drain(..beta_offset).collect();
1948    /// assert_eq!(t, "Ξ± is alpha, ");
1949    /// assert_eq!(s, "Ξ² is beta");
1950    ///
1951    /// // A full range clears the string, like `clear()` does
1952    /// s.drain(..);
1953    /// assert_eq!(s, "");
1954    /// ```
1955    #[stable(feature = "drain", since = "1.6.0")]
1956    pub fn drain<R>(&mut self, range: R) -> Drain<'_>
1957    where
1958        R: RangeBounds<usize>,
1959    {
1960        // Memory safety
1961        //
1962        // The String version of Drain does not have the memory safety issues
1963        // of the vector version. The data is just plain bytes.
1964        // Because the range removal happens in Drop, if the Drain iterator is leaked,
1965        // the removal will not happen.
1966        let Range { start, end } = slice::range(range, ..self.len());
1967        assert!(self.is_char_boundary(start));
1968        assert!(self.is_char_boundary(end));
1969
1970        // Take out two simultaneous borrows. The &mut String won't be accessed
1971        // until iteration is over, in Drop.
1972        let self_ptr = self as *mut _;
1973        // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
1974        let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
1975
1976        Drain { start, end, iter: chars_iter, string: self_ptr }
1977    }
1978
1979    /// Converts a `String` into an iterator over the [`char`]s of the string.
1980    ///
1981    /// As a string consists of valid UTF-8, we can iterate through a string
1982    /// by [`char`]. This method returns such an iterator.
1983    ///
1984    /// It's important to remember that [`char`] represents a Unicode Scalar
1985    /// Value, and might not match your idea of what a 'character' is. Iteration
1986    /// over grapheme clusters may be what you actually want. That functionality
1987    /// is not provided by Rust's standard library, check crates.io instead.
1988    ///
1989    /// # Examples
1990    ///
1991    /// Basic usage:
1992    ///
1993    /// ```
1994    /// #![feature(string_into_chars)]
1995    ///
1996    /// let word = String::from("goodbye");
1997    ///
1998    /// let mut chars = word.into_chars();
1999    ///
2000    /// assert_eq!(Some('g'), chars.next());
2001    /// assert_eq!(Some('o'), chars.next());
2002    /// assert_eq!(Some('o'), chars.next());
2003    /// assert_eq!(Some('d'), chars.next());
2004    /// assert_eq!(Some('b'), chars.next());
2005    /// assert_eq!(Some('y'), chars.next());
2006    /// assert_eq!(Some('e'), chars.next());
2007    ///
2008    /// assert_eq!(None, chars.next());
2009    /// ```
2010    ///
2011    /// Remember, [`char`]s might not match your intuition about characters:
2012    ///
2013    /// ```
2014    /// #![feature(string_into_chars)]
2015    ///
2016    /// let y = String::from("y̆");
2017    ///
2018    /// let mut chars = y.into_chars();
2019    ///
2020    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
2021    /// assert_eq!(Some('\u{0306}'), chars.next());
2022    ///
2023    /// assert_eq!(None, chars.next());
2024    /// ```
2025    ///
2026    /// [`char`]: prim@char
2027    #[inline]
2028    #[must_use = "`self` will be dropped if the result is not used"]
2029    #[unstable(feature = "string_into_chars", issue = "133125")]
2030    pub fn into_chars(self) -> IntoChars {
2031        IntoChars { bytes: self.into_bytes().into_iter() }
2032    }
2033
2034    /// Removes the specified range in the string,
2035    /// and replaces it with the given string.
2036    /// The given string doesn't need to be the same length as the range.
2037    ///
2038    /// # Panics
2039    ///
2040    /// Panics if the starting point or end point do not lie on a [`char`]
2041    /// boundary, or if they're out of bounds.
2042    ///
2043    /// # Examples
2044    ///
2045    /// ```
2046    /// let mut s = String::from("Ξ± is alpha, Ξ² is beta");
2047    /// let beta_offset = s.find('Ξ²').unwrap_or(s.len());
2048    ///
2049    /// // Replace the range up until the Ξ² from the string
2050    /// s.replace_range(..beta_offset, "Ξ‘ is capital alpha; ");
2051    /// assert_eq!(s, "Ξ‘ is capital alpha; Ξ² is beta");
2052    /// ```
2053    #[cfg(not(no_global_oom_handling))]
2054    #[stable(feature = "splice", since = "1.27.0")]
2055    pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
2056    where
2057        R: RangeBounds<usize>,
2058    {
2059        // Memory safety
2060        //
2061        // Replace_range does not have the memory safety issues of a vector Splice.
2062        // of the vector version. The data is just plain bytes.
2063
2064        // WARNING: Inlining this variable would be unsound (#81138)
2065        let start = range.start_bound();
2066        match start {
2067            Included(&n) => assert!(self.is_char_boundary(n)),
2068            Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
2069            Unbounded => {}
2070        };
2071        // WARNING: Inlining this variable would be unsound (#81138)
2072        let end = range.end_bound();
2073        match end {
2074            Included(&n) => assert!(self.is_char_boundary(n + 1)),
2075            Excluded(&n) => assert!(self.is_char_boundary(n)),
2076            Unbounded => {}
2077        };
2078
2079        // Using `range` again would be unsound (#81138)
2080        // We assume the bounds reported by `range` remain the same, but
2081        // an adversarial implementation could change between calls
2082        unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
2083    }
2084
2085    /// Converts this `String` into a <code>[Box]<[str]></code>.
2086    ///
2087    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
2088    /// Note that this call may reallocate and copy the bytes of the string.
2089    ///
2090    /// [`shrink_to_fit`]: String::shrink_to_fit
2091    /// [str]: prim@str "str"
2092    ///
2093    /// # Examples
2094    ///
2095    /// ```
2096    /// let s = String::from("hello");
2097    ///
2098    /// let b = s.into_boxed_str();
2099    /// ```
2100    #[cfg(not(no_global_oom_handling))]
2101    #[stable(feature = "box_str", since = "1.4.0")]
2102    #[must_use = "`self` will be dropped if the result is not used"]
2103    #[inline]
2104    pub fn into_boxed_str(self) -> Box<str> {
2105        let slice = self.vec.into_boxed_slice();
2106        unsafe { from_boxed_utf8_unchecked(slice) }
2107    }
2108
2109    /// Consumes and leaks the `String`, returning a mutable reference to the contents,
2110    /// `&'a mut str`.
2111    ///
2112    /// The caller has free choice over the returned lifetime, including `'static`. Indeed,
2113    /// this function is ideally used for data that lives for the remainder of the program's life,
2114    /// as dropping the returned reference will cause a memory leak.
2115    ///
2116    /// It does not reallocate or shrink the `String`, so the leaked allocation may include unused
2117    /// capacity that is not part of the returned slice. If you want to discard excess capacity,
2118    /// call [`into_boxed_str`], and then [`Box::leak`] instead. However, keep in mind that
2119    /// trimming the capacity may result in a reallocation and copy.
2120    ///
2121    /// [`into_boxed_str`]: Self::into_boxed_str
2122    ///
2123    /// # Examples
2124    ///
2125    /// ```
2126    /// let x = String::from("bucket");
2127    /// let static_ref: &'static mut str = x.leak();
2128    /// assert_eq!(static_ref, "bucket");
2129    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2130    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2131    /// # drop(unsafe { Box::from_raw(static_ref) });
2132    /// ```
2133    #[stable(feature = "string_leak", since = "1.72.0")]
2134    #[inline]
2135    pub fn leak<'a>(self) -> &'a mut str {
2136        let slice = self.vec.leak();
2137        unsafe { from_utf8_unchecked_mut(slice) }
2138    }
2139}
2140
2141impl FromUtf8Error {
2142    /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
2143    ///
2144    /// # Examples
2145    ///
2146    /// ```
2147    /// // some invalid bytes, in a vector
2148    /// let bytes = vec![0, 159];
2149    ///
2150    /// let value = String::from_utf8(bytes);
2151    ///
2152    /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
2153    /// ```
2154    #[must_use]
2155    #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
2156    pub fn as_bytes(&self) -> &[u8] {
2157        &self.bytes[..]
2158    }
2159
2160    /// Converts the bytes into a `String` lossily, substituting invalid UTF-8
2161    /// sequences with replacement characters.
2162    ///
2163    /// See [`String::from_utf8_lossy`] for more details on replacement of
2164    /// invalid sequences, and [`String::from_utf8_lossy_owned`] for the
2165    /// `String` function which corresponds to this function.
2166    ///
2167    /// # Examples
2168    ///
2169    /// ```
2170    /// #![feature(string_from_utf8_lossy_owned)]
2171    /// // some invalid bytes
2172    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
2173    /// let output = String::from_utf8(input).unwrap_or_else(|e| e.into_utf8_lossy());
2174    ///
2175    /// assert_eq!(String::from("Hello οΏ½World"), output);
2176    /// ```
2177    #[must_use]
2178    #[cfg(not(no_global_oom_handling))]
2179    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
2180    pub fn into_utf8_lossy(self) -> String {
2181        const REPLACEMENT: &str = "\u{FFFD}";
2182
2183        let mut res = {
2184            let mut v = Vec::with_capacity(self.bytes.len());
2185
2186            // `Utf8Error::valid_up_to` returns the maximum index of validated
2187            // UTF-8 bytes. Copy the valid bytes into the output buffer.
2188            v.extend_from_slice(&self.bytes[..self.error.valid_up_to()]);
2189
2190            // SAFETY: This is safe because the only bytes present in the buffer
2191            // were validated as UTF-8 by the call to `String::from_utf8` which
2192            // produced this `FromUtf8Error`.
2193            unsafe { String::from_utf8_unchecked(v) }
2194        };
2195
2196        let iter = self.bytes[self.error.valid_up_to()..].utf8_chunks();
2197
2198        for chunk in iter {
2199            res.push_str(chunk.valid());
2200            if !chunk.invalid().is_empty() {
2201                res.push_str(REPLACEMENT);
2202            }
2203        }
2204
2205        res
2206    }
2207
2208    /// Returns the bytes that were attempted to convert to a `String`.
2209    ///
2210    /// This method is carefully constructed to avoid allocation. It will
2211    /// consume the error, moving out the bytes, so that a copy of the bytes
2212    /// does not need to be made.
2213    ///
2214    /// # Examples
2215    ///
2216    /// ```
2217    /// // some invalid bytes, in a vector
2218    /// let bytes = vec![0, 159];
2219    ///
2220    /// let value = String::from_utf8(bytes);
2221    ///
2222    /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
2223    /// ```
2224    #[must_use = "`self` will be dropped if the result is not used"]
2225    #[stable(feature = "rust1", since = "1.0.0")]
2226    pub fn into_bytes(self) -> Vec<u8> {
2227        self.bytes
2228    }
2229
2230    /// Fetch a `Utf8Error` to get more details about the conversion failure.
2231    ///
2232    /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
2233    /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
2234    /// an analogue to `FromUtf8Error`. See its documentation for more details
2235    /// on using it.
2236    ///
2237    /// [`std::str`]: core::str "std::str"
2238    /// [`&str`]: prim@str "&str"
2239    ///
2240    /// # Examples
2241    ///
2242    /// ```
2243    /// // some invalid bytes, in a vector
2244    /// let bytes = vec![0, 159];
2245    ///
2246    /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
2247    ///
2248    /// // the first byte is invalid here
2249    /// assert_eq!(1, error.valid_up_to());
2250    /// ```
2251    #[must_use]
2252    #[stable(feature = "rust1", since = "1.0.0")]
2253    pub fn utf8_error(&self) -> Utf8Error {
2254        self.error
2255    }
2256}
2257
2258#[stable(feature = "rust1", since = "1.0.0")]
2259impl fmt::Display for FromUtf8Error {
2260    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2261        fmt::Display::fmt(&self.error, f)
2262    }
2263}
2264
2265#[stable(feature = "rust1", since = "1.0.0")]
2266impl fmt::Display for FromUtf16Error {
2267    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2268        fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
2269    }
2270}
2271
2272#[stable(feature = "rust1", since = "1.0.0")]
2273impl Error for FromUtf8Error {
2274    #[allow(deprecated)]
2275    fn description(&self) -> &str {
2276        "invalid utf-8"
2277    }
2278}
2279
2280#[stable(feature = "rust1", since = "1.0.0")]
2281impl Error for FromUtf16Error {
2282    #[allow(deprecated)]
2283    fn description(&self) -> &str {
2284        "invalid utf-16"
2285    }
2286}
2287
2288#[cfg(not(no_global_oom_handling))]
2289#[stable(feature = "rust1", since = "1.0.0")]
2290impl Clone for String {
2291    fn clone(&self) -> Self {
2292        String { vec: self.vec.clone() }
2293    }
2294
2295    /// Clones the contents of `source` into `self`.
2296    ///
2297    /// This method is preferred over simply assigning `source.clone()` to `self`,
2298    /// as it avoids reallocation if possible.
2299    fn clone_from(&mut self, source: &Self) {
2300        self.vec.clone_from(&source.vec);
2301    }
2302}
2303
2304#[cfg(not(no_global_oom_handling))]
2305#[stable(feature = "rust1", since = "1.0.0")]
2306impl FromIterator<char> for String {
2307    fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
2308        let mut buf = String::new();
2309        buf.extend(iter);
2310        buf
2311    }
2312}
2313
2314#[cfg(not(no_global_oom_handling))]
2315#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
2316impl<'a> FromIterator<&'a char> for String {
2317    fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
2318        let mut buf = String::new();
2319        buf.extend(iter);
2320        buf
2321    }
2322}
2323
2324#[cfg(not(no_global_oom_handling))]
2325#[stable(feature = "rust1", since = "1.0.0")]
2326impl<'a> FromIterator<&'a str> for String {
2327    fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
2328        let mut buf = String::new();
2329        buf.extend(iter);
2330        buf
2331    }
2332}
2333
2334#[cfg(not(no_global_oom_handling))]
2335#[stable(feature = "extend_string", since = "1.4.0")]
2336impl FromIterator<String> for String {
2337    fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
2338        let mut iterator = iter.into_iter();
2339
2340        // Because we're iterating over `String`s, we can avoid at least
2341        // one allocation by getting the first string from the iterator
2342        // and appending to it all the subsequent strings.
2343        match iterator.next() {
2344            None => String::new(),
2345            Some(mut buf) => {
2346                buf.extend(iterator);
2347                buf
2348            }
2349        }
2350    }
2351}
2352
2353#[cfg(not(no_global_oom_handling))]
2354#[stable(feature = "box_str2", since = "1.45.0")]
2355impl<A: Allocator> FromIterator<Box<str, A>> for String {
2356    fn from_iter<I: IntoIterator<Item = Box<str, A>>>(iter: I) -> String {
2357        let mut buf = String::new();
2358        buf.extend(iter);
2359        buf
2360    }
2361}
2362
2363#[cfg(not(no_global_oom_handling))]
2364#[stable(feature = "herd_cows", since = "1.19.0")]
2365impl<'a> FromIterator<Cow<'a, str>> for String {
2366    fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
2367        let mut iterator = iter.into_iter();
2368
2369        // Because we're iterating over CoWs, we can (potentially) avoid at least
2370        // one allocation by getting the first item and appending to it all the
2371        // subsequent items.
2372        match iterator.next() {
2373            None => String::new(),
2374            Some(cow) => {
2375                let mut buf = cow.into_owned();
2376                buf.extend(iterator);
2377                buf
2378            }
2379        }
2380    }
2381}
2382
2383#[cfg(not(no_global_oom_handling))]
2384#[stable(feature = "rust1", since = "1.0.0")]
2385impl Extend<char> for String {
2386    fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
2387        let iterator = iter.into_iter();
2388        let (lower_bound, _) = iterator.size_hint();
2389        self.reserve(lower_bound);
2390        iterator.for_each(move |c| self.push(c));
2391    }
2392
2393    #[inline]
2394    fn extend_one(&mut self, c: char) {
2395        self.push(c);
2396    }
2397
2398    #[inline]
2399    fn extend_reserve(&mut self, additional: usize) {
2400        self.reserve(additional);
2401    }
2402}
2403
2404#[cfg(not(no_global_oom_handling))]
2405#[stable(feature = "extend_ref", since = "1.2.0")]
2406impl<'a> Extend<&'a char> for String {
2407    fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
2408        self.extend(iter.into_iter().cloned());
2409    }
2410
2411    #[inline]
2412    fn extend_one(&mut self, &c: &'a char) {
2413        self.push(c);
2414    }
2415
2416    #[inline]
2417    fn extend_reserve(&mut self, additional: usize) {
2418        self.reserve(additional);
2419    }
2420}
2421
2422#[cfg(not(no_global_oom_handling))]
2423#[stable(feature = "rust1", since = "1.0.0")]
2424impl<'a> Extend<&'a str> for String {
2425    fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
2426        iter.into_iter().for_each(move |s| self.push_str(s));
2427    }
2428
2429    #[inline]
2430    fn extend_one(&mut self, s: &'a str) {
2431        self.push_str(s);
2432    }
2433}
2434
2435#[cfg(not(no_global_oom_handling))]
2436#[stable(feature = "box_str2", since = "1.45.0")]
2437impl<A: Allocator> Extend<Box<str, A>> for String {
2438    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2439        iter.into_iter().for_each(move |s| self.push_str(&s));
2440    }
2441}
2442
2443#[cfg(not(no_global_oom_handling))]
2444#[stable(feature = "extend_string", since = "1.4.0")]
2445impl Extend<String> for String {
2446    fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
2447        iter.into_iter().for_each(move |s| self.push_str(&s));
2448    }
2449
2450    #[inline]
2451    fn extend_one(&mut self, s: String) {
2452        self.push_str(&s);
2453    }
2454}
2455
2456#[cfg(not(no_global_oom_handling))]
2457#[stable(feature = "herd_cows", since = "1.19.0")]
2458impl<'a> Extend<Cow<'a, str>> for String {
2459    fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
2460        iter.into_iter().for_each(move |s| self.push_str(&s));
2461    }
2462
2463    #[inline]
2464    fn extend_one(&mut self, s: Cow<'a, str>) {
2465        self.push_str(&s);
2466    }
2467}
2468
2469#[cfg(not(no_global_oom_handling))]
2470#[unstable(feature = "ascii_char", issue = "110998")]
2471impl Extend<core::ascii::Char> for String {
2472    fn extend<I: IntoIterator<Item = core::ascii::Char>>(&mut self, iter: I) {
2473        self.vec.extend(iter.into_iter().map(|c| c.to_u8()));
2474    }
2475
2476    #[inline]
2477    fn extend_one(&mut self, c: core::ascii::Char) {
2478        self.vec.push(c.to_u8());
2479    }
2480}
2481
2482#[cfg(not(no_global_oom_handling))]
2483#[unstable(feature = "ascii_char", issue = "110998")]
2484impl<'a> Extend<&'a core::ascii::Char> for String {
2485    fn extend<I: IntoIterator<Item = &'a core::ascii::Char>>(&mut self, iter: I) {
2486        self.extend(iter.into_iter().cloned());
2487    }
2488
2489    #[inline]
2490    fn extend_one(&mut self, c: &'a core::ascii::Char) {
2491        self.vec.push(c.to_u8());
2492    }
2493}
2494
2495/// A convenience impl that delegates to the impl for `&str`.
2496///
2497/// # Examples
2498///
2499/// ```
2500/// assert_eq!(String::from("Hello world").find("world"), Some(6));
2501/// ```
2502#[unstable(
2503    feature = "pattern",
2504    reason = "API not fully fleshed out and ready to be stabilized",
2505    issue = "27721"
2506)]
2507impl<'b> Pattern for &'b String {
2508    type Searcher<'a> = <&'b str as Pattern>::Searcher<'a>;
2509
2510    fn into_searcher(self, haystack: &str) -> <&'b str as Pattern>::Searcher<'_> {
2511        self[..].into_searcher(haystack)
2512    }
2513
2514    #[inline]
2515    fn is_contained_in(self, haystack: &str) -> bool {
2516        self[..].is_contained_in(haystack)
2517    }
2518
2519    #[inline]
2520    fn is_prefix_of(self, haystack: &str) -> bool {
2521        self[..].is_prefix_of(haystack)
2522    }
2523
2524    #[inline]
2525    fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
2526        self[..].strip_prefix_of(haystack)
2527    }
2528
2529    #[inline]
2530    fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
2531    where
2532        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2533    {
2534        self[..].is_suffix_of(haystack)
2535    }
2536
2537    #[inline]
2538    fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
2539    where
2540        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2541    {
2542        self[..].strip_suffix_of(haystack)
2543    }
2544
2545    #[inline]
2546    fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
2547        Some(Utf8Pattern::StringPattern(self.as_bytes()))
2548    }
2549}
2550
2551macro_rules! impl_eq {
2552    ($lhs:ty, $rhs: ty) => {
2553        #[stable(feature = "rust1", since = "1.0.0")]
2554        #[allow(unused_lifetimes)]
2555        impl<'a, 'b> PartialEq<$rhs> for $lhs {
2556            #[inline]
2557            fn eq(&self, other: &$rhs) -> bool {
2558                PartialEq::eq(&self[..], &other[..])
2559            }
2560            #[inline]
2561            fn ne(&self, other: &$rhs) -> bool {
2562                PartialEq::ne(&self[..], &other[..])
2563            }
2564        }
2565
2566        #[stable(feature = "rust1", since = "1.0.0")]
2567        #[allow(unused_lifetimes)]
2568        impl<'a, 'b> PartialEq<$lhs> for $rhs {
2569            #[inline]
2570            fn eq(&self, other: &$lhs) -> bool {
2571                PartialEq::eq(&self[..], &other[..])
2572            }
2573            #[inline]
2574            fn ne(&self, other: &$lhs) -> bool {
2575                PartialEq::ne(&self[..], &other[..])
2576            }
2577        }
2578    };
2579}
2580
2581impl_eq! { String, str }
2582impl_eq! { String, &'a str }
2583#[cfg(not(no_global_oom_handling))]
2584impl_eq! { Cow<'a, str>, str }
2585#[cfg(not(no_global_oom_handling))]
2586impl_eq! { Cow<'a, str>, &'b str }
2587#[cfg(not(no_global_oom_handling))]
2588impl_eq! { Cow<'a, str>, String }
2589
2590#[stable(feature = "rust1", since = "1.0.0")]
2591impl Default for String {
2592    /// Creates an empty `String`.
2593    #[inline]
2594    fn default() -> String {
2595        String::new()
2596    }
2597}
2598
2599#[stable(feature = "rust1", since = "1.0.0")]
2600impl fmt::Display for String {
2601    #[inline]
2602    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2603        fmt::Display::fmt(&**self, f)
2604    }
2605}
2606
2607#[stable(feature = "rust1", since = "1.0.0")]
2608impl fmt::Debug for String {
2609    #[inline]
2610    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2611        fmt::Debug::fmt(&**self, f)
2612    }
2613}
2614
2615#[stable(feature = "rust1", since = "1.0.0")]
2616impl hash::Hash for String {
2617    #[inline]
2618    fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
2619        (**self).hash(hasher)
2620    }
2621}
2622
2623/// Implements the `+` operator for concatenating two strings.
2624///
2625/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
2626/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
2627/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
2628/// repeated concatenation.
2629///
2630/// The string on the right-hand side is only borrowed; its contents are copied into the returned
2631/// `String`.
2632///
2633/// # Examples
2634///
2635/// Concatenating two `String`s takes the first by value and borrows the second:
2636///
2637/// ```
2638/// let a = String::from("hello");
2639/// let b = String::from(" world");
2640/// let c = a + &b;
2641/// // `a` is moved and can no longer be used here.
2642/// ```
2643///
2644/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
2645///
2646/// ```
2647/// let a = String::from("hello");
2648/// let b = String::from(" world");
2649/// let c = a.clone() + &b;
2650/// // `a` is still valid here.
2651/// ```
2652///
2653/// Concatenating `&str` slices can be done by converting the first to a `String`:
2654///
2655/// ```
2656/// let a = "hello";
2657/// let b = " world";
2658/// let c = a.to_string() + b;
2659/// ```
2660#[cfg(not(no_global_oom_handling))]
2661#[stable(feature = "rust1", since = "1.0.0")]
2662impl Add<&str> for String {
2663    type Output = String;
2664
2665    #[inline]
2666    fn add(mut self, other: &str) -> String {
2667        self.push_str(other);
2668        self
2669    }
2670}
2671
2672/// Implements the `+=` operator for appending to a `String`.
2673///
2674/// This has the same behavior as the [`push_str`][String::push_str] method.
2675#[cfg(not(no_global_oom_handling))]
2676#[stable(feature = "stringaddassign", since = "1.12.0")]
2677impl AddAssign<&str> for String {
2678    #[inline]
2679    fn add_assign(&mut self, other: &str) {
2680        self.push_str(other);
2681    }
2682}
2683
2684#[stable(feature = "rust1", since = "1.0.0")]
2685impl<I> ops::Index<I> for String
2686where
2687    I: slice::SliceIndex<str>,
2688{
2689    type Output = I::Output;
2690
2691    #[inline]
2692    fn index(&self, index: I) -> &I::Output {
2693        index.index(self.as_str())
2694    }
2695}
2696
2697#[stable(feature = "rust1", since = "1.0.0")]
2698impl<I> ops::IndexMut<I> for String
2699where
2700    I: slice::SliceIndex<str>,
2701{
2702    #[inline]
2703    fn index_mut(&mut self, index: I) -> &mut I::Output {
2704        index.index_mut(self.as_mut_str())
2705    }
2706}
2707
2708#[stable(feature = "rust1", since = "1.0.0")]
2709impl ops::Deref for String {
2710    type Target = str;
2711
2712    #[inline]
2713    fn deref(&self) -> &str {
2714        self.as_str()
2715    }
2716}
2717
2718#[unstable(feature = "deref_pure_trait", issue = "87121")]
2719unsafe impl ops::DerefPure for String {}
2720
2721#[stable(feature = "derefmut_for_string", since = "1.3.0")]
2722impl ops::DerefMut for String {
2723    #[inline]
2724    fn deref_mut(&mut self) -> &mut str {
2725        self.as_mut_str()
2726    }
2727}
2728
2729/// A type alias for [`Infallible`].
2730///
2731/// This alias exists for backwards compatibility, and may be eventually deprecated.
2732///
2733/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
2734#[stable(feature = "str_parse_error", since = "1.5.0")]
2735pub type ParseError = core::convert::Infallible;
2736
2737#[cfg(not(no_global_oom_handling))]
2738#[stable(feature = "rust1", since = "1.0.0")]
2739impl FromStr for String {
2740    type Err = core::convert::Infallible;
2741    #[inline]
2742    fn from_str(s: &str) -> Result<String, Self::Err> {
2743        Ok(String::from(s))
2744    }
2745}
2746
2747/// A trait for converting a value to a `String`.
2748///
2749/// This trait is automatically implemented for any type which implements the
2750/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
2751/// [`Display`] should be implemented instead, and you get the `ToString`
2752/// implementation for free.
2753///
2754/// [`Display`]: fmt::Display
2755#[rustc_diagnostic_item = "ToString"]
2756#[stable(feature = "rust1", since = "1.0.0")]
2757pub trait ToString {
2758    /// Converts the given value to a `String`.
2759    ///
2760    /// # Examples
2761    ///
2762    /// ```
2763    /// let i = 5;
2764    /// let five = String::from("5");
2765    ///
2766    /// assert_eq!(five, i.to_string());
2767    /// ```
2768    #[rustc_conversion_suggestion]
2769    #[stable(feature = "rust1", since = "1.0.0")]
2770    #[rustc_diagnostic_item = "to_string_method"]
2771    fn to_string(&self) -> String;
2772}
2773
2774/// # Panics
2775///
2776/// In this implementation, the `to_string` method panics
2777/// if the `Display` implementation returns an error.
2778/// This indicates an incorrect `Display` implementation
2779/// since `fmt::Write for String` never returns an error itself.
2780#[cfg(not(no_global_oom_handling))]
2781#[stable(feature = "rust1", since = "1.0.0")]
2782impl<T: fmt::Display + ?Sized> ToString for T {
2783    #[inline]
2784    fn to_string(&self) -> String {
2785        <Self as SpecToString>::spec_to_string(self)
2786    }
2787}
2788
2789#[cfg(not(no_global_oom_handling))]
2790trait SpecToString {
2791    fn spec_to_string(&self) -> String;
2792}
2793
2794#[cfg(not(no_global_oom_handling))]
2795impl<T: fmt::Display + ?Sized> SpecToString for T {
2796    // A common guideline is to not inline generic functions. However,
2797    // removing `#[inline]` from this method causes non-negligible regressions.
2798    // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
2799    // to try to remove it.
2800    #[inline]
2801    default fn spec_to_string(&self) -> String {
2802        let mut buf = String::new();
2803        let mut formatter =
2804            core::fmt::Formatter::new(&mut buf, core::fmt::FormattingOptions::new());
2805        // Bypass format_args!() to avoid write_str with zero-length strs
2806        fmt::Display::fmt(self, &mut formatter)
2807            .expect("a Display implementation returned an error unexpectedly");
2808        buf
2809    }
2810}
2811
2812#[cfg(not(no_global_oom_handling))]
2813impl SpecToString for core::ascii::Char {
2814    #[inline]
2815    fn spec_to_string(&self) -> String {
2816        self.as_str().to_owned()
2817    }
2818}
2819
2820#[cfg(not(no_global_oom_handling))]
2821impl SpecToString for char {
2822    #[inline]
2823    fn spec_to_string(&self) -> String {
2824        String::from(self.encode_utf8(&mut [0; char::MAX_LEN_UTF8]))
2825    }
2826}
2827
2828#[cfg(not(no_global_oom_handling))]
2829impl SpecToString for bool {
2830    #[inline]
2831    fn spec_to_string(&self) -> String {
2832        String::from(if *self { "true" } else { "false" })
2833    }
2834}
2835
2836macro_rules! impl_to_string {
2837    ($($signed:ident, $unsigned:ident,)*) => {
2838        $(
2839        #[cfg(not(no_global_oom_handling))]
2840        #[cfg(not(feature = "optimize_for_size"))]
2841        impl SpecToString for $signed {
2842            #[inline]
2843            fn spec_to_string(&self) -> String {
2844                const SIZE: usize = $signed::MAX.ilog(10) as usize + 1;
2845                let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE];
2846                // Only difference between signed and unsigned are these 8 lines.
2847                let mut out;
2848                if *self < 0 {
2849                    out = String::with_capacity(SIZE + 1);
2850                    out.push('-');
2851                } else {
2852                    out = String::with_capacity(SIZE);
2853                }
2854
2855                out.push_str(self.unsigned_abs()._fmt(&mut buf));
2856                out
2857            }
2858        }
2859        #[cfg(not(no_global_oom_handling))]
2860        #[cfg(not(feature = "optimize_for_size"))]
2861        impl SpecToString for $unsigned {
2862            #[inline]
2863            fn spec_to_string(&self) -> String {
2864                const SIZE: usize = $unsigned::MAX.ilog(10) as usize + 1;
2865                let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE];
2866
2867                self._fmt(&mut buf).to_string()
2868            }
2869        }
2870        )*
2871    }
2872}
2873
2874impl_to_string! {
2875    i8, u8,
2876    i16, u16,
2877    i32, u32,
2878    i64, u64,
2879    isize, usize,
2880}
2881
2882#[cfg(not(no_global_oom_handling))]
2883#[cfg(feature = "optimize_for_size")]
2884impl SpecToString for u8 {
2885    #[inline]
2886    fn spec_to_string(&self) -> String {
2887        let mut buf = String::with_capacity(3);
2888        let mut n = *self;
2889        if n >= 10 {
2890            if n >= 100 {
2891                buf.push((b'0' + n / 100) as char);
2892                n %= 100;
2893            }
2894            buf.push((b'0' + n / 10) as char);
2895            n %= 10;
2896        }
2897        buf.push((b'0' + n) as char);
2898        buf
2899    }
2900}
2901
2902#[cfg(not(no_global_oom_handling))]
2903#[cfg(feature = "optimize_for_size")]
2904impl SpecToString for i8 {
2905    #[inline]
2906    fn spec_to_string(&self) -> String {
2907        let mut buf = String::with_capacity(4);
2908        if self.is_negative() {
2909            buf.push('-');
2910        }
2911        let mut n = self.unsigned_abs();
2912        if n >= 10 {
2913            if n >= 100 {
2914                buf.push('1');
2915                n -= 100;
2916            }
2917            buf.push((b'0' + n / 10) as char);
2918            n %= 10;
2919        }
2920        buf.push((b'0' + n) as char);
2921        buf
2922    }
2923}
2924
2925// Generic/generated code can sometimes have multiple, nested references
2926// for strings, including `&&&str`s that would never be written
2927// by hand. This macro generates twelve layers of nested `&`-impl
2928// for primitive strings.
2929#[cfg(not(no_global_oom_handling))]
2930macro_rules! to_string_str_wrap_in_ref {
2931    {x $($x:ident)*} => {
2932        &to_string_str_wrap_in_ref! { $($x)* }
2933    };
2934    {} => { str };
2935}
2936#[cfg(not(no_global_oom_handling))]
2937macro_rules! to_string_expr_wrap_in_deref {
2938    {$self:expr ; x $($x:ident)*} => {
2939        *(to_string_expr_wrap_in_deref! { $self ; $($x)* })
2940    };
2941    {$self:expr ;} => { $self };
2942}
2943#[cfg(not(no_global_oom_handling))]
2944macro_rules! to_string_str {
2945    {$($($x:ident)*),+} => {
2946        $(
2947            impl SpecToString for to_string_str_wrap_in_ref!($($x)*) {
2948                #[inline]
2949                fn spec_to_string(&self) -> String {
2950                    String::from(to_string_expr_wrap_in_deref!(self ; $($x)*))
2951                }
2952            }
2953        )+
2954    };
2955}
2956
2957#[cfg(not(no_global_oom_handling))]
2958to_string_str! {
2959    x x x x x x x x x x x x,
2960    x x x x x x x x x x x,
2961    x x x x x x x x x x,
2962    x x x x x x x x x,
2963    x x x x x x x x,
2964    x x x x x x x,
2965    x x x x x x,
2966    x x x x x,
2967    x x x x,
2968    x x x,
2969    x x,
2970    x,
2971}
2972
2973#[cfg(not(no_global_oom_handling))]
2974impl SpecToString for Cow<'_, str> {
2975    #[inline]
2976    fn spec_to_string(&self) -> String {
2977        self[..].to_owned()
2978    }
2979}
2980
2981#[cfg(not(no_global_oom_handling))]
2982impl SpecToString for String {
2983    #[inline]
2984    fn spec_to_string(&self) -> String {
2985        self.to_owned()
2986    }
2987}
2988
2989#[cfg(not(no_global_oom_handling))]
2990impl SpecToString for fmt::Arguments<'_> {
2991    #[inline]
2992    fn spec_to_string(&self) -> String {
2993        crate::fmt::format(*self)
2994    }
2995}
2996
2997#[stable(feature = "rust1", since = "1.0.0")]
2998impl AsRef<str> for String {
2999    #[inline]
3000    fn as_ref(&self) -> &str {
3001        self
3002    }
3003}
3004
3005#[stable(feature = "string_as_mut", since = "1.43.0")]
3006impl AsMut<str> for String {
3007    #[inline]
3008    fn as_mut(&mut self) -> &mut str {
3009        self
3010    }
3011}
3012
3013#[stable(feature = "rust1", since = "1.0.0")]
3014impl AsRef<[u8]> for String {
3015    #[inline]
3016    fn as_ref(&self) -> &[u8] {
3017        self.as_bytes()
3018    }
3019}
3020
3021#[cfg(not(no_global_oom_handling))]
3022#[stable(feature = "rust1", since = "1.0.0")]
3023impl From<&str> for String {
3024    /// Converts a `&str` into a [`String`].
3025    ///
3026    /// The result is allocated on the heap.
3027    #[inline]
3028    fn from(s: &str) -> String {
3029        s.to_owned()
3030    }
3031}
3032
3033#[cfg(not(no_global_oom_handling))]
3034#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
3035impl From<&mut str> for String {
3036    /// Converts a `&mut str` into a [`String`].
3037    ///
3038    /// The result is allocated on the heap.
3039    #[inline]
3040    fn from(s: &mut str) -> String {
3041        s.to_owned()
3042    }
3043}
3044
3045#[cfg(not(no_global_oom_handling))]
3046#[stable(feature = "from_ref_string", since = "1.35.0")]
3047impl From<&String> for String {
3048    /// Converts a `&String` into a [`String`].
3049    ///
3050    /// This clones `s` and returns the clone.
3051    #[inline]
3052    fn from(s: &String) -> String {
3053        s.clone()
3054    }
3055}
3056
3057// note: test pulls in std, which causes errors here
3058#[stable(feature = "string_from_box", since = "1.18.0")]
3059impl From<Box<str>> for String {
3060    /// Converts the given boxed `str` slice to a [`String`].
3061    /// It is notable that the `str` slice is owned.
3062    ///
3063    /// # Examples
3064    ///
3065    /// ```
3066    /// let s1: String = String::from("hello world");
3067    /// let s2: Box<str> = s1.into_boxed_str();
3068    /// let s3: String = String::from(s2);
3069    ///
3070    /// assert_eq!("hello world", s3)
3071    /// ```
3072    fn from(s: Box<str>) -> String {
3073        s.into_string()
3074    }
3075}
3076
3077#[cfg(not(no_global_oom_handling))]
3078#[stable(feature = "box_from_str", since = "1.20.0")]
3079impl From<String> for Box<str> {
3080    /// Converts the given [`String`] to a boxed `str` slice that is owned.
3081    ///
3082    /// # Examples
3083    ///
3084    /// ```
3085    /// let s1: String = String::from("hello world");
3086    /// let s2: Box<str> = Box::from(s1);
3087    /// let s3: String = String::from(s2);
3088    ///
3089    /// assert_eq!("hello world", s3)
3090    /// ```
3091    fn from(s: String) -> Box<str> {
3092        s.into_boxed_str()
3093    }
3094}
3095
3096#[cfg(not(no_global_oom_handling))]
3097#[stable(feature = "string_from_cow_str", since = "1.14.0")]
3098impl<'a> From<Cow<'a, str>> for String {
3099    /// Converts a clone-on-write string to an owned
3100    /// instance of [`String`].
3101    ///
3102    /// This extracts the owned string,
3103    /// clones the string if it is not already owned.
3104    ///
3105    /// # Example
3106    ///
3107    /// ```
3108    /// # use std::borrow::Cow;
3109    /// // If the string is not owned...
3110    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3111    /// // It will allocate on the heap and copy the string.
3112    /// let owned: String = String::from(cow);
3113    /// assert_eq!(&owned[..], "eggplant");
3114    /// ```
3115    fn from(s: Cow<'a, str>) -> String {
3116        s.into_owned()
3117    }
3118}
3119
3120#[cfg(not(no_global_oom_handling))]
3121#[stable(feature = "rust1", since = "1.0.0")]
3122impl<'a> From<&'a str> for Cow<'a, str> {
3123    /// Converts a string slice into a [`Borrowed`] variant.
3124    /// No heap allocation is performed, and the string
3125    /// is not copied.
3126    ///
3127    /// # Example
3128    ///
3129    /// ```
3130    /// # use std::borrow::Cow;
3131    /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
3132    /// ```
3133    ///
3134    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3135    #[inline]
3136    fn from(s: &'a str) -> Cow<'a, str> {
3137        Cow::Borrowed(s)
3138    }
3139}
3140
3141#[cfg(not(no_global_oom_handling))]
3142#[stable(feature = "rust1", since = "1.0.0")]
3143impl<'a> From<String> for Cow<'a, str> {
3144    /// Converts a [`String`] into an [`Owned`] variant.
3145    /// No heap allocation is performed, and the string
3146    /// is not copied.
3147    ///
3148    /// # Example
3149    ///
3150    /// ```
3151    /// # use std::borrow::Cow;
3152    /// let s = "eggplant".to_string();
3153    /// let s2 = "eggplant".to_string();
3154    /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
3155    /// ```
3156    ///
3157    /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
3158    #[inline]
3159    fn from(s: String) -> Cow<'a, str> {
3160        Cow::Owned(s)
3161    }
3162}
3163
3164#[cfg(not(no_global_oom_handling))]
3165#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
3166impl<'a> From<&'a String> for Cow<'a, str> {
3167    /// Converts a [`String`] reference into a [`Borrowed`] variant.
3168    /// No heap allocation is performed, and the string
3169    /// is not copied.
3170    ///
3171    /// # Example
3172    ///
3173    /// ```
3174    /// # use std::borrow::Cow;
3175    /// let s = "eggplant".to_string();
3176    /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
3177    /// ```
3178    ///
3179    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3180    #[inline]
3181    fn from(s: &'a String) -> Cow<'a, str> {
3182        Cow::Borrowed(s.as_str())
3183    }
3184}
3185
3186#[cfg(not(no_global_oom_handling))]
3187#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3188impl<'a> FromIterator<char> for Cow<'a, str> {
3189    fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
3190        Cow::Owned(FromIterator::from_iter(it))
3191    }
3192}
3193
3194#[cfg(not(no_global_oom_handling))]
3195#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3196impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
3197    fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
3198        Cow::Owned(FromIterator::from_iter(it))
3199    }
3200}
3201
3202#[cfg(not(no_global_oom_handling))]
3203#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3204impl<'a> FromIterator<String> for Cow<'a, str> {
3205    fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
3206        Cow::Owned(FromIterator::from_iter(it))
3207    }
3208}
3209
3210#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
3211impl From<String> for Vec<u8> {
3212    /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
3213    ///
3214    /// # Examples
3215    ///
3216    /// ```
3217    /// let s1 = String::from("hello world");
3218    /// let v1 = Vec::from(s1);
3219    ///
3220    /// for b in v1 {
3221    ///     println!("{b}");
3222    /// }
3223    /// ```
3224    fn from(string: String) -> Vec<u8> {
3225        string.into_bytes()
3226    }
3227}
3228
3229#[stable(feature = "try_from_vec_u8_for_string", since = "1.87.0")]
3230impl TryFrom<Vec<u8>> for String {
3231    type Error = FromUtf8Error;
3232    /// Converts the given [`Vec<u8>`] into a  [`String`] if it contains valid UTF-8 data.
3233    ///
3234    /// # Examples
3235    ///
3236    /// ```
3237    /// let s1 = b"hello world".to_vec();
3238    /// let v1 = String::try_from(s1).unwrap();
3239    /// assert_eq!(v1, "hello world");
3240    ///
3241    /// ```
3242    fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
3243        Self::from_utf8(bytes)
3244    }
3245}
3246
3247#[cfg(not(no_global_oom_handling))]
3248#[stable(feature = "rust1", since = "1.0.0")]
3249impl fmt::Write for String {
3250    #[inline]
3251    fn write_str(&mut self, s: &str) -> fmt::Result {
3252        self.push_str(s);
3253        Ok(())
3254    }
3255
3256    #[inline]
3257    fn write_char(&mut self, c: char) -> fmt::Result {
3258        self.push(c);
3259        Ok(())
3260    }
3261}
3262
3263/// An iterator over the [`char`]s of a string.
3264///
3265/// This struct is created by the [`into_chars`] method on [`String`].
3266/// See its documentation for more.
3267///
3268/// [`char`]: prim@char
3269/// [`into_chars`]: String::into_chars
3270#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
3271#[must_use = "iterators are lazy and do nothing unless consumed"]
3272#[unstable(feature = "string_into_chars", issue = "133125")]
3273pub struct IntoChars {
3274    bytes: vec::IntoIter<u8>,
3275}
3276
3277#[unstable(feature = "string_into_chars", issue = "133125")]
3278impl fmt::Debug for IntoChars {
3279    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3280        f.debug_tuple("IntoChars").field(&self.as_str()).finish()
3281    }
3282}
3283
3284impl IntoChars {
3285    /// Views the underlying data as a subslice of the original data.
3286    ///
3287    /// # Examples
3288    ///
3289    /// ```
3290    /// #![feature(string_into_chars)]
3291    ///
3292    /// let mut chars = String::from("abc").into_chars();
3293    ///
3294    /// assert_eq!(chars.as_str(), "abc");
3295    /// chars.next();
3296    /// assert_eq!(chars.as_str(), "bc");
3297    /// chars.next();
3298    /// chars.next();
3299    /// assert_eq!(chars.as_str(), "");
3300    /// ```
3301    #[unstable(feature = "string_into_chars", issue = "133125")]
3302    #[must_use]
3303    #[inline]
3304    pub fn as_str(&self) -> &str {
3305        // SAFETY: `bytes` is a valid UTF-8 string.
3306        unsafe { str::from_utf8_unchecked(self.bytes.as_slice()) }
3307    }
3308
3309    /// Consumes the `IntoChars`, returning the remaining string.
3310    ///
3311    /// # Examples
3312    ///
3313    /// ```
3314    /// #![feature(string_into_chars)]
3315    ///
3316    /// let chars = String::from("abc").into_chars();
3317    /// assert_eq!(chars.into_string(), "abc");
3318    ///
3319    /// let mut chars = String::from("def").into_chars();
3320    /// chars.next();
3321    /// assert_eq!(chars.into_string(), "ef");
3322    /// ```
3323    #[cfg(not(no_global_oom_handling))]
3324    #[unstable(feature = "string_into_chars", issue = "133125")]
3325    #[inline]
3326    pub fn into_string(self) -> String {
3327        // Safety: `bytes` are kept in UTF-8 form, only removing whole `char`s at a time.
3328        unsafe { String::from_utf8_unchecked(self.bytes.collect()) }
3329    }
3330
3331    #[inline]
3332    fn iter(&self) -> CharIndices<'_> {
3333        self.as_str().char_indices()
3334    }
3335}
3336
3337#[unstable(feature = "string_into_chars", issue = "133125")]
3338impl Iterator for IntoChars {
3339    type Item = char;
3340
3341    #[inline]
3342    fn next(&mut self) -> Option<char> {
3343        let mut iter = self.iter();
3344        match iter.next() {
3345            None => None,
3346            Some((_, ch)) => {
3347                let offset = iter.offset();
3348                // `offset` is a valid index.
3349                let _ = self.bytes.advance_by(offset);
3350                Some(ch)
3351            }
3352        }
3353    }
3354
3355    #[inline]
3356    fn count(self) -> usize {
3357        self.iter().count()
3358    }
3359
3360    #[inline]
3361    fn size_hint(&self) -> (usize, Option<usize>) {
3362        self.iter().size_hint()
3363    }
3364
3365    #[inline]
3366    fn last(mut self) -> Option<char> {
3367        self.next_back()
3368    }
3369}
3370
3371#[unstable(feature = "string_into_chars", issue = "133125")]
3372impl DoubleEndedIterator for IntoChars {
3373    #[inline]
3374    fn next_back(&mut self) -> Option<char> {
3375        let len = self.as_str().len();
3376        let mut iter = self.iter();
3377        match iter.next_back() {
3378            None => None,
3379            Some((idx, ch)) => {
3380                // `idx` is a valid index.
3381                let _ = self.bytes.advance_back_by(len - idx);
3382                Some(ch)
3383            }
3384        }
3385    }
3386}
3387
3388#[unstable(feature = "string_into_chars", issue = "133125")]
3389impl FusedIterator for IntoChars {}
3390
3391/// A draining iterator for `String`.
3392///
3393/// This struct is created by the [`drain`] method on [`String`]. See its
3394/// documentation for more.
3395///
3396/// [`drain`]: String::drain
3397#[stable(feature = "drain", since = "1.6.0")]
3398pub struct Drain<'a> {
3399    /// Will be used as &'a mut String in the destructor
3400    string: *mut String,
3401    /// Start of part to remove
3402    start: usize,
3403    /// End of part to remove
3404    end: usize,
3405    /// Current remaining range to remove
3406    iter: Chars<'a>,
3407}
3408
3409#[stable(feature = "collection_debug", since = "1.17.0")]
3410impl fmt::Debug for Drain<'_> {
3411    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3412        f.debug_tuple("Drain").field(&self.as_str()).finish()
3413    }
3414}
3415
3416#[stable(feature = "drain", since = "1.6.0")]
3417unsafe impl Sync for Drain<'_> {}
3418#[stable(feature = "drain", since = "1.6.0")]
3419unsafe impl Send for Drain<'_> {}
3420
3421#[stable(feature = "drain", since = "1.6.0")]
3422impl Drop for Drain<'_> {
3423    fn drop(&mut self) {
3424        unsafe {
3425            // Use Vec::drain. "Reaffirm" the bounds checks to avoid
3426            // panic code being inserted again.
3427            let self_vec = (*self.string).as_mut_vec();
3428            if self.start <= self.end && self.end <= self_vec.len() {
3429                self_vec.drain(self.start..self.end);
3430            }
3431        }
3432    }
3433}
3434
3435impl<'a> Drain<'a> {
3436    /// Returns the remaining (sub)string of this iterator as a slice.
3437    ///
3438    /// # Examples
3439    ///
3440    /// ```
3441    /// let mut s = String::from("abc");
3442    /// let mut drain = s.drain(..);
3443    /// assert_eq!(drain.as_str(), "abc");
3444    /// let _ = drain.next().unwrap();
3445    /// assert_eq!(drain.as_str(), "bc");
3446    /// ```
3447    #[must_use]
3448    #[stable(feature = "string_drain_as_str", since = "1.55.0")]
3449    pub fn as_str(&self) -> &str {
3450        self.iter.as_str()
3451    }
3452}
3453
3454#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3455impl<'a> AsRef<str> for Drain<'a> {
3456    fn as_ref(&self) -> &str {
3457        self.as_str()
3458    }
3459}
3460
3461#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3462impl<'a> AsRef<[u8]> for Drain<'a> {
3463    fn as_ref(&self) -> &[u8] {
3464        self.as_str().as_bytes()
3465    }
3466}
3467
3468#[stable(feature = "drain", since = "1.6.0")]
3469impl Iterator for Drain<'_> {
3470    type Item = char;
3471
3472    #[inline]
3473    fn next(&mut self) -> Option<char> {
3474        self.iter.next()
3475    }
3476
3477    fn size_hint(&self) -> (usize, Option<usize>) {
3478        self.iter.size_hint()
3479    }
3480
3481    #[inline]
3482    fn last(mut self) -> Option<char> {
3483        self.next_back()
3484    }
3485}
3486
3487#[stable(feature = "drain", since = "1.6.0")]
3488impl DoubleEndedIterator for Drain<'_> {
3489    #[inline]
3490    fn next_back(&mut self) -> Option<char> {
3491        self.iter.next_back()
3492    }
3493}
3494
3495#[stable(feature = "fused", since = "1.26.0")]
3496impl FusedIterator for Drain<'_> {}
3497
3498#[cfg(not(no_global_oom_handling))]
3499#[stable(feature = "from_char_for_string", since = "1.46.0")]
3500impl From<char> for String {
3501    /// Allocates an owned [`String`] from a single character.
3502    ///
3503    /// # Example
3504    /// ```rust
3505    /// let c: char = 'a';
3506    /// let s: String = String::from(c);
3507    /// assert_eq!("a", &s[..]);
3508    /// ```
3509    #[inline]
3510    fn from(c: char) -> Self {
3511        c.to_string()
3512    }
3513}