[go: up one dir, main page]

alloc/
string.rs

1//! A UTF-8–encoded, growable string.
2//!
3//! This module contains the [`String`] type, the [`ToString`] trait for
4//! converting to strings, and several error types that may result from
5//! working with [`String`]s.
6//!
7//! # Examples
8//!
9//! There are multiple ways to create a new [`String`] from a string literal:
10//!
11//! ```
12//! let s = "Hello".to_string();
13//!
14//! let s = String::from("world");
15//! let s: String = "also this".into();
16//! ```
17//!
18//! You can create a new [`String`] from an existing one by concatenating with
19//! `+`:
20//!
21//! ```
22//! let s = "Hello".to_string();
23//!
24//! let message = s + " world!";
25//! ```
26//!
27//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
28//! it. You can do the reverse too.
29//!
30//! ```
31//! let sparkle_heart = vec![240, 159, 146, 150];
32//!
33//! // We know these bytes are valid, so we'll use `unwrap()`.
34//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
35//!
36//! assert_eq!("πŸ’–", sparkle_heart);
37//!
38//! let bytes = sparkle_heart.into_bytes();
39//!
40//! assert_eq!(bytes, [240, 159, 146, 150]);
41//! ```
42
43#![stable(feature = "rust1", since = "1.0.0")]
44
45use core::error::Error;
46use core::iter::FusedIterator;
47#[cfg(not(no_global_oom_handling))]
48use core::iter::from_fn;
49#[cfg(not(no_global_oom_handling))]
50use core::ops::Add;
51#[cfg(not(no_global_oom_handling))]
52use core::ops::AddAssign;
53#[cfg(not(no_global_oom_handling))]
54use core::ops::Bound::{Excluded, Included, Unbounded};
55use core::ops::{self, Range, RangeBounds};
56use core::str::pattern::{Pattern, Utf8Pattern};
57use core::{fmt, hash, ptr, slice};
58
59#[cfg(not(no_global_oom_handling))]
60use crate::alloc::Allocator;
61#[cfg(not(no_global_oom_handling))]
62use crate::borrow::{Cow, ToOwned};
63use crate::boxed::Box;
64use crate::collections::TryReserveError;
65use crate::str::{self, CharIndices, Chars, Utf8Error, from_utf8_unchecked_mut};
66#[cfg(not(no_global_oom_handling))]
67use crate::str::{FromStr, from_boxed_utf8_unchecked};
68use crate::vec::{self, Vec};
69
70/// A UTF-8–encoded, growable string.
71///
72/// `String` is the most common string type. It has ownership over the contents
73/// of the string, stored in a heap-allocated buffer (see [Representation](#representation)).
74/// It is closely related to its borrowed counterpart, the primitive [`str`].
75///
76/// # Examples
77///
78/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
79///
80/// [`String::from`]: From::from
81///
82/// ```
83/// let hello = String::from("Hello, world!");
84/// ```
85///
86/// You can append a [`char`] to a `String` with the [`push`] method, and
87/// append a [`&str`] with the [`push_str`] method:
88///
89/// ```
90/// let mut hello = String::from("Hello, ");
91///
92/// hello.push('w');
93/// hello.push_str("orld!");
94/// ```
95///
96/// [`push`]: String::push
97/// [`push_str`]: String::push_str
98///
99/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
100/// the [`from_utf8`] method:
101///
102/// ```
103/// // some bytes, in a vector
104/// let sparkle_heart = vec![240, 159, 146, 150];
105///
106/// // We know these bytes are valid, so we'll use `unwrap()`.
107/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
108///
109/// assert_eq!("πŸ’–", sparkle_heart);
110/// ```
111///
112/// [`from_utf8`]: String::from_utf8
113///
114/// # UTF-8
115///
116/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
117/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
118/// is a variable width encoding, `String`s are typically smaller than an array of
119/// the same `char`s:
120///
121/// ```
122/// // `s` is ASCII which represents each `char` as one byte
123/// let s = "hello";
124/// assert_eq!(s.len(), 5);
125///
126/// // A `char` array with the same contents would be longer because
127/// // every `char` is four bytes
128/// let s = ['h', 'e', 'l', 'l', 'o'];
129/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
130/// assert_eq!(size, 20);
131///
132/// // However, for non-ASCII strings, the difference will be smaller
133/// // and sometimes they are the same
134/// let s = "πŸ’–πŸ’–πŸ’–πŸ’–πŸ’–";
135/// assert_eq!(s.len(), 20);
136///
137/// let s = ['πŸ’–', 'πŸ’–', 'πŸ’–', 'πŸ’–', 'πŸ’–'];
138/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
139/// assert_eq!(size, 20);
140/// ```
141///
142/// This raises interesting questions as to how `s[i]` should work.
143/// What should `i` be here? Several options include byte indices and
144/// `char` indices but, because of UTF-8 encoding, only byte indices
145/// would provide constant time indexing. Getting the `i`th `char`, for
146/// example, is available using [`chars`]:
147///
148/// ```
149/// let s = "hello";
150/// let third_character = s.chars().nth(2);
151/// assert_eq!(third_character, Some('l'));
152///
153/// let s = "πŸ’–πŸ’–πŸ’–πŸ’–πŸ’–";
154/// let third_character = s.chars().nth(2);
155/// assert_eq!(third_character, Some('πŸ’–'));
156/// ```
157///
158/// Next, what should `s[i]` return? Because indexing returns a reference
159/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
160/// Since we're only providing one index, `&u8` makes the most sense but that
161/// might not be what the user expects and can be explicitly achieved with
162/// [`as_bytes()`]:
163///
164/// ```
165/// // The first byte is 104 - the byte value of `'h'`
166/// let s = "hello";
167/// assert_eq!(s.as_bytes()[0], 104);
168/// // or
169/// assert_eq!(s.as_bytes()[0], b'h');
170///
171/// // The first byte is 240 which isn't obviously useful
172/// let s = "πŸ’–πŸ’–πŸ’–πŸ’–πŸ’–";
173/// assert_eq!(s.as_bytes()[0], 240);
174/// ```
175///
176/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
177/// forbidden:
178///
179/// ```compile_fail,E0277
180/// let s = "hello";
181///
182/// // The following will not compile!
183/// println!("The first letter of s is {}", s[0]);
184/// ```
185///
186/// It is more clear, however, how `&s[i..j]` should work (that is,
187/// indexing with a range). It should accept byte indices (to be constant-time)
188/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
189/// Note this will panic if the byte indices provided are not character
190/// boundaries - see [`is_char_boundary`] for more details. See the implementations
191/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
192/// version of string slicing, see [`get`].
193///
194/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
195/// [`SliceIndex<str>`]: core::slice::SliceIndex
196/// [`as_bytes()`]: str::as_bytes
197/// [`get`]: str::get
198/// [`is_char_boundary`]: str::is_char_boundary
199///
200/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
201/// codepoints of the string, respectively. To iterate over codepoints along
202/// with byte indices, use [`char_indices`].
203///
204/// [`bytes`]: str::bytes
205/// [`chars`]: str::chars
206/// [`char_indices`]: str::char_indices
207///
208/// # Deref
209///
210/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
211/// methods. In addition, this means that you can pass a `String` to a
212/// function which takes a [`&str`] by using an ampersand (`&`):
213///
214/// ```
215/// fn takes_str(s: &str) { }
216///
217/// let s = String::from("Hello");
218///
219/// takes_str(&s);
220/// ```
221///
222/// This will create a [`&str`] from the `String` and pass it in. This
223/// conversion is very inexpensive, and so generally, functions will accept
224/// [`&str`]s as arguments unless they need a `String` for some specific
225/// reason.
226///
227/// In certain cases Rust doesn't have enough information to make this
228/// conversion, known as [`Deref`] coercion. In the following example a string
229/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
230/// `example_func` takes anything that implements the trait. In this case Rust
231/// would need to make two implicit conversions, which Rust doesn't have the
232/// means to do. For that reason, the following example will not compile.
233///
234/// ```compile_fail,E0277
235/// trait TraitExample {}
236///
237/// impl<'a> TraitExample for &'a str {}
238///
239/// fn example_func<A: TraitExample>(example_arg: A) {}
240///
241/// let example_string = String::from("example_string");
242/// example_func(&example_string);
243/// ```
244///
245/// There are two options that would work instead. The first would be to
246/// change the line `example_func(&example_string);` to
247/// `example_func(example_string.as_str());`, using the method [`as_str()`]
248/// to explicitly extract the string slice containing the string. The second
249/// way changes `example_func(&example_string);` to
250/// `example_func(&*example_string);`. In this case we are dereferencing a
251/// `String` to a [`str`], then referencing the [`str`] back to
252/// [`&str`]. The second way is more idiomatic, however both work to do the
253/// conversion explicitly rather than relying on the implicit conversion.
254///
255/// # Representation
256///
257/// A `String` is made up of three components: a pointer to some bytes, a
258/// length, and a capacity. The pointer points to the internal buffer which `String`
259/// uses to store its data. The length is the number of bytes currently stored
260/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
261/// the length will always be less than or equal to the capacity.
262///
263/// This buffer is always stored on the heap.
264///
265/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
266/// methods:
267///
268/// ```
269/// use std::mem;
270///
271/// let story = String::from("Once upon a time...");
272///
273// FIXME Update this when vec_into_raw_parts is stabilized
274/// // Prevent automatically dropping the String's data
275/// let mut story = mem::ManuallyDrop::new(story);
276///
277/// let ptr = story.as_mut_ptr();
278/// let len = story.len();
279/// let capacity = story.capacity();
280///
281/// // story has nineteen bytes
282/// assert_eq!(19, len);
283///
284/// // We can re-build a String out of ptr, len, and capacity. This is all
285/// // unsafe because we are responsible for making sure the components are
286/// // valid:
287/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
288///
289/// assert_eq!(String::from("Once upon a time..."), s);
290/// ```
291///
292/// [`as_ptr`]: str::as_ptr
293/// [`len`]: String::len
294/// [`capacity`]: String::capacity
295///
296/// If a `String` has enough capacity, adding elements to it will not
297/// re-allocate. For example, consider this program:
298///
299/// ```
300/// let mut s = String::new();
301///
302/// println!("{}", s.capacity());
303///
304/// for _ in 0..5 {
305///     s.push_str("hello");
306///     println!("{}", s.capacity());
307/// }
308/// ```
309///
310/// This will output the following:
311///
312/// ```text
313/// 0
314/// 8
315/// 16
316/// 16
317/// 32
318/// 32
319/// ```
320///
321/// At first, we have no memory allocated at all, but as we append to the
322/// string, it increases its capacity appropriately. If we instead use the
323/// [`with_capacity`] method to allocate the correct capacity initially:
324///
325/// ```
326/// let mut s = String::with_capacity(25);
327///
328/// println!("{}", s.capacity());
329///
330/// for _ in 0..5 {
331///     s.push_str("hello");
332///     println!("{}", s.capacity());
333/// }
334/// ```
335///
336/// [`with_capacity`]: String::with_capacity
337///
338/// We end up with a different output:
339///
340/// ```text
341/// 25
342/// 25
343/// 25
344/// 25
345/// 25
346/// 25
347/// ```
348///
349/// Here, there's no need to allocate more memory inside the loop.
350///
351/// [str]: prim@str "str"
352/// [`str`]: prim@str "str"
353/// [`&str`]: prim@str "&str"
354/// [Deref]: core::ops::Deref "ops::Deref"
355/// [`Deref`]: core::ops::Deref "ops::Deref"
356/// [`as_str()`]: String::as_str
357#[derive(PartialEq, PartialOrd, Eq, Ord)]
358#[stable(feature = "rust1", since = "1.0.0")]
359#[lang = "String"]
360pub struct String {
361    vec: Vec<u8>,
362}
363
364/// A possible error value when converting a `String` from a UTF-8 byte vector.
365///
366/// This type is the error type for the [`from_utf8`] method on [`String`]. It
367/// is designed in such a way to carefully avoid reallocations: the
368/// [`into_bytes`] method will give back the byte vector that was used in the
369/// conversion attempt.
370///
371/// [`from_utf8`]: String::from_utf8
372/// [`into_bytes`]: FromUtf8Error::into_bytes
373///
374/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
375/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
376/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
377/// through the [`utf8_error`] method.
378///
379/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
380/// [`std::str`]: core::str "std::str"
381/// [`&str`]: prim@str "&str"
382/// [`utf8_error`]: FromUtf8Error::utf8_error
383///
384/// # Examples
385///
386/// ```
387/// // some invalid bytes, in a vector
388/// let bytes = vec![0, 159];
389///
390/// let value = String::from_utf8(bytes);
391///
392/// assert!(value.is_err());
393/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
394/// ```
395#[stable(feature = "rust1", since = "1.0.0")]
396#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
397#[derive(Debug, PartialEq, Eq)]
398pub struct FromUtf8Error {
399    bytes: Vec<u8>,
400    error: Utf8Error,
401}
402
403/// A possible error value when converting a `String` from a UTF-16 byte slice.
404///
405/// This type is the error type for the [`from_utf16`] method on [`String`].
406///
407/// [`from_utf16`]: String::from_utf16
408///
409/// # Examples
410///
411/// ```
412/// // π„žmu<invalid>ic
413/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
414///           0xD800, 0x0069, 0x0063];
415///
416/// assert!(String::from_utf16(v).is_err());
417/// ```
418#[stable(feature = "rust1", since = "1.0.0")]
419#[derive(Debug)]
420pub struct FromUtf16Error(());
421
422impl String {
423    /// Creates a new empty `String`.
424    ///
425    /// Given that the `String` is empty, this will not allocate any initial
426    /// buffer. While that means that this initial operation is very
427    /// inexpensive, it may cause excessive allocation later when you add
428    /// data. If you have an idea of how much data the `String` will hold,
429    /// consider the [`with_capacity`] method to prevent excessive
430    /// re-allocation.
431    ///
432    /// [`with_capacity`]: String::with_capacity
433    ///
434    /// # Examples
435    ///
436    /// ```
437    /// let s = String::new();
438    /// ```
439    #[inline]
440    #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
441    #[rustc_diagnostic_item = "string_new"]
442    #[stable(feature = "rust1", since = "1.0.0")]
443    #[must_use]
444    pub const fn new() -> String {
445        String { vec: Vec::new() }
446    }
447
448    /// Creates a new empty `String` with at least the specified capacity.
449    ///
450    /// `String`s have an internal buffer to hold their data. The capacity is
451    /// the length of that buffer, and can be queried with the [`capacity`]
452    /// method. This method creates an empty `String`, but one with an initial
453    /// buffer that can hold at least `capacity` bytes. This is useful when you
454    /// may be appending a bunch of data to the `String`, reducing the number of
455    /// reallocations it needs to do.
456    ///
457    /// [`capacity`]: String::capacity
458    ///
459    /// If the given capacity is `0`, no allocation will occur, and this method
460    /// is identical to the [`new`] method.
461    ///
462    /// [`new`]: String::new
463    ///
464    /// # Examples
465    ///
466    /// ```
467    /// let mut s = String::with_capacity(10);
468    ///
469    /// // The String contains no chars, even though it has capacity for more
470    /// assert_eq!(s.len(), 0);
471    ///
472    /// // These are all done without reallocating...
473    /// let cap = s.capacity();
474    /// for _ in 0..10 {
475    ///     s.push('a');
476    /// }
477    ///
478    /// assert_eq!(s.capacity(), cap);
479    ///
480    /// // ...but this may make the string reallocate
481    /// s.push('a');
482    /// ```
483    #[cfg(not(no_global_oom_handling))]
484    #[inline]
485    #[stable(feature = "rust1", since = "1.0.0")]
486    #[must_use]
487    pub fn with_capacity(capacity: usize) -> String {
488        String { vec: Vec::with_capacity(capacity) }
489    }
490
491    /// Creates a new empty `String` with at least the specified capacity.
492    ///
493    /// # Errors
494    ///
495    /// Returns [`Err`] if the capacity exceeds `isize::MAX` bytes,
496    /// or if the memory allocator reports failure.
497    ///
498    #[inline]
499    #[unstable(feature = "try_with_capacity", issue = "91913")]
500    pub fn try_with_capacity(capacity: usize) -> Result<String, TryReserveError> {
501        Ok(String { vec: Vec::try_with_capacity(capacity)? })
502    }
503
504    /// Converts a vector of bytes to a `String`.
505    ///
506    /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
507    /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
508    /// two. Not all byte slices are valid `String`s, however: `String`
509    /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
510    /// the bytes are valid UTF-8, and then does the conversion.
511    ///
512    /// If you are sure that the byte slice is valid UTF-8, and you don't want
513    /// to incur the overhead of the validity check, there is an unsafe version
514    /// of this function, [`from_utf8_unchecked`], which has the same behavior
515    /// but skips the check.
516    ///
517    /// This method will take care to not copy the vector, for efficiency's
518    /// sake.
519    ///
520    /// If you need a [`&str`] instead of a `String`, consider
521    /// [`str::from_utf8`].
522    ///
523    /// The inverse of this method is [`into_bytes`].
524    ///
525    /// # Errors
526    ///
527    /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
528    /// provided bytes are not UTF-8. The vector you moved in is also included.
529    ///
530    /// # Examples
531    ///
532    /// Basic usage:
533    ///
534    /// ```
535    /// // some bytes, in a vector
536    /// let sparkle_heart = vec![240, 159, 146, 150];
537    ///
538    /// // We know these bytes are valid, so we'll use `unwrap()`.
539    /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
540    ///
541    /// assert_eq!("πŸ’–", sparkle_heart);
542    /// ```
543    ///
544    /// Incorrect bytes:
545    ///
546    /// ```
547    /// // some invalid bytes, in a vector
548    /// let sparkle_heart = vec![0, 159, 146, 150];
549    ///
550    /// assert!(String::from_utf8(sparkle_heart).is_err());
551    /// ```
552    ///
553    /// See the docs for [`FromUtf8Error`] for more details on what you can do
554    /// with this error.
555    ///
556    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
557    /// [`Vec<u8>`]: crate::vec::Vec "Vec"
558    /// [`&str`]: prim@str "&str"
559    /// [`into_bytes`]: String::into_bytes
560    #[inline]
561    #[stable(feature = "rust1", since = "1.0.0")]
562    #[rustc_diagnostic_item = "string_from_utf8"]
563    pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
564        match str::from_utf8(&vec) {
565            Ok(..) => Ok(String { vec }),
566            Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
567        }
568    }
569
570    /// Converts a slice of bytes to a string, including invalid characters.
571    ///
572    /// Strings are made of bytes ([`u8`]), and a slice of bytes
573    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
574    /// between the two. Not all byte slices are valid strings, however: strings
575    /// are required to be valid UTF-8. During this conversion,
576    /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
577    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: οΏ½
578    ///
579    /// [byteslice]: prim@slice
580    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
581    ///
582    /// If you are sure that the byte slice is valid UTF-8, and you don't want
583    /// to incur the overhead of the conversion, there is an unsafe version
584    /// of this function, [`from_utf8_unchecked`], which has the same behavior
585    /// but skips the checks.
586    ///
587    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
588    ///
589    /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
590    /// UTF-8, then we need to insert the replacement characters, which will
591    /// change the size of the string, and hence, require a `String`. But if
592    /// it's already valid UTF-8, we don't need a new allocation. This return
593    /// type allows us to handle both cases.
594    ///
595    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
596    ///
597    /// # Examples
598    ///
599    /// Basic usage:
600    ///
601    /// ```
602    /// // some bytes, in a vector
603    /// let sparkle_heart = vec![240, 159, 146, 150];
604    ///
605    /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
606    ///
607    /// assert_eq!("πŸ’–", sparkle_heart);
608    /// ```
609    ///
610    /// Incorrect bytes:
611    ///
612    /// ```
613    /// // some invalid bytes
614    /// let input = b"Hello \xF0\x90\x80World";
615    /// let output = String::from_utf8_lossy(input);
616    ///
617    /// assert_eq!("Hello οΏ½World", output);
618    /// ```
619    #[must_use]
620    #[cfg(not(no_global_oom_handling))]
621    #[stable(feature = "rust1", since = "1.0.0")]
622    pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
623        let mut iter = v.utf8_chunks();
624
625        let first_valid = if let Some(chunk) = iter.next() {
626            let valid = chunk.valid();
627            if chunk.invalid().is_empty() {
628                debug_assert_eq!(valid.len(), v.len());
629                return Cow::Borrowed(valid);
630            }
631            valid
632        } else {
633            return Cow::Borrowed("");
634        };
635
636        const REPLACEMENT: &str = "\u{FFFD}";
637
638        let mut res = String::with_capacity(v.len());
639        res.push_str(first_valid);
640        res.push_str(REPLACEMENT);
641
642        for chunk in iter {
643            res.push_str(chunk.valid());
644            if !chunk.invalid().is_empty() {
645                res.push_str(REPLACEMENT);
646            }
647        }
648
649        Cow::Owned(res)
650    }
651
652    /// Converts a [`Vec<u8>`] to a `String`, substituting invalid UTF-8
653    /// sequences with replacement characters.
654    ///
655    /// See [`from_utf8_lossy`] for more details.
656    ///
657    /// [`from_utf8_lossy`]: String::from_utf8_lossy
658    ///
659    /// Note that this function does not guarantee reuse of the original `Vec`
660    /// allocation.
661    ///
662    /// # Examples
663    ///
664    /// Basic usage:
665    ///
666    /// ```
667    /// #![feature(string_from_utf8_lossy_owned)]
668    /// // some bytes, in a vector
669    /// let sparkle_heart = vec![240, 159, 146, 150];
670    ///
671    /// let sparkle_heart = String::from_utf8_lossy_owned(sparkle_heart);
672    ///
673    /// assert_eq!(String::from("πŸ’–"), sparkle_heart);
674    /// ```
675    ///
676    /// Incorrect bytes:
677    ///
678    /// ```
679    /// #![feature(string_from_utf8_lossy_owned)]
680    /// // some invalid bytes
681    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
682    /// let output = String::from_utf8_lossy_owned(input);
683    ///
684    /// assert_eq!(String::from("Hello οΏ½World"), output);
685    /// ```
686    #[must_use]
687    #[cfg(not(no_global_oom_handling))]
688    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
689    pub fn from_utf8_lossy_owned(v: Vec<u8>) -> String {
690        if let Cow::Owned(string) = String::from_utf8_lossy(&v) {
691            string
692        } else {
693            // SAFETY: `String::from_utf8_lossy`'s contract ensures that if
694            // it returns a `Cow::Borrowed`, it is a valid UTF-8 string.
695            // Otherwise, it returns a new allocation of an owned `String`, with
696            // replacement characters for invalid sequences, which is returned
697            // above.
698            unsafe { String::from_utf8_unchecked(v) }
699        }
700    }
701
702    /// Decode a native endian UTF-16–encoded vector `v` into a `String`,
703    /// returning [`Err`] if `v` contains any invalid data.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// // π„žmusic
709    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
710    ///           0x0073, 0x0069, 0x0063];
711    /// assert_eq!(String::from("π„žmusic"),
712    ///            String::from_utf16(v).unwrap());
713    ///
714    /// // π„žmu<invalid>ic
715    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
716    ///           0xD800, 0x0069, 0x0063];
717    /// assert!(String::from_utf16(v).is_err());
718    /// ```
719    #[cfg(not(no_global_oom_handling))]
720    #[stable(feature = "rust1", since = "1.0.0")]
721    pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
722        // This isn't done via collect::<Result<_, _>>() for performance reasons.
723        // FIXME: the function can be simplified again when #48994 is closed.
724        let mut ret = String::with_capacity(v.len());
725        for c in char::decode_utf16(v.iter().cloned()) {
726            if let Ok(c) = c {
727                ret.push(c);
728            } else {
729                return Err(FromUtf16Error(()));
730            }
731        }
732        Ok(ret)
733    }
734
735    /// Decode a native endian UTF-16–encoded slice `v` into a `String`,
736    /// replacing invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
737    ///
738    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
739    /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
740    /// conversion requires a memory allocation.
741    ///
742    /// [`from_utf8_lossy`]: String::from_utf8_lossy
743    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
744    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
745    ///
746    /// # Examples
747    ///
748    /// ```
749    /// // π„žmus<invalid>ic<invalid>
750    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
751    ///           0x0073, 0xDD1E, 0x0069, 0x0063,
752    ///           0xD834];
753    ///
754    /// assert_eq!(String::from("π„žmus\u{FFFD}ic\u{FFFD}"),
755    ///            String::from_utf16_lossy(v));
756    /// ```
757    #[cfg(not(no_global_oom_handling))]
758    #[must_use]
759    #[inline]
760    #[stable(feature = "rust1", since = "1.0.0")]
761    pub fn from_utf16_lossy(v: &[u16]) -> String {
762        char::decode_utf16(v.iter().cloned())
763            .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
764            .collect()
765    }
766
767    /// Decode a UTF-16LE–encoded vector `v` into a `String`,
768    /// returning [`Err`] if `v` contains any invalid data.
769    ///
770    /// # Examples
771    ///
772    /// Basic usage:
773    ///
774    /// ```
775    /// #![feature(str_from_utf16_endian)]
776    /// // π„žmusic
777    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
778    ///           0x73, 0x00, 0x69, 0x00, 0x63, 0x00];
779    /// assert_eq!(String::from("π„žmusic"),
780    ///            String::from_utf16le(v).unwrap());
781    ///
782    /// // π„žmu<invalid>ic
783    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
784    ///           0x00, 0xD8, 0x69, 0x00, 0x63, 0x00];
785    /// assert!(String::from_utf16le(v).is_err());
786    /// ```
787    #[cfg(not(no_global_oom_handling))]
788    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
789    pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error> {
790        if v.len() % 2 != 0 {
791            return Err(FromUtf16Error(()));
792        }
793        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
794            (true, ([], v, [])) => Self::from_utf16(v),
795            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_le_bytes))
796                .collect::<Result<_, _>>()
797                .map_err(|_| FromUtf16Error(())),
798        }
799    }
800
801    /// Decode a UTF-16LE–encoded slice `v` into a `String`, replacing
802    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
803    ///
804    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
805    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
806    /// conversion requires a memory allocation.
807    ///
808    /// [`from_utf8_lossy`]: String::from_utf8_lossy
809    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
810    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
811    ///
812    /// # Examples
813    ///
814    /// Basic usage:
815    ///
816    /// ```
817    /// #![feature(str_from_utf16_endian)]
818    /// // π„žmus<invalid>ic<invalid>
819    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
820    ///           0x73, 0x00, 0x1E, 0xDD, 0x69, 0x00, 0x63, 0x00,
821    ///           0x34, 0xD8];
822    ///
823    /// assert_eq!(String::from("π„žmus\u{FFFD}ic\u{FFFD}"),
824    ///            String::from_utf16le_lossy(v));
825    /// ```
826    #[cfg(not(no_global_oom_handling))]
827    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
828    pub fn from_utf16le_lossy(v: &[u8]) -> String {
829        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
830            (true, ([], v, [])) => Self::from_utf16_lossy(v),
831            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
832            _ => {
833                let mut iter = v.array_chunks::<2>();
834                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_le_bytes))
835                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
836                    .collect();
837                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
838            }
839        }
840    }
841
842    /// Decode a UTF-16BE–encoded vector `v` into a `String`,
843    /// returning [`Err`] if `v` contains any invalid data.
844    ///
845    /// # Examples
846    ///
847    /// Basic usage:
848    ///
849    /// ```
850    /// #![feature(str_from_utf16_endian)]
851    /// // π„žmusic
852    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
853    ///           0x00, 0x73, 0x00, 0x69, 0x00, 0x63];
854    /// assert_eq!(String::from("π„žmusic"),
855    ///            String::from_utf16be(v).unwrap());
856    ///
857    /// // π„žmu<invalid>ic
858    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
859    ///           0xD8, 0x00, 0x00, 0x69, 0x00, 0x63];
860    /// assert!(String::from_utf16be(v).is_err());
861    /// ```
862    #[cfg(not(no_global_oom_handling))]
863    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
864    pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error> {
865        if v.len() % 2 != 0 {
866            return Err(FromUtf16Error(()));
867        }
868        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
869            (true, ([], v, [])) => Self::from_utf16(v),
870            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_be_bytes))
871                .collect::<Result<_, _>>()
872                .map_err(|_| FromUtf16Error(())),
873        }
874    }
875
876    /// Decode a UTF-16BE–encoded slice `v` into a `String`, replacing
877    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
878    ///
879    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
880    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
881    /// conversion requires a memory allocation.
882    ///
883    /// [`from_utf8_lossy`]: String::from_utf8_lossy
884    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
885    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
886    ///
887    /// # Examples
888    ///
889    /// Basic usage:
890    ///
891    /// ```
892    /// #![feature(str_from_utf16_endian)]
893    /// // π„žmus<invalid>ic<invalid>
894    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
895    ///           0x00, 0x73, 0xDD, 0x1E, 0x00, 0x69, 0x00, 0x63,
896    ///           0xD8, 0x34];
897    ///
898    /// assert_eq!(String::from("π„žmus\u{FFFD}ic\u{FFFD}"),
899    ///            String::from_utf16be_lossy(v));
900    /// ```
901    #[cfg(not(no_global_oom_handling))]
902    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
903    pub fn from_utf16be_lossy(v: &[u8]) -> String {
904        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
905            (true, ([], v, [])) => Self::from_utf16_lossy(v),
906            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
907            _ => {
908                let mut iter = v.array_chunks::<2>();
909                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_be_bytes))
910                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
911                    .collect();
912                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
913            }
914        }
915    }
916
917    /// Decomposes a `String` into its raw components: `(pointer, length, capacity)`.
918    ///
919    /// Returns the raw pointer to the underlying data, the length of
920    /// the string (in bytes), and the allocated capacity of the data
921    /// (in bytes). These are the same arguments in the same order as
922    /// the arguments to [`from_raw_parts`].
923    ///
924    /// After calling this function, the caller is responsible for the
925    /// memory previously managed by the `String`. The only way to do
926    /// this is to convert the raw pointer, length, and capacity back
927    /// into a `String` with the [`from_raw_parts`] function, allowing
928    /// the destructor to perform the cleanup.
929    ///
930    /// [`from_raw_parts`]: String::from_raw_parts
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(vec_into_raw_parts)]
936    /// let s = String::from("hello");
937    ///
938    /// let (ptr, len, cap) = s.into_raw_parts();
939    ///
940    /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
941    /// assert_eq!(rebuilt, "hello");
942    /// ```
943    #[must_use = "losing the pointer will leak memory"]
944    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
945    pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
946        self.vec.into_raw_parts()
947    }
948
949    /// Creates a new `String` from a pointer, a length and a capacity.
950    ///
951    /// # Safety
952    ///
953    /// This is highly unsafe, due to the number of invariants that aren't
954    /// checked:
955    ///
956    /// * all safety requirements for [`Vec::<u8>::from_raw_parts`].
957    /// * all safety requirements for [`String::from_utf8_unchecked`].
958    ///
959    /// Violating these may cause problems like corrupting the allocator's
960    /// internal data structures. For example, it is normally **not** safe to
961    /// build a `String` from a pointer to a C `char` array containing UTF-8
962    /// _unless_ you are certain that array was originally allocated by the
963    /// Rust standard library's allocator.
964    ///
965    /// The ownership of `buf` is effectively transferred to the
966    /// `String` which may then deallocate, reallocate or change the
967    /// contents of memory pointed to by the pointer at will. Ensure
968    /// that nothing else uses the pointer after calling this
969    /// function.
970    ///
971    /// # Examples
972    ///
973    /// ```
974    /// use std::mem;
975    ///
976    /// unsafe {
977    ///     let s = String::from("hello");
978    ///
979    // FIXME Update this when vec_into_raw_parts is stabilized
980    ///     // Prevent automatically dropping the String's data
981    ///     let mut s = mem::ManuallyDrop::new(s);
982    ///
983    ///     let ptr = s.as_mut_ptr();
984    ///     let len = s.len();
985    ///     let capacity = s.capacity();
986    ///
987    ///     let s = String::from_raw_parts(ptr, len, capacity);
988    ///
989    ///     assert_eq!(String::from("hello"), s);
990    /// }
991    /// ```
992    #[inline]
993    #[stable(feature = "rust1", since = "1.0.0")]
994    pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
995        unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
996    }
997
998    /// Converts a vector of bytes to a `String` without checking that the
999    /// string contains valid UTF-8.
1000    ///
1001    /// See the safe version, [`from_utf8`], for more details.
1002    ///
1003    /// [`from_utf8`]: String::from_utf8
1004    ///
1005    /// # Safety
1006    ///
1007    /// This function is unsafe because it does not check that the bytes passed
1008    /// to it are valid UTF-8. If this constraint is violated, it may cause
1009    /// memory unsafety issues with future users of the `String`, as the rest of
1010    /// the standard library assumes that `String`s are valid UTF-8.
1011    ///
1012    /// # Examples
1013    ///
1014    /// ```
1015    /// // some bytes, in a vector
1016    /// let sparkle_heart = vec![240, 159, 146, 150];
1017    ///
1018    /// let sparkle_heart = unsafe {
1019    ///     String::from_utf8_unchecked(sparkle_heart)
1020    /// };
1021    ///
1022    /// assert_eq!("πŸ’–", sparkle_heart);
1023    /// ```
1024    #[inline]
1025    #[must_use]
1026    #[stable(feature = "rust1", since = "1.0.0")]
1027    pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
1028        String { vec: bytes }
1029    }
1030
1031    /// Converts a `String` into a byte vector.
1032    ///
1033    /// This consumes the `String`, so we do not need to copy its contents.
1034    ///
1035    /// # Examples
1036    ///
1037    /// ```
1038    /// let s = String::from("hello");
1039    /// let bytes = s.into_bytes();
1040    ///
1041    /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
1042    /// ```
1043    #[inline]
1044    #[must_use = "`self` will be dropped if the result is not used"]
1045    #[stable(feature = "rust1", since = "1.0.0")]
1046    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1047    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1048    pub const fn into_bytes(self) -> Vec<u8> {
1049        self.vec
1050    }
1051
1052    /// Extracts a string slice containing the entire `String`.
1053    ///
1054    /// # Examples
1055    ///
1056    /// ```
1057    /// let s = String::from("foo");
1058    ///
1059    /// assert_eq!("foo", s.as_str());
1060    /// ```
1061    #[inline]
1062    #[must_use]
1063    #[stable(feature = "string_as_str", since = "1.7.0")]
1064    #[rustc_diagnostic_item = "string_as_str"]
1065    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1066    pub const fn as_str(&self) -> &str {
1067        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1068        // at construction.
1069        unsafe { str::from_utf8_unchecked(self.vec.as_slice()) }
1070    }
1071
1072    /// Converts a `String` into a mutable string slice.
1073    ///
1074    /// # Examples
1075    ///
1076    /// ```
1077    /// let mut s = String::from("foobar");
1078    /// let s_mut_str = s.as_mut_str();
1079    ///
1080    /// s_mut_str.make_ascii_uppercase();
1081    ///
1082    /// assert_eq!("FOOBAR", s_mut_str);
1083    /// ```
1084    #[inline]
1085    #[must_use]
1086    #[stable(feature = "string_as_str", since = "1.7.0")]
1087    #[rustc_diagnostic_item = "string_as_mut_str"]
1088    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1089    pub const fn as_mut_str(&mut self) -> &mut str {
1090        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1091        // at construction.
1092        unsafe { str::from_utf8_unchecked_mut(self.vec.as_mut_slice()) }
1093    }
1094
1095    /// Appends a given string slice onto the end of this `String`.
1096    ///
1097    /// # Examples
1098    ///
1099    /// ```
1100    /// let mut s = String::from("foo");
1101    ///
1102    /// s.push_str("bar");
1103    ///
1104    /// assert_eq!("foobar", s);
1105    /// ```
1106    #[cfg(not(no_global_oom_handling))]
1107    #[inline]
1108    #[track_caller]
1109    #[stable(feature = "rust1", since = "1.0.0")]
1110    #[rustc_confusables("append", "push")]
1111    #[rustc_diagnostic_item = "string_push_str"]
1112    pub fn push_str(&mut self, string: &str) {
1113        self.vec.extend_from_slice(string.as_bytes())
1114    }
1115
1116    /// Copies elements from `src` range to the end of the string.
1117    ///
1118    /// # Panics
1119    ///
1120    /// Panics if the starting point or end point do not lie on a [`char`]
1121    /// boundary, or if they're out of bounds.
1122    ///
1123    /// # Examples
1124    ///
1125    /// ```
1126    /// let mut string = String::from("abcde");
1127    ///
1128    /// string.extend_from_within(2..);
1129    /// assert_eq!(string, "abcdecde");
1130    ///
1131    /// string.extend_from_within(..2);
1132    /// assert_eq!(string, "abcdecdeab");
1133    ///
1134    /// string.extend_from_within(4..8);
1135    /// assert_eq!(string, "abcdecdeabecde");
1136    /// ```
1137    #[cfg(not(no_global_oom_handling))]
1138    #[stable(feature = "string_extend_from_within", since = "1.87.0")]
1139    #[track_caller]
1140    pub fn extend_from_within<R>(&mut self, src: R)
1141    where
1142        R: RangeBounds<usize>,
1143    {
1144        let src @ Range { start, end } = slice::range(src, ..self.len());
1145
1146        assert!(self.is_char_boundary(start));
1147        assert!(self.is_char_boundary(end));
1148
1149        self.vec.extend_from_within(src);
1150    }
1151
1152    /// Returns this `String`'s capacity, in bytes.
1153    ///
1154    /// # Examples
1155    ///
1156    /// ```
1157    /// let s = String::with_capacity(10);
1158    ///
1159    /// assert!(s.capacity() >= 10);
1160    /// ```
1161    #[inline]
1162    #[must_use]
1163    #[stable(feature = "rust1", since = "1.0.0")]
1164    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1165    pub const fn capacity(&self) -> usize {
1166        self.vec.capacity()
1167    }
1168
1169    /// Reserves capacity for at least `additional` bytes more than the
1170    /// current length. The allocator may reserve more space to speculatively
1171    /// avoid frequent allocations. After calling `reserve`,
1172    /// capacity will be greater than or equal to `self.len() + additional`.
1173    /// Does nothing if capacity is already sufficient.
1174    ///
1175    /// # Panics
1176    ///
1177    /// Panics if the new capacity overflows [`usize`].
1178    ///
1179    /// # Examples
1180    ///
1181    /// Basic usage:
1182    ///
1183    /// ```
1184    /// let mut s = String::new();
1185    ///
1186    /// s.reserve(10);
1187    ///
1188    /// assert!(s.capacity() >= 10);
1189    /// ```
1190    ///
1191    /// This might not actually increase the capacity:
1192    ///
1193    /// ```
1194    /// let mut s = String::with_capacity(10);
1195    /// s.push('a');
1196    /// s.push('b');
1197    ///
1198    /// // s now has a length of 2 and a capacity of at least 10
1199    /// let capacity = s.capacity();
1200    /// assert_eq!(2, s.len());
1201    /// assert!(capacity >= 10);
1202    ///
1203    /// // Since we already have at least an extra 8 capacity, calling this...
1204    /// s.reserve(8);
1205    ///
1206    /// // ... doesn't actually increase.
1207    /// assert_eq!(capacity, s.capacity());
1208    /// ```
1209    #[cfg(not(no_global_oom_handling))]
1210    #[inline]
1211    #[track_caller]
1212    #[stable(feature = "rust1", since = "1.0.0")]
1213    pub fn reserve(&mut self, additional: usize) {
1214        self.vec.reserve(additional)
1215    }
1216
1217    /// Reserves the minimum capacity for at least `additional` bytes more than
1218    /// the current length. Unlike [`reserve`], this will not
1219    /// deliberately over-allocate to speculatively avoid frequent allocations.
1220    /// After calling `reserve_exact`, capacity will be greater than or equal to
1221    /// `self.len() + additional`. Does nothing if the capacity is already
1222    /// sufficient.
1223    ///
1224    /// [`reserve`]: String::reserve
1225    ///
1226    /// # Panics
1227    ///
1228    /// Panics if the new capacity overflows [`usize`].
1229    ///
1230    /// # Examples
1231    ///
1232    /// Basic usage:
1233    ///
1234    /// ```
1235    /// let mut s = String::new();
1236    ///
1237    /// s.reserve_exact(10);
1238    ///
1239    /// assert!(s.capacity() >= 10);
1240    /// ```
1241    ///
1242    /// This might not actually increase the capacity:
1243    ///
1244    /// ```
1245    /// let mut s = String::with_capacity(10);
1246    /// s.push('a');
1247    /// s.push('b');
1248    ///
1249    /// // s now has a length of 2 and a capacity of at least 10
1250    /// let capacity = s.capacity();
1251    /// assert_eq!(2, s.len());
1252    /// assert!(capacity >= 10);
1253    ///
1254    /// // Since we already have at least an extra 8 capacity, calling this...
1255    /// s.reserve_exact(8);
1256    ///
1257    /// // ... doesn't actually increase.
1258    /// assert_eq!(capacity, s.capacity());
1259    /// ```
1260    #[cfg(not(no_global_oom_handling))]
1261    #[inline]
1262    #[stable(feature = "rust1", since = "1.0.0")]
1263    #[track_caller]
1264    pub fn reserve_exact(&mut self, additional: usize) {
1265        self.vec.reserve_exact(additional)
1266    }
1267
1268    /// Tries to reserve capacity for at least `additional` bytes more than the
1269    /// current length. The allocator may reserve more space to speculatively
1270    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1271    /// greater than or equal to `self.len() + additional` if it returns
1272    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1273    /// preserves the contents even if an error occurs.
1274    ///
1275    /// # Errors
1276    ///
1277    /// If the capacity overflows, or the allocator reports a failure, then an error
1278    /// is returned.
1279    ///
1280    /// # Examples
1281    ///
1282    /// ```
1283    /// use std::collections::TryReserveError;
1284    ///
1285    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1286    ///     let mut output = String::new();
1287    ///
1288    ///     // Pre-reserve the memory, exiting if we can't
1289    ///     output.try_reserve(data.len())?;
1290    ///
1291    ///     // Now we know this can't OOM in the middle of our complex work
1292    ///     output.push_str(data);
1293    ///
1294    ///     Ok(output)
1295    /// }
1296    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1297    /// ```
1298    #[stable(feature = "try_reserve", since = "1.57.0")]
1299    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1300        self.vec.try_reserve(additional)
1301    }
1302
1303    /// Tries to reserve the minimum capacity for at least `additional` bytes
1304    /// more than the current length. Unlike [`try_reserve`], this will not
1305    /// deliberately over-allocate to speculatively avoid frequent allocations.
1306    /// After calling `try_reserve_exact`, capacity will be greater than or
1307    /// equal to `self.len() + additional` if it returns `Ok(())`.
1308    /// Does nothing if the capacity is already sufficient.
1309    ///
1310    /// Note that the allocator may give the collection more space than it
1311    /// requests. Therefore, capacity can not be relied upon to be precisely
1312    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1313    ///
1314    /// [`try_reserve`]: String::try_reserve
1315    ///
1316    /// # Errors
1317    ///
1318    /// If the capacity overflows, or the allocator reports a failure, then an error
1319    /// is returned.
1320    ///
1321    /// # Examples
1322    ///
1323    /// ```
1324    /// use std::collections::TryReserveError;
1325    ///
1326    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1327    ///     let mut output = String::new();
1328    ///
1329    ///     // Pre-reserve the memory, exiting if we can't
1330    ///     output.try_reserve_exact(data.len())?;
1331    ///
1332    ///     // Now we know this can't OOM in the middle of our complex work
1333    ///     output.push_str(data);
1334    ///
1335    ///     Ok(output)
1336    /// }
1337    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1338    /// ```
1339    #[stable(feature = "try_reserve", since = "1.57.0")]
1340    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1341        self.vec.try_reserve_exact(additional)
1342    }
1343
1344    /// Shrinks the capacity of this `String` to match its length.
1345    ///
1346    /// # Examples
1347    ///
1348    /// ```
1349    /// let mut s = String::from("foo");
1350    ///
1351    /// s.reserve(100);
1352    /// assert!(s.capacity() >= 100);
1353    ///
1354    /// s.shrink_to_fit();
1355    /// assert_eq!(3, s.capacity());
1356    /// ```
1357    #[cfg(not(no_global_oom_handling))]
1358    #[inline]
1359    #[track_caller]
1360    #[stable(feature = "rust1", since = "1.0.0")]
1361    pub fn shrink_to_fit(&mut self) {
1362        self.vec.shrink_to_fit()
1363    }
1364
1365    /// Shrinks the capacity of this `String` with a lower bound.
1366    ///
1367    /// The capacity will remain at least as large as both the length
1368    /// and the supplied value.
1369    ///
1370    /// If the current capacity is less than the lower limit, this is a no-op.
1371    ///
1372    /// # Examples
1373    ///
1374    /// ```
1375    /// let mut s = String::from("foo");
1376    ///
1377    /// s.reserve(100);
1378    /// assert!(s.capacity() >= 100);
1379    ///
1380    /// s.shrink_to(10);
1381    /// assert!(s.capacity() >= 10);
1382    /// s.shrink_to(0);
1383    /// assert!(s.capacity() >= 3);
1384    /// ```
1385    #[cfg(not(no_global_oom_handling))]
1386    #[inline]
1387    #[track_caller]
1388    #[stable(feature = "shrink_to", since = "1.56.0")]
1389    pub fn shrink_to(&mut self, min_capacity: usize) {
1390        self.vec.shrink_to(min_capacity)
1391    }
1392
1393    /// Appends the given [`char`] to the end of this `String`.
1394    ///
1395    /// # Examples
1396    ///
1397    /// ```
1398    /// let mut s = String::from("abc");
1399    ///
1400    /// s.push('1');
1401    /// s.push('2');
1402    /// s.push('3');
1403    ///
1404    /// assert_eq!("abc123", s);
1405    /// ```
1406    #[cfg(not(no_global_oom_handling))]
1407    #[inline]
1408    #[stable(feature = "rust1", since = "1.0.0")]
1409    #[track_caller]
1410    pub fn push(&mut self, ch: char) {
1411        let len = self.len();
1412        let ch_len = ch.len_utf8();
1413        self.reserve(ch_len);
1414
1415        // SAFETY: Just reserved capacity for at least the length needed to encode `ch`.
1416        unsafe {
1417            core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(self.len()));
1418            self.vec.set_len(len + ch_len);
1419        }
1420    }
1421
1422    /// Returns a byte slice of this `String`'s contents.
1423    ///
1424    /// The inverse of this method is [`from_utf8`].
1425    ///
1426    /// [`from_utf8`]: String::from_utf8
1427    ///
1428    /// # Examples
1429    ///
1430    /// ```
1431    /// let s = String::from("hello");
1432    ///
1433    /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
1434    /// ```
1435    #[inline]
1436    #[must_use]
1437    #[stable(feature = "rust1", since = "1.0.0")]
1438    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1439    pub const fn as_bytes(&self) -> &[u8] {
1440        self.vec.as_slice()
1441    }
1442
1443    /// Shortens this `String` to the specified length.
1444    ///
1445    /// If `new_len` is greater than or equal to the string's current length, this has no
1446    /// effect.
1447    ///
1448    /// Note that this method has no effect on the allocated capacity
1449    /// of the string
1450    ///
1451    /// # Panics
1452    ///
1453    /// Panics if `new_len` does not lie on a [`char`] boundary.
1454    ///
1455    /// # Examples
1456    ///
1457    /// ```
1458    /// let mut s = String::from("hello");
1459    ///
1460    /// s.truncate(2);
1461    ///
1462    /// assert_eq!("he", s);
1463    /// ```
1464    #[inline]
1465    #[stable(feature = "rust1", since = "1.0.0")]
1466    #[track_caller]
1467    pub fn truncate(&mut self, new_len: usize) {
1468        if new_len <= self.len() {
1469            assert!(self.is_char_boundary(new_len));
1470            self.vec.truncate(new_len)
1471        }
1472    }
1473
1474    /// Removes the last character from the string buffer and returns it.
1475    ///
1476    /// Returns [`None`] if this `String` is empty.
1477    ///
1478    /// # Examples
1479    ///
1480    /// ```
1481    /// let mut s = String::from("abč");
1482    ///
1483    /// assert_eq!(s.pop(), Some('č'));
1484    /// assert_eq!(s.pop(), Some('b'));
1485    /// assert_eq!(s.pop(), Some('a'));
1486    ///
1487    /// assert_eq!(s.pop(), None);
1488    /// ```
1489    #[inline]
1490    #[stable(feature = "rust1", since = "1.0.0")]
1491    pub fn pop(&mut self) -> Option<char> {
1492        let ch = self.chars().rev().next()?;
1493        let newlen = self.len() - ch.len_utf8();
1494        unsafe {
1495            self.vec.set_len(newlen);
1496        }
1497        Some(ch)
1498    }
1499
1500    /// Removes a [`char`] from this `String` at byte position `idx` and returns it.
1501    ///
1502    /// Copies all bytes after the removed char to new positions.
1503    ///
1504    /// Note that calling this in a loop can result in quadratic behavior.
1505    ///
1506    /// # Panics
1507    ///
1508    /// Panics if `idx` is larger than or equal to the `String`'s length,
1509    /// or if it does not lie on a [`char`] boundary.
1510    ///
1511    /// # Examples
1512    ///
1513    /// ```
1514    /// let mut s = String::from("abΓ§");
1515    ///
1516    /// assert_eq!(s.remove(0), 'a');
1517    /// assert_eq!(s.remove(1), 'Γ§');
1518    /// assert_eq!(s.remove(0), 'b');
1519    /// ```
1520    #[inline]
1521    #[stable(feature = "rust1", since = "1.0.0")]
1522    #[track_caller]
1523    #[rustc_confusables("delete", "take")]
1524    pub fn remove(&mut self, idx: usize) -> char {
1525        let ch = match self[idx..].chars().next() {
1526            Some(ch) => ch,
1527            None => panic!("cannot remove a char from the end of a string"),
1528        };
1529
1530        let next = idx + ch.len_utf8();
1531        let len = self.len();
1532        unsafe {
1533            ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
1534            self.vec.set_len(len - (next - idx));
1535        }
1536        ch
1537    }
1538
1539    /// Remove all matches of pattern `pat` in the `String`.
1540    ///
1541    /// # Examples
1542    ///
1543    /// ```
1544    /// #![feature(string_remove_matches)]
1545    /// let mut s = String::from("Trees are not green, the sky is not blue.");
1546    /// s.remove_matches("not ");
1547    /// assert_eq!("Trees are green, the sky is blue.", s);
1548    /// ```
1549    ///
1550    /// Matches will be detected and removed iteratively, so in cases where
1551    /// patterns overlap, only the first pattern will be removed:
1552    ///
1553    /// ```
1554    /// #![feature(string_remove_matches)]
1555    /// let mut s = String::from("banana");
1556    /// s.remove_matches("ana");
1557    /// assert_eq!("bna", s);
1558    /// ```
1559    #[cfg(not(no_global_oom_handling))]
1560    #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
1561    pub fn remove_matches<P: Pattern>(&mut self, pat: P) {
1562        use core::str::pattern::Searcher;
1563
1564        let rejections = {
1565            let mut searcher = pat.into_searcher(self);
1566            // Per Searcher::next:
1567            //
1568            // A Match result needs to contain the whole matched pattern,
1569            // however Reject results may be split up into arbitrary many
1570            // adjacent fragments. Both ranges may have zero length.
1571            //
1572            // In practice the implementation of Searcher::next_match tends to
1573            // be more efficient, so we use it here and do some work to invert
1574            // matches into rejections since that's what we want to copy below.
1575            let mut front = 0;
1576            let rejections: Vec<_> = from_fn(|| {
1577                let (start, end) = searcher.next_match()?;
1578                let prev_front = front;
1579                front = end;
1580                Some((prev_front, start))
1581            })
1582            .collect();
1583            rejections.into_iter().chain(core::iter::once((front, self.len())))
1584        };
1585
1586        let mut len = 0;
1587        let ptr = self.vec.as_mut_ptr();
1588
1589        for (start, end) in rejections {
1590            let count = end - start;
1591            if start != len {
1592                // SAFETY: per Searcher::next:
1593                //
1594                // The stream of Match and Reject values up to a Done will
1595                // contain index ranges that are adjacent, non-overlapping,
1596                // covering the whole haystack, and laying on utf8
1597                // boundaries.
1598                unsafe {
1599                    ptr::copy(ptr.add(start), ptr.add(len), count);
1600                }
1601            }
1602            len += count;
1603        }
1604
1605        unsafe {
1606            self.vec.set_len(len);
1607        }
1608    }
1609
1610    /// Retains only the characters specified by the predicate.
1611    ///
1612    /// In other words, remove all characters `c` such that `f(c)` returns `false`.
1613    /// This method operates in place, visiting each character exactly once in the
1614    /// original order, and preserves the order of the retained characters.
1615    ///
1616    /// # Examples
1617    ///
1618    /// ```
1619    /// let mut s = String::from("f_o_ob_ar");
1620    ///
1621    /// s.retain(|c| c != '_');
1622    ///
1623    /// assert_eq!(s, "foobar");
1624    /// ```
1625    ///
1626    /// Because the elements are visited exactly once in the original order,
1627    /// external state may be used to decide which elements to keep.
1628    ///
1629    /// ```
1630    /// let mut s = String::from("abcde");
1631    /// let keep = [false, true, true, false, true];
1632    /// let mut iter = keep.iter();
1633    /// s.retain(|_| *iter.next().unwrap());
1634    /// assert_eq!(s, "bce");
1635    /// ```
1636    #[inline]
1637    #[stable(feature = "string_retain", since = "1.26.0")]
1638    pub fn retain<F>(&mut self, mut f: F)
1639    where
1640        F: FnMut(char) -> bool,
1641    {
1642        struct SetLenOnDrop<'a> {
1643            s: &'a mut String,
1644            idx: usize,
1645            del_bytes: usize,
1646        }
1647
1648        impl<'a> Drop for SetLenOnDrop<'a> {
1649            fn drop(&mut self) {
1650                let new_len = self.idx - self.del_bytes;
1651                debug_assert!(new_len <= self.s.len());
1652                unsafe { self.s.vec.set_len(new_len) };
1653            }
1654        }
1655
1656        let len = self.len();
1657        let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
1658
1659        while guard.idx < len {
1660            let ch =
1661                // SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
1662                // is in bound. `self` is valid UTF-8 like string and the returned slice starts at
1663                // a unicode code point so the `Chars` always return one character.
1664                unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
1665            let ch_len = ch.len_utf8();
1666
1667            if !f(ch) {
1668                guard.del_bytes += ch_len;
1669            } else if guard.del_bytes > 0 {
1670                // SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
1671                // bytes that are erased from the string so the resulting `guard.idx -
1672                // guard.del_bytes` always represent a valid unicode code point.
1673                //
1674                // `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
1675                // is safe.
1676                ch.encode_utf8(unsafe {
1677                    crate::slice::from_raw_parts_mut(
1678                        guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
1679                        ch.len_utf8(),
1680                    )
1681                });
1682            }
1683
1684            // Point idx to the next char
1685            guard.idx += ch_len;
1686        }
1687
1688        drop(guard);
1689    }
1690
1691    /// Inserts a character into this `String` at byte position `idx`.
1692    ///
1693    /// Reallocates if `self.capacity()` is insufficient, which may involve copying all
1694    /// `self.capacity()` bytes. Makes space for the insertion by copying all bytes of
1695    /// `&self[idx..]` to new positions.
1696    ///
1697    /// Note that calling this in a loop can result in quadratic behavior.
1698    ///
1699    /// # Panics
1700    ///
1701    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1702    /// lie on a [`char`] boundary.
1703    ///
1704    /// # Examples
1705    ///
1706    /// ```
1707    /// let mut s = String::with_capacity(3);
1708    ///
1709    /// s.insert(0, 'f');
1710    /// s.insert(1, 'o');
1711    /// s.insert(2, 'o');
1712    ///
1713    /// assert_eq!("foo", s);
1714    /// ```
1715    #[cfg(not(no_global_oom_handling))]
1716    #[inline]
1717    #[track_caller]
1718    #[stable(feature = "rust1", since = "1.0.0")]
1719    #[rustc_confusables("set")]
1720    pub fn insert(&mut self, idx: usize, ch: char) {
1721        assert!(self.is_char_boundary(idx));
1722
1723        let len = self.len();
1724        let ch_len = ch.len_utf8();
1725        self.reserve(ch_len);
1726
1727        // SAFETY: Move the bytes starting from `idx` to their new location `ch_len`
1728        // bytes ahead. This is safe because sufficient capacity was reserved, and `idx`
1729        // is a char boundary.
1730        unsafe {
1731            ptr::copy(
1732                self.vec.as_ptr().add(idx),
1733                self.vec.as_mut_ptr().add(idx + ch_len),
1734                len - idx,
1735            );
1736        }
1737
1738        // SAFETY: Encode the character into the vacated region if `idx != len`,
1739        // or into the uninitialized spare capacity otherwise.
1740        unsafe {
1741            core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(idx));
1742        }
1743
1744        // SAFETY: Update the length to include the newly added bytes.
1745        unsafe {
1746            self.vec.set_len(len + ch_len);
1747        }
1748    }
1749
1750    /// Inserts a string slice into this `String` at byte position `idx`.
1751    ///
1752    /// Reallocates if `self.capacity()` is insufficient, which may involve copying all
1753    /// `self.capacity()` bytes. Makes space for the insertion by copying all bytes of
1754    /// `&self[idx..]` to new positions.
1755    ///
1756    /// Note that calling this in a loop can result in quadratic behavior.
1757    ///
1758    /// # Panics
1759    ///
1760    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1761    /// lie on a [`char`] boundary.
1762    ///
1763    /// # Examples
1764    ///
1765    /// ```
1766    /// let mut s = String::from("bar");
1767    ///
1768    /// s.insert_str(0, "foo");
1769    ///
1770    /// assert_eq!("foobar", s);
1771    /// ```
1772    #[cfg(not(no_global_oom_handling))]
1773    #[inline]
1774    #[track_caller]
1775    #[stable(feature = "insert_str", since = "1.16.0")]
1776    #[rustc_diagnostic_item = "string_insert_str"]
1777    pub fn insert_str(&mut self, idx: usize, string: &str) {
1778        assert!(self.is_char_boundary(idx));
1779
1780        let len = self.len();
1781        let amt = string.len();
1782        self.reserve(amt);
1783
1784        // SAFETY: Move the bytes starting from `idx` to their new location `amt` bytes
1785        // ahead. This is safe because sufficient capacity was just reserved, and `idx`
1786        // is a char boundary.
1787        unsafe {
1788            ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
1789        }
1790
1791        // SAFETY: Copy the new string slice into the vacated region if `idx != len`,
1792        // or into the uninitialized spare capacity otherwise. The borrow checker
1793        // ensures that the source and destination do not overlap.
1794        unsafe {
1795            ptr::copy_nonoverlapping(string.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
1796        }
1797
1798        // SAFETY: Update the length to include the newly added bytes.
1799        unsafe {
1800            self.vec.set_len(len + amt);
1801        }
1802    }
1803
1804    /// Returns a mutable reference to the contents of this `String`.
1805    ///
1806    /// # Safety
1807    ///
1808    /// This function is unsafe because the returned `&mut Vec` allows writing
1809    /// bytes which are not valid UTF-8. If this constraint is violated, using
1810    /// the original `String` after dropping the `&mut Vec` may violate memory
1811    /// safety, as the rest of the standard library assumes that `String`s are
1812    /// valid UTF-8.
1813    ///
1814    /// # Examples
1815    ///
1816    /// ```
1817    /// let mut s = String::from("hello");
1818    ///
1819    /// unsafe {
1820    ///     let vec = s.as_mut_vec();
1821    ///     assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1822    ///
1823    ///     vec.reverse();
1824    /// }
1825    /// assert_eq!(s, "olleh");
1826    /// ```
1827    #[inline]
1828    #[stable(feature = "rust1", since = "1.0.0")]
1829    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1830    pub const unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1831        &mut self.vec
1832    }
1833
1834    /// Returns the length of this `String`, in bytes, not [`char`]s or
1835    /// graphemes. In other words, it might not be what a human considers the
1836    /// length of the string.
1837    ///
1838    /// # Examples
1839    ///
1840    /// ```
1841    /// let a = String::from("foo");
1842    /// assert_eq!(a.len(), 3);
1843    ///
1844    /// let fancy_f = String::from("Ζ’oo");
1845    /// assert_eq!(fancy_f.len(), 4);
1846    /// assert_eq!(fancy_f.chars().count(), 3);
1847    /// ```
1848    #[inline]
1849    #[must_use]
1850    #[stable(feature = "rust1", since = "1.0.0")]
1851    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1852    #[rustc_confusables("length", "size")]
1853    #[rustc_no_implicit_autorefs]
1854    pub const fn len(&self) -> usize {
1855        self.vec.len()
1856    }
1857
1858    /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
1859    ///
1860    /// # Examples
1861    ///
1862    /// ```
1863    /// let mut v = String::new();
1864    /// assert!(v.is_empty());
1865    ///
1866    /// v.push('a');
1867    /// assert!(!v.is_empty());
1868    /// ```
1869    #[inline]
1870    #[must_use]
1871    #[stable(feature = "rust1", since = "1.0.0")]
1872    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1873    #[rustc_no_implicit_autorefs]
1874    pub const fn is_empty(&self) -> bool {
1875        self.len() == 0
1876    }
1877
1878    /// Splits the string into two at the given byte index.
1879    ///
1880    /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
1881    /// the returned `String` contains bytes `[at, len)`. `at` must be on the
1882    /// boundary of a UTF-8 code point.
1883    ///
1884    /// Note that the capacity of `self` does not change.
1885    ///
1886    /// # Panics
1887    ///
1888    /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
1889    /// code point of the string.
1890    ///
1891    /// # Examples
1892    ///
1893    /// ```
1894    /// # fn main() {
1895    /// let mut hello = String::from("Hello, World!");
1896    /// let world = hello.split_off(7);
1897    /// assert_eq!(hello, "Hello, ");
1898    /// assert_eq!(world, "World!");
1899    /// # }
1900    /// ```
1901    #[cfg(not(no_global_oom_handling))]
1902    #[inline]
1903    #[track_caller]
1904    #[stable(feature = "string_split_off", since = "1.16.0")]
1905    #[must_use = "use `.truncate()` if you don't need the other half"]
1906    pub fn split_off(&mut self, at: usize) -> String {
1907        assert!(self.is_char_boundary(at));
1908        let other = self.vec.split_off(at);
1909        unsafe { String::from_utf8_unchecked(other) }
1910    }
1911
1912    /// Truncates this `String`, removing all contents.
1913    ///
1914    /// While this means the `String` will have a length of zero, it does not
1915    /// touch its capacity.
1916    ///
1917    /// # Examples
1918    ///
1919    /// ```
1920    /// let mut s = String::from("foo");
1921    ///
1922    /// s.clear();
1923    ///
1924    /// assert!(s.is_empty());
1925    /// assert_eq!(0, s.len());
1926    /// assert_eq!(3, s.capacity());
1927    /// ```
1928    #[inline]
1929    #[stable(feature = "rust1", since = "1.0.0")]
1930    pub fn clear(&mut self) {
1931        self.vec.clear()
1932    }
1933
1934    /// Removes the specified range from the string in bulk, returning all
1935    /// removed characters as an iterator.
1936    ///
1937    /// The returned iterator keeps a mutable borrow on the string to optimize
1938    /// its implementation.
1939    ///
1940    /// # Panics
1941    ///
1942    /// Panics if the starting point or end point do not lie on a [`char`]
1943    /// boundary, or if they're out of bounds.
1944    ///
1945    /// # Leaking
1946    ///
1947    /// If the returned iterator goes out of scope without being dropped (due to
1948    /// [`core::mem::forget`], for example), the string may still contain a copy
1949    /// of any drained characters, or may have lost characters arbitrarily,
1950    /// including characters outside the range.
1951    ///
1952    /// # Examples
1953    ///
1954    /// ```
1955    /// let mut s = String::from("Ξ± is alpha, Ξ² is beta");
1956    /// let beta_offset = s.find('Ξ²').unwrap_or(s.len());
1957    ///
1958    /// // Remove the range up until the Ξ² from the string
1959    /// let t: String = s.drain(..beta_offset).collect();
1960    /// assert_eq!(t, "Ξ± is alpha, ");
1961    /// assert_eq!(s, "Ξ² is beta");
1962    ///
1963    /// // A full range clears the string, like `clear()` does
1964    /// s.drain(..);
1965    /// assert_eq!(s, "");
1966    /// ```
1967    #[stable(feature = "drain", since = "1.6.0")]
1968    #[track_caller]
1969    pub fn drain<R>(&mut self, range: R) -> Drain<'_>
1970    where
1971        R: RangeBounds<usize>,
1972    {
1973        // Memory safety
1974        //
1975        // The String version of Drain does not have the memory safety issues
1976        // of the vector version. The data is just plain bytes.
1977        // Because the range removal happens in Drop, if the Drain iterator is leaked,
1978        // the removal will not happen.
1979        let Range { start, end } = slice::range(range, ..self.len());
1980        assert!(self.is_char_boundary(start));
1981        assert!(self.is_char_boundary(end));
1982
1983        // Take out two simultaneous borrows. The &mut String won't be accessed
1984        // until iteration is over, in Drop.
1985        let self_ptr = self as *mut _;
1986        // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
1987        let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
1988
1989        Drain { start, end, iter: chars_iter, string: self_ptr }
1990    }
1991
1992    /// Converts a `String` into an iterator over the [`char`]s of the string.
1993    ///
1994    /// As a string consists of valid UTF-8, we can iterate through a string
1995    /// by [`char`]. This method returns such an iterator.
1996    ///
1997    /// It's important to remember that [`char`] represents a Unicode Scalar
1998    /// Value, and might not match your idea of what a 'character' is. Iteration
1999    /// over grapheme clusters may be what you actually want. That functionality
2000    /// is not provided by Rust's standard library, check crates.io instead.
2001    ///
2002    /// # Examples
2003    ///
2004    /// Basic usage:
2005    ///
2006    /// ```
2007    /// #![feature(string_into_chars)]
2008    ///
2009    /// let word = String::from("goodbye");
2010    ///
2011    /// let mut chars = word.into_chars();
2012    ///
2013    /// assert_eq!(Some('g'), chars.next());
2014    /// assert_eq!(Some('o'), chars.next());
2015    /// assert_eq!(Some('o'), chars.next());
2016    /// assert_eq!(Some('d'), chars.next());
2017    /// assert_eq!(Some('b'), chars.next());
2018    /// assert_eq!(Some('y'), chars.next());
2019    /// assert_eq!(Some('e'), chars.next());
2020    ///
2021    /// assert_eq!(None, chars.next());
2022    /// ```
2023    ///
2024    /// Remember, [`char`]s might not match your intuition about characters:
2025    ///
2026    /// ```
2027    /// #![feature(string_into_chars)]
2028    ///
2029    /// let y = String::from("y̆");
2030    ///
2031    /// let mut chars = y.into_chars();
2032    ///
2033    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
2034    /// assert_eq!(Some('\u{0306}'), chars.next());
2035    ///
2036    /// assert_eq!(None, chars.next());
2037    /// ```
2038    ///
2039    /// [`char`]: prim@char
2040    #[inline]
2041    #[must_use = "`self` will be dropped if the result is not used"]
2042    #[unstable(feature = "string_into_chars", issue = "133125")]
2043    pub fn into_chars(self) -> IntoChars {
2044        IntoChars { bytes: self.into_bytes().into_iter() }
2045    }
2046
2047    /// Removes the specified range in the string,
2048    /// and replaces it with the given string.
2049    /// The given string doesn't need to be the same length as the range.
2050    ///
2051    /// # Panics
2052    ///
2053    /// Panics if the starting point or end point do not lie on a [`char`]
2054    /// boundary, or if they're out of bounds.
2055    ///
2056    /// # Examples
2057    ///
2058    /// ```
2059    /// let mut s = String::from("Ξ± is alpha, Ξ² is beta");
2060    /// let beta_offset = s.find('Ξ²').unwrap_or(s.len());
2061    ///
2062    /// // Replace the range up until the Ξ² from the string
2063    /// s.replace_range(..beta_offset, "Ξ‘ is capital alpha; ");
2064    /// assert_eq!(s, "Ξ‘ is capital alpha; Ξ² is beta");
2065    /// ```
2066    #[cfg(not(no_global_oom_handling))]
2067    #[stable(feature = "splice", since = "1.27.0")]
2068    #[track_caller]
2069    pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
2070    where
2071        R: RangeBounds<usize>,
2072    {
2073        // Memory safety
2074        //
2075        // Replace_range does not have the memory safety issues of a vector Splice.
2076        // of the vector version. The data is just plain bytes.
2077
2078        // WARNING: Inlining this variable would be unsound (#81138)
2079        let start = range.start_bound();
2080        match start {
2081            Included(&n) => assert!(self.is_char_boundary(n)),
2082            Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
2083            Unbounded => {}
2084        };
2085        // WARNING: Inlining this variable would be unsound (#81138)
2086        let end = range.end_bound();
2087        match end {
2088            Included(&n) => assert!(self.is_char_boundary(n + 1)),
2089            Excluded(&n) => assert!(self.is_char_boundary(n)),
2090            Unbounded => {}
2091        };
2092
2093        // Using `range` again would be unsound (#81138)
2094        // We assume the bounds reported by `range` remain the same, but
2095        // an adversarial implementation could change between calls
2096        unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
2097    }
2098
2099    /// Converts this `String` into a <code>[Box]<[str]></code>.
2100    ///
2101    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
2102    /// Note that this call may reallocate and copy the bytes of the string.
2103    ///
2104    /// [`shrink_to_fit`]: String::shrink_to_fit
2105    /// [str]: prim@str "str"
2106    ///
2107    /// # Examples
2108    ///
2109    /// ```
2110    /// let s = String::from("hello");
2111    ///
2112    /// let b = s.into_boxed_str();
2113    /// ```
2114    #[cfg(not(no_global_oom_handling))]
2115    #[stable(feature = "box_str", since = "1.4.0")]
2116    #[must_use = "`self` will be dropped if the result is not used"]
2117    #[inline]
2118    #[track_caller]
2119    pub fn into_boxed_str(self) -> Box<str> {
2120        let slice = self.vec.into_boxed_slice();
2121        unsafe { from_boxed_utf8_unchecked(slice) }
2122    }
2123
2124    /// Consumes and leaks the `String`, returning a mutable reference to the contents,
2125    /// `&'a mut str`.
2126    ///
2127    /// The caller has free choice over the returned lifetime, including `'static`. Indeed,
2128    /// this function is ideally used for data that lives for the remainder of the program's life,
2129    /// as dropping the returned reference will cause a memory leak.
2130    ///
2131    /// It does not reallocate or shrink the `String`, so the leaked allocation may include unused
2132    /// capacity that is not part of the returned slice. If you want to discard excess capacity,
2133    /// call [`into_boxed_str`], and then [`Box::leak`] instead. However, keep in mind that
2134    /// trimming the capacity may result in a reallocation and copy.
2135    ///
2136    /// [`into_boxed_str`]: Self::into_boxed_str
2137    ///
2138    /// # Examples
2139    ///
2140    /// ```
2141    /// let x = String::from("bucket");
2142    /// let static_ref: &'static mut str = x.leak();
2143    /// assert_eq!(static_ref, "bucket");
2144    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2145    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2146    /// # drop(unsafe { Box::from_raw(static_ref) });
2147    /// ```
2148    #[stable(feature = "string_leak", since = "1.72.0")]
2149    #[inline]
2150    pub fn leak<'a>(self) -> &'a mut str {
2151        let slice = self.vec.leak();
2152        unsafe { from_utf8_unchecked_mut(slice) }
2153    }
2154}
2155
2156impl FromUtf8Error {
2157    /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
2158    ///
2159    /// # Examples
2160    ///
2161    /// ```
2162    /// // some invalid bytes, in a vector
2163    /// let bytes = vec![0, 159];
2164    ///
2165    /// let value = String::from_utf8(bytes);
2166    ///
2167    /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
2168    /// ```
2169    #[must_use]
2170    #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
2171    pub fn as_bytes(&self) -> &[u8] {
2172        &self.bytes[..]
2173    }
2174
2175    /// Converts the bytes into a `String` lossily, substituting invalid UTF-8
2176    /// sequences with replacement characters.
2177    ///
2178    /// See [`String::from_utf8_lossy`] for more details on replacement of
2179    /// invalid sequences, and [`String::from_utf8_lossy_owned`] for the
2180    /// `String` function which corresponds to this function.
2181    ///
2182    /// # Examples
2183    ///
2184    /// ```
2185    /// #![feature(string_from_utf8_lossy_owned)]
2186    /// // some invalid bytes
2187    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
2188    /// let output = String::from_utf8(input).unwrap_or_else(|e| e.into_utf8_lossy());
2189    ///
2190    /// assert_eq!(String::from("Hello οΏ½World"), output);
2191    /// ```
2192    #[must_use]
2193    #[cfg(not(no_global_oom_handling))]
2194    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
2195    pub fn into_utf8_lossy(self) -> String {
2196        const REPLACEMENT: &str = "\u{FFFD}";
2197
2198        let mut res = {
2199            let mut v = Vec::with_capacity(self.bytes.len());
2200
2201            // `Utf8Error::valid_up_to` returns the maximum index of validated
2202            // UTF-8 bytes. Copy the valid bytes into the output buffer.
2203            v.extend_from_slice(&self.bytes[..self.error.valid_up_to()]);
2204
2205            // SAFETY: This is safe because the only bytes present in the buffer
2206            // were validated as UTF-8 by the call to `String::from_utf8` which
2207            // produced this `FromUtf8Error`.
2208            unsafe { String::from_utf8_unchecked(v) }
2209        };
2210
2211        let iter = self.bytes[self.error.valid_up_to()..].utf8_chunks();
2212
2213        for chunk in iter {
2214            res.push_str(chunk.valid());
2215            if !chunk.invalid().is_empty() {
2216                res.push_str(REPLACEMENT);
2217            }
2218        }
2219
2220        res
2221    }
2222
2223    /// Returns the bytes that were attempted to convert to a `String`.
2224    ///
2225    /// This method is carefully constructed to avoid allocation. It will
2226    /// consume the error, moving out the bytes, so that a copy of the bytes
2227    /// does not need to be made.
2228    ///
2229    /// # Examples
2230    ///
2231    /// ```
2232    /// // some invalid bytes, in a vector
2233    /// let bytes = vec![0, 159];
2234    ///
2235    /// let value = String::from_utf8(bytes);
2236    ///
2237    /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
2238    /// ```
2239    #[must_use = "`self` will be dropped if the result is not used"]
2240    #[stable(feature = "rust1", since = "1.0.0")]
2241    pub fn into_bytes(self) -> Vec<u8> {
2242        self.bytes
2243    }
2244
2245    /// Fetch a `Utf8Error` to get more details about the conversion failure.
2246    ///
2247    /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
2248    /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
2249    /// an analogue to `FromUtf8Error`. See its documentation for more details
2250    /// on using it.
2251    ///
2252    /// [`std::str`]: core::str "std::str"
2253    /// [`&str`]: prim@str "&str"
2254    ///
2255    /// # Examples
2256    ///
2257    /// ```
2258    /// // some invalid bytes, in a vector
2259    /// let bytes = vec![0, 159];
2260    ///
2261    /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
2262    ///
2263    /// // the first byte is invalid here
2264    /// assert_eq!(1, error.valid_up_to());
2265    /// ```
2266    #[must_use]
2267    #[stable(feature = "rust1", since = "1.0.0")]
2268    pub fn utf8_error(&self) -> Utf8Error {
2269        self.error
2270    }
2271}
2272
2273#[stable(feature = "rust1", since = "1.0.0")]
2274impl fmt::Display for FromUtf8Error {
2275    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2276        fmt::Display::fmt(&self.error, f)
2277    }
2278}
2279
2280#[stable(feature = "rust1", since = "1.0.0")]
2281impl fmt::Display for FromUtf16Error {
2282    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2283        fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
2284    }
2285}
2286
2287#[stable(feature = "rust1", since = "1.0.0")]
2288impl Error for FromUtf8Error {
2289    #[allow(deprecated)]
2290    fn description(&self) -> &str {
2291        "invalid utf-8"
2292    }
2293}
2294
2295#[stable(feature = "rust1", since = "1.0.0")]
2296impl Error for FromUtf16Error {
2297    #[allow(deprecated)]
2298    fn description(&self) -> &str {
2299        "invalid utf-16"
2300    }
2301}
2302
2303#[cfg(not(no_global_oom_handling))]
2304#[stable(feature = "rust1", since = "1.0.0")]
2305impl Clone for String {
2306    #[track_caller]
2307    fn clone(&self) -> Self {
2308        String { vec: self.vec.clone() }
2309    }
2310
2311    /// Clones the contents of `source` into `self`.
2312    ///
2313    /// This method is preferred over simply assigning `source.clone()` to `self`,
2314    /// as it avoids reallocation if possible.
2315    #[track_caller]
2316    fn clone_from(&mut self, source: &Self) {
2317        self.vec.clone_from(&source.vec);
2318    }
2319}
2320
2321#[cfg(not(no_global_oom_handling))]
2322#[stable(feature = "rust1", since = "1.0.0")]
2323impl FromIterator<char> for String {
2324    fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
2325        let mut buf = String::new();
2326        buf.extend(iter);
2327        buf
2328    }
2329}
2330
2331#[cfg(not(no_global_oom_handling))]
2332#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
2333impl<'a> FromIterator<&'a char> for String {
2334    fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
2335        let mut buf = String::new();
2336        buf.extend(iter);
2337        buf
2338    }
2339}
2340
2341#[cfg(not(no_global_oom_handling))]
2342#[stable(feature = "rust1", since = "1.0.0")]
2343impl<'a> FromIterator<&'a str> for String {
2344    fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
2345        let mut buf = String::new();
2346        buf.extend(iter);
2347        buf
2348    }
2349}
2350
2351#[cfg(not(no_global_oom_handling))]
2352#[stable(feature = "extend_string", since = "1.4.0")]
2353impl FromIterator<String> for String {
2354    fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
2355        let mut iterator = iter.into_iter();
2356
2357        // Because we're iterating over `String`s, we can avoid at least
2358        // one allocation by getting the first string from the iterator
2359        // and appending to it all the subsequent strings.
2360        match iterator.next() {
2361            None => String::new(),
2362            Some(mut buf) => {
2363                buf.extend(iterator);
2364                buf
2365            }
2366        }
2367    }
2368}
2369
2370#[cfg(not(no_global_oom_handling))]
2371#[stable(feature = "box_str2", since = "1.45.0")]
2372impl<A: Allocator> FromIterator<Box<str, A>> for String {
2373    fn from_iter<I: IntoIterator<Item = Box<str, A>>>(iter: I) -> String {
2374        let mut buf = String::new();
2375        buf.extend(iter);
2376        buf
2377    }
2378}
2379
2380#[cfg(not(no_global_oom_handling))]
2381#[stable(feature = "herd_cows", since = "1.19.0")]
2382impl<'a> FromIterator<Cow<'a, str>> for String {
2383    fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
2384        let mut iterator = iter.into_iter();
2385
2386        // Because we're iterating over CoWs, we can (potentially) avoid at least
2387        // one allocation by getting the first item and appending to it all the
2388        // subsequent items.
2389        match iterator.next() {
2390            None => String::new(),
2391            Some(cow) => {
2392                let mut buf = cow.into_owned();
2393                buf.extend(iterator);
2394                buf
2395            }
2396        }
2397    }
2398}
2399
2400#[cfg(not(no_global_oom_handling))]
2401#[stable(feature = "rust1", since = "1.0.0")]
2402impl Extend<char> for String {
2403    fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
2404        let iterator = iter.into_iter();
2405        let (lower_bound, _) = iterator.size_hint();
2406        self.reserve(lower_bound);
2407        iterator.for_each(move |c| self.push(c));
2408    }
2409
2410    #[inline]
2411    fn extend_one(&mut self, c: char) {
2412        self.push(c);
2413    }
2414
2415    #[inline]
2416    fn extend_reserve(&mut self, additional: usize) {
2417        self.reserve(additional);
2418    }
2419}
2420
2421#[cfg(not(no_global_oom_handling))]
2422#[stable(feature = "extend_ref", since = "1.2.0")]
2423impl<'a> Extend<&'a char> for String {
2424    fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
2425        self.extend(iter.into_iter().cloned());
2426    }
2427
2428    #[inline]
2429    fn extend_one(&mut self, &c: &'a char) {
2430        self.push(c);
2431    }
2432
2433    #[inline]
2434    fn extend_reserve(&mut self, additional: usize) {
2435        self.reserve(additional);
2436    }
2437}
2438
2439#[cfg(not(no_global_oom_handling))]
2440#[stable(feature = "rust1", since = "1.0.0")]
2441impl<'a> Extend<&'a str> for String {
2442    fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
2443        iter.into_iter().for_each(move |s| self.push_str(s));
2444    }
2445
2446    #[inline]
2447    fn extend_one(&mut self, s: &'a str) {
2448        self.push_str(s);
2449    }
2450}
2451
2452#[cfg(not(no_global_oom_handling))]
2453#[stable(feature = "box_str2", since = "1.45.0")]
2454impl<A: Allocator> Extend<Box<str, A>> for String {
2455    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2456        iter.into_iter().for_each(move |s| self.push_str(&s));
2457    }
2458}
2459
2460#[cfg(not(no_global_oom_handling))]
2461#[stable(feature = "extend_string", since = "1.4.0")]
2462impl Extend<String> for String {
2463    fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
2464        iter.into_iter().for_each(move |s| self.push_str(&s));
2465    }
2466
2467    #[inline]
2468    fn extend_one(&mut self, s: String) {
2469        self.push_str(&s);
2470    }
2471}
2472
2473#[cfg(not(no_global_oom_handling))]
2474#[stable(feature = "herd_cows", since = "1.19.0")]
2475impl<'a> Extend<Cow<'a, str>> for String {
2476    fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
2477        iter.into_iter().for_each(move |s| self.push_str(&s));
2478    }
2479
2480    #[inline]
2481    fn extend_one(&mut self, s: Cow<'a, str>) {
2482        self.push_str(&s);
2483    }
2484}
2485
2486#[cfg(not(no_global_oom_handling))]
2487#[unstable(feature = "ascii_char", issue = "110998")]
2488impl Extend<core::ascii::Char> for String {
2489    #[inline]
2490    #[track_caller]
2491    fn extend<I: IntoIterator<Item = core::ascii::Char>>(&mut self, iter: I) {
2492        self.vec.extend(iter.into_iter().map(|c| c.to_u8()));
2493    }
2494
2495    #[inline]
2496    #[track_caller]
2497    fn extend_one(&mut self, c: core::ascii::Char) {
2498        self.vec.push(c.to_u8());
2499    }
2500}
2501
2502#[cfg(not(no_global_oom_handling))]
2503#[unstable(feature = "ascii_char", issue = "110998")]
2504impl<'a> Extend<&'a core::ascii::Char> for String {
2505    #[inline]
2506    #[track_caller]
2507    fn extend<I: IntoIterator<Item = &'a core::ascii::Char>>(&mut self, iter: I) {
2508        self.extend(iter.into_iter().cloned());
2509    }
2510
2511    #[inline]
2512    #[track_caller]
2513    fn extend_one(&mut self, c: &'a core::ascii::Char) {
2514        self.vec.push(c.to_u8());
2515    }
2516}
2517
2518/// A convenience impl that delegates to the impl for `&str`.
2519///
2520/// # Examples
2521///
2522/// ```
2523/// assert_eq!(String::from("Hello world").find("world"), Some(6));
2524/// ```
2525#[unstable(
2526    feature = "pattern",
2527    reason = "API not fully fleshed out and ready to be stabilized",
2528    issue = "27721"
2529)]
2530impl<'b> Pattern for &'b String {
2531    type Searcher<'a> = <&'b str as Pattern>::Searcher<'a>;
2532
2533    fn into_searcher(self, haystack: &str) -> <&'b str as Pattern>::Searcher<'_> {
2534        self[..].into_searcher(haystack)
2535    }
2536
2537    #[inline]
2538    fn is_contained_in(self, haystack: &str) -> bool {
2539        self[..].is_contained_in(haystack)
2540    }
2541
2542    #[inline]
2543    fn is_prefix_of(self, haystack: &str) -> bool {
2544        self[..].is_prefix_of(haystack)
2545    }
2546
2547    #[inline]
2548    fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
2549        self[..].strip_prefix_of(haystack)
2550    }
2551
2552    #[inline]
2553    fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
2554    where
2555        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2556    {
2557        self[..].is_suffix_of(haystack)
2558    }
2559
2560    #[inline]
2561    fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
2562    where
2563        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2564    {
2565        self[..].strip_suffix_of(haystack)
2566    }
2567
2568    #[inline]
2569    fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
2570        Some(Utf8Pattern::StringPattern(self.as_bytes()))
2571    }
2572}
2573
2574macro_rules! impl_eq {
2575    ($lhs:ty, $rhs: ty) => {
2576        #[stable(feature = "rust1", since = "1.0.0")]
2577        #[allow(unused_lifetimes)]
2578        impl<'a, 'b> PartialEq<$rhs> for $lhs {
2579            #[inline]
2580            fn eq(&self, other: &$rhs) -> bool {
2581                PartialEq::eq(&self[..], &other[..])
2582            }
2583            #[inline]
2584            fn ne(&self, other: &$rhs) -> bool {
2585                PartialEq::ne(&self[..], &other[..])
2586            }
2587        }
2588
2589        #[stable(feature = "rust1", since = "1.0.0")]
2590        #[allow(unused_lifetimes)]
2591        impl<'a, 'b> PartialEq<$lhs> for $rhs {
2592            #[inline]
2593            fn eq(&self, other: &$lhs) -> bool {
2594                PartialEq::eq(&self[..], &other[..])
2595            }
2596            #[inline]
2597            fn ne(&self, other: &$lhs) -> bool {
2598                PartialEq::ne(&self[..], &other[..])
2599            }
2600        }
2601    };
2602}
2603
2604impl_eq! { String, str }
2605impl_eq! { String, &'a str }
2606#[cfg(not(no_global_oom_handling))]
2607impl_eq! { Cow<'a, str>, str }
2608#[cfg(not(no_global_oom_handling))]
2609impl_eq! { Cow<'a, str>, &'b str }
2610#[cfg(not(no_global_oom_handling))]
2611impl_eq! { Cow<'a, str>, String }
2612
2613#[stable(feature = "rust1", since = "1.0.0")]
2614impl Default for String {
2615    /// Creates an empty `String`.
2616    #[inline]
2617    fn default() -> String {
2618        String::new()
2619    }
2620}
2621
2622#[stable(feature = "rust1", since = "1.0.0")]
2623impl fmt::Display for String {
2624    #[inline]
2625    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2626        fmt::Display::fmt(&**self, f)
2627    }
2628}
2629
2630#[stable(feature = "rust1", since = "1.0.0")]
2631impl fmt::Debug for String {
2632    #[inline]
2633    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2634        fmt::Debug::fmt(&**self, f)
2635    }
2636}
2637
2638#[stable(feature = "rust1", since = "1.0.0")]
2639impl hash::Hash for String {
2640    #[inline]
2641    fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
2642        (**self).hash(hasher)
2643    }
2644}
2645
2646/// Implements the `+` operator for concatenating two strings.
2647///
2648/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
2649/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
2650/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
2651/// repeated concatenation.
2652///
2653/// The string on the right-hand side is only borrowed; its contents are copied into the returned
2654/// `String`.
2655///
2656/// # Examples
2657///
2658/// Concatenating two `String`s takes the first by value and borrows the second:
2659///
2660/// ```
2661/// let a = String::from("hello");
2662/// let b = String::from(" world");
2663/// let c = a + &b;
2664/// // `a` is moved and can no longer be used here.
2665/// ```
2666///
2667/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
2668///
2669/// ```
2670/// let a = String::from("hello");
2671/// let b = String::from(" world");
2672/// let c = a.clone() + &b;
2673/// // `a` is still valid here.
2674/// ```
2675///
2676/// Concatenating `&str` slices can be done by converting the first to a `String`:
2677///
2678/// ```
2679/// let a = "hello";
2680/// let b = " world";
2681/// let c = a.to_string() + b;
2682/// ```
2683#[cfg(not(no_global_oom_handling))]
2684#[stable(feature = "rust1", since = "1.0.0")]
2685impl Add<&str> for String {
2686    type Output = String;
2687
2688    #[inline]
2689    fn add(mut self, other: &str) -> String {
2690        self.push_str(other);
2691        self
2692    }
2693}
2694
2695/// Implements the `+=` operator for appending to a `String`.
2696///
2697/// This has the same behavior as the [`push_str`][String::push_str] method.
2698#[cfg(not(no_global_oom_handling))]
2699#[stable(feature = "stringaddassign", since = "1.12.0")]
2700impl AddAssign<&str> for String {
2701    #[inline]
2702    fn add_assign(&mut self, other: &str) {
2703        self.push_str(other);
2704    }
2705}
2706
2707#[stable(feature = "rust1", since = "1.0.0")]
2708impl<I> ops::Index<I> for String
2709where
2710    I: slice::SliceIndex<str>,
2711{
2712    type Output = I::Output;
2713
2714    #[inline]
2715    fn index(&self, index: I) -> &I::Output {
2716        index.index(self.as_str())
2717    }
2718}
2719
2720#[stable(feature = "rust1", since = "1.0.0")]
2721impl<I> ops::IndexMut<I> for String
2722where
2723    I: slice::SliceIndex<str>,
2724{
2725    #[inline]
2726    fn index_mut(&mut self, index: I) -> &mut I::Output {
2727        index.index_mut(self.as_mut_str())
2728    }
2729}
2730
2731#[stable(feature = "rust1", since = "1.0.0")]
2732impl ops::Deref for String {
2733    type Target = str;
2734
2735    #[inline]
2736    fn deref(&self) -> &str {
2737        self.as_str()
2738    }
2739}
2740
2741#[unstable(feature = "deref_pure_trait", issue = "87121")]
2742unsafe impl ops::DerefPure for String {}
2743
2744#[stable(feature = "derefmut_for_string", since = "1.3.0")]
2745impl ops::DerefMut for String {
2746    #[inline]
2747    fn deref_mut(&mut self) -> &mut str {
2748        self.as_mut_str()
2749    }
2750}
2751
2752/// A type alias for [`Infallible`].
2753///
2754/// This alias exists for backwards compatibility, and may be eventually deprecated.
2755///
2756/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
2757#[stable(feature = "str_parse_error", since = "1.5.0")]
2758pub type ParseError = core::convert::Infallible;
2759
2760#[cfg(not(no_global_oom_handling))]
2761#[stable(feature = "rust1", since = "1.0.0")]
2762impl FromStr for String {
2763    type Err = core::convert::Infallible;
2764    #[inline]
2765    fn from_str(s: &str) -> Result<String, Self::Err> {
2766        Ok(String::from(s))
2767    }
2768}
2769
2770/// A trait for converting a value to a `String`.
2771///
2772/// This trait is automatically implemented for any type which implements the
2773/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
2774/// [`Display`] should be implemented instead, and you get the `ToString`
2775/// implementation for free.
2776///
2777/// [`Display`]: fmt::Display
2778#[rustc_diagnostic_item = "ToString"]
2779#[stable(feature = "rust1", since = "1.0.0")]
2780pub trait ToString {
2781    /// Converts the given value to a `String`.
2782    ///
2783    /// # Examples
2784    ///
2785    /// ```
2786    /// let i = 5;
2787    /// let five = String::from("5");
2788    ///
2789    /// assert_eq!(five, i.to_string());
2790    /// ```
2791    #[rustc_conversion_suggestion]
2792    #[stable(feature = "rust1", since = "1.0.0")]
2793    #[rustc_diagnostic_item = "to_string_method"]
2794    fn to_string(&self) -> String;
2795}
2796
2797/// # Panics
2798///
2799/// In this implementation, the `to_string` method panics
2800/// if the `Display` implementation returns an error.
2801/// This indicates an incorrect `Display` implementation
2802/// since `fmt::Write for String` never returns an error itself.
2803#[cfg(not(no_global_oom_handling))]
2804#[stable(feature = "rust1", since = "1.0.0")]
2805impl<T: fmt::Display + ?Sized> ToString for T {
2806    #[inline]
2807    fn to_string(&self) -> String {
2808        <Self as SpecToString>::spec_to_string(self)
2809    }
2810}
2811
2812#[cfg(not(no_global_oom_handling))]
2813trait SpecToString {
2814    fn spec_to_string(&self) -> String;
2815}
2816
2817#[cfg(not(no_global_oom_handling))]
2818impl<T: fmt::Display + ?Sized> SpecToString for T {
2819    // A common guideline is to not inline generic functions. However,
2820    // removing `#[inline]` from this method causes non-negligible regressions.
2821    // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
2822    // to try to remove it.
2823    #[inline]
2824    default fn spec_to_string(&self) -> String {
2825        let mut buf = String::new();
2826        let mut formatter =
2827            core::fmt::Formatter::new(&mut buf, core::fmt::FormattingOptions::new());
2828        // Bypass format_args!() to avoid write_str with zero-length strs
2829        fmt::Display::fmt(self, &mut formatter)
2830            .expect("a Display implementation returned an error unexpectedly");
2831        buf
2832    }
2833}
2834
2835#[cfg(not(no_global_oom_handling))]
2836impl SpecToString for core::ascii::Char {
2837    #[inline]
2838    fn spec_to_string(&self) -> String {
2839        self.as_str().to_owned()
2840    }
2841}
2842
2843#[cfg(not(no_global_oom_handling))]
2844impl SpecToString for char {
2845    #[inline]
2846    fn spec_to_string(&self) -> String {
2847        String::from(self.encode_utf8(&mut [0; char::MAX_LEN_UTF8]))
2848    }
2849}
2850
2851#[cfg(not(no_global_oom_handling))]
2852impl SpecToString for bool {
2853    #[inline]
2854    fn spec_to_string(&self) -> String {
2855        String::from(if *self { "true" } else { "false" })
2856    }
2857}
2858
2859macro_rules! impl_to_string {
2860    ($($signed:ident, $unsigned:ident,)*) => {
2861        $(
2862        #[cfg(not(no_global_oom_handling))]
2863        #[cfg(not(feature = "optimize_for_size"))]
2864        impl SpecToString for $signed {
2865            #[inline]
2866            fn spec_to_string(&self) -> String {
2867                const SIZE: usize = $signed::MAX.ilog10() as usize + 1;
2868                let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE];
2869                // Only difference between signed and unsigned are these 8 lines.
2870                let mut out;
2871                if *self < 0 {
2872                    out = String::with_capacity(SIZE + 1);
2873                    out.push('-');
2874                } else {
2875                    out = String::with_capacity(SIZE);
2876                }
2877
2878                out.push_str(self.unsigned_abs()._fmt(&mut buf));
2879                out
2880            }
2881        }
2882        #[cfg(not(no_global_oom_handling))]
2883        #[cfg(not(feature = "optimize_for_size"))]
2884        impl SpecToString for $unsigned {
2885            #[inline]
2886            fn spec_to_string(&self) -> String {
2887                const SIZE: usize = $unsigned::MAX.ilog10() as usize + 1;
2888                let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE];
2889
2890                self._fmt(&mut buf).to_string()
2891            }
2892        }
2893        )*
2894    }
2895}
2896
2897impl_to_string! {
2898    i8, u8,
2899    i16, u16,
2900    i32, u32,
2901    i64, u64,
2902    isize, usize,
2903    i128, u128,
2904}
2905
2906#[cfg(not(no_global_oom_handling))]
2907#[cfg(feature = "optimize_for_size")]
2908impl SpecToString for u8 {
2909    #[inline]
2910    fn spec_to_string(&self) -> String {
2911        let mut buf = String::with_capacity(3);
2912        let mut n = *self;
2913        if n >= 10 {
2914            if n >= 100 {
2915                buf.push((b'0' + n / 100) as char);
2916                n %= 100;
2917            }
2918            buf.push((b'0' + n / 10) as char);
2919            n %= 10;
2920        }
2921        buf.push((b'0' + n) as char);
2922        buf
2923    }
2924}
2925
2926#[cfg(not(no_global_oom_handling))]
2927#[cfg(feature = "optimize_for_size")]
2928impl SpecToString for i8 {
2929    #[inline]
2930    fn spec_to_string(&self) -> String {
2931        let mut buf = String::with_capacity(4);
2932        if self.is_negative() {
2933            buf.push('-');
2934        }
2935        let mut n = self.unsigned_abs();
2936        if n >= 10 {
2937            if n >= 100 {
2938                buf.push('1');
2939                n -= 100;
2940            }
2941            buf.push((b'0' + n / 10) as char);
2942            n %= 10;
2943        }
2944        buf.push((b'0' + n) as char);
2945        buf
2946    }
2947}
2948
2949// Generic/generated code can sometimes have multiple, nested references
2950// for strings, including `&&&str`s that would never be written
2951// by hand. This macro generates twelve layers of nested `&`-impl
2952// for primitive strings.
2953#[cfg(not(no_global_oom_handling))]
2954macro_rules! to_string_str_wrap_in_ref {
2955    {x $($x:ident)*} => {
2956        &to_string_str_wrap_in_ref! { $($x)* }
2957    };
2958    {} => { str };
2959}
2960#[cfg(not(no_global_oom_handling))]
2961macro_rules! to_string_expr_wrap_in_deref {
2962    {$self:expr ; x $($x:ident)*} => {
2963        *(to_string_expr_wrap_in_deref! { $self ; $($x)* })
2964    };
2965    {$self:expr ;} => { $self };
2966}
2967#[cfg(not(no_global_oom_handling))]
2968macro_rules! to_string_str {
2969    {$($($x:ident)*),+} => {
2970        $(
2971            impl SpecToString for to_string_str_wrap_in_ref!($($x)*) {
2972                #[inline]
2973                fn spec_to_string(&self) -> String {
2974                    String::from(to_string_expr_wrap_in_deref!(self ; $($x)*))
2975                }
2976            }
2977        )+
2978    };
2979}
2980
2981#[cfg(not(no_global_oom_handling))]
2982to_string_str! {
2983    x x x x x x x x x x x x,
2984    x x x x x x x x x x x,
2985    x x x x x x x x x x,
2986    x x x x x x x x x,
2987    x x x x x x x x,
2988    x x x x x x x,
2989    x x x x x x,
2990    x x x x x,
2991    x x x x,
2992    x x x,
2993    x x,
2994    x,
2995}
2996
2997#[cfg(not(no_global_oom_handling))]
2998impl SpecToString for Cow<'_, str> {
2999    #[inline]
3000    fn spec_to_string(&self) -> String {
3001        self[..].to_owned()
3002    }
3003}
3004
3005#[cfg(not(no_global_oom_handling))]
3006impl SpecToString for String {
3007    #[inline]
3008    fn spec_to_string(&self) -> String {
3009        self.to_owned()
3010    }
3011}
3012
3013#[cfg(not(no_global_oom_handling))]
3014impl SpecToString for fmt::Arguments<'_> {
3015    #[inline]
3016    fn spec_to_string(&self) -> String {
3017        crate::fmt::format(*self)
3018    }
3019}
3020
3021#[stable(feature = "rust1", since = "1.0.0")]
3022impl AsRef<str> for String {
3023    #[inline]
3024    fn as_ref(&self) -> &str {
3025        self
3026    }
3027}
3028
3029#[stable(feature = "string_as_mut", since = "1.43.0")]
3030impl AsMut<str> for String {
3031    #[inline]
3032    fn as_mut(&mut self) -> &mut str {
3033        self
3034    }
3035}
3036
3037#[stable(feature = "rust1", since = "1.0.0")]
3038impl AsRef<[u8]> for String {
3039    #[inline]
3040    fn as_ref(&self) -> &[u8] {
3041        self.as_bytes()
3042    }
3043}
3044
3045#[cfg(not(no_global_oom_handling))]
3046#[stable(feature = "rust1", since = "1.0.0")]
3047impl From<&str> for String {
3048    /// Converts a `&str` into a [`String`].
3049    ///
3050    /// The result is allocated on the heap.
3051    #[inline]
3052    fn from(s: &str) -> String {
3053        s.to_owned()
3054    }
3055}
3056
3057#[cfg(not(no_global_oom_handling))]
3058#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
3059impl From<&mut str> for String {
3060    /// Converts a `&mut str` into a [`String`].
3061    ///
3062    /// The result is allocated on the heap.
3063    #[inline]
3064    fn from(s: &mut str) -> String {
3065        s.to_owned()
3066    }
3067}
3068
3069#[cfg(not(no_global_oom_handling))]
3070#[stable(feature = "from_ref_string", since = "1.35.0")]
3071impl From<&String> for String {
3072    /// Converts a `&String` into a [`String`].
3073    ///
3074    /// This clones `s` and returns the clone.
3075    #[inline]
3076    fn from(s: &String) -> String {
3077        s.clone()
3078    }
3079}
3080
3081// note: test pulls in std, which causes errors here
3082#[stable(feature = "string_from_box", since = "1.18.0")]
3083impl From<Box<str>> for String {
3084    /// Converts the given boxed `str` slice to a [`String`].
3085    /// It is notable that the `str` slice is owned.
3086    ///
3087    /// # Examples
3088    ///
3089    /// ```
3090    /// let s1: String = String::from("hello world");
3091    /// let s2: Box<str> = s1.into_boxed_str();
3092    /// let s3: String = String::from(s2);
3093    ///
3094    /// assert_eq!("hello world", s3)
3095    /// ```
3096    fn from(s: Box<str>) -> String {
3097        s.into_string()
3098    }
3099}
3100
3101#[cfg(not(no_global_oom_handling))]
3102#[stable(feature = "box_from_str", since = "1.20.0")]
3103impl From<String> for Box<str> {
3104    /// Converts the given [`String`] to a boxed `str` slice that is owned.
3105    ///
3106    /// # Examples
3107    ///
3108    /// ```
3109    /// let s1: String = String::from("hello world");
3110    /// let s2: Box<str> = Box::from(s1);
3111    /// let s3: String = String::from(s2);
3112    ///
3113    /// assert_eq!("hello world", s3)
3114    /// ```
3115    fn from(s: String) -> Box<str> {
3116        s.into_boxed_str()
3117    }
3118}
3119
3120#[cfg(not(no_global_oom_handling))]
3121#[stable(feature = "string_from_cow_str", since = "1.14.0")]
3122impl<'a> From<Cow<'a, str>> for String {
3123    /// Converts a clone-on-write string to an owned
3124    /// instance of [`String`].
3125    ///
3126    /// This extracts the owned string,
3127    /// clones the string if it is not already owned.
3128    ///
3129    /// # Example
3130    ///
3131    /// ```
3132    /// # use std::borrow::Cow;
3133    /// // If the string is not owned...
3134    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3135    /// // It will allocate on the heap and copy the string.
3136    /// let owned: String = String::from(cow);
3137    /// assert_eq!(&owned[..], "eggplant");
3138    /// ```
3139    fn from(s: Cow<'a, str>) -> String {
3140        s.into_owned()
3141    }
3142}
3143
3144#[cfg(not(no_global_oom_handling))]
3145#[stable(feature = "rust1", since = "1.0.0")]
3146impl<'a> From<&'a str> for Cow<'a, str> {
3147    /// Converts a string slice into a [`Borrowed`] variant.
3148    /// No heap allocation is performed, and the string
3149    /// is not copied.
3150    ///
3151    /// # Example
3152    ///
3153    /// ```
3154    /// # use std::borrow::Cow;
3155    /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
3156    /// ```
3157    ///
3158    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3159    #[inline]
3160    fn from(s: &'a str) -> Cow<'a, str> {
3161        Cow::Borrowed(s)
3162    }
3163}
3164
3165#[cfg(not(no_global_oom_handling))]
3166#[stable(feature = "rust1", since = "1.0.0")]
3167impl<'a> From<String> for Cow<'a, str> {
3168    /// Converts a [`String`] into an [`Owned`] variant.
3169    /// No heap allocation is performed, and the string
3170    /// is not copied.
3171    ///
3172    /// # Example
3173    ///
3174    /// ```
3175    /// # use std::borrow::Cow;
3176    /// let s = "eggplant".to_string();
3177    /// let s2 = "eggplant".to_string();
3178    /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
3179    /// ```
3180    ///
3181    /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
3182    #[inline]
3183    fn from(s: String) -> Cow<'a, str> {
3184        Cow::Owned(s)
3185    }
3186}
3187
3188#[cfg(not(no_global_oom_handling))]
3189#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
3190impl<'a> From<&'a String> for Cow<'a, str> {
3191    /// Converts a [`String`] reference into a [`Borrowed`] variant.
3192    /// No heap allocation is performed, and the string
3193    /// is not copied.
3194    ///
3195    /// # Example
3196    ///
3197    /// ```
3198    /// # use std::borrow::Cow;
3199    /// let s = "eggplant".to_string();
3200    /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
3201    /// ```
3202    ///
3203    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3204    #[inline]
3205    fn from(s: &'a String) -> Cow<'a, str> {
3206        Cow::Borrowed(s.as_str())
3207    }
3208}
3209
3210#[cfg(not(no_global_oom_handling))]
3211#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3212impl<'a> FromIterator<char> for Cow<'a, str> {
3213    fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
3214        Cow::Owned(FromIterator::from_iter(it))
3215    }
3216}
3217
3218#[cfg(not(no_global_oom_handling))]
3219#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3220impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
3221    fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
3222        Cow::Owned(FromIterator::from_iter(it))
3223    }
3224}
3225
3226#[cfg(not(no_global_oom_handling))]
3227#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3228impl<'a> FromIterator<String> for Cow<'a, str> {
3229    fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
3230        Cow::Owned(FromIterator::from_iter(it))
3231    }
3232}
3233
3234#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
3235impl From<String> for Vec<u8> {
3236    /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
3237    ///
3238    /// # Examples
3239    ///
3240    /// ```
3241    /// let s1 = String::from("hello world");
3242    /// let v1 = Vec::from(s1);
3243    ///
3244    /// for b in v1 {
3245    ///     println!("{b}");
3246    /// }
3247    /// ```
3248    fn from(string: String) -> Vec<u8> {
3249        string.into_bytes()
3250    }
3251}
3252
3253#[stable(feature = "try_from_vec_u8_for_string", since = "1.87.0")]
3254impl TryFrom<Vec<u8>> for String {
3255    type Error = FromUtf8Error;
3256    /// Converts the given [`Vec<u8>`] into a  [`String`] if it contains valid UTF-8 data.
3257    ///
3258    /// # Examples
3259    ///
3260    /// ```
3261    /// let s1 = b"hello world".to_vec();
3262    /// let v1 = String::try_from(s1).unwrap();
3263    /// assert_eq!(v1, "hello world");
3264    ///
3265    /// ```
3266    fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
3267        Self::from_utf8(bytes)
3268    }
3269}
3270
3271#[cfg(not(no_global_oom_handling))]
3272#[stable(feature = "rust1", since = "1.0.0")]
3273impl fmt::Write for String {
3274    #[inline]
3275    fn write_str(&mut self, s: &str) -> fmt::Result {
3276        self.push_str(s);
3277        Ok(())
3278    }
3279
3280    #[inline]
3281    fn write_char(&mut self, c: char) -> fmt::Result {
3282        self.push(c);
3283        Ok(())
3284    }
3285}
3286
3287/// An iterator over the [`char`]s of a string.
3288///
3289/// This struct is created by the [`into_chars`] method on [`String`].
3290/// See its documentation for more.
3291///
3292/// [`char`]: prim@char
3293/// [`into_chars`]: String::into_chars
3294#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
3295#[must_use = "iterators are lazy and do nothing unless consumed"]
3296#[unstable(feature = "string_into_chars", issue = "133125")]
3297pub struct IntoChars {
3298    bytes: vec::IntoIter<u8>,
3299}
3300
3301#[unstable(feature = "string_into_chars", issue = "133125")]
3302impl fmt::Debug for IntoChars {
3303    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3304        f.debug_tuple("IntoChars").field(&self.as_str()).finish()
3305    }
3306}
3307
3308impl IntoChars {
3309    /// Views the underlying data as a subslice of the original data.
3310    ///
3311    /// # Examples
3312    ///
3313    /// ```
3314    /// #![feature(string_into_chars)]
3315    ///
3316    /// let mut chars = String::from("abc").into_chars();
3317    ///
3318    /// assert_eq!(chars.as_str(), "abc");
3319    /// chars.next();
3320    /// assert_eq!(chars.as_str(), "bc");
3321    /// chars.next();
3322    /// chars.next();
3323    /// assert_eq!(chars.as_str(), "");
3324    /// ```
3325    #[unstable(feature = "string_into_chars", issue = "133125")]
3326    #[must_use]
3327    #[inline]
3328    pub fn as_str(&self) -> &str {
3329        // SAFETY: `bytes` is a valid UTF-8 string.
3330        unsafe { str::from_utf8_unchecked(self.bytes.as_slice()) }
3331    }
3332
3333    /// Consumes the `IntoChars`, returning the remaining string.
3334    ///
3335    /// # Examples
3336    ///
3337    /// ```
3338    /// #![feature(string_into_chars)]
3339    ///
3340    /// let chars = String::from("abc").into_chars();
3341    /// assert_eq!(chars.into_string(), "abc");
3342    ///
3343    /// let mut chars = String::from("def").into_chars();
3344    /// chars.next();
3345    /// assert_eq!(chars.into_string(), "ef");
3346    /// ```
3347    #[cfg(not(no_global_oom_handling))]
3348    #[unstable(feature = "string_into_chars", issue = "133125")]
3349    #[inline]
3350    pub fn into_string(self) -> String {
3351        // Safety: `bytes` are kept in UTF-8 form, only removing whole `char`s at a time.
3352        unsafe { String::from_utf8_unchecked(self.bytes.collect()) }
3353    }
3354
3355    #[inline]
3356    fn iter(&self) -> CharIndices<'_> {
3357        self.as_str().char_indices()
3358    }
3359}
3360
3361#[unstable(feature = "string_into_chars", issue = "133125")]
3362impl Iterator for IntoChars {
3363    type Item = char;
3364
3365    #[inline]
3366    fn next(&mut self) -> Option<char> {
3367        let mut iter = self.iter();
3368        match iter.next() {
3369            None => None,
3370            Some((_, ch)) => {
3371                let offset = iter.offset();
3372                // `offset` is a valid index.
3373                let _ = self.bytes.advance_by(offset);
3374                Some(ch)
3375            }
3376        }
3377    }
3378
3379    #[inline]
3380    fn count(self) -> usize {
3381        self.iter().count()
3382    }
3383
3384    #[inline]
3385    fn size_hint(&self) -> (usize, Option<usize>) {
3386        self.iter().size_hint()
3387    }
3388
3389    #[inline]
3390    fn last(mut self) -> Option<char> {
3391        self.next_back()
3392    }
3393}
3394
3395#[unstable(feature = "string_into_chars", issue = "133125")]
3396impl DoubleEndedIterator for IntoChars {
3397    #[inline]
3398    fn next_back(&mut self) -> Option<char> {
3399        let len = self.as_str().len();
3400        let mut iter = self.iter();
3401        match iter.next_back() {
3402            None => None,
3403            Some((idx, ch)) => {
3404                // `idx` is a valid index.
3405                let _ = self.bytes.advance_back_by(len - idx);
3406                Some(ch)
3407            }
3408        }
3409    }
3410}
3411
3412#[unstable(feature = "string_into_chars", issue = "133125")]
3413impl FusedIterator for IntoChars {}
3414
3415/// A draining iterator for `String`.
3416///
3417/// This struct is created by the [`drain`] method on [`String`]. See its
3418/// documentation for more.
3419///
3420/// [`drain`]: String::drain
3421#[stable(feature = "drain", since = "1.6.0")]
3422pub struct Drain<'a> {
3423    /// Will be used as &'a mut String in the destructor
3424    string: *mut String,
3425    /// Start of part to remove
3426    start: usize,
3427    /// End of part to remove
3428    end: usize,
3429    /// Current remaining range to remove
3430    iter: Chars<'a>,
3431}
3432
3433#[stable(feature = "collection_debug", since = "1.17.0")]
3434impl fmt::Debug for Drain<'_> {
3435    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3436        f.debug_tuple("Drain").field(&self.as_str()).finish()
3437    }
3438}
3439
3440#[stable(feature = "drain", since = "1.6.0")]
3441unsafe impl Sync for Drain<'_> {}
3442#[stable(feature = "drain", since = "1.6.0")]
3443unsafe impl Send for Drain<'_> {}
3444
3445#[stable(feature = "drain", since = "1.6.0")]
3446impl Drop for Drain<'_> {
3447    fn drop(&mut self) {
3448        unsafe {
3449            // Use Vec::drain. "Reaffirm" the bounds checks to avoid
3450            // panic code being inserted again.
3451            let self_vec = (*self.string).as_mut_vec();
3452            if self.start <= self.end && self.end <= self_vec.len() {
3453                self_vec.drain(self.start..self.end);
3454            }
3455        }
3456    }
3457}
3458
3459impl<'a> Drain<'a> {
3460    /// Returns the remaining (sub)string of this iterator as a slice.
3461    ///
3462    /// # Examples
3463    ///
3464    /// ```
3465    /// let mut s = String::from("abc");
3466    /// let mut drain = s.drain(..);
3467    /// assert_eq!(drain.as_str(), "abc");
3468    /// let _ = drain.next().unwrap();
3469    /// assert_eq!(drain.as_str(), "bc");
3470    /// ```
3471    #[must_use]
3472    #[stable(feature = "string_drain_as_str", since = "1.55.0")]
3473    pub fn as_str(&self) -> &str {
3474        self.iter.as_str()
3475    }
3476}
3477
3478#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3479impl<'a> AsRef<str> for Drain<'a> {
3480    fn as_ref(&self) -> &str {
3481        self.as_str()
3482    }
3483}
3484
3485#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3486impl<'a> AsRef<[u8]> for Drain<'a> {
3487    fn as_ref(&self) -> &[u8] {
3488        self.as_str().as_bytes()
3489    }
3490}
3491
3492#[stable(feature = "drain", since = "1.6.0")]
3493impl Iterator for Drain<'_> {
3494    type Item = char;
3495
3496    #[inline]
3497    fn next(&mut self) -> Option<char> {
3498        self.iter.next()
3499    }
3500
3501    fn size_hint(&self) -> (usize, Option<usize>) {
3502        self.iter.size_hint()
3503    }
3504
3505    #[inline]
3506    fn last(mut self) -> Option<char> {
3507        self.next_back()
3508    }
3509}
3510
3511#[stable(feature = "drain", since = "1.6.0")]
3512impl DoubleEndedIterator for Drain<'_> {
3513    #[inline]
3514    fn next_back(&mut self) -> Option<char> {
3515        self.iter.next_back()
3516    }
3517}
3518
3519#[stable(feature = "fused", since = "1.26.0")]
3520impl FusedIterator for Drain<'_> {}
3521
3522#[cfg(not(no_global_oom_handling))]
3523#[stable(feature = "from_char_for_string", since = "1.46.0")]
3524impl From<char> for String {
3525    /// Allocates an owned [`String`] from a single character.
3526    ///
3527    /// # Example
3528    /// ```rust
3529    /// let c: char = 'a';
3530    /// let s: String = String::from(c);
3531    /// assert_eq!("a", &s[..]);
3532    /// ```
3533    #[inline]
3534    fn from(c: char) -> Self {
3535        c.to_string()
3536    }
3537}