[go: up one dir, main page]

core/fmt/
mod.rs

1//! Utilities for formatting and printing strings.
2
3#![stable(feature = "rust1", since = "1.0.0")]
4
5use crate::cell::{Cell, Ref, RefCell, RefMut, SyncUnsafeCell, UnsafeCell};
6use crate::char::{EscapeDebugExtArgs, MAX_LEN_UTF8};
7use crate::marker::{PhantomData, PointeeSized};
8use crate::num::fmt as numfmt;
9use crate::ops::Deref;
10use crate::{iter, result, str};
11
12mod builders;
13#[cfg(not(no_fp_fmt_parse))]
14mod float;
15#[cfg(no_fp_fmt_parse)]
16mod nofloat;
17mod num;
18mod num_buffer;
19mod rt;
20
21#[stable(feature = "fmt_flags_align", since = "1.28.0")]
22#[rustc_diagnostic_item = "Alignment"]
23/// Possible alignments returned by `Formatter::align`
24#[derive(Copy, Clone, Debug, PartialEq, Eq)]
25pub enum Alignment {
26    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
27    /// Indication that contents should be left-aligned.
28    Left,
29    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
30    /// Indication that contents should be right-aligned.
31    Right,
32    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
33    /// Indication that contents should be center-aligned.
34    Center,
35}
36
37#[unstable(feature = "int_format_into", issue = "138215")]
38pub use num_buffer::{NumBuffer, NumBufferTrait};
39
40#[stable(feature = "debug_builders", since = "1.2.0")]
41pub use self::builders::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
42#[unstable(feature = "debug_closure_helpers", issue = "117729")]
43pub use self::builders::{FromFn, from_fn};
44
45/// The type returned by formatter methods.
46///
47/// # Examples
48///
49/// ```
50/// use std::fmt;
51///
52/// #[derive(Debug)]
53/// struct Triangle {
54///     a: f32,
55///     b: f32,
56///     c: f32
57/// }
58///
59/// impl fmt::Display for Triangle {
60///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
61///         write!(f, "({}, {}, {})", self.a, self.b, self.c)
62///     }
63/// }
64///
65/// let pythagorean_triple = Triangle { a: 3.0, b: 4.0, c: 5.0 };
66///
67/// assert_eq!(format!("{pythagorean_triple}"), "(3, 4, 5)");
68/// ```
69#[stable(feature = "rust1", since = "1.0.0")]
70pub type Result = result::Result<(), Error>;
71
72/// The error type which is returned from formatting a message into a stream.
73///
74/// This type does not support transmission of an error other than that an error
75/// occurred. This is because, despite the existence of this error,
76/// string formatting is considered an infallible operation.
77/// `fmt()` implementors should not return this `Error` unless they received it from their
78/// [`Formatter`]. The only time your code should create a new instance of this
79/// error is when implementing `fmt::Write`, in order to cancel the formatting operation when
80/// writing to the underlying stream fails.
81///
82/// Any extra information must be arranged to be transmitted through some other means,
83/// such as storing it in a field to be consulted after the formatting operation has been
84/// cancelled. (For example, this is how [`std::io::Write::write_fmt()`] propagates IO errors
85/// during writing.)
86///
87/// This type, `fmt::Error`, should not be
88/// confused with [`std::io::Error`] or [`std::error::Error`], which you may also
89/// have in scope.
90///
91/// [`std::io::Error`]: ../../std/io/struct.Error.html
92/// [`std::io::Write::write_fmt()`]: ../../std/io/trait.Write.html#method.write_fmt
93/// [`std::error::Error`]: ../../std/error/trait.Error.html
94///
95/// # Examples
96///
97/// ```rust
98/// use std::fmt::{self, write};
99///
100/// let mut output = String::new();
101/// if let Err(fmt::Error) = write(&mut output, format_args!("Hello {}!", "world")) {
102///     panic!("An error occurred");
103/// }
104/// ```
105#[stable(feature = "rust1", since = "1.0.0")]
106#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
107pub struct Error;
108
109/// A trait for writing or formatting into Unicode-accepting buffers or streams.
110///
111/// This trait only accepts UTF-8–encoded data and is not [flushable]. If you only
112/// want to accept Unicode and you don't need flushing, you should implement this trait;
113/// otherwise you should implement [`std::io::Write`].
114///
115/// [`std::io::Write`]: ../../std/io/trait.Write.html
116/// [flushable]: ../../std/io/trait.Write.html#tymethod.flush
117#[stable(feature = "rust1", since = "1.0.0")]
118pub trait Write {
119    /// Writes a string slice into this writer, returning whether the write
120    /// succeeded.
121    ///
122    /// This method can only succeed if the entire string slice was successfully
123    /// written, and this method will not return until all data has been
124    /// written or an error occurs.
125    ///
126    /// # Errors
127    ///
128    /// This function will return an instance of [`std::fmt::Error`][Error] on error.
129    ///
130    /// The purpose of that error is to abort the formatting operation when the underlying
131    /// destination encounters some error preventing it from accepting more text;
132    /// in particular, it does not communicate any information about *what* error occurred.
133    /// It should generally be propagated rather than handled, at least when implementing
134    /// formatting traits.
135    ///
136    /// # Examples
137    ///
138    /// ```
139    /// use std::fmt::{Error, Write};
140    ///
141    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
142    ///     f.write_str(s)
143    /// }
144    ///
145    /// let mut buf = String::new();
146    /// writer(&mut buf, "hola")?;
147    /// assert_eq!(&buf, "hola");
148    /// # std::fmt::Result::Ok(())
149    /// ```
150    #[stable(feature = "rust1", since = "1.0.0")]
151    fn write_str(&mut self, s: &str) -> Result;
152
153    /// Writes a [`char`] into this writer, returning whether the write succeeded.
154    ///
155    /// A single [`char`] may be encoded as more than one byte.
156    /// This method can only succeed if the entire byte sequence was successfully
157    /// written, and this method will not return until all data has been
158    /// written or an error occurs.
159    ///
160    /// # Errors
161    ///
162    /// This function will return an instance of [`Error`] on error.
163    ///
164    /// # Examples
165    ///
166    /// ```
167    /// use std::fmt::{Error, Write};
168    ///
169    /// fn writer<W: Write>(f: &mut W, c: char) -> Result<(), Error> {
170    ///     f.write_char(c)
171    /// }
172    ///
173    /// let mut buf = String::new();
174    /// writer(&mut buf, 'a')?;
175    /// writer(&mut buf, 'b')?;
176    /// assert_eq!(&buf, "ab");
177    /// # std::fmt::Result::Ok(())
178    /// ```
179    #[stable(feature = "fmt_write_char", since = "1.1.0")]
180    fn write_char(&mut self, c: char) -> Result {
181        self.write_str(c.encode_utf8(&mut [0; MAX_LEN_UTF8]))
182    }
183
184    /// Glue for usage of the [`write!`] macro with implementors of this trait.
185    ///
186    /// This method should generally not be invoked manually, but rather through
187    /// the [`write!`] macro itself.
188    ///
189    /// # Errors
190    ///
191    /// This function will return an instance of [`Error`] on error. Please see
192    /// [write_str](Write::write_str) for details.
193    ///
194    /// # Examples
195    ///
196    /// ```
197    /// use std::fmt::{Error, Write};
198    ///
199    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
200    ///     f.write_fmt(format_args!("{s}"))
201    /// }
202    ///
203    /// let mut buf = String::new();
204    /// writer(&mut buf, "world")?;
205    /// assert_eq!(&buf, "world");
206    /// # std::fmt::Result::Ok(())
207    /// ```
208    #[stable(feature = "rust1", since = "1.0.0")]
209    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
210        // We use a specialization for `Sized` types to avoid an indirection
211        // through `&mut self`
212        trait SpecWriteFmt {
213            fn spec_write_fmt(self, args: Arguments<'_>) -> Result;
214        }
215
216        impl<W: Write + ?Sized> SpecWriteFmt for &mut W {
217            #[inline]
218            default fn spec_write_fmt(mut self, args: Arguments<'_>) -> Result {
219                if let Some(s) = args.as_statically_known_str() {
220                    self.write_str(s)
221                } else {
222                    write(&mut self, args)
223                }
224            }
225        }
226
227        impl<W: Write> SpecWriteFmt for &mut W {
228            #[inline]
229            fn spec_write_fmt(self, args: Arguments<'_>) -> Result {
230                if let Some(s) = args.as_statically_known_str() {
231                    self.write_str(s)
232                } else {
233                    write(self, args)
234                }
235            }
236        }
237
238        self.spec_write_fmt(args)
239    }
240}
241
242#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
243impl<W: Write + ?Sized> Write for &mut W {
244    fn write_str(&mut self, s: &str) -> Result {
245        (**self).write_str(s)
246    }
247
248    fn write_char(&mut self, c: char) -> Result {
249        (**self).write_char(c)
250    }
251
252    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
253        (**self).write_fmt(args)
254    }
255}
256
257/// The signedness of a [`Formatter`] (or of a [`FormattingOptions`]).
258#[derive(Copy, Clone, Debug, PartialEq, Eq)]
259#[unstable(feature = "formatting_options", issue = "118117")]
260pub enum Sign {
261    /// Represents the `+` flag.
262    Plus,
263    /// Represents the `-` flag.
264    Minus,
265}
266
267/// Specifies whether the [`Debug`] trait should use lower-/upper-case
268/// hexadecimal or normal integers.
269#[derive(Copy, Clone, Debug, PartialEq, Eq)]
270#[unstable(feature = "formatting_options", issue = "118117")]
271pub enum DebugAsHex {
272    /// Use lower-case hexadecimal integers for the `Debug` trait (like [the `x?` type](../../std/fmt/index.html#formatting-traits)).
273    Lower,
274    /// Use upper-case hexadecimal integers for the `Debug` trait (like [the `X?` type](../../std/fmt/index.html#formatting-traits)).
275    Upper,
276}
277
278/// Options for formatting.
279///
280/// `FormattingOptions` is a [`Formatter`] without an attached [`Write`] trait.
281/// It is mainly used to construct `Formatter` instances.
282#[derive(Copy, Clone, Debug, PartialEq, Eq)]
283#[unstable(feature = "formatting_options", issue = "118117")]
284pub struct FormattingOptions {
285    /// Flags, with the following bit fields:
286    ///
287    /// ```text
288    ///   31  30  29  28  27  26  25  24  23  22  21  20                              0
289    /// ┌───┬───────┬───┬───┬───┬───┬───┬───┬───┬───┬──────────────────────────────────┐
290    /// │ 1 │ align │ p │ w │ X?│ x?│'0'│ # │ - │ + │               fill               │
291    /// └───┴───────┴───┴───┴───┴───┴───┴───┴───┴───┴──────────────────────────────────┘
292    ///   │     │     │   │  └─┬───────────────────┘ └─┬──────────────────────────────┘
293    ///   │     │     │   │    │                       └─ The fill character (21 bits char).
294    ///   │     │     │   │    └─ The debug upper/lower hex, zero pad, alternate, and plus/minus flags.
295    ///   │     │     │   └─ Whether a width is set. (The value is stored separately.)
296    ///   │     │     └─ Whether a precision is set. (The value is stored separately.)
297    ///   │     ├─ 0: Align left. (<)
298    ///   │     ├─ 1: Align right. (>)
299    ///   │     ├─ 2: Align center. (^)
300    ///   │     └─ 3: Alignment not set. (default)
301    ///   └─ Always set.
302    ///      This makes it possible to distinguish formatting flags from
303    ///      a &str size when stored in (the upper bits of) the same field.
304    ///      (fmt::Arguments will make use of this property in the future.)
305    /// ```
306    // Note: This could use a special niche type with range 0x8000_0000..=0xfdd0ffff.
307    // It's unclear if that's useful, though.
308    flags: u32,
309    /// Width if width flag (bit 27) above is set. Otherwise, always 0.
310    width: u16,
311    /// Precision if precision flag (bit 28) above is set. Otherwise, always 0.
312    precision: u16,
313}
314
315// This needs to match with compiler/rustc_ast_lowering/src/format.rs.
316mod flags {
317    pub(super) const SIGN_PLUS_FLAG: u32 = 1 << 21;
318    pub(super) const SIGN_MINUS_FLAG: u32 = 1 << 22;
319    pub(super) const ALTERNATE_FLAG: u32 = 1 << 23;
320    pub(super) const SIGN_AWARE_ZERO_PAD_FLAG: u32 = 1 << 24;
321    pub(super) const DEBUG_LOWER_HEX_FLAG: u32 = 1 << 25;
322    pub(super) const DEBUG_UPPER_HEX_FLAG: u32 = 1 << 26;
323    pub(super) const WIDTH_FLAG: u32 = 1 << 27;
324    pub(super) const PRECISION_FLAG: u32 = 1 << 28;
325    pub(super) const ALIGN_BITS: u32 = 0b11 << 29;
326    pub(super) const ALIGN_LEFT: u32 = 0 << 29;
327    pub(super) const ALIGN_RIGHT: u32 = 1 << 29;
328    pub(super) const ALIGN_CENTER: u32 = 2 << 29;
329    pub(super) const ALIGN_UNKNOWN: u32 = 3 << 29;
330    pub(super) const ALWAYS_SET: u32 = 1 << 31;
331}
332
333impl FormattingOptions {
334    /// Construct a new `FormatterBuilder` with the supplied `Write` trait
335    /// object for output that is equivalent to the `{}` formatting
336    /// specifier:
337    ///
338    /// - no flags,
339    /// - filled with spaces,
340    /// - no alignment,
341    /// - no width,
342    /// - no precision, and
343    /// - no [`DebugAsHex`] output mode.
344    #[unstable(feature = "formatting_options", issue = "118117")]
345    pub const fn new() -> Self {
346        Self {
347            flags: ' ' as u32 | flags::ALIGN_UNKNOWN | flags::ALWAYS_SET,
348            width: 0,
349            precision: 0,
350        }
351    }
352
353    /// Sets or removes the sign (the `+` or the `-` flag).
354    ///
355    /// - `+`: This is intended for numeric types and indicates that the sign
356    ///   should always be printed. By default only the negative sign of signed
357    ///   values is printed, and the sign of positive or unsigned values is
358    ///   omitted. This flag indicates that the correct sign (+ or -) should
359    ///   always be printed.
360    /// - `-`: Currently not used
361    #[unstable(feature = "formatting_options", issue = "118117")]
362    pub fn sign(&mut self, sign: Option<Sign>) -> &mut Self {
363        let sign = match sign {
364            None => 0,
365            Some(Sign::Plus) => flags::SIGN_PLUS_FLAG,
366            Some(Sign::Minus) => flags::SIGN_MINUS_FLAG,
367        };
368        self.flags = self.flags & !(flags::SIGN_PLUS_FLAG | flags::SIGN_MINUS_FLAG) | sign;
369        self
370    }
371    /// Sets or unsets the `0` flag.
372    ///
373    /// This is used to indicate for integer formats that the padding to width should both be done with a 0 character as well as be sign-aware
374    #[unstable(feature = "formatting_options", issue = "118117")]
375    pub fn sign_aware_zero_pad(&mut self, sign_aware_zero_pad: bool) -> &mut Self {
376        if sign_aware_zero_pad {
377            self.flags |= flags::SIGN_AWARE_ZERO_PAD_FLAG;
378        } else {
379            self.flags &= !flags::SIGN_AWARE_ZERO_PAD_FLAG;
380        }
381        self
382    }
383    /// Sets or unsets the `#` flag.
384    ///
385    /// This flag indicates that the "alternate" form of printing should be
386    /// used. The alternate forms are:
387    /// - [`Debug`] : pretty-print the [`Debug`] formatting (adds linebreaks and indentation)
388    /// - [`LowerHex`] as well as [`UpperHex`] - precedes the argument with a `0x`
389    /// - [`Octal`] - precedes the argument with a `0b`
390    /// - [`Binary`] - precedes the argument with a `0o`
391    #[unstable(feature = "formatting_options", issue = "118117")]
392    pub fn alternate(&mut self, alternate: bool) -> &mut Self {
393        if alternate {
394            self.flags |= flags::ALTERNATE_FLAG;
395        } else {
396            self.flags &= !flags::ALTERNATE_FLAG;
397        }
398        self
399    }
400    /// Sets the fill character.
401    ///
402    /// The optional fill character and alignment is provided normally in
403    /// conjunction with the width parameter. This indicates that if the value
404    /// being formatted is smaller than width some extra characters will be
405    /// printed around it.
406    #[unstable(feature = "formatting_options", issue = "118117")]
407    pub fn fill(&mut self, fill: char) -> &mut Self {
408        self.flags = self.flags & (u32::MAX << 21) | fill as u32;
409        self
410    }
411    /// Sets or removes the alignment.
412    ///
413    /// The alignment specifies how the value being formatted should be
414    /// positioned if it is smaller than the width of the formatter.
415    #[unstable(feature = "formatting_options", issue = "118117")]
416    pub fn align(&mut self, align: Option<Alignment>) -> &mut Self {
417        let align: u32 = match align {
418            Some(Alignment::Left) => flags::ALIGN_LEFT,
419            Some(Alignment::Right) => flags::ALIGN_RIGHT,
420            Some(Alignment::Center) => flags::ALIGN_CENTER,
421            None => flags::ALIGN_UNKNOWN,
422        };
423        self.flags = self.flags & !flags::ALIGN_BITS | align;
424        self
425    }
426    /// Sets or removes the width.
427    ///
428    /// This is a parameter for the “minimum width” that the format should take
429    /// up. If the value’s string does not fill up this many characters, then
430    /// the padding specified by [`FormattingOptions::fill`]/[`FormattingOptions::align`]
431    /// will be used to take up the required space.
432    #[unstable(feature = "formatting_options", issue = "118117")]
433    pub fn width(&mut self, width: Option<u16>) -> &mut Self {
434        if let Some(width) = width {
435            self.flags |= flags::WIDTH_FLAG;
436            self.width = width;
437        } else {
438            self.flags &= !flags::WIDTH_FLAG;
439            self.width = 0;
440        }
441        self
442    }
443    /// Sets or removes the precision.
444    ///
445    /// - For non-numeric types, this can be considered a “maximum width”. If
446    ///   the resulting string is longer than this width, then it is truncated
447    ///   down to this many characters and that truncated value is emitted with
448    ///   proper fill, alignment and width if those parameters are set.
449    /// - For integral types, this is ignored.
450    /// - For floating-point types, this indicates how many digits after the
451    /// decimal point should be printed.
452    #[unstable(feature = "formatting_options", issue = "118117")]
453    pub fn precision(&mut self, precision: Option<u16>) -> &mut Self {
454        if let Some(precision) = precision {
455            self.flags |= flags::PRECISION_FLAG;
456            self.precision = precision;
457        } else {
458            self.flags &= !flags::PRECISION_FLAG;
459            self.precision = 0;
460        }
461        self
462    }
463    /// Specifies whether the [`Debug`] trait should use lower-/upper-case
464    /// hexadecimal or normal integers
465    #[unstable(feature = "formatting_options", issue = "118117")]
466    pub fn debug_as_hex(&mut self, debug_as_hex: Option<DebugAsHex>) -> &mut Self {
467        let debug_as_hex = match debug_as_hex {
468            None => 0,
469            Some(DebugAsHex::Lower) => flags::DEBUG_LOWER_HEX_FLAG,
470            Some(DebugAsHex::Upper) => flags::DEBUG_UPPER_HEX_FLAG,
471        };
472        self.flags = self.flags & !(flags::DEBUG_LOWER_HEX_FLAG | flags::DEBUG_UPPER_HEX_FLAG)
473            | debug_as_hex;
474        self
475    }
476
477    /// Returns the current sign (the `+` or the `-` flag).
478    #[unstable(feature = "formatting_options", issue = "118117")]
479    pub const fn get_sign(&self) -> Option<Sign> {
480        if self.flags & flags::SIGN_PLUS_FLAG != 0 {
481            Some(Sign::Plus)
482        } else if self.flags & flags::SIGN_MINUS_FLAG != 0 {
483            Some(Sign::Minus)
484        } else {
485            None
486        }
487    }
488    /// Returns the current `0` flag.
489    #[unstable(feature = "formatting_options", issue = "118117")]
490    pub const fn get_sign_aware_zero_pad(&self) -> bool {
491        self.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
492    }
493    /// Returns the current `#` flag.
494    #[unstable(feature = "formatting_options", issue = "118117")]
495    pub const fn get_alternate(&self) -> bool {
496        self.flags & flags::ALTERNATE_FLAG != 0
497    }
498    /// Returns the current fill character.
499    #[unstable(feature = "formatting_options", issue = "118117")]
500    pub const fn get_fill(&self) -> char {
501        // SAFETY: We only ever put a valid `char` in the lower 21 bits of the flags field.
502        unsafe { char::from_u32_unchecked(self.flags & 0x1FFFFF) }
503    }
504    /// Returns the current alignment.
505    #[unstable(feature = "formatting_options", issue = "118117")]
506    pub const fn get_align(&self) -> Option<Alignment> {
507        match self.flags & flags::ALIGN_BITS {
508            flags::ALIGN_LEFT => Some(Alignment::Left),
509            flags::ALIGN_RIGHT => Some(Alignment::Right),
510            flags::ALIGN_CENTER => Some(Alignment::Center),
511            _ => None,
512        }
513    }
514    /// Returns the current width.
515    #[unstable(feature = "formatting_options", issue = "118117")]
516    pub const fn get_width(&self) -> Option<u16> {
517        if self.flags & flags::WIDTH_FLAG != 0 { Some(self.width) } else { None }
518    }
519    /// Returns the current precision.
520    #[unstable(feature = "formatting_options", issue = "118117")]
521    pub const fn get_precision(&self) -> Option<u16> {
522        if self.flags & flags::PRECISION_FLAG != 0 { Some(self.precision) } else { None }
523    }
524    /// Returns the current precision.
525    #[unstable(feature = "formatting_options", issue = "118117")]
526    pub const fn get_debug_as_hex(&self) -> Option<DebugAsHex> {
527        if self.flags & flags::DEBUG_LOWER_HEX_FLAG != 0 {
528            Some(DebugAsHex::Lower)
529        } else if self.flags & flags::DEBUG_UPPER_HEX_FLAG != 0 {
530            Some(DebugAsHex::Upper)
531        } else {
532            None
533        }
534    }
535
536    /// Creates a [`Formatter`] that writes its output to the given [`Write`] trait.
537    ///
538    /// You may alternatively use [`Formatter::new()`].
539    #[unstable(feature = "formatting_options", issue = "118117")]
540    pub fn create_formatter<'a>(self, write: &'a mut (dyn Write + 'a)) -> Formatter<'a> {
541        Formatter { options: self, buf: write }
542    }
543}
544
545#[unstable(feature = "formatting_options", issue = "118117")]
546impl Default for FormattingOptions {
547    /// Same as [`FormattingOptions::new()`].
548    fn default() -> Self {
549        // The `#[derive(Default)]` implementation would set `fill` to `\0` instead of space.
550        Self::new()
551    }
552}
553
554/// Configuration for formatting.
555///
556/// A `Formatter` represents various options related to formatting. Users do not
557/// construct `Formatter`s directly; a mutable reference to one is passed to
558/// the `fmt` method of all formatting traits, like [`Debug`] and [`Display`].
559///
560/// To interact with a `Formatter`, you'll call various methods to change the
561/// various options related to formatting. For examples, please see the
562/// documentation of the methods defined on `Formatter` below.
563#[allow(missing_debug_implementations)]
564#[stable(feature = "rust1", since = "1.0.0")]
565#[rustc_diagnostic_item = "Formatter"]
566pub struct Formatter<'a> {
567    options: FormattingOptions,
568
569    buf: &'a mut (dyn Write + 'a),
570}
571
572impl<'a> Formatter<'a> {
573    /// Creates a new formatter with given [`FormattingOptions`].
574    ///
575    /// If `write` is a reference to a formatter, it is recommended to use
576    /// [`Formatter::with_options`] instead as this can borrow the underlying
577    /// `write`, thereby bypassing one layer of indirection.
578    ///
579    /// You may alternatively use [`FormattingOptions::create_formatter()`].
580    #[unstable(feature = "formatting_options", issue = "118117")]
581    pub fn new(write: &'a mut (dyn Write + 'a), options: FormattingOptions) -> Self {
582        Formatter { options, buf: write }
583    }
584
585    /// Creates a new formatter based on this one with given [`FormattingOptions`].
586    #[unstable(feature = "formatting_options", issue = "118117")]
587    pub fn with_options<'b>(&'b mut self, options: FormattingOptions) -> Formatter<'b> {
588        Formatter { options, buf: self.buf }
589    }
590}
591
592/// This structure represents a safely precompiled version of a format string
593/// and its arguments. This cannot be generated at runtime because it cannot
594/// safely be done, so no constructors are given and the fields are private
595/// to prevent modification.
596///
597/// The [`format_args!`] macro will safely create an instance of this structure.
598/// The macro validates the format string at compile-time so usage of the
599/// [`write()`] and [`format()`] functions can be safely performed.
600///
601/// You can use the `Arguments<'a>` that [`format_args!`] returns in `Debug`
602/// and `Display` contexts as seen below. The example also shows that `Debug`
603/// and `Display` format to the same thing: the interpolated format string
604/// in `format_args!`.
605///
606/// ```rust
607/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
608/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
609/// assert_eq!("1 foo 2", display);
610/// assert_eq!(display, debug);
611/// ```
612///
613/// [`format()`]: ../../std/fmt/fn.format.html
614#[lang = "format_arguments"]
615#[stable(feature = "rust1", since = "1.0.0")]
616#[derive(Copy, Clone)]
617pub struct Arguments<'a> {
618    // Format string pieces to print.
619    pieces: &'a [&'static str],
620
621    // Placeholder specs, or `None` if all specs are default (as in "{}{}").
622    fmt: Option<&'a [rt::Placeholder]>,
623
624    // Dynamic arguments for interpolation, to be interleaved with string
625    // pieces. (Every argument is preceded by a string piece.)
626    args: &'a [rt::Argument<'a>],
627}
628
629#[doc(hidden)]
630#[unstable(feature = "fmt_internals", issue = "none")]
631impl<'a> Arguments<'a> {
632    /// Estimates the length of the formatted text.
633    ///
634    /// This is intended to be used for setting initial `String` capacity
635    /// when using `format!`. Note: this is neither the lower nor upper bound.
636    #[inline]
637    pub fn estimated_capacity(&self) -> usize {
638        let pieces_length: usize = self.pieces.iter().map(|x| x.len()).sum();
639
640        if self.args.is_empty() {
641            pieces_length
642        } else if !self.pieces.is_empty() && self.pieces[0].is_empty() && pieces_length < 16 {
643            // If the format string starts with an argument,
644            // don't preallocate anything, unless length
645            // of pieces is significant.
646            0
647        } else {
648            // There are some arguments, so any additional push
649            // will reallocate the string. To avoid that,
650            // we're "pre-doubling" the capacity here.
651            pieces_length.checked_mul(2).unwrap_or(0)
652        }
653    }
654}
655
656impl<'a> Arguments<'a> {
657    /// Gets the formatted string, if it has no arguments to be formatted at runtime.
658    ///
659    /// This can be used to avoid allocations in some cases.
660    ///
661    /// # Guarantees
662    ///
663    /// For `format_args!("just a literal")`, this function is guaranteed to
664    /// return `Some("just a literal")`.
665    ///
666    /// For most cases with placeholders, this function will return `None`.
667    ///
668    /// However, the compiler may perform optimizations that can cause this
669    /// function to return `Some(_)` even if the format string contains
670    /// placeholders. For example, `format_args!("Hello, {}!", "world")` may be
671    /// optimized to `format_args!("Hello, world!")`, such that `as_str()`
672    /// returns `Some("Hello, world!")`.
673    ///
674    /// The behavior for anything but the trivial case (without placeholders)
675    /// is not guaranteed, and should not be relied upon for anything other
676    /// than optimization.
677    ///
678    /// # Examples
679    ///
680    /// ```rust
681    /// use std::fmt::Arguments;
682    ///
683    /// fn write_str(_: &str) { /* ... */ }
684    ///
685    /// fn write_fmt(args: &Arguments<'_>) {
686    ///     if let Some(s) = args.as_str() {
687    ///         write_str(s)
688    ///     } else {
689    ///         write_str(&args.to_string());
690    ///     }
691    /// }
692    /// ```
693    ///
694    /// ```rust
695    /// assert_eq!(format_args!("hello").as_str(), Some("hello"));
696    /// assert_eq!(format_args!("").as_str(), Some(""));
697    /// assert_eq!(format_args!("{:?}", std::env::current_dir()).as_str(), None);
698    /// ```
699    #[stable(feature = "fmt_as_str", since = "1.52.0")]
700    #[rustc_const_stable(feature = "const_arguments_as_str", since = "1.84.0")]
701    #[must_use]
702    #[inline]
703    pub const fn as_str(&self) -> Option<&'static str> {
704        match (self.pieces, self.args) {
705            ([], []) => Some(""),
706            ([s], []) => Some(s),
707            _ => None,
708        }
709    }
710
711    /// Same as [`Arguments::as_str`], but will only return `Some(s)` if it can be determined at compile time.
712    #[unstable(feature = "fmt_internals", reason = "internal to standard library", issue = "none")]
713    #[must_use]
714    #[inline]
715    #[doc(hidden)]
716    pub fn as_statically_known_str(&self) -> Option<&'static str> {
717        let s = self.as_str();
718        if core::intrinsics::is_val_statically_known(s.is_some()) { s } else { None }
719    }
720}
721
722// Manually implementing these results in better error messages.
723#[stable(feature = "rust1", since = "1.0.0")]
724impl !Send for Arguments<'_> {}
725#[stable(feature = "rust1", since = "1.0.0")]
726impl !Sync for Arguments<'_> {}
727
728#[stable(feature = "rust1", since = "1.0.0")]
729impl Debug for Arguments<'_> {
730    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
731        Display::fmt(self, fmt)
732    }
733}
734
735#[stable(feature = "rust1", since = "1.0.0")]
736impl Display for Arguments<'_> {
737    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
738        write(fmt.buf, *self)
739    }
740}
741
742/// `?` formatting.
743///
744/// `Debug` should format the output in a programmer-facing, debugging context.
745///
746/// Generally speaking, you should just `derive` a `Debug` implementation.
747///
748/// When used with the alternate format specifier `#?`, the output is pretty-printed.
749///
750/// For more information on formatters, see [the module-level documentation][module].
751///
752/// [module]: ../../std/fmt/index.html
753///
754/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
755/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
756/// comma-separated list of each field's name and `Debug` value, then `}`. For
757/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
758/// `Debug` values of the fields, then `)`.
759///
760/// # Stability
761///
762/// Derived `Debug` formats are not stable, and so may change with future Rust
763/// versions. Additionally, `Debug` implementations of types provided by the
764/// standard library (`std`, `core`, `alloc`, etc.) are not stable, and
765/// may also change with future Rust versions.
766///
767/// # Examples
768///
769/// Deriving an implementation:
770///
771/// ```
772/// #[derive(Debug)]
773/// struct Point {
774///     x: i32,
775///     y: i32,
776/// }
777///
778/// let origin = Point { x: 0, y: 0 };
779///
780/// assert_eq!(
781///     format!("The origin is: {origin:?}"),
782///     "The origin is: Point { x: 0, y: 0 }",
783/// );
784/// ```
785///
786/// Manually implementing:
787///
788/// ```
789/// use std::fmt;
790///
791/// struct Point {
792///     x: i32,
793///     y: i32,
794/// }
795///
796/// impl fmt::Debug for Point {
797///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
798///         f.debug_struct("Point")
799///          .field("x", &self.x)
800///          .field("y", &self.y)
801///          .finish()
802///     }
803/// }
804///
805/// let origin = Point { x: 0, y: 0 };
806///
807/// assert_eq!(
808///     format!("The origin is: {origin:?}"),
809///     "The origin is: Point { x: 0, y: 0 }",
810/// );
811/// ```
812///
813/// There are a number of helper methods on the [`Formatter`] struct to help you with manual
814/// implementations, such as [`debug_struct`].
815///
816/// [`debug_struct`]: Formatter::debug_struct
817///
818/// Types that do not wish to use the standard suite of debug representations
819/// provided by the `Formatter` trait (`debug_struct`, `debug_tuple`,
820/// `debug_list`, `debug_set`, `debug_map`) can do something totally custom by
821/// manually writing an arbitrary representation to the `Formatter`.
822///
823/// ```
824/// # use std::fmt;
825/// # struct Point {
826/// #     x: i32,
827/// #     y: i32,
828/// # }
829/// #
830/// impl fmt::Debug for Point {
831///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
832///         write!(f, "Point [{} {}]", self.x, self.y)
833///     }
834/// }
835/// ```
836///
837/// `Debug` implementations using either `derive` or the debug builder API
838/// on [`Formatter`] support pretty-printing using the alternate flag: `{:#?}`.
839///
840/// Pretty-printing with `#?`:
841///
842/// ```
843/// #[derive(Debug)]
844/// struct Point {
845///     x: i32,
846///     y: i32,
847/// }
848///
849/// let origin = Point { x: 0, y: 0 };
850///
851/// let expected = "The origin is: Point {
852///     x: 0,
853///     y: 0,
854/// }";
855/// assert_eq!(format!("The origin is: {origin:#?}"), expected);
856/// ```
857#[stable(feature = "rust1", since = "1.0.0")]
858#[rustc_on_unimplemented(
859    on(
860        crate_local,
861        note = "add `#[derive(Debug)]` to `{Self}` or manually `impl {This} for {Self}`"
862    ),
863    on(
864        from_desugaring = "FormatLiteral",
865        label = "`{Self}` cannot be formatted using `{{:?}}` because it doesn't implement `{This}`"
866    ),
867    message = "`{Self}` doesn't implement `{This}`"
868)]
869#[doc(alias = "{:?}")]
870#[rustc_diagnostic_item = "Debug"]
871#[rustc_trivial_field_reads]
872pub trait Debug: PointeeSized {
873    #[doc = include_str!("fmt_trait_method_doc.md")]
874    ///
875    /// # Examples
876    ///
877    /// ```
878    /// use std::fmt;
879    ///
880    /// struct Position {
881    ///     longitude: f32,
882    ///     latitude: f32,
883    /// }
884    ///
885    /// impl fmt::Debug for Position {
886    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
887    ///         f.debug_tuple("")
888    ///          .field(&self.longitude)
889    ///          .field(&self.latitude)
890    ///          .finish()
891    ///     }
892    /// }
893    ///
894    /// let position = Position { longitude: 1.987, latitude: 2.983 };
895    /// assert_eq!(format!("{position:?}"), "(1.987, 2.983)");
896    ///
897    /// assert_eq!(format!("{position:#?}"), "(
898    ///     1.987,
899    ///     2.983,
900    /// )");
901    /// ```
902    #[stable(feature = "rust1", since = "1.0.0")]
903    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
904}
905
906// Separate module to reexport the macro `Debug` from prelude without the trait `Debug`.
907pub(crate) mod macros {
908    /// Derive macro generating an impl of the trait `Debug`.
909    #[rustc_builtin_macro]
910    #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
911    #[allow_internal_unstable(core_intrinsics, fmt_helpers_for_derive)]
912    pub macro Debug($item:item) {
913        /* compiler built-in */
914    }
915}
916#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
917#[doc(inline)]
918pub use macros::Debug;
919
920/// Format trait for an empty format, `{}`.
921///
922/// Implementing this trait for a type will automatically implement the
923/// [`ToString`][tostring] trait for the type, allowing the usage
924/// of the [`.to_string()`][tostring_function] method. Prefer implementing
925/// the `Display` trait for a type, rather than [`ToString`][tostring].
926///
927/// `Display` is similar to [`Debug`], but `Display` is for user-facing
928/// output, and so cannot be derived.
929///
930/// For more information on formatters, see [the module-level documentation][module].
931///
932/// [module]: ../../std/fmt/index.html
933/// [tostring]: ../../std/string/trait.ToString.html
934/// [tostring_function]: ../../std/string/trait.ToString.html#tymethod.to_string
935///
936/// # Completeness and parseability
937///
938/// `Display` for a type might not necessarily be a lossless or complete representation of the type.
939/// It may omit internal state, precision, or other information the type does not consider important
940/// for user-facing output, as determined by the type. As such, the output of `Display` might not be
941/// possible to parse, and even if it is, the result of parsing might not exactly match the original
942/// value.
943///
944/// However, if a type has a lossless `Display` implementation whose output is meant to be
945/// conveniently machine-parseable and not just meant for human consumption, then the type may wish
946/// to accept the same format in `FromStr`, and document that usage. Having both `Display` and
947/// `FromStr` implementations where the result of `Display` cannot be parsed with `FromStr` may
948/// surprise users.
949///
950/// # Internationalization
951///
952/// Because a type can only have one `Display` implementation, it is often preferable
953/// to only implement `Display` when there is a single most "obvious" way that
954/// values can be formatted as text. This could mean formatting according to the
955/// "invariant" culture and "undefined" locale, or it could mean that the type
956/// display is designed for a specific culture/locale, such as developer logs.
957///
958/// If not all values have a justifiably canonical textual format or if you want
959/// to support alternative formats not covered by the standard set of possible
960/// [formatting traits], the most flexible approach is display adapters: methods
961/// like [`str::escape_default`] or [`Path::display`] which create a wrapper
962/// implementing `Display` to output the specific display format.
963///
964/// [formatting traits]: ../../std/fmt/index.html#formatting-traits
965/// [`Path::display`]: ../../std/path/struct.Path.html#method.display
966///
967/// # Examples
968///
969/// Implementing `Display` on a type:
970///
971/// ```
972/// use std::fmt;
973///
974/// struct Point {
975///     x: i32,
976///     y: i32,
977/// }
978///
979/// impl fmt::Display for Point {
980///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
981///         write!(f, "({}, {})", self.x, self.y)
982///     }
983/// }
984///
985/// let origin = Point { x: 0, y: 0 };
986///
987/// assert_eq!(format!("The origin is: {origin}"), "The origin is: (0, 0)");
988/// ```
989#[rustc_on_unimplemented(
990    on(
991        any(Self = "std::path::Path", Self = "std::path::PathBuf"),
992        label = "`{Self}` cannot be formatted with the default formatter; call `.display()` on it",
993        note = "call `.display()` or `.to_string_lossy()` to safely print paths, \
994                as they may contain non-Unicode data",
995    ),
996    on(
997        from_desugaring = "FormatLiteral",
998        note = "in format strings you may be able to use `{{:?}}` (or {{:#?}} for pretty-print) instead",
999        label = "`{Self}` cannot be formatted with the default formatter",
1000    ),
1001    message = "`{Self}` doesn't implement `{This}`"
1002)]
1003#[doc(alias = "{}")]
1004#[rustc_diagnostic_item = "Display"]
1005#[stable(feature = "rust1", since = "1.0.0")]
1006pub trait Display: PointeeSized {
1007    #[doc = include_str!("fmt_trait_method_doc.md")]
1008    ///
1009    /// # Examples
1010    ///
1011    /// ```
1012    /// use std::fmt;
1013    ///
1014    /// struct Position {
1015    ///     longitude: f32,
1016    ///     latitude: f32,
1017    /// }
1018    ///
1019    /// impl fmt::Display for Position {
1020    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1021    ///         write!(f, "({}, {})", self.longitude, self.latitude)
1022    ///     }
1023    /// }
1024    ///
1025    /// assert_eq!(
1026    ///     "(1.987, 2.983)",
1027    ///     format!("{}", Position { longitude: 1.987, latitude: 2.983, }),
1028    /// );
1029    /// ```
1030    #[stable(feature = "rust1", since = "1.0.0")]
1031    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1032}
1033
1034/// `o` formatting.
1035///
1036/// The `Octal` trait should format its output as a number in base-8.
1037///
1038/// For primitive signed integers (`i8` to `i128`, and `isize`),
1039/// negative values are formatted as the two’s complement representation.
1040///
1041/// The alternate flag, `#`, adds a `0o` in front of the output.
1042///
1043/// For more information on formatters, see [the module-level documentation][module].
1044///
1045/// [module]: ../../std/fmt/index.html
1046///
1047/// # Examples
1048///
1049/// Basic usage with `i32`:
1050///
1051/// ```
1052/// let x = 42; // 42 is '52' in octal
1053///
1054/// assert_eq!(format!("{x:o}"), "52");
1055/// assert_eq!(format!("{x:#o}"), "0o52");
1056///
1057/// assert_eq!(format!("{:o}", -16), "37777777760");
1058/// ```
1059///
1060/// Implementing `Octal` on a type:
1061///
1062/// ```
1063/// use std::fmt;
1064///
1065/// struct Length(i32);
1066///
1067/// impl fmt::Octal for Length {
1068///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1069///         let val = self.0;
1070///
1071///         fmt::Octal::fmt(&val, f) // delegate to i32's implementation
1072///     }
1073/// }
1074///
1075/// let l = Length(9);
1076///
1077/// assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");
1078///
1079/// assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");
1080/// ```
1081#[stable(feature = "rust1", since = "1.0.0")]
1082pub trait Octal: PointeeSized {
1083    #[doc = include_str!("fmt_trait_method_doc.md")]
1084    #[stable(feature = "rust1", since = "1.0.0")]
1085    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1086}
1087
1088/// `b` formatting.
1089///
1090/// The `Binary` trait should format its output as a number in binary.
1091///
1092/// For primitive signed integers ([`i8`] to [`i128`], and [`isize`]),
1093/// negative values are formatted as the two’s complement representation.
1094///
1095/// The alternate flag, `#`, adds a `0b` in front of the output.
1096///
1097/// For more information on formatters, see [the module-level documentation][module].
1098///
1099/// [module]: ../../std/fmt/index.html
1100///
1101/// # Examples
1102///
1103/// Basic usage with [`i32`]:
1104///
1105/// ```
1106/// let x = 42; // 42 is '101010' in binary
1107///
1108/// assert_eq!(format!("{x:b}"), "101010");
1109/// assert_eq!(format!("{x:#b}"), "0b101010");
1110///
1111/// assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
1112/// ```
1113///
1114/// Implementing `Binary` on a type:
1115///
1116/// ```
1117/// use std::fmt;
1118///
1119/// struct Length(i32);
1120///
1121/// impl fmt::Binary for Length {
1122///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1123///         let val = self.0;
1124///
1125///         fmt::Binary::fmt(&val, f) // delegate to i32's implementation
1126///     }
1127/// }
1128///
1129/// let l = Length(107);
1130///
1131/// assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
1132///
1133/// assert_eq!(
1134///     // Note that the `0b` prefix added by `#` is included in the total width, so we
1135///     // need to add two to correctly display all 32 bits.
1136///     format!("l as binary is: {l:#034b}"),
1137///     "l as binary is: 0b00000000000000000000000001101011"
1138/// );
1139/// ```
1140#[stable(feature = "rust1", since = "1.0.0")]
1141pub trait Binary: PointeeSized {
1142    #[doc = include_str!("fmt_trait_method_doc.md")]
1143    #[stable(feature = "rust1", since = "1.0.0")]
1144    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1145}
1146
1147/// `x` formatting.
1148///
1149/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
1150/// in lower case.
1151///
1152/// For primitive signed integers (`i8` to `i128`, and `isize`),
1153/// negative values are formatted as the two’s complement representation.
1154///
1155/// The alternate flag, `#`, adds a `0x` in front of the output.
1156///
1157/// For more information on formatters, see [the module-level documentation][module].
1158///
1159/// [module]: ../../std/fmt/index.html
1160///
1161/// # Examples
1162///
1163/// Basic usage with `i32`:
1164///
1165/// ```
1166/// let y = 42; // 42 is '2a' in hex
1167///
1168/// assert_eq!(format!("{y:x}"), "2a");
1169/// assert_eq!(format!("{y:#x}"), "0x2a");
1170///
1171/// assert_eq!(format!("{:x}", -16), "fffffff0");
1172/// ```
1173///
1174/// Implementing `LowerHex` on a type:
1175///
1176/// ```
1177/// use std::fmt;
1178///
1179/// struct Length(i32);
1180///
1181/// impl fmt::LowerHex for Length {
1182///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1183///         let val = self.0;
1184///
1185///         fmt::LowerHex::fmt(&val, f) // delegate to i32's implementation
1186///     }
1187/// }
1188///
1189/// let l = Length(9);
1190///
1191/// assert_eq!(format!("l as hex is: {l:x}"), "l as hex is: 9");
1192///
1193/// assert_eq!(format!("l as hex is: {l:#010x}"), "l as hex is: 0x00000009");
1194/// ```
1195#[stable(feature = "rust1", since = "1.0.0")]
1196pub trait LowerHex: PointeeSized {
1197    #[doc = include_str!("fmt_trait_method_doc.md")]
1198    #[stable(feature = "rust1", since = "1.0.0")]
1199    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1200}
1201
1202/// `X` formatting.
1203///
1204/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
1205/// in upper case.
1206///
1207/// For primitive signed integers (`i8` to `i128`, and `isize`),
1208/// negative values are formatted as the two’s complement representation.
1209///
1210/// The alternate flag, `#`, adds a `0x` in front of the output.
1211///
1212/// For more information on formatters, see [the module-level documentation][module].
1213///
1214/// [module]: ../../std/fmt/index.html
1215///
1216/// # Examples
1217///
1218/// Basic usage with `i32`:
1219///
1220/// ```
1221/// let y = 42; // 42 is '2A' in hex
1222///
1223/// assert_eq!(format!("{y:X}"), "2A");
1224/// assert_eq!(format!("{y:#X}"), "0x2A");
1225///
1226/// assert_eq!(format!("{:X}", -16), "FFFFFFF0");
1227/// ```
1228///
1229/// Implementing `UpperHex` on a type:
1230///
1231/// ```
1232/// use std::fmt;
1233///
1234/// struct Length(i32);
1235///
1236/// impl fmt::UpperHex for Length {
1237///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1238///         let val = self.0;
1239///
1240///         fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
1241///     }
1242/// }
1243///
1244/// let l = Length(i32::MAX);
1245///
1246/// assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");
1247///
1248/// assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");
1249/// ```
1250#[stable(feature = "rust1", since = "1.0.0")]
1251pub trait UpperHex: PointeeSized {
1252    #[doc = include_str!("fmt_trait_method_doc.md")]
1253    #[stable(feature = "rust1", since = "1.0.0")]
1254    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1255}
1256
1257/// `p` formatting.
1258///
1259/// The `Pointer` trait should format its output as a memory location. This is commonly presented
1260/// as hexadecimal. For more information on formatters, see [the module-level documentation][module].
1261///
1262/// Printing of pointers is not a reliable way to discover how Rust programs are implemented.
1263/// The act of reading an address changes the program itself, and may change how the data is represented
1264/// in memory, and may affect which optimizations are applied to the code.
1265///
1266/// The printed pointer values are not guaranteed to be stable nor unique identifiers of objects.
1267/// Rust allows moving values to different memory locations, and may reuse the same memory locations
1268/// for different purposes.
1269///
1270/// There is no guarantee that the printed value can be converted back to a pointer.
1271///
1272/// [module]: ../../std/fmt/index.html
1273///
1274/// # Examples
1275///
1276/// Basic usage with `&i32`:
1277///
1278/// ```
1279/// let x = &42;
1280///
1281/// let address = format!("{x:p}"); // this produces something like '0x7f06092ac6d0'
1282/// ```
1283///
1284/// Implementing `Pointer` on a type:
1285///
1286/// ```
1287/// use std::fmt;
1288///
1289/// struct Length(i32);
1290///
1291/// impl fmt::Pointer for Length {
1292///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1293///         // use `as` to convert to a `*const T`, which implements Pointer, which we can use
1294///
1295///         let ptr = self as *const Self;
1296///         fmt::Pointer::fmt(&ptr, f)
1297///     }
1298/// }
1299///
1300/// let l = Length(42);
1301///
1302/// println!("l is in memory here: {l:p}");
1303///
1304/// let l_ptr = format!("{l:018p}");
1305/// assert_eq!(l_ptr.len(), 18);
1306/// assert_eq!(&l_ptr[..2], "0x");
1307/// ```
1308#[stable(feature = "rust1", since = "1.0.0")]
1309#[rustc_diagnostic_item = "Pointer"]
1310pub trait Pointer: PointeeSized {
1311    #[doc = include_str!("fmt_trait_method_doc.md")]
1312    #[stable(feature = "rust1", since = "1.0.0")]
1313    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1314}
1315
1316/// `e` formatting.
1317///
1318/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
1319///
1320/// For more information on formatters, see [the module-level documentation][module].
1321///
1322/// [module]: ../../std/fmt/index.html
1323///
1324/// # Examples
1325///
1326/// Basic usage with `f64`:
1327///
1328/// ```
1329/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
1330///
1331/// assert_eq!(format!("{x:e}"), "4.2e1");
1332/// ```
1333///
1334/// Implementing `LowerExp` on a type:
1335///
1336/// ```
1337/// use std::fmt;
1338///
1339/// struct Length(i32);
1340///
1341/// impl fmt::LowerExp for Length {
1342///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1343///         let val = f64::from(self.0);
1344///         fmt::LowerExp::fmt(&val, f) // delegate to f64's implementation
1345///     }
1346/// }
1347///
1348/// let l = Length(100);
1349///
1350/// assert_eq!(
1351///     format!("l in scientific notation is: {l:e}"),
1352///     "l in scientific notation is: 1e2"
1353/// );
1354///
1355/// assert_eq!(
1356///     format!("l in scientific notation is: {l:05e}"),
1357///     "l in scientific notation is: 001e2"
1358/// );
1359/// ```
1360#[stable(feature = "rust1", since = "1.0.0")]
1361pub trait LowerExp: PointeeSized {
1362    #[doc = include_str!("fmt_trait_method_doc.md")]
1363    #[stable(feature = "rust1", since = "1.0.0")]
1364    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1365}
1366
1367/// `E` formatting.
1368///
1369/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
1370///
1371/// For more information on formatters, see [the module-level documentation][module].
1372///
1373/// [module]: ../../std/fmt/index.html
1374///
1375/// # Examples
1376///
1377/// Basic usage with `f64`:
1378///
1379/// ```
1380/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
1381///
1382/// assert_eq!(format!("{x:E}"), "4.2E1");
1383/// ```
1384///
1385/// Implementing `UpperExp` on a type:
1386///
1387/// ```
1388/// use std::fmt;
1389///
1390/// struct Length(i32);
1391///
1392/// impl fmt::UpperExp for Length {
1393///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1394///         let val = f64::from(self.0);
1395///         fmt::UpperExp::fmt(&val, f) // delegate to f64's implementation
1396///     }
1397/// }
1398///
1399/// let l = Length(100);
1400///
1401/// assert_eq!(
1402///     format!("l in scientific notation is: {l:E}"),
1403///     "l in scientific notation is: 1E2"
1404/// );
1405///
1406/// assert_eq!(
1407///     format!("l in scientific notation is: {l:05E}"),
1408///     "l in scientific notation is: 001E2"
1409/// );
1410/// ```
1411#[stable(feature = "rust1", since = "1.0.0")]
1412pub trait UpperExp: PointeeSized {
1413    #[doc = include_str!("fmt_trait_method_doc.md")]
1414    #[stable(feature = "rust1", since = "1.0.0")]
1415    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1416}
1417
1418/// Takes an output stream and an `Arguments` struct that can be precompiled with
1419/// the `format_args!` macro.
1420///
1421/// The arguments will be formatted according to the specified format string
1422/// into the output stream provided.
1423///
1424/// # Examples
1425///
1426/// Basic usage:
1427///
1428/// ```
1429/// use std::fmt;
1430///
1431/// let mut output = String::new();
1432/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
1433///     .expect("Error occurred while trying to write in String");
1434/// assert_eq!(output, "Hello world!");
1435/// ```
1436///
1437/// Please note that using [`write!`] might be preferable. Example:
1438///
1439/// ```
1440/// use std::fmt::Write;
1441///
1442/// let mut output = String::new();
1443/// write!(&mut output, "Hello {}!", "world")
1444///     .expect("Error occurred while trying to write in String");
1445/// assert_eq!(output, "Hello world!");
1446/// ```
1447///
1448/// [`write!`]: crate::write!
1449#[stable(feature = "rust1", since = "1.0.0")]
1450pub fn write(output: &mut dyn Write, args: Arguments<'_>) -> Result {
1451    let mut formatter = Formatter::new(output, FormattingOptions::new());
1452    let mut idx = 0;
1453
1454    match args.fmt {
1455        None => {
1456            // We can use default formatting parameters for all arguments.
1457            for (i, arg) in args.args.iter().enumerate() {
1458                // SAFETY: args.args and args.pieces come from the same Arguments,
1459                // which guarantees the indexes are always within bounds.
1460                let piece = unsafe { args.pieces.get_unchecked(i) };
1461                if !piece.is_empty() {
1462                    formatter.buf.write_str(*piece)?;
1463                }
1464
1465                // SAFETY: There are no formatting parameters and hence no
1466                // count arguments.
1467                unsafe {
1468                    arg.fmt(&mut formatter)?;
1469                }
1470                idx += 1;
1471            }
1472        }
1473        Some(fmt) => {
1474            // Every spec has a corresponding argument that is preceded by
1475            // a string piece.
1476            for (i, arg) in fmt.iter().enumerate() {
1477                // SAFETY: fmt and args.pieces come from the same Arguments,
1478                // which guarantees the indexes are always within bounds.
1479                let piece = unsafe { args.pieces.get_unchecked(i) };
1480                if !piece.is_empty() {
1481                    formatter.buf.write_str(*piece)?;
1482                }
1483                // SAFETY: arg and args.args come from the same Arguments,
1484                // which guarantees the indexes are always within bounds.
1485                unsafe { run(&mut formatter, arg, args.args) }?;
1486                idx += 1;
1487            }
1488        }
1489    }
1490
1491    // There can be only one trailing string piece left.
1492    if let Some(piece) = args.pieces.get(idx) {
1493        formatter.buf.write_str(*piece)?;
1494    }
1495
1496    Ok(())
1497}
1498
1499unsafe fn run(fmt: &mut Formatter<'_>, arg: &rt::Placeholder, args: &[rt::Argument<'_>]) -> Result {
1500    let (width, precision) =
1501        // SAFETY: arg and args come from the same Arguments,
1502        // which guarantees the indexes are always within bounds.
1503        unsafe { (getcount(args, &arg.width), getcount(args, &arg.precision)) };
1504
1505    let options = FormattingOptions { flags: arg.flags, width, precision };
1506
1507    // Extract the correct argument
1508    debug_assert!(arg.position < args.len());
1509    // SAFETY: arg and args come from the same Arguments,
1510    // which guarantees its index is always within bounds.
1511    let value = unsafe { args.get_unchecked(arg.position) };
1512
1513    // Set all the formatting options.
1514    fmt.options = options;
1515
1516    // Then actually do some printing
1517    // SAFETY: this is a placeholder argument.
1518    unsafe { value.fmt(fmt) }
1519}
1520
1521unsafe fn getcount(args: &[rt::Argument<'_>], cnt: &rt::Count) -> u16 {
1522    match *cnt {
1523        rt::Count::Is(n) => n,
1524        rt::Count::Implied => 0,
1525        rt::Count::Param(i) => {
1526            debug_assert!(i < args.len());
1527            // SAFETY: cnt and args come from the same Arguments,
1528            // which guarantees this index is always within bounds.
1529            unsafe { args.get_unchecked(i).as_u16().unwrap_unchecked() }
1530        }
1531    }
1532}
1533
1534/// Padding after the end of something. Returned by `Formatter::padding`.
1535#[must_use = "don't forget to write the post padding"]
1536pub(crate) struct PostPadding {
1537    fill: char,
1538    padding: u16,
1539}
1540
1541impl PostPadding {
1542    fn new(fill: char, padding: u16) -> PostPadding {
1543        PostPadding { fill, padding }
1544    }
1545
1546    /// Writes this post padding.
1547    pub(crate) fn write(self, f: &mut Formatter<'_>) -> Result {
1548        for _ in 0..self.padding {
1549            f.buf.write_char(self.fill)?;
1550        }
1551        Ok(())
1552    }
1553}
1554
1555impl<'a> Formatter<'a> {
1556    fn wrap_buf<'b, 'c, F>(&'b mut self, wrap: F) -> Formatter<'c>
1557    where
1558        'b: 'c,
1559        F: FnOnce(&'b mut (dyn Write + 'b)) -> &'c mut (dyn Write + 'c),
1560    {
1561        Formatter {
1562            // We want to change this
1563            buf: wrap(self.buf),
1564
1565            // And preserve these
1566            options: self.options,
1567        }
1568    }
1569
1570    // Helper methods used for padding and processing formatting arguments that
1571    // all formatting traits can use.
1572
1573    /// Performs the correct padding for an integer which has already been
1574    /// emitted into a str. The str should *not* contain the sign for the
1575    /// integer, that will be added by this method.
1576    ///
1577    /// # Arguments
1578    ///
1579    /// * is_nonnegative - whether the original integer was either positive or zero.
1580    /// * prefix - if the '#' character (Alternate) is provided, this
1581    ///   is the prefix to put in front of the number.
1582    /// * buf - the byte array that the number has been formatted into
1583    ///
1584    /// This function will correctly account for the flags provided as well as
1585    /// the minimum width. It will not take precision into account.
1586    ///
1587    /// # Examples
1588    ///
1589    /// ```
1590    /// use std::fmt;
1591    ///
1592    /// struct Foo { nb: i32 }
1593    ///
1594    /// impl Foo {
1595    ///     fn new(nb: i32) -> Foo {
1596    ///         Foo {
1597    ///             nb,
1598    ///         }
1599    ///     }
1600    /// }
1601    ///
1602    /// impl fmt::Display for Foo {
1603    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1604    ///         // We need to remove "-" from the number output.
1605    ///         let tmp = self.nb.abs().to_string();
1606    ///
1607    ///         formatter.pad_integral(self.nb >= 0, "Foo ", &tmp)
1608    ///     }
1609    /// }
1610    ///
1611    /// assert_eq!(format!("{}", Foo::new(2)), "2");
1612    /// assert_eq!(format!("{}", Foo::new(-1)), "-1");
1613    /// assert_eq!(format!("{}", Foo::new(0)), "0");
1614    /// assert_eq!(format!("{:#}", Foo::new(-1)), "-Foo 1");
1615    /// assert_eq!(format!("{:0>#8}", Foo::new(-1)), "00-Foo 1");
1616    /// ```
1617    #[stable(feature = "rust1", since = "1.0.0")]
1618    pub fn pad_integral(&mut self, is_nonnegative: bool, prefix: &str, buf: &str) -> Result {
1619        let mut width = buf.len();
1620
1621        let mut sign = None;
1622        if !is_nonnegative {
1623            sign = Some('-');
1624            width += 1;
1625        } else if self.sign_plus() {
1626            sign = Some('+');
1627            width += 1;
1628        }
1629
1630        let prefix = if self.alternate() {
1631            width += prefix.chars().count();
1632            Some(prefix)
1633        } else {
1634            None
1635        };
1636
1637        // Writes the sign if it exists, and then the prefix if it was requested
1638        #[inline(never)]
1639        fn write_prefix(f: &mut Formatter<'_>, sign: Option<char>, prefix: Option<&str>) -> Result {
1640            if let Some(c) = sign {
1641                f.buf.write_char(c)?;
1642            }
1643            if let Some(prefix) = prefix { f.buf.write_str(prefix) } else { Ok(()) }
1644        }
1645
1646        // The `width` field is more of a `min-width` parameter at this point.
1647        let min = self.options.width;
1648        if width >= usize::from(min) {
1649            // We're over the minimum width, so then we can just write the bytes.
1650            write_prefix(self, sign, prefix)?;
1651            self.buf.write_str(buf)
1652        } else if self.sign_aware_zero_pad() {
1653            // The sign and prefix goes before the padding if the fill character
1654            // is zero
1655            let old_options = self.options;
1656            self.options.fill('0').align(Some(Alignment::Right));
1657            write_prefix(self, sign, prefix)?;
1658            let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1659            self.buf.write_str(buf)?;
1660            post_padding.write(self)?;
1661            self.options = old_options;
1662            Ok(())
1663        } else {
1664            // Otherwise, the sign and prefix goes after the padding
1665            let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1666            write_prefix(self, sign, prefix)?;
1667            self.buf.write_str(buf)?;
1668            post_padding.write(self)
1669        }
1670    }
1671
1672    /// Takes a string slice and emits it to the internal buffer after applying
1673    /// the relevant formatting flags specified.
1674    ///
1675    /// The flags recognized for generic strings are:
1676    ///
1677    /// * width - the minimum width of what to emit
1678    /// * fill/align - what to emit and where to emit it if the string
1679    ///                provided needs to be padded
1680    /// * precision - the maximum length to emit, the string is truncated if it
1681    ///               is longer than this length
1682    ///
1683    /// Notably this function ignores the `flag` parameters.
1684    ///
1685    /// # Examples
1686    ///
1687    /// ```
1688    /// use std::fmt;
1689    ///
1690    /// struct Foo;
1691    ///
1692    /// impl fmt::Display for Foo {
1693    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1694    ///         formatter.pad("Foo")
1695    ///     }
1696    /// }
1697    ///
1698    /// assert_eq!(format!("{Foo:<4}"), "Foo ");
1699    /// assert_eq!(format!("{Foo:0>4}"), "0Foo");
1700    /// ```
1701    #[stable(feature = "rust1", since = "1.0.0")]
1702    pub fn pad(&mut self, s: &str) -> Result {
1703        // Make sure there's a fast path up front.
1704        if self.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
1705            return self.buf.write_str(s);
1706        }
1707
1708        // The `precision` field can be interpreted as a maximum width for the
1709        // string being formatted.
1710        let (s, char_count) = if let Some(max_char_count) = self.options.get_precision() {
1711            let mut iter = s.char_indices();
1712            let remaining = match iter.advance_by(usize::from(max_char_count)) {
1713                Ok(()) => 0,
1714                Err(remaining) => remaining.get(),
1715            };
1716            // SAFETY: The offset of `.char_indices()` is guaranteed to be
1717            // in-bounds and between character boundaries.
1718            let truncated = unsafe { s.get_unchecked(..iter.offset()) };
1719            (truncated, usize::from(max_char_count) - remaining)
1720        } else {
1721            // Use the optimized char counting algorithm for the full string.
1722            (s, s.chars().count())
1723        };
1724
1725        // The `width` field is more of a minimum width parameter at this point.
1726        if char_count < usize::from(self.options.width) {
1727            // If we're under the minimum width, then fill up the minimum width
1728            // with the specified string + some alignment.
1729            let post_padding =
1730                self.padding(self.options.width - char_count as u16, Alignment::Left)?;
1731            self.buf.write_str(s)?;
1732            post_padding.write(self)
1733        } else {
1734            // If we're over the minimum width or there is no minimum width, we
1735            // can just emit the string.
1736            self.buf.write_str(s)
1737        }
1738    }
1739
1740    /// Writes the pre-padding and returns the unwritten post-padding.
1741    ///
1742    /// Callers are responsible for ensuring post-padding is written after the
1743    /// thing that is being padded.
1744    pub(crate) fn padding(
1745        &mut self,
1746        padding: u16,
1747        default: Alignment,
1748    ) -> result::Result<PostPadding, Error> {
1749        let align = self.options.get_align().unwrap_or(default);
1750        let fill = self.options.get_fill();
1751
1752        let padding_left = match align {
1753            Alignment::Left => 0,
1754            Alignment::Right => padding,
1755            Alignment::Center => padding / 2,
1756        };
1757
1758        for _ in 0..padding_left {
1759            self.buf.write_char(fill)?;
1760        }
1761
1762        Ok(PostPadding::new(fill, padding - padding_left))
1763    }
1764
1765    /// Takes the formatted parts and applies the padding.
1766    ///
1767    /// Assumes that the caller already has rendered the parts with required precision,
1768    /// so that `self.precision` can be ignored.
1769    ///
1770    /// # Safety
1771    ///
1772    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
1773    unsafe fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
1774        if self.options.width == 0 {
1775            // this is the common case and we take a shortcut
1776            // SAFETY: Per the precondition.
1777            unsafe { self.write_formatted_parts(formatted) }
1778        } else {
1779            // for the sign-aware zero padding, we render the sign first and
1780            // behave as if we had no sign from the beginning.
1781            let mut formatted = formatted.clone();
1782            let mut width = self.options.width;
1783            let old_options = self.options;
1784            if self.sign_aware_zero_pad() {
1785                // a sign always goes first
1786                let sign = formatted.sign;
1787                self.buf.write_str(sign)?;
1788
1789                // remove the sign from the formatted parts
1790                formatted.sign = "";
1791                width = width.saturating_sub(sign.len() as u16);
1792                self.options.fill('0').align(Some(Alignment::Right));
1793            }
1794
1795            // remaining parts go through the ordinary padding process.
1796            let len = formatted.len();
1797            let ret = if usize::from(width) <= len {
1798                // no padding
1799                // SAFETY: Per the precondition.
1800                unsafe { self.write_formatted_parts(&formatted) }
1801            } else {
1802                let post_padding = self.padding(width - len as u16, Alignment::Right)?;
1803                // SAFETY: Per the precondition.
1804                unsafe {
1805                    self.write_formatted_parts(&formatted)?;
1806                }
1807                post_padding.write(self)
1808            };
1809            self.options = old_options;
1810            ret
1811        }
1812    }
1813
1814    /// # Safety
1815    ///
1816    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
1817    unsafe fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
1818        unsafe fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
1819            // SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
1820            // It's safe to use for `numfmt::Part::Num` since every char `c` is between
1821            // `b'0'` and `b'9'`, which means `s` is valid UTF-8. It's safe to use for
1822            // `numfmt::Part::Copy` due to this function's precondition.
1823            buf.write_str(unsafe { str::from_utf8_unchecked(s) })
1824        }
1825
1826        if !formatted.sign.is_empty() {
1827            self.buf.write_str(formatted.sign)?;
1828        }
1829        for part in formatted.parts {
1830            match *part {
1831                numfmt::Part::Zero(mut nzeroes) => {
1832                    const ZEROES: &str = // 64 zeroes
1833                        "0000000000000000000000000000000000000000000000000000000000000000";
1834                    while nzeroes > ZEROES.len() {
1835                        self.buf.write_str(ZEROES)?;
1836                        nzeroes -= ZEROES.len();
1837                    }
1838                    if nzeroes > 0 {
1839                        self.buf.write_str(&ZEROES[..nzeroes])?;
1840                    }
1841                }
1842                numfmt::Part::Num(mut v) => {
1843                    let mut s = [0; 5];
1844                    let len = part.len();
1845                    for c in s[..len].iter_mut().rev() {
1846                        *c = b'0' + (v % 10) as u8;
1847                        v /= 10;
1848                    }
1849                    // SAFETY: Per the precondition.
1850                    unsafe {
1851                        write_bytes(self.buf, &s[..len])?;
1852                    }
1853                }
1854                // SAFETY: Per the precondition.
1855                numfmt::Part::Copy(buf) => unsafe {
1856                    write_bytes(self.buf, buf)?;
1857                },
1858            }
1859        }
1860        Ok(())
1861    }
1862
1863    /// Writes some data to the underlying buffer contained within this
1864    /// formatter.
1865    ///
1866    /// # Examples
1867    ///
1868    /// ```
1869    /// use std::fmt;
1870    ///
1871    /// struct Foo;
1872    ///
1873    /// impl fmt::Display for Foo {
1874    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1875    ///         formatter.write_str("Foo")
1876    ///         // This is equivalent to:
1877    ///         // write!(formatter, "Foo")
1878    ///     }
1879    /// }
1880    ///
1881    /// assert_eq!(format!("{Foo}"), "Foo");
1882    /// assert_eq!(format!("{Foo:0>8}"), "Foo");
1883    /// ```
1884    #[stable(feature = "rust1", since = "1.0.0")]
1885    pub fn write_str(&mut self, data: &str) -> Result {
1886        self.buf.write_str(data)
1887    }
1888
1889    /// Glue for usage of the [`write!`] macro with implementors of this trait.
1890    ///
1891    /// This method should generally not be invoked manually, but rather through
1892    /// the [`write!`] macro itself.
1893    ///
1894    /// Writes some formatted information into this instance.
1895    ///
1896    /// # Examples
1897    ///
1898    /// ```
1899    /// use std::fmt;
1900    ///
1901    /// struct Foo(i32);
1902    ///
1903    /// impl fmt::Display for Foo {
1904    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1905    ///         formatter.write_fmt(format_args!("Foo {}", self.0))
1906    ///     }
1907    /// }
1908    ///
1909    /// assert_eq!(format!("{}", Foo(-1)), "Foo -1");
1910    /// assert_eq!(format!("{:0>8}", Foo(2)), "Foo 2");
1911    /// ```
1912    #[stable(feature = "rust1", since = "1.0.0")]
1913    #[inline]
1914    pub fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result {
1915        if let Some(s) = fmt.as_statically_known_str() {
1916            self.buf.write_str(s)
1917        } else {
1918            write(self.buf, fmt)
1919        }
1920    }
1921
1922    /// Returns flags for formatting.
1923    #[must_use]
1924    #[stable(feature = "rust1", since = "1.0.0")]
1925    #[deprecated(
1926        since = "1.24.0",
1927        note = "use the `sign_plus`, `sign_minus`, `alternate`, \
1928                or `sign_aware_zero_pad` methods instead"
1929    )]
1930    pub fn flags(&self) -> u32 {
1931        // Extract the debug upper/lower hex, zero pad, alternate, and plus/minus flags
1932        // to stay compatible with older versions of Rust.
1933        self.options.flags >> 21 & 0x3F
1934    }
1935
1936    /// Returns the character used as 'fill' whenever there is alignment.
1937    ///
1938    /// # Examples
1939    ///
1940    /// ```
1941    /// use std::fmt;
1942    ///
1943    /// struct Foo;
1944    ///
1945    /// impl fmt::Display for Foo {
1946    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1947    ///         let c = formatter.fill();
1948    ///         if let Some(width) = formatter.width() {
1949    ///             for _ in 0..width {
1950    ///                 write!(formatter, "{c}")?;
1951    ///             }
1952    ///             Ok(())
1953    ///         } else {
1954    ///             write!(formatter, "{c}")
1955    ///         }
1956    ///     }
1957    /// }
1958    ///
1959    /// // We set alignment to the right with ">".
1960    /// assert_eq!(format!("{Foo:G>3}"), "GGG");
1961    /// assert_eq!(format!("{Foo:t>6}"), "tttttt");
1962    /// ```
1963    #[must_use]
1964    #[stable(feature = "fmt_flags", since = "1.5.0")]
1965    pub fn fill(&self) -> char {
1966        self.options.get_fill()
1967    }
1968
1969    /// Returns a flag indicating what form of alignment was requested.
1970    ///
1971    /// # Examples
1972    ///
1973    /// ```
1974    /// use std::fmt::{self, Alignment};
1975    ///
1976    /// struct Foo;
1977    ///
1978    /// impl fmt::Display for Foo {
1979    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1980    ///         let s = if let Some(s) = formatter.align() {
1981    ///             match s {
1982    ///                 Alignment::Left    => "left",
1983    ///                 Alignment::Right   => "right",
1984    ///                 Alignment::Center  => "center",
1985    ///             }
1986    ///         } else {
1987    ///             "into the void"
1988    ///         };
1989    ///         write!(formatter, "{s}")
1990    ///     }
1991    /// }
1992    ///
1993    /// assert_eq!(format!("{Foo:<}"), "left");
1994    /// assert_eq!(format!("{Foo:>}"), "right");
1995    /// assert_eq!(format!("{Foo:^}"), "center");
1996    /// assert_eq!(format!("{Foo}"), "into the void");
1997    /// ```
1998    #[must_use]
1999    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
2000    pub fn align(&self) -> Option<Alignment> {
2001        self.options.get_align()
2002    }
2003
2004    /// Returns the optionally specified integer width that the output should be.
2005    ///
2006    /// # Examples
2007    ///
2008    /// ```
2009    /// use std::fmt;
2010    ///
2011    /// struct Foo(i32);
2012    ///
2013    /// impl fmt::Display for Foo {
2014    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2015    ///         if let Some(width) = formatter.width() {
2016    ///             // If we received a width, we use it
2017    ///             write!(formatter, "{:width$}", format!("Foo({})", self.0), width = width)
2018    ///         } else {
2019    ///             // Otherwise we do nothing special
2020    ///             write!(formatter, "Foo({})", self.0)
2021    ///         }
2022    ///     }
2023    /// }
2024    ///
2025    /// assert_eq!(format!("{:10}", Foo(23)), "Foo(23)   ");
2026    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2027    /// ```
2028    #[must_use]
2029    #[stable(feature = "fmt_flags", since = "1.5.0")]
2030    pub fn width(&self) -> Option<usize> {
2031        if self.options.flags & flags::WIDTH_FLAG == 0 {
2032            None
2033        } else {
2034            Some(self.options.width as usize)
2035        }
2036    }
2037
2038    /// Returns the optionally specified precision for numeric types.
2039    /// Alternatively, the maximum width for string types.
2040    ///
2041    /// # Examples
2042    ///
2043    /// ```
2044    /// use std::fmt;
2045    ///
2046    /// struct Foo(f32);
2047    ///
2048    /// impl fmt::Display for Foo {
2049    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2050    ///         if let Some(precision) = formatter.precision() {
2051    ///             // If we received a precision, we use it.
2052    ///             write!(formatter, "Foo({1:.*})", precision, self.0)
2053    ///         } else {
2054    ///             // Otherwise we default to 2.
2055    ///             write!(formatter, "Foo({:.2})", self.0)
2056    ///         }
2057    ///     }
2058    /// }
2059    ///
2060    /// assert_eq!(format!("{:.4}", Foo(23.2)), "Foo(23.2000)");
2061    /// assert_eq!(format!("{}", Foo(23.2)), "Foo(23.20)");
2062    /// ```
2063    #[must_use]
2064    #[stable(feature = "fmt_flags", since = "1.5.0")]
2065    pub fn precision(&self) -> Option<usize> {
2066        if self.options.flags & flags::PRECISION_FLAG == 0 {
2067            None
2068        } else {
2069            Some(self.options.precision as usize)
2070        }
2071    }
2072
2073    /// Determines if the `+` flag was specified.
2074    ///
2075    /// # Examples
2076    ///
2077    /// ```
2078    /// use std::fmt;
2079    ///
2080    /// struct Foo(i32);
2081    ///
2082    /// impl fmt::Display for Foo {
2083    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2084    ///         if formatter.sign_plus() {
2085    ///             write!(formatter,
2086    ///                    "Foo({}{})",
2087    ///                    if self.0 < 0 { '-' } else { '+' },
2088    ///                    self.0.abs())
2089    ///         } else {
2090    ///             write!(formatter, "Foo({})", self.0)
2091    ///         }
2092    ///     }
2093    /// }
2094    ///
2095    /// assert_eq!(format!("{:+}", Foo(23)), "Foo(+23)");
2096    /// assert_eq!(format!("{:+}", Foo(-23)), "Foo(-23)");
2097    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2098    /// ```
2099    #[must_use]
2100    #[stable(feature = "fmt_flags", since = "1.5.0")]
2101    pub fn sign_plus(&self) -> bool {
2102        self.options.flags & flags::SIGN_PLUS_FLAG != 0
2103    }
2104
2105    /// Determines if the `-` flag was specified.
2106    ///
2107    /// # Examples
2108    ///
2109    /// ```
2110    /// use std::fmt;
2111    ///
2112    /// struct Foo(i32);
2113    ///
2114    /// impl fmt::Display for Foo {
2115    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2116    ///         if formatter.sign_minus() {
2117    ///             // You want a minus sign? Have one!
2118    ///             write!(formatter, "-Foo({})", self.0)
2119    ///         } else {
2120    ///             write!(formatter, "Foo({})", self.0)
2121    ///         }
2122    ///     }
2123    /// }
2124    ///
2125    /// assert_eq!(format!("{:-}", Foo(23)), "-Foo(23)");
2126    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2127    /// ```
2128    #[must_use]
2129    #[stable(feature = "fmt_flags", since = "1.5.0")]
2130    pub fn sign_minus(&self) -> bool {
2131        self.options.flags & flags::SIGN_MINUS_FLAG != 0
2132    }
2133
2134    /// Determines if the `#` flag was specified.
2135    ///
2136    /// # Examples
2137    ///
2138    /// ```
2139    /// use std::fmt;
2140    ///
2141    /// struct Foo(i32);
2142    ///
2143    /// impl fmt::Display for Foo {
2144    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2145    ///         if formatter.alternate() {
2146    ///             write!(formatter, "Foo({})", self.0)
2147    ///         } else {
2148    ///             write!(formatter, "{}", self.0)
2149    ///         }
2150    ///     }
2151    /// }
2152    ///
2153    /// assert_eq!(format!("{:#}", Foo(23)), "Foo(23)");
2154    /// assert_eq!(format!("{}", Foo(23)), "23");
2155    /// ```
2156    #[must_use]
2157    #[stable(feature = "fmt_flags", since = "1.5.0")]
2158    pub fn alternate(&self) -> bool {
2159        self.options.flags & flags::ALTERNATE_FLAG != 0
2160    }
2161
2162    /// Determines if the `0` flag was specified.
2163    ///
2164    /// # Examples
2165    ///
2166    /// ```
2167    /// use std::fmt;
2168    ///
2169    /// struct Foo(i32);
2170    ///
2171    /// impl fmt::Display for Foo {
2172    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2173    ///         assert!(formatter.sign_aware_zero_pad());
2174    ///         assert_eq!(formatter.width(), Some(4));
2175    ///         // We ignore the formatter's options.
2176    ///         write!(formatter, "{}", self.0)
2177    ///     }
2178    /// }
2179    ///
2180    /// assert_eq!(format!("{:04}", Foo(23)), "23");
2181    /// ```
2182    #[must_use]
2183    #[stable(feature = "fmt_flags", since = "1.5.0")]
2184    pub fn sign_aware_zero_pad(&self) -> bool {
2185        self.options.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
2186    }
2187
2188    // FIXME: Decide what public API we want for these two flags.
2189    // https://github.com/rust-lang/rust/issues/48584
2190    fn debug_lower_hex(&self) -> bool {
2191        self.options.flags & flags::DEBUG_LOWER_HEX_FLAG != 0
2192    }
2193    fn debug_upper_hex(&self) -> bool {
2194        self.options.flags & flags::DEBUG_UPPER_HEX_FLAG != 0
2195    }
2196
2197    /// Creates a [`DebugStruct`] builder designed to assist with creation of
2198    /// [`fmt::Debug`] implementations for structs.
2199    ///
2200    /// [`fmt::Debug`]: self::Debug
2201    ///
2202    /// # Examples
2203    ///
2204    /// ```rust
2205    /// use std::fmt;
2206    /// use std::net::Ipv4Addr;
2207    ///
2208    /// struct Foo {
2209    ///     bar: i32,
2210    ///     baz: String,
2211    ///     addr: Ipv4Addr,
2212    /// }
2213    ///
2214    /// impl fmt::Debug for Foo {
2215    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2216    ///         fmt.debug_struct("Foo")
2217    ///             .field("bar", &self.bar)
2218    ///             .field("baz", &self.baz)
2219    ///             .field("addr", &format_args!("{}", self.addr))
2220    ///             .finish()
2221    ///     }
2222    /// }
2223    ///
2224    /// assert_eq!(
2225    ///     "Foo { bar: 10, baz: \"Hello World\", addr: 127.0.0.1 }",
2226    ///     format!("{:?}", Foo {
2227    ///         bar: 10,
2228    ///         baz: "Hello World".to_string(),
2229    ///         addr: Ipv4Addr::new(127, 0, 0, 1),
2230    ///     })
2231    /// );
2232    /// ```
2233    #[stable(feature = "debug_builders", since = "1.2.0")]
2234    pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
2235        builders::debug_struct_new(self, name)
2236    }
2237
2238    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2239    /// binaries. `debug_struct_fields_finish` is more general, but this is
2240    /// faster for 1 field.
2241    #[doc(hidden)]
2242    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2243    pub fn debug_struct_field1_finish<'b>(
2244        &'b mut self,
2245        name: &str,
2246        name1: &str,
2247        value1: &dyn Debug,
2248    ) -> Result {
2249        let mut builder = builders::debug_struct_new(self, name);
2250        builder.field(name1, value1);
2251        builder.finish()
2252    }
2253
2254    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2255    /// binaries. `debug_struct_fields_finish` is more general, but this is
2256    /// faster for 2 fields.
2257    #[doc(hidden)]
2258    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2259    pub fn debug_struct_field2_finish<'b>(
2260        &'b mut self,
2261        name: &str,
2262        name1: &str,
2263        value1: &dyn Debug,
2264        name2: &str,
2265        value2: &dyn Debug,
2266    ) -> Result {
2267        let mut builder = builders::debug_struct_new(self, name);
2268        builder.field(name1, value1);
2269        builder.field(name2, value2);
2270        builder.finish()
2271    }
2272
2273    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2274    /// binaries. `debug_struct_fields_finish` is more general, but this is
2275    /// faster for 3 fields.
2276    #[doc(hidden)]
2277    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2278    pub fn debug_struct_field3_finish<'b>(
2279        &'b mut self,
2280        name: &str,
2281        name1: &str,
2282        value1: &dyn Debug,
2283        name2: &str,
2284        value2: &dyn Debug,
2285        name3: &str,
2286        value3: &dyn Debug,
2287    ) -> Result {
2288        let mut builder = builders::debug_struct_new(self, name);
2289        builder.field(name1, value1);
2290        builder.field(name2, value2);
2291        builder.field(name3, value3);
2292        builder.finish()
2293    }
2294
2295    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2296    /// binaries. `debug_struct_fields_finish` is more general, but this is
2297    /// faster for 4 fields.
2298    #[doc(hidden)]
2299    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2300    pub fn debug_struct_field4_finish<'b>(
2301        &'b mut self,
2302        name: &str,
2303        name1: &str,
2304        value1: &dyn Debug,
2305        name2: &str,
2306        value2: &dyn Debug,
2307        name3: &str,
2308        value3: &dyn Debug,
2309        name4: &str,
2310        value4: &dyn Debug,
2311    ) -> Result {
2312        let mut builder = builders::debug_struct_new(self, name);
2313        builder.field(name1, value1);
2314        builder.field(name2, value2);
2315        builder.field(name3, value3);
2316        builder.field(name4, value4);
2317        builder.finish()
2318    }
2319
2320    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2321    /// binaries. `debug_struct_fields_finish` is more general, but this is
2322    /// faster for 5 fields.
2323    #[doc(hidden)]
2324    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2325    pub fn debug_struct_field5_finish<'b>(
2326        &'b mut self,
2327        name: &str,
2328        name1: &str,
2329        value1: &dyn Debug,
2330        name2: &str,
2331        value2: &dyn Debug,
2332        name3: &str,
2333        value3: &dyn Debug,
2334        name4: &str,
2335        value4: &dyn Debug,
2336        name5: &str,
2337        value5: &dyn Debug,
2338    ) -> Result {
2339        let mut builder = builders::debug_struct_new(self, name);
2340        builder.field(name1, value1);
2341        builder.field(name2, value2);
2342        builder.field(name3, value3);
2343        builder.field(name4, value4);
2344        builder.field(name5, value5);
2345        builder.finish()
2346    }
2347
2348    /// Shrinks `derive(Debug)` code, for faster compilation and smaller binaries.
2349    /// For the cases not covered by `debug_struct_field[12345]_finish`.
2350    #[doc(hidden)]
2351    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2352    pub fn debug_struct_fields_finish<'b>(
2353        &'b mut self,
2354        name: &str,
2355        names: &[&str],
2356        values: &[&dyn Debug],
2357    ) -> Result {
2358        assert_eq!(names.len(), values.len());
2359        let mut builder = builders::debug_struct_new(self, name);
2360        for (name, value) in iter::zip(names, values) {
2361            builder.field(name, value);
2362        }
2363        builder.finish()
2364    }
2365
2366    /// Creates a `DebugTuple` builder designed to assist with creation of
2367    /// `fmt::Debug` implementations for tuple structs.
2368    ///
2369    /// # Examples
2370    ///
2371    /// ```rust
2372    /// use std::fmt;
2373    /// use std::marker::PhantomData;
2374    ///
2375    /// struct Foo<T>(i32, String, PhantomData<T>);
2376    ///
2377    /// impl<T> fmt::Debug for Foo<T> {
2378    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2379    ///         fmt.debug_tuple("Foo")
2380    ///             .field(&self.0)
2381    ///             .field(&self.1)
2382    ///             .field(&format_args!("_"))
2383    ///             .finish()
2384    ///     }
2385    /// }
2386    ///
2387    /// assert_eq!(
2388    ///     "Foo(10, \"Hello\", _)",
2389    ///     format!("{:?}", Foo(10, "Hello".to_string(), PhantomData::<u8>))
2390    /// );
2391    /// ```
2392    #[stable(feature = "debug_builders", since = "1.2.0")]
2393    pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
2394        builders::debug_tuple_new(self, name)
2395    }
2396
2397    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2398    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2399    /// for 1 field.
2400    #[doc(hidden)]
2401    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2402    pub fn debug_tuple_field1_finish<'b>(&'b mut self, name: &str, value1: &dyn Debug) -> Result {
2403        let mut builder = builders::debug_tuple_new(self, name);
2404        builder.field(value1);
2405        builder.finish()
2406    }
2407
2408    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2409    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2410    /// for 2 fields.
2411    #[doc(hidden)]
2412    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2413    pub fn debug_tuple_field2_finish<'b>(
2414        &'b mut self,
2415        name: &str,
2416        value1: &dyn Debug,
2417        value2: &dyn Debug,
2418    ) -> Result {
2419        let mut builder = builders::debug_tuple_new(self, name);
2420        builder.field(value1);
2421        builder.field(value2);
2422        builder.finish()
2423    }
2424
2425    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2426    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2427    /// for 3 fields.
2428    #[doc(hidden)]
2429    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2430    pub fn debug_tuple_field3_finish<'b>(
2431        &'b mut self,
2432        name: &str,
2433        value1: &dyn Debug,
2434        value2: &dyn Debug,
2435        value3: &dyn Debug,
2436    ) -> Result {
2437        let mut builder = builders::debug_tuple_new(self, name);
2438        builder.field(value1);
2439        builder.field(value2);
2440        builder.field(value3);
2441        builder.finish()
2442    }
2443
2444    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2445    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2446    /// for 4 fields.
2447    #[doc(hidden)]
2448    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2449    pub fn debug_tuple_field4_finish<'b>(
2450        &'b mut self,
2451        name: &str,
2452        value1: &dyn Debug,
2453        value2: &dyn Debug,
2454        value3: &dyn Debug,
2455        value4: &dyn Debug,
2456    ) -> Result {
2457        let mut builder = builders::debug_tuple_new(self, name);
2458        builder.field(value1);
2459        builder.field(value2);
2460        builder.field(value3);
2461        builder.field(value4);
2462        builder.finish()
2463    }
2464
2465    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2466    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2467    /// for 5 fields.
2468    #[doc(hidden)]
2469    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2470    pub fn debug_tuple_field5_finish<'b>(
2471        &'b mut self,
2472        name: &str,
2473        value1: &dyn Debug,
2474        value2: &dyn Debug,
2475        value3: &dyn Debug,
2476        value4: &dyn Debug,
2477        value5: &dyn Debug,
2478    ) -> Result {
2479        let mut builder = builders::debug_tuple_new(self, name);
2480        builder.field(value1);
2481        builder.field(value2);
2482        builder.field(value3);
2483        builder.field(value4);
2484        builder.field(value5);
2485        builder.finish()
2486    }
2487
2488    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2489    /// binaries. For the cases not covered by `debug_tuple_field[12345]_finish`.
2490    #[doc(hidden)]
2491    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2492    pub fn debug_tuple_fields_finish<'b>(
2493        &'b mut self,
2494        name: &str,
2495        values: &[&dyn Debug],
2496    ) -> Result {
2497        let mut builder = builders::debug_tuple_new(self, name);
2498        for value in values {
2499            builder.field(value);
2500        }
2501        builder.finish()
2502    }
2503
2504    /// Creates a `DebugList` builder designed to assist with creation of
2505    /// `fmt::Debug` implementations for list-like structures.
2506    ///
2507    /// # Examples
2508    ///
2509    /// ```rust
2510    /// use std::fmt;
2511    ///
2512    /// struct Foo(Vec<i32>);
2513    ///
2514    /// impl fmt::Debug for Foo {
2515    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2516    ///         fmt.debug_list().entries(self.0.iter()).finish()
2517    ///     }
2518    /// }
2519    ///
2520    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "[10, 11]");
2521    /// ```
2522    #[stable(feature = "debug_builders", since = "1.2.0")]
2523    pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
2524        builders::debug_list_new(self)
2525    }
2526
2527    /// Creates a `DebugSet` builder designed to assist with creation of
2528    /// `fmt::Debug` implementations for set-like structures.
2529    ///
2530    /// # Examples
2531    ///
2532    /// ```rust
2533    /// use std::fmt;
2534    ///
2535    /// struct Foo(Vec<i32>);
2536    ///
2537    /// impl fmt::Debug for Foo {
2538    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2539    ///         fmt.debug_set().entries(self.0.iter()).finish()
2540    ///     }
2541    /// }
2542    ///
2543    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "{10, 11}");
2544    /// ```
2545    ///
2546    /// [`format_args!`]: crate::format_args
2547    ///
2548    /// In this more complex example, we use [`format_args!`] and `.debug_set()`
2549    /// to build a list of match arms:
2550    ///
2551    /// ```rust
2552    /// use std::fmt;
2553    ///
2554    /// struct Arm<'a, L, R>(&'a (L, R));
2555    /// struct Table<'a, K, V>(&'a [(K, V)], V);
2556    ///
2557    /// impl<'a, L, R> fmt::Debug for Arm<'a, L, R>
2558    /// where
2559    ///     L: 'a + fmt::Debug, R: 'a + fmt::Debug
2560    /// {
2561    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2562    ///         L::fmt(&(self.0).0, fmt)?;
2563    ///         fmt.write_str(" => ")?;
2564    ///         R::fmt(&(self.0).1, fmt)
2565    ///     }
2566    /// }
2567    ///
2568    /// impl<'a, K, V> fmt::Debug for Table<'a, K, V>
2569    /// where
2570    ///     K: 'a + fmt::Debug, V: 'a + fmt::Debug
2571    /// {
2572    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2573    ///         fmt.debug_set()
2574    ///         .entries(self.0.iter().map(Arm))
2575    ///         .entry(&Arm(&(format_args!("_"), &self.1)))
2576    ///         .finish()
2577    ///     }
2578    /// }
2579    /// ```
2580    #[stable(feature = "debug_builders", since = "1.2.0")]
2581    pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
2582        builders::debug_set_new(self)
2583    }
2584
2585    /// Creates a `DebugMap` builder designed to assist with creation of
2586    /// `fmt::Debug` implementations for map-like structures.
2587    ///
2588    /// # Examples
2589    ///
2590    /// ```rust
2591    /// use std::fmt;
2592    ///
2593    /// struct Foo(Vec<(String, i32)>);
2594    ///
2595    /// impl fmt::Debug for Foo {
2596    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2597    ///         fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
2598    ///     }
2599    /// }
2600    ///
2601    /// assert_eq!(
2602    ///     format!("{:?}",  Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)])),
2603    ///     r#"{"A": 10, "B": 11}"#
2604    ///  );
2605    /// ```
2606    #[stable(feature = "debug_builders", since = "1.2.0")]
2607    pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
2608        builders::debug_map_new(self)
2609    }
2610
2611    /// Returns the sign of this formatter (`+` or `-`).
2612    #[unstable(feature = "formatting_options", issue = "118117")]
2613    pub const fn sign(&self) -> Option<Sign> {
2614        self.options.get_sign()
2615    }
2616
2617    /// Returns the formatting options this formatter corresponds to.
2618    #[unstable(feature = "formatting_options", issue = "118117")]
2619    pub const fn options(&self) -> FormattingOptions {
2620        self.options
2621    }
2622}
2623
2624#[stable(since = "1.2.0", feature = "formatter_write")]
2625impl Write for Formatter<'_> {
2626    fn write_str(&mut self, s: &str) -> Result {
2627        self.buf.write_str(s)
2628    }
2629
2630    fn write_char(&mut self, c: char) -> Result {
2631        self.buf.write_char(c)
2632    }
2633
2634    #[inline]
2635    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
2636        if let Some(s) = args.as_statically_known_str() {
2637            self.buf.write_str(s)
2638        } else {
2639            write(self.buf, args)
2640        }
2641    }
2642}
2643
2644#[stable(feature = "rust1", since = "1.0.0")]
2645impl Display for Error {
2646    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2647        Display::fmt("an error occurred when formatting an argument", f)
2648    }
2649}
2650
2651// Implementations of the core formatting traits
2652
2653macro_rules! fmt_refs {
2654    ($($tr:ident),*) => {
2655        $(
2656        #[stable(feature = "rust1", since = "1.0.0")]
2657        impl<T: PointeeSized + $tr> $tr for &T {
2658            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2659        }
2660        #[stable(feature = "rust1", since = "1.0.0")]
2661        impl<T: PointeeSized + $tr> $tr for &mut T {
2662            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2663        }
2664        )*
2665    }
2666}
2667
2668fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }
2669
2670#[unstable(feature = "never_type", issue = "35121")]
2671impl Debug for ! {
2672    #[inline]
2673    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2674        *self
2675    }
2676}
2677
2678#[unstable(feature = "never_type", issue = "35121")]
2679impl Display for ! {
2680    #[inline]
2681    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2682        *self
2683    }
2684}
2685
2686#[stable(feature = "rust1", since = "1.0.0")]
2687impl Debug for bool {
2688    #[inline]
2689    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2690        Display::fmt(self, f)
2691    }
2692}
2693
2694#[stable(feature = "rust1", since = "1.0.0")]
2695impl Display for bool {
2696    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2697        Display::fmt(if *self { "true" } else { "false" }, f)
2698    }
2699}
2700
2701#[stable(feature = "rust1", since = "1.0.0")]
2702impl Debug for str {
2703    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2704        f.write_char('"')?;
2705
2706        // substring we know is printable
2707        let mut printable_range = 0..0;
2708
2709        fn needs_escape(b: u8) -> bool {
2710            b > 0x7E || b < 0x20 || b == b'\\' || b == b'"'
2711        }
2712
2713        // the loop here first skips over runs of printable ASCII as a fast path.
2714        // other chars (unicode, or ASCII that needs escaping) are then handled per-`char`.
2715        let mut rest = self;
2716        while rest.len() > 0 {
2717            let Some(non_printable_start) = rest.as_bytes().iter().position(|&b| needs_escape(b))
2718            else {
2719                printable_range.end += rest.len();
2720                break;
2721            };
2722
2723            printable_range.end += non_printable_start;
2724            // SAFETY: the position was derived from an iterator, so is known to be within bounds, and at a char boundary
2725            rest = unsafe { rest.get_unchecked(non_printable_start..) };
2726
2727            let mut chars = rest.chars();
2728            if let Some(c) = chars.next() {
2729                let esc = c.escape_debug_ext(EscapeDebugExtArgs {
2730                    escape_grapheme_extended: true,
2731                    escape_single_quote: false,
2732                    escape_double_quote: true,
2733                });
2734                if esc.len() != 1 {
2735                    f.write_str(&self[printable_range.clone()])?;
2736                    Display::fmt(&esc, f)?;
2737                    printable_range.start = printable_range.end + c.len_utf8();
2738                }
2739                printable_range.end += c.len_utf8();
2740            }
2741            rest = chars.as_str();
2742        }
2743
2744        f.write_str(&self[printable_range])?;
2745
2746        f.write_char('"')
2747    }
2748}
2749
2750#[stable(feature = "rust1", since = "1.0.0")]
2751impl Display for str {
2752    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2753        f.pad(self)
2754    }
2755}
2756
2757#[stable(feature = "rust1", since = "1.0.0")]
2758impl Debug for char {
2759    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2760        f.write_char('\'')?;
2761        let esc = self.escape_debug_ext(EscapeDebugExtArgs {
2762            escape_grapheme_extended: true,
2763            escape_single_quote: true,
2764            escape_double_quote: false,
2765        });
2766        Display::fmt(&esc, f)?;
2767        f.write_char('\'')
2768    }
2769}
2770
2771#[stable(feature = "rust1", since = "1.0.0")]
2772impl Display for char {
2773    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2774        if f.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
2775            f.write_char(*self)
2776        } else {
2777            f.pad(self.encode_utf8(&mut [0; MAX_LEN_UTF8]))
2778        }
2779    }
2780}
2781
2782#[stable(feature = "rust1", since = "1.0.0")]
2783impl<T: PointeeSized> Pointer for *const T {
2784    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2785        if <<T as core::ptr::Pointee>::Metadata as core::unit::IsUnit>::is_unit() {
2786            pointer_fmt_inner(self.expose_provenance(), f)
2787        } else {
2788            f.debug_struct("Pointer")
2789                .field_with("addr", |f| pointer_fmt_inner(self.expose_provenance(), f))
2790                .field("metadata", &core::ptr::metadata(*self))
2791                .finish()
2792        }
2793    }
2794}
2795
2796/// Since the formatting will be identical for all pointer types, uses a
2797/// non-monomorphized implementation for the actual formatting to reduce the
2798/// amount of codegen work needed.
2799///
2800/// This uses `ptr_addr: usize` and not `ptr: *const ()` to be able to use this for
2801/// `fn(...) -> ...` without using [problematic] "Oxford Casts".
2802///
2803/// [problematic]: https://github.com/rust-lang/rust/issues/95489
2804pub(crate) fn pointer_fmt_inner(ptr_addr: usize, f: &mut Formatter<'_>) -> Result {
2805    let old_options = f.options;
2806
2807    // The alternate flag is already treated by LowerHex as being special-
2808    // it denotes whether to prefix with 0x. We use it to work out whether
2809    // or not to zero extend, and then unconditionally set it to get the
2810    // prefix.
2811    if f.options.get_alternate() {
2812        f.options.sign_aware_zero_pad(true);
2813
2814        if f.options.get_width().is_none() {
2815            f.options.width(Some((usize::BITS / 4) as u16 + 2));
2816        }
2817    }
2818    f.options.alternate(true);
2819
2820    let ret = LowerHex::fmt(&ptr_addr, f);
2821
2822    f.options = old_options;
2823
2824    ret
2825}
2826
2827#[stable(feature = "rust1", since = "1.0.0")]
2828impl<T: PointeeSized> Pointer for *mut T {
2829    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2830        Pointer::fmt(&(*self as *const T), f)
2831    }
2832}
2833
2834#[stable(feature = "rust1", since = "1.0.0")]
2835impl<T: PointeeSized> Pointer for &T {
2836    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2837        Pointer::fmt(&(*self as *const T), f)
2838    }
2839}
2840
2841#[stable(feature = "rust1", since = "1.0.0")]
2842impl<T: PointeeSized> Pointer for &mut T {
2843    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2844        Pointer::fmt(&(&**self as *const T), f)
2845    }
2846}
2847
2848// Implementation of Display/Debug for various core types
2849
2850#[stable(feature = "rust1", since = "1.0.0")]
2851impl<T: PointeeSized> Debug for *const T {
2852    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2853        Pointer::fmt(self, f)
2854    }
2855}
2856#[stable(feature = "rust1", since = "1.0.0")]
2857impl<T: PointeeSized> Debug for *mut T {
2858    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2859        Pointer::fmt(self, f)
2860    }
2861}
2862
2863macro_rules! peel {
2864    ($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
2865}
2866
2867macro_rules! tuple {
2868    () => ();
2869    ( $($name:ident,)+ ) => (
2870        maybe_tuple_doc! {
2871            $($name)+ @
2872            #[stable(feature = "rust1", since = "1.0.0")]
2873            impl<$($name:Debug),+> Debug for ($($name,)+) {
2874                #[allow(non_snake_case, unused_assignments)]
2875                fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2876                    let mut builder = f.debug_tuple("");
2877                    let ($(ref $name,)+) = *self;
2878                    $(
2879                        builder.field(&$name);
2880                    )+
2881
2882                    builder.finish()
2883                }
2884            }
2885        }
2886        peel! { $($name,)+ }
2887    )
2888}
2889
2890macro_rules! maybe_tuple_doc {
2891    ($a:ident @ #[$meta:meta] $item:item) => {
2892        #[doc(fake_variadic)]
2893        #[doc = "This trait is implemented for tuples up to twelve items long."]
2894        #[$meta]
2895        $item
2896    };
2897    ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
2898        #[doc(hidden)]
2899        #[$meta]
2900        $item
2901    };
2902}
2903
2904tuple! { E, D, C, B, A, Z, Y, X, W, V, U, T, }
2905
2906#[stable(feature = "rust1", since = "1.0.0")]
2907impl<T: Debug> Debug for [T] {
2908    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2909        f.debug_list().entries(self.iter()).finish()
2910    }
2911}
2912
2913#[stable(feature = "rust1", since = "1.0.0")]
2914impl Debug for () {
2915    #[inline]
2916    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2917        f.pad("()")
2918    }
2919}
2920#[stable(feature = "rust1", since = "1.0.0")]
2921impl<T: ?Sized> Debug for PhantomData<T> {
2922    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2923        write!(f, "PhantomData<{}>", crate::any::type_name::<T>())
2924    }
2925}
2926
2927#[stable(feature = "rust1", since = "1.0.0")]
2928impl<T: Copy + Debug> Debug for Cell<T> {
2929    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2930        f.debug_struct("Cell").field("value", &self.get()).finish()
2931    }
2932}
2933
2934#[stable(feature = "rust1", since = "1.0.0")]
2935impl<T: ?Sized + Debug> Debug for RefCell<T> {
2936    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2937        let mut d = f.debug_struct("RefCell");
2938        match self.try_borrow() {
2939            Ok(borrow) => d.field("value", &borrow),
2940            Err(_) => d.field("value", &format_args!("<borrowed>")),
2941        };
2942        d.finish()
2943    }
2944}
2945
2946#[stable(feature = "rust1", since = "1.0.0")]
2947impl<T: ?Sized + Debug> Debug for Ref<'_, T> {
2948    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2949        Debug::fmt(&**self, f)
2950    }
2951}
2952
2953#[stable(feature = "rust1", since = "1.0.0")]
2954impl<T: ?Sized + Debug> Debug for RefMut<'_, T> {
2955    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2956        Debug::fmt(&*(self.deref()), f)
2957    }
2958}
2959
2960#[stable(feature = "core_impl_debug", since = "1.9.0")]
2961impl<T: ?Sized> Debug for UnsafeCell<T> {
2962    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2963        f.debug_struct("UnsafeCell").finish_non_exhaustive()
2964    }
2965}
2966
2967#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2968impl<T: ?Sized> Debug for SyncUnsafeCell<T> {
2969    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2970        f.debug_struct("SyncUnsafeCell").finish_non_exhaustive()
2971    }
2972}
2973
2974// If you expected tests to be here, look instead at coretests/tests/fmt/;
2975// it's a lot easier than creating all of the rt::Piece structures here.
2976// There are also tests in alloctests/tests/fmt.rs, for those that need allocations.