[go: up one dir, main page]

core/mem/
maybe_uninit.rs

1use crate::any::type_name;
2use crate::clone::TrivialClone;
3use crate::marker::Destruct;
4use crate::mem::ManuallyDrop;
5use crate::{fmt, intrinsics, ptr, slice};
6
7/// A wrapper type to construct uninitialized instances of `T`.
8///
9/// # Initialization invariant
10///
11/// The compiler, in general, assumes that a variable is properly initialized
12/// according to the requirements of the variable's type. For example, a variable of
13/// reference type must be aligned and non-null. This is an invariant that must
14/// *always* be upheld, even in unsafe code. As a consequence, zero-initializing a
15/// variable of reference type causes instantaneous [undefined behavior][ub],
16/// no matter whether that reference ever gets used to access memory:
17///
18/// ```rust,no_run
19/// # #![allow(invalid_value)]
20/// use std::mem::{self, MaybeUninit};
21///
22/// let x: &i32 = unsafe { mem::zeroed() }; // undefined behavior! ⚠️
23/// // The equivalent code with `MaybeUninit<&i32>`:
24/// let x: &i32 = unsafe { MaybeUninit::zeroed().assume_init() }; // undefined behavior! ⚠️
25/// ```
26///
27/// This is exploited by the compiler for various optimizations, such as eliding
28/// run-time checks and optimizing `enum` layout.
29///
30/// Similarly, entirely uninitialized memory may have any content, while a `bool` must
31/// always be `true` or `false`. Hence, creating an uninitialized `bool` is undefined behavior:
32///
33/// ```rust,no_run
34/// # #![allow(invalid_value)]
35/// use std::mem::{self, MaybeUninit};
36///
37/// let b: bool = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
38/// // The equivalent code with `MaybeUninit<bool>`:
39/// let b: bool = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
40/// ```
41///
42/// Moreover, uninitialized memory is special in that it does not have a fixed value ("fixed"
43/// meaning "it won't change without being written to"). Reading the same uninitialized byte
44/// multiple times can give different results. This makes it undefined behavior to have
45/// uninitialized data in a variable even if that variable has an integer type, which otherwise can
46/// hold any *fixed* bit pattern:
47///
48/// ```rust,no_run
49/// # #![allow(invalid_value)]
50/// use std::mem::{self, MaybeUninit};
51///
52/// let x: i32 = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
53/// // The equivalent code with `MaybeUninit<i32>`:
54/// let x: i32 = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
55/// ```
56/// On top of that, remember that most types have additional invariants beyond merely
57/// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
58/// is considered initialized (under the current implementation; this does not constitute
59/// a stable guarantee) because the only requirement the compiler knows about it
60/// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
61/// *immediate* undefined behavior, but will cause undefined behavior with most
62/// safe operations (including dropping it).
63///
64/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
65///
66/// # Examples
67///
68/// `MaybeUninit<T>` serves to enable unsafe code to deal with uninitialized data.
69/// It is a signal to the compiler indicating that the data here might *not*
70/// be initialized:
71///
72/// ```rust
73/// use std::mem::MaybeUninit;
74///
75/// // Create an explicitly uninitialized reference. The compiler knows that data inside
76/// // a `MaybeUninit<T>` may be invalid, and hence this is not UB:
77/// let mut x = MaybeUninit::<&i32>::uninit();
78/// // Set it to a valid value.
79/// x.write(&0);
80/// // Extract the initialized data -- this is only allowed *after* properly
81/// // initializing `x`!
82/// let x = unsafe { x.assume_init() };
83/// ```
84///
85/// The compiler then knows to not make any incorrect assumptions or optimizations on this code.
86///
87/// You can think of `MaybeUninit<T>` as being a bit like `Option<T>` but without
88/// any of the run-time tracking and without any of the safety checks.
89///
90/// ## out-pointers
91///
92/// You can use `MaybeUninit<T>` to implement "out-pointers": instead of returning data
93/// from a function, pass it a pointer to some (uninitialized) memory to put the
94/// result into. This can be useful when it is important for the caller to control
95/// how the memory the result is stored in gets allocated, and you want to avoid
96/// unnecessary moves.
97///
98/// ```
99/// use std::mem::MaybeUninit;
100///
101/// unsafe fn make_vec(out: *mut Vec<i32>) {
102///     // `write` does not drop the old contents, which is important.
103///     unsafe { out.write(vec![1, 2, 3]); }
104/// }
105///
106/// let mut v = MaybeUninit::uninit();
107/// unsafe { make_vec(v.as_mut_ptr()); }
108/// // Now we know `v` is initialized! This also makes sure the vector gets
109/// // properly dropped.
110/// let v = unsafe { v.assume_init() };
111/// assert_eq!(&v, &[1, 2, 3]);
112/// ```
113///
114/// ## Initializing an array element-by-element
115///
116/// `MaybeUninit<T>` can be used to initialize a large array element-by-element:
117///
118/// ```
119/// use std::mem::{self, MaybeUninit};
120///
121/// let data = {
122///     // Create an uninitialized array of `MaybeUninit`.
123///     let mut data: [MaybeUninit<Vec<u32>>; 1000] = [const { MaybeUninit::uninit() }; 1000];
124///
125///     // Dropping a `MaybeUninit` does nothing, so if there is a panic during this loop,
126///     // we have a memory leak, but there is no memory safety issue.
127///     for elem in &mut data[..] {
128///         elem.write(vec![42]);
129///     }
130///
131///     // Everything is initialized. Transmute the array to the
132///     // initialized type.
133///     unsafe { mem::transmute::<_, [Vec<u32>; 1000]>(data) }
134/// };
135///
136/// assert_eq!(&data[0], &[42]);
137/// ```
138///
139/// You can also work with partially initialized arrays, which could
140/// be found in low-level datastructures.
141///
142/// ```
143/// use std::mem::MaybeUninit;
144///
145/// // Create an uninitialized array of `MaybeUninit`.
146/// let mut data: [MaybeUninit<String>; 1000] = [const { MaybeUninit::uninit() }; 1000];
147/// // Count the number of elements we have assigned.
148/// let mut data_len: usize = 0;
149///
150/// for elem in &mut data[0..500] {
151///     elem.write(String::from("hello"));
152///     data_len += 1;
153/// }
154///
155/// // For each item in the array, drop if we allocated it.
156/// for elem in &mut data[0..data_len] {
157///     unsafe { elem.assume_init_drop(); }
158/// }
159/// ```
160///
161/// ## Initializing a struct field-by-field
162///
163/// You can use `MaybeUninit<T>` and the [`&raw mut`] syntax to initialize structs field by field:
164///
165/// ```rust
166/// use std::mem::MaybeUninit;
167///
168/// #[derive(Debug, PartialEq)]
169/// pub struct Foo {
170///     name: String,
171///     list: Vec<u8>,
172/// }
173///
174/// let foo = {
175///     let mut uninit: MaybeUninit<Foo> = MaybeUninit::uninit();
176///     let ptr = uninit.as_mut_ptr();
177///
178///     // Initializing the `name` field
179///     // Using `write` instead of assignment via `=` to not call `drop` on the
180///     // old, uninitialized value.
181///     unsafe { (&raw mut (*ptr).name).write("Bob".to_string()); }
182///
183///     // Initializing the `list` field
184///     // If there is a panic here, then the `String` in the `name` field leaks.
185///     unsafe { (&raw mut (*ptr).list).write(vec![0, 1, 2]); }
186///
187///     // All the fields are initialized, so we call `assume_init` to get an initialized Foo.
188///     unsafe { uninit.assume_init() }
189/// };
190///
191/// assert_eq!(
192///     foo,
193///     Foo {
194///         name: "Bob".to_string(),
195///         list: vec![0, 1, 2]
196///     }
197/// );
198/// ```
199/// [`&raw mut`]: https://doc.rust-lang.org/reference/types/pointer.html#r-type.pointer.raw.constructor
200/// [ub]: ../../reference/behavior-considered-undefined.html
201///
202/// # Layout
203///
204/// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as `T`:
205///
206/// ```rust
207/// use std::mem::MaybeUninit;
208/// assert_eq!(size_of::<MaybeUninit<u64>>(), size_of::<u64>());
209/// assert_eq!(align_of::<MaybeUninit<u64>>(), align_of::<u64>());
210/// ```
211///
212/// However remember that a type *containing* a `MaybeUninit<T>` is not necessarily the same
213/// layout; Rust does not in general guarantee that the fields of a `Foo<T>` have the same order as
214/// a `Foo<U>` even if `T` and `U` have the same size and alignment. Furthermore because any bit
215/// value is valid for a `MaybeUninit<T>` the compiler can't apply non-zero/niche-filling
216/// optimizations, potentially resulting in a larger size:
217///
218/// ```rust
219/// # use std::mem::MaybeUninit;
220/// assert_eq!(size_of::<Option<bool>>(), 1);
221/// assert_eq!(size_of::<Option<MaybeUninit<bool>>>(), 2);
222/// ```
223///
224/// If `T` is FFI-safe, then so is `MaybeUninit<T>`.
225///
226/// While `MaybeUninit` is `#[repr(transparent)]` (indicating it guarantees the same size,
227/// alignment, and ABI as `T`), this does *not* change any of the previous caveats. `Option<T>` and
228/// `Option<MaybeUninit<T>>` may still have different sizes, and types containing a field of type
229/// `T` may be laid out (and sized) differently than if that field were `MaybeUninit<T>`.
230/// `MaybeUninit` is a union type, and `#[repr(transparent)]` on unions is unstable (see [the
231/// tracking issue](https://github.com/rust-lang/rust/issues/60405)). Over time, the exact
232/// guarantees of `#[repr(transparent)]` on unions may evolve, and `MaybeUninit` may or may not
233/// remain `#[repr(transparent)]`. That said, `MaybeUninit<T>` will *always* guarantee that it has
234/// the same size, alignment, and ABI as `T`; it's just that the way `MaybeUninit` implements that
235/// guarantee may evolve.
236///
237/// Note that even though `T` and `MaybeUninit<T>` are ABI compatible it is still unsound to
238/// transmute `&mut T` to `&mut MaybeUninit<T>` and expose that to safe code because it would allow
239/// safe code to access uninitialized memory:
240///
241/// ```rust,no_run
242/// use core::mem::MaybeUninit;
243///
244/// fn unsound_transmute<T>(val: &mut T) -> &mut MaybeUninit<T> {
245///     unsafe { core::mem::transmute(val) }
246/// }
247///
248/// fn main() {
249///     let mut code = 0;
250///     let code = &mut code;
251///     let code2 = unsound_transmute(code);
252///     *code2 = MaybeUninit::uninit();
253///     std::process::exit(*code); // UB! Accessing uninitialized memory.
254/// }
255/// ```
256///
257/// # Validity
258///
259/// `MaybeUninit<T>` has no validity requirements –- any sequence of [bytes] of
260/// the appropriate length, initialized or uninitialized, are a valid
261/// representation.
262///
263/// Moving or copying a value of type `MaybeUninit<T>` (i.e., performing a
264/// "typed copy") will exactly preserve the contents, including the
265/// [provenance], of all non-padding bytes of type `T` in the value's
266/// representation.
267///
268/// Therefore `MaybeUninit` can be used to perform a round trip of a value from
269/// type `T` to type `MaybeUninit<U>` then back to type `T`, while preserving
270/// the original value, if two conditions are met. One, type `U` must have the
271/// same size as type `T`. Two, for all byte offsets where type `U` has padding,
272/// the corresponding bytes in the representation of the value must be
273/// uninitialized.
274///
275/// For example, due to the fact that the type `[u8; size_of::<T>]` has no
276/// padding, the following is sound for any type `T` and will return the
277/// original value:
278///
279/// ```rust,no_run
280/// # use core::mem::{MaybeUninit, transmute};
281/// # struct T;
282/// fn identity(t: T) -> T {
283///     unsafe {
284///         let u: MaybeUninit<[u8; size_of::<T>()]> = transmute(t);
285///         transmute(u) // OK.
286///     }
287/// }
288/// ```
289///
290/// Note: Copying a value that contains references may implicitly reborrow them
291/// causing the provenance of the returned value to differ from that of the
292/// original. This applies equally to the trivial identity function:
293///
294/// ```rust,no_run
295/// fn trivial_identity<T>(t: T) -> T { t }
296/// ```
297///
298/// Note: Moving or copying a value whose representation has initialized bytes
299/// at byte offsets where the type has padding may lose the value of those
300/// bytes, so while the original value will be preserved, the original
301/// *representation* of that value as bytes may not be. Again, this applies
302/// equally to `trivial_identity`.
303///
304/// Note: Performing this round trip when type `U` has padding at byte offsets
305/// where the representation of the original value has initialized bytes may
306/// produce undefined behavior or a different value. For example, the following
307/// is unsound since `T` requires all bytes to be initialized:
308///
309/// ```rust,no_run
310/// # use core::mem::{MaybeUninit, transmute};
311/// #[repr(C)] struct T([u8; 4]);
312/// #[repr(C)] struct U(u8, u16);
313/// fn unsound_identity(t: T) -> T {
314///     unsafe {
315///         let u: MaybeUninit<U> = transmute(t);
316///         transmute(u) // UB.
317///     }
318/// }
319/// ```
320///
321/// Conversely, the following is sound since `T` allows uninitialized bytes in
322/// the representation of a value, but the round trip may alter the value:
323///
324/// ```rust,no_run
325/// # use core::mem::{MaybeUninit, transmute};
326/// #[repr(C)] struct T(MaybeUninit<[u8; 4]>);
327/// #[repr(C)] struct U(u8, u16);
328/// fn non_identity(t: T) -> T {
329///     unsafe {
330///         // May lose an initialized byte.
331///         let u: MaybeUninit<U> = transmute(t);
332///         transmute(u)
333///     }
334/// }
335/// ```
336///
337/// [bytes]: ../../reference/memory-model.html#bytes
338/// [provenance]: crate::ptr#provenance
339#[stable(feature = "maybe_uninit", since = "1.36.0")]
340// Lang item so we can wrap other types in it. This is useful for coroutines.
341#[lang = "maybe_uninit"]
342#[derive(Copy)]
343#[repr(transparent)]
344#[rustc_pub_transparent]
345pub union MaybeUninit<T> {
346    uninit: (),
347    value: ManuallyDrop<T>,
348}
349
350#[stable(feature = "maybe_uninit", since = "1.36.0")]
351impl<T: Copy> Clone for MaybeUninit<T> {
352    #[inline(always)]
353    fn clone(&self) -> Self {
354        // Not calling `T::clone()`, we cannot know if we are initialized enough for that.
355        *self
356    }
357}
358
359// SAFETY: the clone implementation is a copy, see above.
360#[doc(hidden)]
361#[unstable(feature = "trivial_clone", issue = "none")]
362unsafe impl<T> TrivialClone for MaybeUninit<T> where MaybeUninit<T>: Clone {}
363
364#[stable(feature = "maybe_uninit_debug", since = "1.41.0")]
365impl<T> fmt::Debug for MaybeUninit<T> {
366    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
367        // NB: there is no `.pad_fmt` so we can't use a simpler `format_args!("MaybeUninit<{..}>").
368        let full_name = type_name::<Self>();
369        let prefix_len = full_name.find("MaybeUninit").unwrap();
370        f.pad(&full_name[prefix_len..])
371    }
372}
373
374impl<T> MaybeUninit<T> {
375    /// Creates a new `MaybeUninit<T>` initialized with the given value.
376    /// It is safe to call [`assume_init`] on the return value of this function.
377    ///
378    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
379    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
380    ///
381    /// # Example
382    ///
383    /// ```
384    /// use std::mem::MaybeUninit;
385    ///
386    /// let v: MaybeUninit<Vec<u8>> = MaybeUninit::new(vec![42]);
387    /// # // Prevent leaks for Miri
388    /// # unsafe { let _ = MaybeUninit::assume_init(v); }
389    /// ```
390    ///
391    /// [`assume_init`]: MaybeUninit::assume_init
392    #[stable(feature = "maybe_uninit", since = "1.36.0")]
393    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
394    #[must_use = "use `forget` to avoid running Drop code"]
395    #[inline(always)]
396    pub const fn new(val: T) -> MaybeUninit<T> {
397        MaybeUninit { value: ManuallyDrop::new(val) }
398    }
399
400    /// Creates a new `MaybeUninit<T>` in an uninitialized state.
401    ///
402    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
403    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
404    ///
405    /// See the [type-level documentation][MaybeUninit] for some examples.
406    ///
407    /// # Example
408    ///
409    /// ```
410    /// use std::mem::MaybeUninit;
411    ///
412    /// let v: MaybeUninit<String> = MaybeUninit::uninit();
413    /// ```
414    #[stable(feature = "maybe_uninit", since = "1.36.0")]
415    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
416    #[must_use]
417    #[inline(always)]
418    #[rustc_diagnostic_item = "maybe_uninit_uninit"]
419    pub const fn uninit() -> MaybeUninit<T> {
420        MaybeUninit { uninit: () }
421    }
422
423    /// Creates a new `MaybeUninit<T>` in an uninitialized state, with the memory being
424    /// filled with `0` bytes. It depends on `T` whether that already makes for
425    /// proper initialization. For example, `MaybeUninit<usize>::zeroed()` is initialized,
426    /// but `MaybeUninit<&'static i32>::zeroed()` is not because references must not
427    /// be null.
428    ///
429    /// Note that if `T` has padding bytes, those bytes are *not* preserved when the
430    /// `MaybeUninit<T>` value is returned from this function, so those bytes will *not* be zeroed.
431    ///
432    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
433    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
434    ///
435    /// # Example
436    ///
437    /// Correct usage of this function: initializing a struct with zero, where all
438    /// fields of the struct can hold the bit-pattern 0 as a valid value.
439    ///
440    /// ```rust
441    /// use std::mem::MaybeUninit;
442    ///
443    /// let x = MaybeUninit::<(u8, bool)>::zeroed();
444    /// let x = unsafe { x.assume_init() };
445    /// assert_eq!(x, (0, false));
446    /// ```
447    ///
448    /// This can be used in const contexts, such as to indicate the end of static arrays for
449    /// plugin registration.
450    ///
451    /// *Incorrect* usage of this function: calling `x.zeroed().assume_init()`
452    /// when `0` is not a valid bit-pattern for the type:
453    ///
454    /// ```rust,no_run
455    /// use std::mem::MaybeUninit;
456    ///
457    /// enum NotZero { One = 1, Two = 2 }
458    ///
459    /// let x = MaybeUninit::<(u8, NotZero)>::zeroed();
460    /// let x = unsafe { x.assume_init() };
461    /// // Inside a pair, we create a `NotZero` that does not have a valid discriminant.
462    /// // This is undefined behavior. ⚠️
463    /// ```
464    #[inline]
465    #[must_use]
466    #[rustc_diagnostic_item = "maybe_uninit_zeroed"]
467    #[stable(feature = "maybe_uninit", since = "1.36.0")]
468    #[rustc_const_stable(feature = "const_maybe_uninit_zeroed", since = "1.75.0")]
469    pub const fn zeroed() -> MaybeUninit<T> {
470        let mut u = MaybeUninit::<T>::uninit();
471        // SAFETY: `u.as_mut_ptr()` points to allocated memory.
472        unsafe { u.as_mut_ptr().write_bytes(0u8, 1) };
473        u
474    }
475
476    /// Sets the value of the `MaybeUninit<T>`.
477    ///
478    /// This overwrites any previous value without dropping it, so be careful
479    /// not to use this twice unless you want to skip running the destructor.
480    /// For your convenience, this also returns a mutable reference to the
481    /// (now safely initialized) contents of `self`.
482    ///
483    /// As the content is stored inside a `ManuallyDrop`, the destructor is not
484    /// run for the inner data if the MaybeUninit leaves scope without a call to
485    /// [`assume_init`], [`assume_init_drop`], or similar. Code that receives
486    /// the mutable reference returned by this function needs to keep this in
487    /// mind. The safety model of Rust regards leaks as safe, but they are
488    /// usually still undesirable. This being said, the mutable reference
489    /// behaves like any other mutable reference would, so assigning a new value
490    /// to it will drop the old content.
491    ///
492    /// [`assume_init`]: Self::assume_init
493    /// [`assume_init_drop`]: Self::assume_init_drop
494    ///
495    /// # Examples
496    ///
497    /// Correct usage of this method:
498    ///
499    /// ```rust
500    /// use std::mem::MaybeUninit;
501    ///
502    /// let mut x = MaybeUninit::<Vec<u8>>::uninit();
503    ///
504    /// {
505    ///     let hello = x.write((&b"Hello, world!").to_vec());
506    ///     // Setting hello does not leak prior allocations, but drops them
507    ///     *hello = (&b"Hello").to_vec();
508    ///     hello[0] = 'h' as u8;
509    /// }
510    /// // x is initialized now:
511    /// let s = unsafe { x.assume_init() };
512    /// assert_eq!(b"hello", s.as_slice());
513    /// ```
514    ///
515    /// This usage of the method causes a leak:
516    ///
517    /// ```rust
518    /// use std::mem::MaybeUninit;
519    ///
520    /// let mut x = MaybeUninit::<String>::uninit();
521    ///
522    /// x.write("Hello".to_string());
523    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
524    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
525    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
526    /// // This leaks the contained string:
527    /// x.write("hello".to_string());
528    /// // x is initialized now:
529    /// let s = unsafe { x.assume_init() };
530    /// ```
531    ///
532    /// This method can be used to avoid unsafe in some cases. The example below
533    /// shows a part of an implementation of a fixed sized arena that lends out
534    /// pinned references.
535    /// With `write`, we can avoid the need to write through a raw pointer:
536    ///
537    /// ```rust
538    /// use core::pin::Pin;
539    /// use core::mem::MaybeUninit;
540    ///
541    /// struct PinArena<T> {
542    ///     memory: Box<[MaybeUninit<T>]>,
543    ///     len: usize,
544    /// }
545    ///
546    /// impl <T> PinArena<T> {
547    ///     pub fn capacity(&self) -> usize {
548    ///         self.memory.len()
549    ///     }
550    ///     pub fn push(&mut self, val: T) -> Pin<&mut T> {
551    ///         if self.len >= self.capacity() {
552    ///             panic!("Attempted to push to a full pin arena!");
553    ///         }
554    ///         let ref_ = self.memory[self.len].write(val);
555    ///         self.len += 1;
556    ///         unsafe { Pin::new_unchecked(ref_) }
557    ///     }
558    /// }
559    /// ```
560    #[inline(always)]
561    #[stable(feature = "maybe_uninit_write", since = "1.55.0")]
562    #[rustc_const_stable(feature = "const_maybe_uninit_write", since = "1.85.0")]
563    pub const fn write(&mut self, val: T) -> &mut T {
564        *self = MaybeUninit::new(val);
565        // SAFETY: We just initialized this value.
566        unsafe { self.assume_init_mut() }
567    }
568
569    /// Gets a pointer to the contained value. Reading from this pointer or turning it
570    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
571    /// Writing to memory that this pointer (non-transitively) points to is undefined behavior
572    /// (except inside an `UnsafeCell<T>`).
573    ///
574    /// # Examples
575    ///
576    /// Correct usage of this method:
577    ///
578    /// ```rust
579    /// use std::mem::MaybeUninit;
580    ///
581    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
582    /// x.write(vec![0, 1, 2]);
583    /// // Create a reference into the `MaybeUninit<T>`. This is okay because we initialized it.
584    /// let x_vec = unsafe { &*x.as_ptr() };
585    /// assert_eq!(x_vec.len(), 3);
586    /// # // Prevent leaks for Miri
587    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
588    /// ```
589    ///
590    /// *Incorrect* usage of this method:
591    ///
592    /// ```rust,no_run
593    /// use std::mem::MaybeUninit;
594    ///
595    /// let x = MaybeUninit::<Vec<u32>>::uninit();
596    /// let x_vec = unsafe { &*x.as_ptr() };
597    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
598    /// ```
599    ///
600    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
601    /// until they are, it is advisable to avoid them.)
602    #[stable(feature = "maybe_uninit", since = "1.36.0")]
603    #[rustc_const_stable(feature = "const_maybe_uninit_as_ptr", since = "1.59.0")]
604    #[rustc_as_ptr]
605    #[inline(always)]
606    pub const fn as_ptr(&self) -> *const T {
607        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
608        self as *const _ as *const T
609    }
610
611    /// Gets a mutable pointer to the contained value. Reading from this pointer or turning it
612    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
613    ///
614    /// # Examples
615    ///
616    /// Correct usage of this method:
617    ///
618    /// ```rust
619    /// use std::mem::MaybeUninit;
620    ///
621    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
622    /// x.write(vec![0, 1, 2]);
623    /// // Create a reference into the `MaybeUninit<Vec<u32>>`.
624    /// // This is okay because we initialized it.
625    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
626    /// x_vec.push(3);
627    /// assert_eq!(x_vec.len(), 4);
628    /// # // Prevent leaks for Miri
629    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
630    /// ```
631    ///
632    /// *Incorrect* usage of this method:
633    ///
634    /// ```rust,no_run
635    /// use std::mem::MaybeUninit;
636    ///
637    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
638    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
639    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
640    /// ```
641    ///
642    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
643    /// until they are, it is advisable to avoid them.)
644    #[stable(feature = "maybe_uninit", since = "1.36.0")]
645    #[rustc_const_stable(feature = "const_maybe_uninit_as_mut_ptr", since = "1.83.0")]
646    #[rustc_as_ptr]
647    #[inline(always)]
648    pub const fn as_mut_ptr(&mut self) -> *mut T {
649        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
650        self as *mut _ as *mut T
651    }
652
653    /// Extracts the value from the `MaybeUninit<T>` container. This is a great way
654    /// to ensure that the data will get dropped, because the resulting `T` is
655    /// subject to the usual drop handling.
656    ///
657    /// # Safety
658    ///
659    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
660    /// state. Calling this when the content is not yet fully initialized causes immediate undefined
661    /// behavior. The [type-level documentation][inv] contains more information about
662    /// this initialization invariant.
663    ///
664    /// [inv]: #initialization-invariant
665    ///
666    /// On top of that, remember that most types have additional invariants beyond merely
667    /// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
668    /// is considered initialized (under the current implementation; this does not constitute
669    /// a stable guarantee) because the only requirement the compiler knows about it
670    /// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
671    /// *immediate* undefined behavior, but will cause undefined behavior with most
672    /// safe operations (including dropping it).
673    ///
674    /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
675    ///
676    /// # Examples
677    ///
678    /// Correct usage of this method:
679    ///
680    /// ```rust
681    /// use std::mem::MaybeUninit;
682    ///
683    /// let mut x = MaybeUninit::<bool>::uninit();
684    /// x.write(true);
685    /// let x_init = unsafe { x.assume_init() };
686    /// assert_eq!(x_init, true);
687    /// ```
688    ///
689    /// *Incorrect* usage of this method:
690    ///
691    /// ```rust,no_run
692    /// use std::mem::MaybeUninit;
693    ///
694    /// let x = MaybeUninit::<Vec<u32>>::uninit();
695    /// let x_init = unsafe { x.assume_init() };
696    /// // `x` had not been initialized yet, so this last line caused undefined behavior. ⚠️
697    /// ```
698    #[stable(feature = "maybe_uninit", since = "1.36.0")]
699    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_by_value", since = "1.59.0")]
700    #[inline(always)]
701    #[rustc_diagnostic_item = "assume_init"]
702    #[track_caller]
703    pub const unsafe fn assume_init(self) -> T {
704        // SAFETY: the caller must guarantee that `self` is initialized.
705        // This also means that `self` must be a `value` variant.
706        unsafe {
707            intrinsics::assert_inhabited::<T>();
708            // We do this via a raw ptr read instead of `ManuallyDrop::into_inner` so that there's
709            // no trace of `ManuallyDrop` in Miri's error messages here.
710            (&raw const self.value).cast::<T>().read()
711        }
712    }
713
714    /// Reads the value from the `MaybeUninit<T>` container. The resulting `T` is subject
715    /// to the usual drop handling.
716    ///
717    /// Whenever possible, it is preferable to use [`assume_init`] instead, which
718    /// prevents duplicating the content of the `MaybeUninit<T>`.
719    ///
720    /// # Safety
721    ///
722    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
723    /// state. Calling this when the content is not yet fully initialized causes undefined
724    /// behavior. The [type-level documentation][inv] contains more information about
725    /// this initialization invariant.
726    ///
727    /// Moreover, similar to the [`ptr::read`] function, this function creates a
728    /// bitwise copy of the contents, regardless whether the contained type
729    /// implements the [`Copy`] trait or not. When using multiple copies of the
730    /// data (by calling `assume_init_read` multiple times, or first calling
731    /// `assume_init_read` and then [`assume_init`]), it is your responsibility
732    /// to ensure that data may indeed be duplicated.
733    ///
734    /// [inv]: #initialization-invariant
735    /// [`assume_init`]: MaybeUninit::assume_init
736    ///
737    /// # Examples
738    ///
739    /// Correct usage of this method:
740    ///
741    /// ```rust
742    /// use std::mem::MaybeUninit;
743    ///
744    /// let mut x = MaybeUninit::<u32>::uninit();
745    /// x.write(13);
746    /// let x1 = unsafe { x.assume_init_read() };
747    /// // `u32` is `Copy`, so we may read multiple times.
748    /// let x2 = unsafe { x.assume_init_read() };
749    /// assert_eq!(x1, x2);
750    ///
751    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
752    /// x.write(None);
753    /// let x1 = unsafe { x.assume_init_read() };
754    /// // Duplicating a `None` value is okay, so we may read multiple times.
755    /// let x2 = unsafe { x.assume_init_read() };
756    /// assert_eq!(x1, x2);
757    /// ```
758    ///
759    /// *Incorrect* usage of this method:
760    ///
761    /// ```rust,no_run
762    /// use std::mem::MaybeUninit;
763    ///
764    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
765    /// x.write(Some(vec![0, 1, 2]));
766    /// let x1 = unsafe { x.assume_init_read() };
767    /// let x2 = unsafe { x.assume_init_read() };
768    /// // We now created two copies of the same vector, leading to a double-free ⚠️ when
769    /// // they both get dropped!
770    /// ```
771    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
772    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_read", since = "1.75.0")]
773    #[inline(always)]
774    #[track_caller]
775    pub const unsafe fn assume_init_read(&self) -> T {
776        // SAFETY: the caller must guarantee that `self` is initialized.
777        // Reading from `self.as_ptr()` is safe since `self` should be initialized.
778        unsafe {
779            intrinsics::assert_inhabited::<T>();
780            self.as_ptr().read()
781        }
782    }
783
784    /// Drops the contained value in place.
785    ///
786    /// If you have ownership of the `MaybeUninit`, you can also use
787    /// [`assume_init`] as an alternative.
788    ///
789    /// # Safety
790    ///
791    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is
792    /// in an initialized state. Calling this when the content is not yet fully
793    /// initialized causes undefined behavior.
794    ///
795    /// On top of that, all additional invariants of the type `T` must be
796    /// satisfied, as the `Drop` implementation of `T` (or its members) may
797    /// rely on this. For example, setting a `Vec<T>` to an invalid but
798    /// non-null address makes it initialized (under the current implementation;
799    /// this does not constitute a stable guarantee), because the only
800    /// requirement the compiler knows about it is that the data pointer must be
801    /// non-null. Dropping such a `Vec<T>` however will cause undefined
802    /// behavior.
803    ///
804    /// [`assume_init`]: MaybeUninit::assume_init
805    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
806    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
807    pub const unsafe fn assume_init_drop(&mut self)
808    where
809        T: [const] Destruct,
810    {
811        // SAFETY: the caller must guarantee that `self` is initialized and
812        // satisfies all invariants of `T`.
813        // Dropping the value in place is safe if that is the case.
814        unsafe { ptr::drop_in_place(self.as_mut_ptr()) }
815    }
816
817    /// Gets a shared reference to the contained value.
818    ///
819    /// This can be useful when we want to access a `MaybeUninit` that has been
820    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
821    /// of `.assume_init()`).
822    ///
823    /// # Safety
824    ///
825    /// Calling this when the content is not yet fully initialized causes undefined
826    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
827    /// is in an initialized state.
828    ///
829    /// # Examples
830    ///
831    /// ### Correct usage of this method:
832    ///
833    /// ```rust
834    /// use std::mem::MaybeUninit;
835    ///
836    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
837    /// # let mut x_mu = x;
838    /// # let mut x = &mut x_mu;
839    /// // Initialize `x`:
840    /// x.write(vec![1, 2, 3]);
841    /// // Now that our `MaybeUninit<_>` is known to be initialized, it is okay to
842    /// // create a shared reference to it:
843    /// let x: &Vec<u32> = unsafe {
844    ///     // SAFETY: `x` has been initialized.
845    ///     x.assume_init_ref()
846    /// };
847    /// assert_eq!(x, &vec![1, 2, 3]);
848    /// # // Prevent leaks for Miri
849    /// # unsafe { MaybeUninit::assume_init_drop(&mut x_mu); }
850    /// ```
851    ///
852    /// ### *Incorrect* usages of this method:
853    ///
854    /// ```rust,no_run
855    /// use std::mem::MaybeUninit;
856    ///
857    /// let x = MaybeUninit::<Vec<u32>>::uninit();
858    /// let x_vec: &Vec<u32> = unsafe { x.assume_init_ref() };
859    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
860    /// ```
861    ///
862    /// ```rust,no_run
863    /// use std::{cell::Cell, mem::MaybeUninit};
864    ///
865    /// let b = MaybeUninit::<Cell<bool>>::uninit();
866    /// // Initialize the `MaybeUninit` using `Cell::set`:
867    /// unsafe {
868    ///     b.assume_init_ref().set(true);
869    ///     //^^^^^^^^^^^^^^^ Reference to an uninitialized `Cell<bool>`: UB!
870    /// }
871    /// ```
872    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
873    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_ref", since = "1.59.0")]
874    #[inline(always)]
875    pub const unsafe fn assume_init_ref(&self) -> &T {
876        // SAFETY: the caller must guarantee that `self` is initialized.
877        // This also means that `self` must be a `value` variant.
878        unsafe {
879            intrinsics::assert_inhabited::<T>();
880            &*self.as_ptr()
881        }
882    }
883
884    /// Gets a mutable (unique) reference to the contained value.
885    ///
886    /// This can be useful when we want to access a `MaybeUninit` that has been
887    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
888    /// of `.assume_init()`).
889    ///
890    /// # Safety
891    ///
892    /// Calling this when the content is not yet fully initialized causes undefined
893    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
894    /// is in an initialized state. For instance, `.assume_init_mut()` cannot be used to
895    /// initialize a `MaybeUninit`.
896    ///
897    /// # Examples
898    ///
899    /// ### Correct usage of this method:
900    ///
901    /// ```rust
902    /// # #![allow(unexpected_cfgs)]
903    /// use std::mem::MaybeUninit;
904    ///
905    /// # unsafe extern "C" fn initialize_buffer(buf: *mut [u8; 1024]) { unsafe { *buf = [0; 1024] } }
906    /// # #[cfg(FALSE)]
907    /// extern "C" {
908    ///     /// Initializes *all* the bytes of the input buffer.
909    ///     fn initialize_buffer(buf: *mut [u8; 1024]);
910    /// }
911    ///
912    /// let mut buf = MaybeUninit::<[u8; 1024]>::uninit();
913    ///
914    /// // Initialize `buf`:
915    /// unsafe { initialize_buffer(buf.as_mut_ptr()); }
916    /// // Now we know that `buf` has been initialized, so we could `.assume_init()` it.
917    /// // However, using `.assume_init()` may trigger a `memcpy` of the 1024 bytes.
918    /// // To assert our buffer has been initialized without copying it, we upgrade
919    /// // the `&mut MaybeUninit<[u8; 1024]>` to a `&mut [u8; 1024]`:
920    /// let buf: &mut [u8; 1024] = unsafe {
921    ///     // SAFETY: `buf` has been initialized.
922    ///     buf.assume_init_mut()
923    /// };
924    ///
925    /// // Now we can use `buf` as a normal slice:
926    /// buf.sort_unstable();
927    /// assert!(
928    ///     buf.windows(2).all(|pair| pair[0] <= pair[1]),
929    ///     "buffer is sorted",
930    /// );
931    /// ```
932    ///
933    /// ### *Incorrect* usages of this method:
934    ///
935    /// You cannot use `.assume_init_mut()` to initialize a value:
936    ///
937    /// ```rust,no_run
938    /// use std::mem::MaybeUninit;
939    ///
940    /// let mut b = MaybeUninit::<bool>::uninit();
941    /// unsafe {
942    ///     *b.assume_init_mut() = true;
943    ///     // We have created a (mutable) reference to an uninitialized `bool`!
944    ///     // This is undefined behavior. ⚠️
945    /// }
946    /// ```
947    ///
948    /// For instance, you cannot [`Read`] into an uninitialized buffer:
949    ///
950    /// [`Read`]: ../../std/io/trait.Read.html
951    ///
952    /// ```rust,no_run
953    /// use std::{io, mem::MaybeUninit};
954    ///
955    /// fn read_chunk (reader: &'_ mut dyn io::Read) -> io::Result<[u8; 64]>
956    /// {
957    ///     let mut buffer = MaybeUninit::<[u8; 64]>::uninit();
958    ///     reader.read_exact(unsafe { buffer.assume_init_mut() })?;
959    ///     //                         ^^^^^^^^^^^^^^^^^^^^^^^^
960    ///     // (mutable) reference to uninitialized memory!
961    ///     // This is undefined behavior.
962    ///     Ok(unsafe { buffer.assume_init() })
963    /// }
964    /// ```
965    ///
966    /// Nor can you use direct field access to do field-by-field gradual initialization:
967    ///
968    /// ```rust,no_run
969    /// use std::{mem::MaybeUninit, ptr};
970    ///
971    /// struct Foo {
972    ///     a: u32,
973    ///     b: u8,
974    /// }
975    ///
976    /// let foo: Foo = unsafe {
977    ///     let mut foo = MaybeUninit::<Foo>::uninit();
978    ///     ptr::write(&mut foo.assume_init_mut().a as *mut u32, 1337);
979    ///     //              ^^^^^^^^^^^^^^^^^^^^^
980    ///     // (mutable) reference to uninitialized memory!
981    ///     // This is undefined behavior.
982    ///     ptr::write(&mut foo.assume_init_mut().b as *mut u8, 42);
983    ///     //              ^^^^^^^^^^^^^^^^^^^^^
984    ///     // (mutable) reference to uninitialized memory!
985    ///     // This is undefined behavior.
986    ///     foo.assume_init()
987    /// };
988    /// ```
989    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
990    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init", since = "1.84.0")]
991    #[inline(always)]
992    pub const unsafe fn assume_init_mut(&mut self) -> &mut T {
993        // SAFETY: the caller must guarantee that `self` is initialized.
994        // This also means that `self` must be a `value` variant.
995        unsafe {
996            intrinsics::assert_inhabited::<T>();
997            &mut *self.as_mut_ptr()
998        }
999    }
1000
1001    /// Extracts the values from an array of `MaybeUninit` containers.
1002    ///
1003    /// # Safety
1004    ///
1005    /// It is up to the caller to guarantee that all elements of the array are
1006    /// in an initialized state.
1007    ///
1008    /// # Examples
1009    ///
1010    /// ```
1011    /// #![feature(maybe_uninit_array_assume_init)]
1012    /// use std::mem::MaybeUninit;
1013    ///
1014    /// let mut array: [MaybeUninit<i32>; 3] = [MaybeUninit::uninit(); 3];
1015    /// array[0].write(0);
1016    /// array[1].write(1);
1017    /// array[2].write(2);
1018    ///
1019    /// // SAFETY: Now safe as we initialised all elements
1020    /// let array = unsafe {
1021    ///     MaybeUninit::array_assume_init(array)
1022    /// };
1023    ///
1024    /// assert_eq!(array, [0, 1, 2]);
1025    /// ```
1026    #[unstable(feature = "maybe_uninit_array_assume_init", issue = "96097")]
1027    #[inline(always)]
1028    #[track_caller]
1029    pub const unsafe fn array_assume_init<const N: usize>(array: [Self; N]) -> [T; N] {
1030        // SAFETY:
1031        // * The caller guarantees that all elements of the array are initialized
1032        // * `MaybeUninit<T>` and T are guaranteed to have the same layout
1033        // * `MaybeUninit` does not drop, so there are no double-frees
1034        // And thus the conversion is safe
1035        unsafe {
1036            intrinsics::assert_inhabited::<[T; N]>();
1037            intrinsics::transmute_unchecked(array)
1038        }
1039    }
1040
1041    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1042    ///
1043    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1044    /// contain padding bytes which are left uninitialized.
1045    ///
1046    /// # Examples
1047    ///
1048    /// ```
1049    /// #![feature(maybe_uninit_as_bytes)]
1050    /// use std::mem::MaybeUninit;
1051    ///
1052    /// let val = 0x12345678_i32;
1053    /// let uninit = MaybeUninit::new(val);
1054    /// let uninit_bytes = uninit.as_bytes();
1055    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1056    /// assert_eq!(bytes, val.to_ne_bytes());
1057    /// ```
1058    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1059    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1060        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1061        unsafe {
1062            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of::<T>())
1063        }
1064    }
1065
1066    /// Returns the contents of this `MaybeUninit` as a mutable slice of potentially uninitialized
1067    /// bytes.
1068    ///
1069    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1070    /// contain padding bytes which are left uninitialized.
1071    ///
1072    /// # Examples
1073    ///
1074    /// ```
1075    /// #![feature(maybe_uninit_as_bytes)]
1076    /// use std::mem::MaybeUninit;
1077    ///
1078    /// let val = 0x12345678_i32;
1079    /// let mut uninit = MaybeUninit::new(val);
1080    /// let uninit_bytes = uninit.as_bytes_mut();
1081    /// if cfg!(target_endian = "little") {
1082    ///     uninit_bytes[0].write(0xcd);
1083    /// } else {
1084    ///     uninit_bytes[3].write(0xcd);
1085    /// }
1086    /// let val2 = unsafe { uninit.assume_init() };
1087    /// assert_eq!(val2, 0x123456cd);
1088    /// ```
1089    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1090    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1091        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1092        unsafe {
1093            slice::from_raw_parts_mut(
1094                self.as_mut_ptr().cast::<MaybeUninit<u8>>(),
1095                super::size_of::<T>(),
1096            )
1097        }
1098    }
1099}
1100
1101impl<T> [MaybeUninit<T>] {
1102    /// Copies the elements from `src` to `self`,
1103    /// returning a mutable reference to the now initialized contents of `self`.
1104    ///
1105    /// If `T` does not implement `Copy`, use [`write_clone_of_slice`] instead.
1106    ///
1107    /// This is similar to [`slice::copy_from_slice`].
1108    ///
1109    /// # Panics
1110    ///
1111    /// This function will panic if the two slices have different lengths.
1112    ///
1113    /// # Examples
1114    ///
1115    /// ```
1116    /// use std::mem::MaybeUninit;
1117    ///
1118    /// let mut dst = [MaybeUninit::uninit(); 32];
1119    /// let src = [0; 32];
1120    ///
1121    /// let init = dst.write_copy_of_slice(&src);
1122    ///
1123    /// assert_eq!(init, src);
1124    /// ```
1125    ///
1126    /// ```
1127    /// let mut vec = Vec::with_capacity(32);
1128    /// let src = [0; 16];
1129    ///
1130    /// vec.spare_capacity_mut()[..src.len()].write_copy_of_slice(&src);
1131    ///
1132    /// // SAFETY: we have just copied all the elements of len into the spare capacity
1133    /// // the first src.len() elements of the vec are valid now.
1134    /// unsafe {
1135    ///     vec.set_len(src.len());
1136    /// }
1137    ///
1138    /// assert_eq!(vec, src);
1139    /// ```
1140    ///
1141    /// [`write_clone_of_slice`]: slice::write_clone_of_slice
1142    #[stable(feature = "maybe_uninit_write_slice", since = "CURRENT_RUSTC_VERSION")]
1143    #[rustc_const_stable(feature = "maybe_uninit_write_slice", since = "CURRENT_RUSTC_VERSION")]
1144    pub const fn write_copy_of_slice(&mut self, src: &[T]) -> &mut [T]
1145    where
1146        T: Copy,
1147    {
1148        // SAFETY: &[T] and &[MaybeUninit<T>] have the same layout
1149        let uninit_src: &[MaybeUninit<T>] = unsafe { super::transmute(src) };
1150
1151        self.copy_from_slice(uninit_src);
1152
1153        // SAFETY: Valid elements have just been copied into `self` so it is initialized
1154        unsafe { self.assume_init_mut() }
1155    }
1156
1157    /// Clones the elements from `src` to `self`,
1158    /// returning a mutable reference to the now initialized contents of `self`.
1159    /// Any already initialized elements will not be dropped.
1160    ///
1161    /// If `T` implements `Copy`, use [`write_copy_of_slice`] instead.
1162    ///
1163    /// This is similar to [`slice::clone_from_slice`] but does not drop existing elements.
1164    ///
1165    /// # Panics
1166    ///
1167    /// This function will panic if the two slices have different lengths, or if the implementation of `Clone` panics.
1168    ///
1169    /// If there is a panic, the already cloned elements will be dropped.
1170    ///
1171    /// # Examples
1172    ///
1173    /// ```
1174    /// use std::mem::MaybeUninit;
1175    ///
1176    /// let mut dst = [const { MaybeUninit::uninit() }; 5];
1177    /// let src = ["wibbly", "wobbly", "timey", "wimey", "stuff"].map(|s| s.to_string());
1178    ///
1179    /// let init = dst.write_clone_of_slice(&src);
1180    ///
1181    /// assert_eq!(init, src);
1182    ///
1183    /// # // Prevent leaks for Miri
1184    /// # unsafe { std::ptr::drop_in_place(init); }
1185    /// ```
1186    ///
1187    /// ```
1188    /// let mut vec = Vec::with_capacity(32);
1189    /// let src = ["rust", "is", "a", "pretty", "cool", "language"].map(|s| s.to_string());
1190    ///
1191    /// vec.spare_capacity_mut()[..src.len()].write_clone_of_slice(&src);
1192    ///
1193    /// // SAFETY: we have just cloned all the elements of len into the spare capacity
1194    /// // the first src.len() elements of the vec are valid now.
1195    /// unsafe {
1196    ///     vec.set_len(src.len());
1197    /// }
1198    ///
1199    /// assert_eq!(vec, src);
1200    /// ```
1201    ///
1202    /// [`write_copy_of_slice`]: slice::write_copy_of_slice
1203    #[stable(feature = "maybe_uninit_write_slice", since = "CURRENT_RUSTC_VERSION")]
1204    pub fn write_clone_of_slice(&mut self, src: &[T]) -> &mut [T]
1205    where
1206        T: Clone,
1207    {
1208        // unlike copy_from_slice this does not call clone_from_slice on the slice
1209        // this is because `MaybeUninit<T: Clone>` does not implement Clone.
1210
1211        assert_eq!(self.len(), src.len(), "destination and source slices have different lengths");
1212
1213        // NOTE: We need to explicitly slice them to the same length
1214        // for bounds checking to be elided, and the optimizer will
1215        // generate memcpy for simple cases (for example T = u8).
1216        let len = self.len();
1217        let src = &src[..len];
1218
1219        // guard is needed b/c panic might happen during a clone
1220        let mut guard = Guard { slice: self, initialized: 0 };
1221
1222        for i in 0..len {
1223            guard.slice[i].write(src[i].clone());
1224            guard.initialized += 1;
1225        }
1226
1227        super::forget(guard);
1228
1229        // SAFETY: Valid elements have just been written into `self` so it is initialized
1230        unsafe { self.assume_init_mut() }
1231    }
1232
1233    /// Fills a slice with elements by cloning `value`, returning a mutable reference to the now
1234    /// initialized contents of the slice.
1235    /// Any previously initialized elements will not be dropped.
1236    ///
1237    /// This is similar to [`slice::fill`].
1238    ///
1239    /// # Panics
1240    ///
1241    /// This function will panic if any call to `Clone` panics.
1242    ///
1243    /// If such a panic occurs, any elements previously initialized during this operation will be
1244    /// dropped.
1245    ///
1246    /// # Examples
1247    ///
1248    /// ```
1249    /// #![feature(maybe_uninit_fill)]
1250    /// use std::mem::MaybeUninit;
1251    ///
1252    /// let mut buf = [const { MaybeUninit::uninit() }; 10];
1253    /// let initialized = buf.write_filled(1);
1254    /// assert_eq!(initialized, &mut [1; 10]);
1255    /// ```
1256    #[doc(alias = "memset")]
1257    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1258    pub fn write_filled(&mut self, value: T) -> &mut [T]
1259    where
1260        T: Clone,
1261    {
1262        SpecFill::spec_fill(self, value);
1263        // SAFETY: Valid elements have just been filled into `self` so it is initialized
1264        unsafe { self.assume_init_mut() }
1265    }
1266
1267    /// Fills a slice with elements returned by calling a closure for each index.
1268    ///
1269    /// This method uses a closure to create new values. If you'd rather `Clone` a given value, use
1270    /// [slice::write_filled]. If you want to use the `Default` trait to generate values, you can
1271    /// pass [`|_| Default::default()`][Default::default] as the argument.
1272    ///
1273    /// # Panics
1274    ///
1275    /// This function will panic if any call to the provided closure panics.
1276    ///
1277    /// If such a panic occurs, any elements previously initialized during this operation will be
1278    /// dropped.
1279    ///
1280    /// # Examples
1281    ///
1282    /// ```
1283    /// #![feature(maybe_uninit_fill)]
1284    /// use std::mem::MaybeUninit;
1285    ///
1286    /// let mut buf = [const { MaybeUninit::<usize>::uninit() }; 5];
1287    /// let initialized = buf.write_with(|idx| idx + 1);
1288    /// assert_eq!(initialized, &mut [1, 2, 3, 4, 5]);
1289    /// ```
1290    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1291    pub fn write_with<F>(&mut self, mut f: F) -> &mut [T]
1292    where
1293        F: FnMut(usize) -> T,
1294    {
1295        let mut guard = Guard { slice: self, initialized: 0 };
1296
1297        for (idx, element) in guard.slice.iter_mut().enumerate() {
1298            element.write(f(idx));
1299            guard.initialized += 1;
1300        }
1301
1302        super::forget(guard);
1303
1304        // SAFETY: Valid elements have just been written into `this` so it is initialized
1305        unsafe { self.assume_init_mut() }
1306    }
1307
1308    /// Fills a slice with elements yielded by an iterator until either all elements have been
1309    /// initialized or the iterator is empty.
1310    ///
1311    /// Returns two slices. The first slice contains the initialized portion of the original slice.
1312    /// The second slice is the still-uninitialized remainder of the original slice.
1313    ///
1314    /// # Panics
1315    ///
1316    /// This function panics if the iterator's `next` function panics.
1317    ///
1318    /// If such a panic occurs, any elements previously initialized during this operation will be
1319    /// dropped.
1320    ///
1321    /// # Examples
1322    ///
1323    /// Completely filling the slice:
1324    ///
1325    /// ```
1326    /// #![feature(maybe_uninit_fill)]
1327    /// use std::mem::MaybeUninit;
1328    ///
1329    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1330    ///
1331    /// let iter = [1, 2, 3].into_iter().cycle();
1332    /// let (initialized, remainder) = buf.write_iter(iter);
1333    ///
1334    /// assert_eq!(initialized, &mut [1, 2, 3, 1, 2]);
1335    /// assert_eq!(remainder.len(), 0);
1336    /// ```
1337    ///
1338    /// Partially filling the slice:
1339    ///
1340    /// ```
1341    /// #![feature(maybe_uninit_fill)]
1342    /// use std::mem::MaybeUninit;
1343    ///
1344    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1345    /// let iter = [1, 2];
1346    /// let (initialized, remainder) = buf.write_iter(iter);
1347    ///
1348    /// assert_eq!(initialized, &mut [1, 2]);
1349    /// assert_eq!(remainder.len(), 3);
1350    /// ```
1351    ///
1352    /// Checking an iterator after filling a slice:
1353    ///
1354    /// ```
1355    /// #![feature(maybe_uninit_fill)]
1356    /// use std::mem::MaybeUninit;
1357    ///
1358    /// let mut buf = [const { MaybeUninit::uninit() }; 3];
1359    /// let mut iter = [1, 2, 3, 4, 5].into_iter();
1360    /// let (initialized, remainder) = buf.write_iter(iter.by_ref());
1361    ///
1362    /// assert_eq!(initialized, &mut [1, 2, 3]);
1363    /// assert_eq!(remainder.len(), 0);
1364    /// assert_eq!(iter.as_slice(), &[4, 5]);
1365    /// ```
1366    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1367    pub fn write_iter<I>(&mut self, it: I) -> (&mut [T], &mut [MaybeUninit<T>])
1368    where
1369        I: IntoIterator<Item = T>,
1370    {
1371        let iter = it.into_iter();
1372        let mut guard = Guard { slice: self, initialized: 0 };
1373
1374        for (element, val) in guard.slice.iter_mut().zip(iter) {
1375            element.write(val);
1376            guard.initialized += 1;
1377        }
1378
1379        let initialized_len = guard.initialized;
1380        super::forget(guard);
1381
1382        // SAFETY: guard.initialized <= self.len()
1383        let (initted, remainder) = unsafe { self.split_at_mut_unchecked(initialized_len) };
1384
1385        // SAFETY: Valid elements have just been written into `init`, so that portion
1386        // of `this` is initialized.
1387        (unsafe { initted.assume_init_mut() }, remainder)
1388    }
1389
1390    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1391    ///
1392    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1393    /// contain padding bytes which are left uninitialized.
1394    ///
1395    /// # Examples
1396    ///
1397    /// ```
1398    /// #![feature(maybe_uninit_as_bytes)]
1399    /// use std::mem::MaybeUninit;
1400    ///
1401    /// let uninit = [MaybeUninit::new(0x1234u16), MaybeUninit::new(0x5678u16)];
1402    /// let uninit_bytes = uninit.as_bytes();
1403    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1404    /// let val1 = u16::from_ne_bytes(bytes[0..2].try_into().unwrap());
1405    /// let val2 = u16::from_ne_bytes(bytes[2..4].try_into().unwrap());
1406    /// assert_eq!(&[val1, val2], &[0x1234u16, 0x5678u16]);
1407    /// ```
1408    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1409    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1410        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1411        unsafe {
1412            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of_val(self))
1413        }
1414    }
1415
1416    /// Returns the contents of this `MaybeUninit` slice as a mutable slice of potentially
1417    /// uninitialized bytes.
1418    ///
1419    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1420    /// contain padding bytes which are left uninitialized.
1421    ///
1422    /// # Examples
1423    ///
1424    /// ```
1425    /// #![feature(maybe_uninit_as_bytes)]
1426    /// use std::mem::MaybeUninit;
1427    ///
1428    /// let mut uninit = [MaybeUninit::<u16>::uninit(), MaybeUninit::<u16>::uninit()];
1429    /// let uninit_bytes = uninit.as_bytes_mut();
1430    /// uninit_bytes.write_copy_of_slice(&[0x12, 0x34, 0x56, 0x78]);
1431    /// let vals = unsafe { uninit.assume_init_ref() };
1432    /// if cfg!(target_endian = "little") {
1433    ///     assert_eq!(vals, &[0x3412u16, 0x7856u16]);
1434    /// } else {
1435    ///     assert_eq!(vals, &[0x1234u16, 0x5678u16]);
1436    /// }
1437    /// ```
1438    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1439    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1440        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1441        unsafe {
1442            slice::from_raw_parts_mut(
1443                self.as_mut_ptr() as *mut MaybeUninit<u8>,
1444                super::size_of_val(self),
1445            )
1446        }
1447    }
1448
1449    /// Drops the contained values in place.
1450    ///
1451    /// # Safety
1452    ///
1453    /// It is up to the caller to guarantee that every `MaybeUninit<T>` in the slice
1454    /// really is in an initialized state. Calling this when the content is not yet
1455    /// fully initialized causes undefined behavior.
1456    ///
1457    /// On top of that, all additional invariants of the type `T` must be
1458    /// satisfied, as the `Drop` implementation of `T` (or its members) may
1459    /// rely on this. For example, setting a `Vec<T>` to an invalid but
1460    /// non-null address makes it initialized (under the current implementation;
1461    /// this does not constitute a stable guarantee), because the only
1462    /// requirement the compiler knows about it is that the data pointer must be
1463    /// non-null. Dropping such a `Vec<T>` however will cause undefined
1464    /// behaviour.
1465    #[stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1466    #[inline(always)]
1467    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1468    pub const unsafe fn assume_init_drop(&mut self)
1469    where
1470        T: [const] Destruct,
1471    {
1472        if !self.is_empty() {
1473            // SAFETY: the caller must guarantee that every element of `self`
1474            // is initialized and satisfies all invariants of `T`.
1475            // Dropping the value in place is safe if that is the case.
1476            unsafe { ptr::drop_in_place(self as *mut [MaybeUninit<T>] as *mut [T]) }
1477        }
1478    }
1479
1480    /// Gets a shared reference to the contained value.
1481    ///
1482    /// # Safety
1483    ///
1484    /// Calling this when the content is not yet fully initialized causes undefined
1485    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in
1486    /// the slice really is in an initialized state.
1487    #[stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1488    #[rustc_const_stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1489    #[inline(always)]
1490    pub const unsafe fn assume_init_ref(&self) -> &[T] {
1491        // SAFETY: casting `slice` to a `*const [T]` is safe since the caller guarantees that
1492        // `slice` is initialized, and `MaybeUninit` is guaranteed to have the same layout as `T`.
1493        // The pointer obtained is valid since it refers to memory owned by `slice` which is a
1494        // reference and thus guaranteed to be valid for reads.
1495        unsafe { &*(self as *const Self as *const [T]) }
1496    }
1497
1498    /// Gets a mutable (unique) reference to the contained value.
1499    ///
1500    /// # Safety
1501    ///
1502    /// Calling this when the content is not yet fully initialized causes undefined
1503    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in the
1504    /// slice really is in an initialized state. For instance, `.assume_init_mut()` cannot
1505    /// be used to initialize a `MaybeUninit` slice.
1506    #[stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1507    #[rustc_const_stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1508    #[inline(always)]
1509    pub const unsafe fn assume_init_mut(&mut self) -> &mut [T] {
1510        // SAFETY: similar to safety notes for `slice_get_ref`, but we have a
1511        // mutable reference which is also guaranteed to be valid for writes.
1512        unsafe { &mut *(self as *mut Self as *mut [T]) }
1513    }
1514}
1515
1516impl<T, const N: usize> MaybeUninit<[T; N]> {
1517    /// Transposes a `MaybeUninit<[T; N]>` into a `[MaybeUninit<T>; N]`.
1518    ///
1519    /// # Examples
1520    ///
1521    /// ```
1522    /// #![feature(maybe_uninit_uninit_array_transpose)]
1523    /// # use std::mem::MaybeUninit;
1524    ///
1525    /// let data: [MaybeUninit<u8>; 1000] = MaybeUninit::uninit().transpose();
1526    /// ```
1527    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1528    #[inline]
1529    pub const fn transpose(self) -> [MaybeUninit<T>; N] {
1530        // SAFETY: T and MaybeUninit<T> have the same layout
1531        unsafe { intrinsics::transmute_unchecked(self) }
1532    }
1533}
1534
1535impl<T, const N: usize> [MaybeUninit<T>; N] {
1536    /// Transposes a `[MaybeUninit<T>; N]` into a `MaybeUninit<[T; N]>`.
1537    ///
1538    /// # Examples
1539    ///
1540    /// ```
1541    /// #![feature(maybe_uninit_uninit_array_transpose)]
1542    /// # use std::mem::MaybeUninit;
1543    ///
1544    /// let data = [MaybeUninit::<u8>::uninit(); 1000];
1545    /// let data: MaybeUninit<[u8; 1000]> = data.transpose();
1546    /// ```
1547    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1548    #[inline]
1549    pub const fn transpose(self) -> MaybeUninit<[T; N]> {
1550        // SAFETY: T and MaybeUninit<T> have the same layout
1551        unsafe { intrinsics::transmute_unchecked(self) }
1552    }
1553}
1554
1555struct Guard<'a, T> {
1556    slice: &'a mut [MaybeUninit<T>],
1557    initialized: usize,
1558}
1559
1560impl<'a, T> Drop for Guard<'a, T> {
1561    fn drop(&mut self) {
1562        let initialized_part = &mut self.slice[..self.initialized];
1563        // SAFETY: this raw sub-slice will contain only initialized objects.
1564        unsafe {
1565            initialized_part.assume_init_drop();
1566        }
1567    }
1568}
1569
1570trait SpecFill<T> {
1571    fn spec_fill(&mut self, value: T);
1572}
1573
1574impl<T: Clone> SpecFill<T> for [MaybeUninit<T>] {
1575    default fn spec_fill(&mut self, value: T) {
1576        let mut guard = Guard { slice: self, initialized: 0 };
1577
1578        if let Some((last, elems)) = guard.slice.split_last_mut() {
1579            for el in elems {
1580                el.write(value.clone());
1581                guard.initialized += 1;
1582            }
1583
1584            last.write(value);
1585        }
1586        super::forget(guard);
1587    }
1588}
1589
1590impl<T: TrivialClone> SpecFill<T> for [MaybeUninit<T>] {
1591    fn spec_fill(&mut self, value: T) {
1592        // SAFETY: because `T` is `TrivialClone`, this is equivalent to calling
1593        // `T::clone` for every element. Notably, `TrivialClone` also implies
1594        // that the `clone` implementation will not panic, so we can avoid
1595        // initialization guards and such.
1596        self.fill_with(|| MaybeUninit::new(unsafe { ptr::read(&value) }));
1597    }
1598}