alloc/vec/mod.rs
1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::clone::TrivialClone;
78#[cfg(not(no_global_oom_handling))]
79use core::cmp;
80use core::cmp::Ordering;
81use core::hash::{Hash, Hasher};
82#[cfg(not(no_global_oom_handling))]
83use core::iter;
84use core::marker::PhantomData;
85use core::mem::{self, Assume, ManuallyDrop, MaybeUninit, SizedTypeProperties, TransmuteFrom};
86use core::ops::{self, Index, IndexMut, Range, RangeBounds};
87use core::ptr::{self, NonNull};
88use core::slice::{self, SliceIndex};
89use core::{fmt, intrinsics, ub_checks};
90
91#[stable(feature = "extract_if", since = "1.87.0")]
92pub use self::extract_if::ExtractIf;
93use crate::alloc::{Allocator, Global};
94use crate::borrow::{Cow, ToOwned};
95use crate::boxed::Box;
96use crate::collections::TryReserveError;
97use crate::raw_vec::RawVec;
98
99mod extract_if;
100
101#[cfg(not(no_global_oom_handling))]
102#[stable(feature = "vec_splice", since = "1.21.0")]
103pub use self::splice::Splice;
104
105#[cfg(not(no_global_oom_handling))]
106mod splice;
107
108#[stable(feature = "drain", since = "1.6.0")]
109pub use self::drain::Drain;
110
111mod drain;
112
113#[cfg(not(no_global_oom_handling))]
114mod cow;
115
116#[cfg(not(no_global_oom_handling))]
117pub(crate) use self::in_place_collect::AsVecIntoIter;
118#[stable(feature = "rust1", since = "1.0.0")]
119pub use self::into_iter::IntoIter;
120
121mod into_iter;
122
123#[cfg(not(no_global_oom_handling))]
124use self::is_zero::IsZero;
125
126#[cfg(not(no_global_oom_handling))]
127mod is_zero;
128
129#[cfg(not(no_global_oom_handling))]
130mod in_place_collect;
131
132mod partial_eq;
133
134#[unstable(feature = "vec_peek_mut", issue = "122742")]
135pub use self::peek_mut::PeekMut;
136
137mod peek_mut;
138
139#[cfg(not(no_global_oom_handling))]
140use self::spec_from_elem::SpecFromElem;
141
142#[cfg(not(no_global_oom_handling))]
143mod spec_from_elem;
144
145#[cfg(not(no_global_oom_handling))]
146use self::set_len_on_drop::SetLenOnDrop;
147
148#[cfg(not(no_global_oom_handling))]
149mod set_len_on_drop;
150
151#[cfg(not(no_global_oom_handling))]
152use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
153
154#[cfg(not(no_global_oom_handling))]
155mod in_place_drop;
156
157#[cfg(not(no_global_oom_handling))]
158use self::spec_from_iter_nested::SpecFromIterNested;
159
160#[cfg(not(no_global_oom_handling))]
161mod spec_from_iter_nested;
162
163#[cfg(not(no_global_oom_handling))]
164use self::spec_from_iter::SpecFromIter;
165
166#[cfg(not(no_global_oom_handling))]
167mod spec_from_iter;
168
169#[cfg(not(no_global_oom_handling))]
170use self::spec_extend::SpecExtend;
171
172#[cfg(not(no_global_oom_handling))]
173mod spec_extend;
174
175/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
176///
177/// # Examples
178///
179/// ```
180/// let mut vec = Vec::new();
181/// vec.push(1);
182/// vec.push(2);
183///
184/// assert_eq!(vec.len(), 2);
185/// assert_eq!(vec[0], 1);
186///
187/// assert_eq!(vec.pop(), Some(2));
188/// assert_eq!(vec.len(), 1);
189///
190/// vec[0] = 7;
191/// assert_eq!(vec[0], 7);
192///
193/// vec.extend([1, 2, 3]);
194///
195/// for x in &vec {
196/// println!("{x}");
197/// }
198/// assert_eq!(vec, [7, 1, 2, 3]);
199/// ```
200///
201/// The [`vec!`] macro is provided for convenient initialization:
202///
203/// ```
204/// let mut vec1 = vec![1, 2, 3];
205/// vec1.push(4);
206/// let vec2 = Vec::from([1, 2, 3, 4]);
207/// assert_eq!(vec1, vec2);
208/// ```
209///
210/// It can also initialize each element of a `Vec<T>` with a given value.
211/// This may be more efficient than performing allocation and initialization
212/// in separate steps, especially when initializing a vector of zeros:
213///
214/// ```
215/// let vec = vec![0; 5];
216/// assert_eq!(vec, [0, 0, 0, 0, 0]);
217///
218/// // The following is equivalent, but potentially slower:
219/// let mut vec = Vec::with_capacity(5);
220/// vec.resize(5, 0);
221/// assert_eq!(vec, [0, 0, 0, 0, 0]);
222/// ```
223///
224/// For more information, see
225/// [Capacity and Reallocation](#capacity-and-reallocation).
226///
227/// Use a `Vec<T>` as an efficient stack:
228///
229/// ```
230/// let mut stack = Vec::new();
231///
232/// stack.push(1);
233/// stack.push(2);
234/// stack.push(3);
235///
236/// while let Some(top) = stack.pop() {
237/// // Prints 3, 2, 1
238/// println!("{top}");
239/// }
240/// ```
241///
242/// # Indexing
243///
244/// The `Vec` type allows access to values by index, because it implements the
245/// [`Index`] trait. An example will be more explicit:
246///
247/// ```
248/// let v = vec![0, 2, 4, 6];
249/// println!("{}", v[1]); // it will display '2'
250/// ```
251///
252/// However be careful: if you try to access an index which isn't in the `Vec`,
253/// your software will panic! You cannot do this:
254///
255/// ```should_panic
256/// let v = vec![0, 2, 4, 6];
257/// println!("{}", v[6]); // it will panic!
258/// ```
259///
260/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
261/// the `Vec`.
262///
263/// # Slicing
264///
265/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
266/// To get a [slice][prim@slice], use [`&`]. Example:
267///
268/// ```
269/// fn read_slice(slice: &[usize]) {
270/// // ...
271/// }
272///
273/// let v = vec![0, 1];
274/// read_slice(&v);
275///
276/// // ... and that's all!
277/// // you can also do it like this:
278/// let u: &[usize] = &v;
279/// // or like this:
280/// let u: &[_] = &v;
281/// ```
282///
283/// In Rust, it's more common to pass slices as arguments rather than vectors
284/// when you just want to provide read access. The same goes for [`String`] and
285/// [`&str`].
286///
287/// # Capacity and reallocation
288///
289/// The capacity of a vector is the amount of space allocated for any future
290/// elements that will be added onto the vector. This is not to be confused with
291/// the *length* of a vector, which specifies the number of actual elements
292/// within the vector. If a vector's length exceeds its capacity, its capacity
293/// will automatically be increased, but its elements will have to be
294/// reallocated.
295///
296/// For example, a vector with capacity 10 and length 0 would be an empty vector
297/// with space for 10 more elements. Pushing 10 or fewer elements onto the
298/// vector will not change its capacity or cause reallocation to occur. However,
299/// if the vector's length is increased to 11, it will have to reallocate, which
300/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
301/// whenever possible to specify how big the vector is expected to get.
302///
303/// # Guarantees
304///
305/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
306/// about its design. This ensures that it's as low-overhead as possible in
307/// the general case, and can be correctly manipulated in primitive ways
308/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
309/// If additional type parameters are added (e.g., to support custom allocators),
310/// overriding their defaults may change the behavior.
311///
312/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
313/// triplet. No more, no less. The order of these fields is completely
314/// unspecified, and you should use the appropriate methods to modify these.
315/// The pointer will never be null, so this type is null-pointer-optimized.
316///
317/// However, the pointer might not actually point to allocated memory. In particular,
318/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
319/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
320/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
321/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
322/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
323/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
324/// details are very subtle --- if you intend to allocate memory using a `Vec`
325/// and use it for something else (either to pass to unsafe code, or to build your
326/// own memory-backed collection), be sure to deallocate this memory by using
327/// `from_raw_parts` to recover the `Vec` and then dropping it.
328///
329/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
330/// (as defined by the allocator Rust is configured to use by default), and its
331/// pointer points to [`len`] initialized, contiguous elements in order (what
332/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
333/// logically uninitialized, contiguous elements.
334///
335/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
336/// visualized as below. The top part is the `Vec` struct, it contains a
337/// pointer to the head of the allocation in the heap, length and capacity.
338/// The bottom part is the allocation on the heap, a contiguous memory block.
339///
340/// ```text
341/// ptr len capacity
342/// +--------+--------+--------+
343/// | 0x0123 | 2 | 4 |
344/// +--------+--------+--------+
345/// |
346/// v
347/// Heap +--------+--------+--------+--------+
348/// | 'a' | 'b' | uninit | uninit |
349/// +--------+--------+--------+--------+
350/// ```
351///
352/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
353/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
354/// layout (including the order of fields).
355///
356/// `Vec` will never perform a "small optimization" where elements are actually
357/// stored on the stack for two reasons:
358///
359/// * It would make it more difficult for unsafe code to correctly manipulate
360/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
361/// only moved, and it would be more difficult to determine if a `Vec` had
362/// actually allocated memory.
363///
364/// * It would penalize the general case, incurring an additional branch
365/// on every access.
366///
367/// `Vec` will never automatically shrink itself, even if completely empty. This
368/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
369/// and then filling it back up to the same [`len`] should incur no calls to
370/// the allocator. If you wish to free up unused memory, use
371/// [`shrink_to_fit`] or [`shrink_to`].
372///
373/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
374/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
375/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
376/// accurate, and can be relied on. It can even be used to manually free the memory
377/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
378/// when not necessary.
379///
380/// `Vec` does not guarantee any particular growth strategy when reallocating
381/// when full, nor when [`reserve`] is called. The current strategy is basic
382/// and it may prove desirable to use a non-constant growth factor. Whatever
383/// strategy is used will of course guarantee *O*(1) amortized [`push`].
384///
385/// It is guaranteed, in order to respect the intentions of the programmer, that
386/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
387/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
388/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
389/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
390///
391/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
392/// and not more than the allocated capacity.
393///
394/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
395/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
396/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
397/// `Vec` exploits this fact as much as reasonable when implementing common conversions
398/// such as [`into_boxed_slice`].
399///
400/// `Vec` will not specifically overwrite any data that is removed from it,
401/// but also won't specifically preserve it. Its uninitialized memory is
402/// scratch space that it may use however it wants. It will generally just do
403/// whatever is most efficient or otherwise easy to implement. Do not rely on
404/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
405/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
406/// first, that might not actually happen because the optimizer does not consider
407/// this a side-effect that must be preserved. There is one case which we will
408/// not break, however: using `unsafe` code to write to the excess capacity,
409/// and then increasing the length to match, is always valid.
410///
411/// Currently, `Vec` does not guarantee the order in which elements are dropped.
412/// The order has changed in the past and may change again.
413///
414/// [`get`]: slice::get
415/// [`get_mut`]: slice::get_mut
416/// [`String`]: crate::string::String
417/// [`&str`]: type@str
418/// [`shrink_to_fit`]: Vec::shrink_to_fit
419/// [`shrink_to`]: Vec::shrink_to
420/// [capacity]: Vec::capacity
421/// [`capacity`]: Vec::capacity
422/// [`Vec::capacity`]: Vec::capacity
423/// [size_of::\<T>]: size_of
424/// [len]: Vec::len
425/// [`len`]: Vec::len
426/// [`push`]: Vec::push
427/// [`insert`]: Vec::insert
428/// [`reserve`]: Vec::reserve
429/// [`Vec::with_capacity(n)`]: Vec::with_capacity
430/// [`MaybeUninit`]: core::mem::MaybeUninit
431/// [owned slice]: Box
432/// [`into_boxed_slice`]: Vec::into_boxed_slice
433#[stable(feature = "rust1", since = "1.0.0")]
434#[rustc_diagnostic_item = "Vec"]
435#[rustc_insignificant_dtor]
436#[doc(alias = "list")]
437#[doc(alias = "vector")]
438pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
439 buf: RawVec<T, A>,
440 len: usize,
441}
442
443////////////////////////////////////////////////////////////////////////////////
444// Inherent methods
445////////////////////////////////////////////////////////////////////////////////
446
447impl<T> Vec<T> {
448 /// Constructs a new, empty `Vec<T>`.
449 ///
450 /// The vector will not allocate until elements are pushed onto it.
451 ///
452 /// # Examples
453 ///
454 /// ```
455 /// # #![allow(unused_mut)]
456 /// let mut vec: Vec<i32> = Vec::new();
457 /// ```
458 #[inline]
459 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
460 #[rustc_diagnostic_item = "vec_new"]
461 #[stable(feature = "rust1", since = "1.0.0")]
462 #[must_use]
463 pub const fn new() -> Self {
464 Vec { buf: RawVec::new(), len: 0 }
465 }
466
467 /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
468 ///
469 /// The vector will be able to hold at least `capacity` elements without
470 /// reallocating. This method is allowed to allocate for more elements than
471 /// `capacity`. If `capacity` is zero, the vector will not allocate.
472 ///
473 /// It is important to note that although the returned vector has the
474 /// minimum *capacity* specified, the vector will have a zero *length*. For
475 /// an explanation of the difference between length and capacity, see
476 /// *[Capacity and reallocation]*.
477 ///
478 /// If it is important to know the exact allocated capacity of a `Vec`,
479 /// always use the [`capacity`] method after construction.
480 ///
481 /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
482 /// and the capacity will always be `usize::MAX`.
483 ///
484 /// [Capacity and reallocation]: #capacity-and-reallocation
485 /// [`capacity`]: Vec::capacity
486 ///
487 /// # Panics
488 ///
489 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
490 ///
491 /// # Examples
492 ///
493 /// ```
494 /// let mut vec = Vec::with_capacity(10);
495 ///
496 /// // The vector contains no items, even though it has capacity for more
497 /// assert_eq!(vec.len(), 0);
498 /// assert!(vec.capacity() >= 10);
499 ///
500 /// // These are all done without reallocating...
501 /// for i in 0..10 {
502 /// vec.push(i);
503 /// }
504 /// assert_eq!(vec.len(), 10);
505 /// assert!(vec.capacity() >= 10);
506 ///
507 /// // ...but this may make the vector reallocate
508 /// vec.push(11);
509 /// assert_eq!(vec.len(), 11);
510 /// assert!(vec.capacity() >= 11);
511 ///
512 /// // A vector of a zero-sized type will always over-allocate, since no
513 /// // allocation is necessary
514 /// let vec_units = Vec::<()>::with_capacity(10);
515 /// assert_eq!(vec_units.capacity(), usize::MAX);
516 /// ```
517 #[cfg(not(no_global_oom_handling))]
518 #[inline]
519 #[stable(feature = "rust1", since = "1.0.0")]
520 #[must_use]
521 #[rustc_diagnostic_item = "vec_with_capacity"]
522 pub fn with_capacity(capacity: usize) -> Self {
523 Self::with_capacity_in(capacity, Global)
524 }
525
526 /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
527 ///
528 /// The vector will be able to hold at least `capacity` elements without
529 /// reallocating. This method is allowed to allocate for more elements than
530 /// `capacity`. If `capacity` is zero, the vector will not allocate.
531 ///
532 /// # Errors
533 ///
534 /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
535 /// or if the allocator reports allocation failure.
536 #[inline]
537 #[unstable(feature = "try_with_capacity", issue = "91913")]
538 pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
539 Self::try_with_capacity_in(capacity, Global)
540 }
541
542 /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
543 ///
544 /// # Safety
545 ///
546 /// This is highly unsafe, due to the number of invariants that aren't
547 /// checked:
548 ///
549 /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
550 /// been allocated using the global allocator, such as via the [`alloc::alloc`]
551 /// function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
552 /// only be non-null and aligned.
553 /// * `T` needs to have the same alignment as what `ptr` was allocated with,
554 /// if the pointer is required to be allocated.
555 /// (`T` having a less strict alignment is not sufficient, the alignment really
556 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
557 /// allocated and deallocated with the same layout.)
558 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
559 /// nonzero, needs to be the same size as the pointer was allocated with.
560 /// (Because similar to alignment, [`dealloc`] must be called with the same
561 /// layout `size`.)
562 /// * `length` needs to be less than or equal to `capacity`.
563 /// * The first `length` values must be properly initialized values of type `T`.
564 /// * `capacity` needs to be the capacity that the pointer was allocated with,
565 /// if the pointer is required to be allocated.
566 /// * The allocated size in bytes must be no larger than `isize::MAX`.
567 /// See the safety documentation of [`pointer::offset`].
568 ///
569 /// These requirements are always upheld by any `ptr` that has been allocated
570 /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
571 /// upheld.
572 ///
573 /// Violating these may cause problems like corrupting the allocator's
574 /// internal data structures. For example it is normally **not** safe
575 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
576 /// `size_t`, doing so is only safe if the array was initially allocated by
577 /// a `Vec` or `String`.
578 /// It's also not safe to build one from a `Vec<u16>` and its length, because
579 /// the allocator cares about the alignment, and these two types have different
580 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
581 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
582 /// these issues, it is often preferable to do casting/transmuting using
583 /// [`slice::from_raw_parts`] instead.
584 ///
585 /// The ownership of `ptr` is effectively transferred to the
586 /// `Vec<T>` which may then deallocate, reallocate or change the
587 /// contents of memory pointed to by the pointer at will. Ensure
588 /// that nothing else uses the pointer after calling this
589 /// function.
590 ///
591 /// [`String`]: crate::string::String
592 /// [`alloc::alloc`]: crate::alloc::alloc
593 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
594 ///
595 /// # Examples
596 ///
597 /// ```
598 /// use std::ptr;
599 ///
600 /// let v = vec![1, 2, 3];
601 ///
602 /// // Deconstruct the vector into parts.
603 /// let (p, len, cap) = v.into_raw_parts();
604 ///
605 /// unsafe {
606 /// // Overwrite memory with 4, 5, 6
607 /// for i in 0..len {
608 /// ptr::write(p.add(i), 4 + i);
609 /// }
610 ///
611 /// // Put everything back together into a Vec
612 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
613 /// assert_eq!(rebuilt, [4, 5, 6]);
614 /// }
615 /// ```
616 ///
617 /// Using memory that was allocated elsewhere:
618 ///
619 /// ```rust
620 /// use std::alloc::{alloc, Layout};
621 ///
622 /// fn main() {
623 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
624 ///
625 /// let vec = unsafe {
626 /// let mem = alloc(layout).cast::<u32>();
627 /// if mem.is_null() {
628 /// return;
629 /// }
630 ///
631 /// mem.write(1_000_000);
632 ///
633 /// Vec::from_raw_parts(mem, 1, 16)
634 /// };
635 ///
636 /// assert_eq!(vec, &[1_000_000]);
637 /// assert_eq!(vec.capacity(), 16);
638 /// }
639 /// ```
640 #[inline]
641 #[stable(feature = "rust1", since = "1.0.0")]
642 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
643 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
644 }
645
646 #[doc(alias = "from_non_null_parts")]
647 /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
648 ///
649 /// # Safety
650 ///
651 /// This is highly unsafe, due to the number of invariants that aren't
652 /// checked:
653 ///
654 /// * `ptr` must have been allocated using the global allocator, such as via
655 /// the [`alloc::alloc`] function.
656 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
657 /// (`T` having a less strict alignment is not sufficient, the alignment really
658 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
659 /// allocated and deallocated with the same layout.)
660 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
661 /// to be the same size as the pointer was allocated with. (Because similar to
662 /// alignment, [`dealloc`] must be called with the same layout `size`.)
663 /// * `length` needs to be less than or equal to `capacity`.
664 /// * The first `length` values must be properly initialized values of type `T`.
665 /// * `capacity` needs to be the capacity that the pointer was allocated with.
666 /// * The allocated size in bytes must be no larger than `isize::MAX`.
667 /// See the safety documentation of [`pointer::offset`].
668 ///
669 /// These requirements are always upheld by any `ptr` that has been allocated
670 /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
671 /// upheld.
672 ///
673 /// Violating these may cause problems like corrupting the allocator's
674 /// internal data structures. For example it is normally **not** safe
675 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
676 /// `size_t`, doing so is only safe if the array was initially allocated by
677 /// a `Vec` or `String`.
678 /// It's also not safe to build one from a `Vec<u16>` and its length, because
679 /// the allocator cares about the alignment, and these two types have different
680 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
681 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
682 /// these issues, it is often preferable to do casting/transmuting using
683 /// [`NonNull::slice_from_raw_parts`] instead.
684 ///
685 /// The ownership of `ptr` is effectively transferred to the
686 /// `Vec<T>` which may then deallocate, reallocate or change the
687 /// contents of memory pointed to by the pointer at will. Ensure
688 /// that nothing else uses the pointer after calling this
689 /// function.
690 ///
691 /// [`String`]: crate::string::String
692 /// [`alloc::alloc`]: crate::alloc::alloc
693 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
694 ///
695 /// # Examples
696 ///
697 /// ```
698 /// #![feature(box_vec_non_null)]
699 ///
700 /// let v = vec![1, 2, 3];
701 ///
702 /// // Deconstruct the vector into parts.
703 /// let (p, len, cap) = v.into_parts();
704 ///
705 /// unsafe {
706 /// // Overwrite memory with 4, 5, 6
707 /// for i in 0..len {
708 /// p.add(i).write(4 + i);
709 /// }
710 ///
711 /// // Put everything back together into a Vec
712 /// let rebuilt = Vec::from_parts(p, len, cap);
713 /// assert_eq!(rebuilt, [4, 5, 6]);
714 /// }
715 /// ```
716 ///
717 /// Using memory that was allocated elsewhere:
718 ///
719 /// ```rust
720 /// #![feature(box_vec_non_null)]
721 ///
722 /// use std::alloc::{alloc, Layout};
723 /// use std::ptr::NonNull;
724 ///
725 /// fn main() {
726 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
727 ///
728 /// let vec = unsafe {
729 /// let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
730 /// return;
731 /// };
732 ///
733 /// mem.write(1_000_000);
734 ///
735 /// Vec::from_parts(mem, 1, 16)
736 /// };
737 ///
738 /// assert_eq!(vec, &[1_000_000]);
739 /// assert_eq!(vec.capacity(), 16);
740 /// }
741 /// ```
742 #[inline]
743 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
744 pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
745 unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
746 }
747
748 /// Creates a `Vec<T>` where each element is produced by calling `f` with
749 /// that element's index while walking forward through the `Vec<T>`.
750 ///
751 /// This is essentially the same as writing
752 ///
753 /// ```text
754 /// vec![f(0), f(1), f(2), …, f(length - 2), f(length - 1)]
755 /// ```
756 /// and is similar to `(0..i).map(f)`, just for `Vec<T>`s not iterators.
757 ///
758 /// If `length == 0`, this produces an empty `Vec<T>` without ever calling `f`.
759 ///
760 /// # Example
761 ///
762 /// ```rust
763 /// #![feature(vec_from_fn)]
764 ///
765 /// let vec = Vec::from_fn(5, |i| i);
766 ///
767 /// // indexes are: 0 1 2 3 4
768 /// assert_eq!(vec, [0, 1, 2, 3, 4]);
769 ///
770 /// let vec2 = Vec::from_fn(8, |i| i * 2);
771 ///
772 /// // indexes are: 0 1 2 3 4 5 6 7
773 /// assert_eq!(vec2, [0, 2, 4, 6, 8, 10, 12, 14]);
774 ///
775 /// let bool_vec = Vec::from_fn(5, |i| i % 2 == 0);
776 ///
777 /// // indexes are: 0 1 2 3 4
778 /// assert_eq!(bool_vec, [true, false, true, false, true]);
779 /// ```
780 ///
781 /// The `Vec<T>` is generated in ascending index order, starting from the front
782 /// and going towards the back, so you can use closures with mutable state:
783 /// ```
784 /// #![feature(vec_from_fn)]
785 ///
786 /// let mut state = 1;
787 /// let a = Vec::from_fn(6, |_| { let x = state; state *= 2; x });
788 ///
789 /// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
790 /// ```
791 #[cfg(not(no_global_oom_handling))]
792 #[inline]
793 #[unstable(feature = "vec_from_fn", reason = "new API", issue = "149698")]
794 pub fn from_fn<F>(length: usize, f: F) -> Self
795 where
796 F: FnMut(usize) -> T,
797 {
798 (0..length).map(f).collect()
799 }
800
801 /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
802 ///
803 /// Returns the raw pointer to the underlying data, the length of
804 /// the vector (in elements), and the allocated capacity of the
805 /// data (in elements). These are the same arguments in the same
806 /// order as the arguments to [`from_raw_parts`].
807 ///
808 /// After calling this function, the caller is responsible for the
809 /// memory previously managed by the `Vec`. Most often, one does
810 /// this by converting the raw pointer, length, and capacity back
811 /// into a `Vec` with the [`from_raw_parts`] function; more generally,
812 /// if `T` is non-zero-sized and the capacity is nonzero, one may use
813 /// any method that calls [`dealloc`] with a layout of
814 /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
815 /// capacity is zero, nothing needs to be done.
816 ///
817 /// [`from_raw_parts`]: Vec::from_raw_parts
818 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
819 ///
820 /// # Examples
821 ///
822 /// ```
823 /// let v: Vec<i32> = vec![-1, 0, 1];
824 ///
825 /// let (ptr, len, cap) = v.into_raw_parts();
826 ///
827 /// let rebuilt = unsafe {
828 /// // We can now make changes to the components, such as
829 /// // transmuting the raw pointer to a compatible type.
830 /// let ptr = ptr as *mut u32;
831 ///
832 /// Vec::from_raw_parts(ptr, len, cap)
833 /// };
834 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
835 /// ```
836 #[must_use = "losing the pointer will leak memory"]
837 #[stable(feature = "vec_into_raw_parts", since = "CURRENT_RUSTC_VERSION")]
838 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
839 let mut me = ManuallyDrop::new(self);
840 (me.as_mut_ptr(), me.len(), me.capacity())
841 }
842
843 #[doc(alias = "into_non_null_parts")]
844 /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
845 ///
846 /// Returns the `NonNull` pointer to the underlying data, the length of
847 /// the vector (in elements), and the allocated capacity of the
848 /// data (in elements). These are the same arguments in the same
849 /// order as the arguments to [`from_parts`].
850 ///
851 /// After calling this function, the caller is responsible for the
852 /// memory previously managed by the `Vec`. The only way to do
853 /// this is to convert the `NonNull` pointer, length, and capacity back
854 /// into a `Vec` with the [`from_parts`] function, allowing
855 /// the destructor to perform the cleanup.
856 ///
857 /// [`from_parts`]: Vec::from_parts
858 ///
859 /// # Examples
860 ///
861 /// ```
862 /// #![feature(box_vec_non_null)]
863 ///
864 /// let v: Vec<i32> = vec![-1, 0, 1];
865 ///
866 /// let (ptr, len, cap) = v.into_parts();
867 ///
868 /// let rebuilt = unsafe {
869 /// // We can now make changes to the components, such as
870 /// // transmuting the raw pointer to a compatible type.
871 /// let ptr = ptr.cast::<u32>();
872 ///
873 /// Vec::from_parts(ptr, len, cap)
874 /// };
875 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
876 /// ```
877 #[must_use = "losing the pointer will leak memory"]
878 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
879 pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
880 let (ptr, len, capacity) = self.into_raw_parts();
881 // SAFETY: A `Vec` always has a non-null pointer.
882 (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
883 }
884}
885
886impl<T, A: Allocator> Vec<T, A> {
887 /// Constructs a new, empty `Vec<T, A>`.
888 ///
889 /// The vector will not allocate until elements are pushed onto it.
890 ///
891 /// # Examples
892 ///
893 /// ```
894 /// #![feature(allocator_api)]
895 ///
896 /// use std::alloc::System;
897 ///
898 /// # #[allow(unused_mut)]
899 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
900 /// ```
901 #[inline]
902 #[unstable(feature = "allocator_api", issue = "32838")]
903 pub const fn new_in(alloc: A) -> Self {
904 Vec { buf: RawVec::new_in(alloc), len: 0 }
905 }
906
907 /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
908 /// with the provided allocator.
909 ///
910 /// The vector will be able to hold at least `capacity` elements without
911 /// reallocating. This method is allowed to allocate for more elements than
912 /// `capacity`. If `capacity` is zero, the vector will not allocate.
913 ///
914 /// It is important to note that although the returned vector has the
915 /// minimum *capacity* specified, the vector will have a zero *length*. For
916 /// an explanation of the difference between length and capacity, see
917 /// *[Capacity and reallocation]*.
918 ///
919 /// If it is important to know the exact allocated capacity of a `Vec`,
920 /// always use the [`capacity`] method after construction.
921 ///
922 /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
923 /// and the capacity will always be `usize::MAX`.
924 ///
925 /// [Capacity and reallocation]: #capacity-and-reallocation
926 /// [`capacity`]: Vec::capacity
927 ///
928 /// # Panics
929 ///
930 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
931 ///
932 /// # Examples
933 ///
934 /// ```
935 /// #![feature(allocator_api)]
936 ///
937 /// use std::alloc::System;
938 ///
939 /// let mut vec = Vec::with_capacity_in(10, System);
940 ///
941 /// // The vector contains no items, even though it has capacity for more
942 /// assert_eq!(vec.len(), 0);
943 /// assert!(vec.capacity() >= 10);
944 ///
945 /// // These are all done without reallocating...
946 /// for i in 0..10 {
947 /// vec.push(i);
948 /// }
949 /// assert_eq!(vec.len(), 10);
950 /// assert!(vec.capacity() >= 10);
951 ///
952 /// // ...but this may make the vector reallocate
953 /// vec.push(11);
954 /// assert_eq!(vec.len(), 11);
955 /// assert!(vec.capacity() >= 11);
956 ///
957 /// // A vector of a zero-sized type will always over-allocate, since no
958 /// // allocation is necessary
959 /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
960 /// assert_eq!(vec_units.capacity(), usize::MAX);
961 /// ```
962 #[cfg(not(no_global_oom_handling))]
963 #[inline]
964 #[unstable(feature = "allocator_api", issue = "32838")]
965 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
966 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
967 }
968
969 /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
970 /// with the provided allocator.
971 ///
972 /// The vector will be able to hold at least `capacity` elements without
973 /// reallocating. This method is allowed to allocate for more elements than
974 /// `capacity`. If `capacity` is zero, the vector will not allocate.
975 ///
976 /// # Errors
977 ///
978 /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
979 /// or if the allocator reports allocation failure.
980 #[inline]
981 #[unstable(feature = "allocator_api", issue = "32838")]
982 // #[unstable(feature = "try_with_capacity", issue = "91913")]
983 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
984 Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
985 }
986
987 /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
988 /// and an allocator.
989 ///
990 /// # Safety
991 ///
992 /// This is highly unsafe, due to the number of invariants that aren't
993 /// checked:
994 ///
995 /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
996 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
997 /// (`T` having a less strict alignment is not sufficient, the alignment really
998 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
999 /// allocated and deallocated with the same layout.)
1000 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1001 /// to be the same size as the pointer was allocated with. (Because similar to
1002 /// alignment, [`dealloc`] must be called with the same layout `size`.)
1003 /// * `length` needs to be less than or equal to `capacity`.
1004 /// * The first `length` values must be properly initialized values of type `T`.
1005 /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1006 /// * The allocated size in bytes must be no larger than `isize::MAX`.
1007 /// See the safety documentation of [`pointer::offset`].
1008 ///
1009 /// These requirements are always upheld by any `ptr` that has been allocated
1010 /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1011 /// upheld.
1012 ///
1013 /// Violating these may cause problems like corrupting the allocator's
1014 /// internal data structures. For example it is **not** safe
1015 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1016 /// It's also not safe to build one from a `Vec<u16>` and its length, because
1017 /// the allocator cares about the alignment, and these two types have different
1018 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1019 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1020 ///
1021 /// The ownership of `ptr` is effectively transferred to the
1022 /// `Vec<T>` which may then deallocate, reallocate or change the
1023 /// contents of memory pointed to by the pointer at will. Ensure
1024 /// that nothing else uses the pointer after calling this
1025 /// function.
1026 ///
1027 /// [`String`]: crate::string::String
1028 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1029 /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1030 /// [*fit*]: crate::alloc::Allocator#memory-fitting
1031 ///
1032 /// # Examples
1033 ///
1034 /// ```
1035 /// #![feature(allocator_api)]
1036 ///
1037 /// use std::alloc::System;
1038 ///
1039 /// use std::ptr;
1040 ///
1041 /// let mut v = Vec::with_capacity_in(3, System);
1042 /// v.push(1);
1043 /// v.push(2);
1044 /// v.push(3);
1045 ///
1046 /// // Deconstruct the vector into parts.
1047 /// let (p, len, cap, alloc) = v.into_raw_parts_with_alloc();
1048 ///
1049 /// unsafe {
1050 /// // Overwrite memory with 4, 5, 6
1051 /// for i in 0..len {
1052 /// ptr::write(p.add(i), 4 + i);
1053 /// }
1054 ///
1055 /// // Put everything back together into a Vec
1056 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1057 /// assert_eq!(rebuilt, [4, 5, 6]);
1058 /// }
1059 /// ```
1060 ///
1061 /// Using memory that was allocated elsewhere:
1062 ///
1063 /// ```rust
1064 /// #![feature(allocator_api)]
1065 ///
1066 /// use std::alloc::{AllocError, Allocator, Global, Layout};
1067 ///
1068 /// fn main() {
1069 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1070 ///
1071 /// let vec = unsafe {
1072 /// let mem = match Global.allocate(layout) {
1073 /// Ok(mem) => mem.cast::<u32>().as_ptr(),
1074 /// Err(AllocError) => return,
1075 /// };
1076 ///
1077 /// mem.write(1_000_000);
1078 ///
1079 /// Vec::from_raw_parts_in(mem, 1, 16, Global)
1080 /// };
1081 ///
1082 /// assert_eq!(vec, &[1_000_000]);
1083 /// assert_eq!(vec.capacity(), 16);
1084 /// }
1085 /// ```
1086 #[inline]
1087 #[unstable(feature = "allocator_api", issue = "32838")]
1088 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1089 ub_checks::assert_unsafe_precondition!(
1090 check_library_ub,
1091 "Vec::from_raw_parts_in requires that length <= capacity",
1092 (length: usize = length, capacity: usize = capacity) => length <= capacity
1093 );
1094 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1095 }
1096
1097 #[doc(alias = "from_non_null_parts_in")]
1098 /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1099 /// and an allocator.
1100 ///
1101 /// # Safety
1102 ///
1103 /// This is highly unsafe, due to the number of invariants that aren't
1104 /// checked:
1105 ///
1106 /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1107 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1108 /// (`T` having a less strict alignment is not sufficient, the alignment really
1109 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1110 /// allocated and deallocated with the same layout.)
1111 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1112 /// to be the same size as the pointer was allocated with. (Because similar to
1113 /// alignment, [`dealloc`] must be called with the same layout `size`.)
1114 /// * `length` needs to be less than or equal to `capacity`.
1115 /// * The first `length` values must be properly initialized values of type `T`.
1116 /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1117 /// * The allocated size in bytes must be no larger than `isize::MAX`.
1118 /// See the safety documentation of [`pointer::offset`].
1119 ///
1120 /// These requirements are always upheld by any `ptr` that has been allocated
1121 /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1122 /// upheld.
1123 ///
1124 /// Violating these may cause problems like corrupting the allocator's
1125 /// internal data structures. For example it is **not** safe
1126 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1127 /// It's also not safe to build one from a `Vec<u16>` and its length, because
1128 /// the allocator cares about the alignment, and these two types have different
1129 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1130 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1131 ///
1132 /// The ownership of `ptr` is effectively transferred to the
1133 /// `Vec<T>` which may then deallocate, reallocate or change the
1134 /// contents of memory pointed to by the pointer at will. Ensure
1135 /// that nothing else uses the pointer after calling this
1136 /// function.
1137 ///
1138 /// [`String`]: crate::string::String
1139 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1140 /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1141 /// [*fit*]: crate::alloc::Allocator#memory-fitting
1142 ///
1143 /// # Examples
1144 ///
1145 /// ```
1146 /// #![feature(allocator_api, box_vec_non_null)]
1147 ///
1148 /// use std::alloc::System;
1149 ///
1150 /// let mut v = Vec::with_capacity_in(3, System);
1151 /// v.push(1);
1152 /// v.push(2);
1153 /// v.push(3);
1154 ///
1155 /// // Deconstruct the vector into parts.
1156 /// let (p, len, cap, alloc) = v.into_parts_with_alloc();
1157 ///
1158 /// unsafe {
1159 /// // Overwrite memory with 4, 5, 6
1160 /// for i in 0..len {
1161 /// p.add(i).write(4 + i);
1162 /// }
1163 ///
1164 /// // Put everything back together into a Vec
1165 /// let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1166 /// assert_eq!(rebuilt, [4, 5, 6]);
1167 /// }
1168 /// ```
1169 ///
1170 /// Using memory that was allocated elsewhere:
1171 ///
1172 /// ```rust
1173 /// #![feature(allocator_api, box_vec_non_null)]
1174 ///
1175 /// use std::alloc::{AllocError, Allocator, Global, Layout};
1176 ///
1177 /// fn main() {
1178 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1179 ///
1180 /// let vec = unsafe {
1181 /// let mem = match Global.allocate(layout) {
1182 /// Ok(mem) => mem.cast::<u32>(),
1183 /// Err(AllocError) => return,
1184 /// };
1185 ///
1186 /// mem.write(1_000_000);
1187 ///
1188 /// Vec::from_parts_in(mem, 1, 16, Global)
1189 /// };
1190 ///
1191 /// assert_eq!(vec, &[1_000_000]);
1192 /// assert_eq!(vec.capacity(), 16);
1193 /// }
1194 /// ```
1195 #[inline]
1196 #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1197 // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1198 pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1199 ub_checks::assert_unsafe_precondition!(
1200 check_library_ub,
1201 "Vec::from_parts_in requires that length <= capacity",
1202 (length: usize = length, capacity: usize = capacity) => length <= capacity
1203 );
1204 unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1205 }
1206
1207 /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1208 ///
1209 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1210 /// the allocated capacity of the data (in elements), and the allocator. These are the same
1211 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1212 ///
1213 /// After calling this function, the caller is responsible for the
1214 /// memory previously managed by the `Vec`. The only way to do
1215 /// this is to convert the raw pointer, length, and capacity back
1216 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1217 /// the destructor to perform the cleanup.
1218 ///
1219 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1220 ///
1221 /// # Examples
1222 ///
1223 /// ```
1224 /// #![feature(allocator_api)]
1225 ///
1226 /// use std::alloc::System;
1227 ///
1228 /// let mut v: Vec<i32, System> = Vec::new_in(System);
1229 /// v.push(-1);
1230 /// v.push(0);
1231 /// v.push(1);
1232 ///
1233 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1234 ///
1235 /// let rebuilt = unsafe {
1236 /// // We can now make changes to the components, such as
1237 /// // transmuting the raw pointer to a compatible type.
1238 /// let ptr = ptr as *mut u32;
1239 ///
1240 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
1241 /// };
1242 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1243 /// ```
1244 #[must_use = "losing the pointer will leak memory"]
1245 #[unstable(feature = "allocator_api", issue = "32838")]
1246 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1247 let mut me = ManuallyDrop::new(self);
1248 let len = me.len();
1249 let capacity = me.capacity();
1250 let ptr = me.as_mut_ptr();
1251 let alloc = unsafe { ptr::read(me.allocator()) };
1252 (ptr, len, capacity, alloc)
1253 }
1254
1255 #[doc(alias = "into_non_null_parts_with_alloc")]
1256 /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1257 ///
1258 /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1259 /// the allocated capacity of the data (in elements), and the allocator. These are the same
1260 /// arguments in the same order as the arguments to [`from_parts_in`].
1261 ///
1262 /// After calling this function, the caller is responsible for the
1263 /// memory previously managed by the `Vec`. The only way to do
1264 /// this is to convert the `NonNull` pointer, length, and capacity back
1265 /// into a `Vec` with the [`from_parts_in`] function, allowing
1266 /// the destructor to perform the cleanup.
1267 ///
1268 /// [`from_parts_in`]: Vec::from_parts_in
1269 ///
1270 /// # Examples
1271 ///
1272 /// ```
1273 /// #![feature(allocator_api, box_vec_non_null)]
1274 ///
1275 /// use std::alloc::System;
1276 ///
1277 /// let mut v: Vec<i32, System> = Vec::new_in(System);
1278 /// v.push(-1);
1279 /// v.push(0);
1280 /// v.push(1);
1281 ///
1282 /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1283 ///
1284 /// let rebuilt = unsafe {
1285 /// // We can now make changes to the components, such as
1286 /// // transmuting the raw pointer to a compatible type.
1287 /// let ptr = ptr.cast::<u32>();
1288 ///
1289 /// Vec::from_parts_in(ptr, len, cap, alloc)
1290 /// };
1291 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1292 /// ```
1293 #[must_use = "losing the pointer will leak memory"]
1294 #[unstable(feature = "allocator_api", issue = "32838")]
1295 // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1296 pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1297 let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1298 // SAFETY: A `Vec` always has a non-null pointer.
1299 (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1300 }
1301
1302 /// Returns the total number of elements the vector can hold without
1303 /// reallocating.
1304 ///
1305 /// # Examples
1306 ///
1307 /// ```
1308 /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1309 /// vec.push(42);
1310 /// assert!(vec.capacity() >= 10);
1311 /// ```
1312 ///
1313 /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1314 ///
1315 /// ```
1316 /// #[derive(Clone)]
1317 /// struct ZeroSized;
1318 ///
1319 /// fn main() {
1320 /// assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1321 /// let v = vec![ZeroSized; 0];
1322 /// assert_eq!(v.capacity(), usize::MAX);
1323 /// }
1324 /// ```
1325 #[inline]
1326 #[stable(feature = "rust1", since = "1.0.0")]
1327 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1328 pub const fn capacity(&self) -> usize {
1329 self.buf.capacity()
1330 }
1331
1332 /// Reserves capacity for at least `additional` more elements to be inserted
1333 /// in the given `Vec<T>`. The collection may reserve more space to
1334 /// speculatively avoid frequent reallocations. After calling `reserve`,
1335 /// capacity will be greater than or equal to `self.len() + additional`.
1336 /// Does nothing if capacity is already sufficient.
1337 ///
1338 /// # Panics
1339 ///
1340 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1341 ///
1342 /// # Examples
1343 ///
1344 /// ```
1345 /// let mut vec = vec![1];
1346 /// vec.reserve(10);
1347 /// assert!(vec.capacity() >= 11);
1348 /// ```
1349 #[cfg(not(no_global_oom_handling))]
1350 #[stable(feature = "rust1", since = "1.0.0")]
1351 #[rustc_diagnostic_item = "vec_reserve"]
1352 pub fn reserve(&mut self, additional: usize) {
1353 self.buf.reserve(self.len, additional);
1354 }
1355
1356 /// Reserves the minimum capacity for at least `additional` more elements to
1357 /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1358 /// deliberately over-allocate to speculatively avoid frequent allocations.
1359 /// After calling `reserve_exact`, capacity will be greater than or equal to
1360 /// `self.len() + additional`. Does nothing if the capacity is already
1361 /// sufficient.
1362 ///
1363 /// Note that the allocator may give the collection more space than it
1364 /// requests. Therefore, capacity can not be relied upon to be precisely
1365 /// minimal. Prefer [`reserve`] if future insertions are expected.
1366 ///
1367 /// [`reserve`]: Vec::reserve
1368 ///
1369 /// # Panics
1370 ///
1371 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1372 ///
1373 /// # Examples
1374 ///
1375 /// ```
1376 /// let mut vec = vec![1];
1377 /// vec.reserve_exact(10);
1378 /// assert!(vec.capacity() >= 11);
1379 /// ```
1380 #[cfg(not(no_global_oom_handling))]
1381 #[stable(feature = "rust1", since = "1.0.0")]
1382 pub fn reserve_exact(&mut self, additional: usize) {
1383 self.buf.reserve_exact(self.len, additional);
1384 }
1385
1386 /// Tries to reserve capacity for at least `additional` more elements to be inserted
1387 /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1388 /// frequent reallocations. After calling `try_reserve`, capacity will be
1389 /// greater than or equal to `self.len() + additional` if it returns
1390 /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1391 /// preserves the contents even if an error occurs.
1392 ///
1393 /// # Errors
1394 ///
1395 /// If the capacity overflows, or the allocator reports a failure, then an error
1396 /// is returned.
1397 ///
1398 /// # Examples
1399 ///
1400 /// ```
1401 /// use std::collections::TryReserveError;
1402 ///
1403 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1404 /// let mut output = Vec::new();
1405 ///
1406 /// // Pre-reserve the memory, exiting if we can't
1407 /// output.try_reserve(data.len())?;
1408 ///
1409 /// // Now we know this can't OOM in the middle of our complex work
1410 /// output.extend(data.iter().map(|&val| {
1411 /// val * 2 + 5 // very complicated
1412 /// }));
1413 ///
1414 /// Ok(output)
1415 /// }
1416 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1417 /// ```
1418 #[stable(feature = "try_reserve", since = "1.57.0")]
1419 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1420 self.buf.try_reserve(self.len, additional)
1421 }
1422
1423 /// Tries to reserve the minimum capacity for at least `additional`
1424 /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1425 /// this will not deliberately over-allocate to speculatively avoid frequent
1426 /// allocations. After calling `try_reserve_exact`, capacity will be greater
1427 /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1428 /// Does nothing if the capacity is already sufficient.
1429 ///
1430 /// Note that the allocator may give the collection more space than it
1431 /// requests. Therefore, capacity can not be relied upon to be precisely
1432 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1433 ///
1434 /// [`try_reserve`]: Vec::try_reserve
1435 ///
1436 /// # Errors
1437 ///
1438 /// If the capacity overflows, or the allocator reports a failure, then an error
1439 /// is returned.
1440 ///
1441 /// # Examples
1442 ///
1443 /// ```
1444 /// use std::collections::TryReserveError;
1445 ///
1446 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1447 /// let mut output = Vec::new();
1448 ///
1449 /// // Pre-reserve the memory, exiting if we can't
1450 /// output.try_reserve_exact(data.len())?;
1451 ///
1452 /// // Now we know this can't OOM in the middle of our complex work
1453 /// output.extend(data.iter().map(|&val| {
1454 /// val * 2 + 5 // very complicated
1455 /// }));
1456 ///
1457 /// Ok(output)
1458 /// }
1459 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1460 /// ```
1461 #[stable(feature = "try_reserve", since = "1.57.0")]
1462 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1463 self.buf.try_reserve_exact(self.len, additional)
1464 }
1465
1466 /// Shrinks the capacity of the vector as much as possible.
1467 ///
1468 /// The behavior of this method depends on the allocator, which may either shrink the vector
1469 /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1470 /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1471 ///
1472 /// [`with_capacity`]: Vec::with_capacity
1473 ///
1474 /// # Examples
1475 ///
1476 /// ```
1477 /// let mut vec = Vec::with_capacity(10);
1478 /// vec.extend([1, 2, 3]);
1479 /// assert!(vec.capacity() >= 10);
1480 /// vec.shrink_to_fit();
1481 /// assert!(vec.capacity() >= 3);
1482 /// ```
1483 #[cfg(not(no_global_oom_handling))]
1484 #[stable(feature = "rust1", since = "1.0.0")]
1485 #[inline]
1486 pub fn shrink_to_fit(&mut self) {
1487 // The capacity is never less than the length, and there's nothing to do when
1488 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1489 // by only calling it with a greater capacity.
1490 if self.capacity() > self.len {
1491 self.buf.shrink_to_fit(self.len);
1492 }
1493 }
1494
1495 /// Shrinks the capacity of the vector with a lower bound.
1496 ///
1497 /// The capacity will remain at least as large as both the length
1498 /// and the supplied value.
1499 ///
1500 /// If the current capacity is less than the lower limit, this is a no-op.
1501 ///
1502 /// # Examples
1503 ///
1504 /// ```
1505 /// let mut vec = Vec::with_capacity(10);
1506 /// vec.extend([1, 2, 3]);
1507 /// assert!(vec.capacity() >= 10);
1508 /// vec.shrink_to(4);
1509 /// assert!(vec.capacity() >= 4);
1510 /// vec.shrink_to(0);
1511 /// assert!(vec.capacity() >= 3);
1512 /// ```
1513 #[cfg(not(no_global_oom_handling))]
1514 #[stable(feature = "shrink_to", since = "1.56.0")]
1515 pub fn shrink_to(&mut self, min_capacity: usize) {
1516 if self.capacity() > min_capacity {
1517 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1518 }
1519 }
1520
1521 /// Converts the vector into [`Box<[T]>`][owned slice].
1522 ///
1523 /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1524 ///
1525 /// [owned slice]: Box
1526 /// [`shrink_to_fit`]: Vec::shrink_to_fit
1527 ///
1528 /// # Examples
1529 ///
1530 /// ```
1531 /// let v = vec![1, 2, 3];
1532 ///
1533 /// let slice = v.into_boxed_slice();
1534 /// ```
1535 ///
1536 /// Any excess capacity is removed:
1537 ///
1538 /// ```
1539 /// let mut vec = Vec::with_capacity(10);
1540 /// vec.extend([1, 2, 3]);
1541 ///
1542 /// assert!(vec.capacity() >= 10);
1543 /// let slice = vec.into_boxed_slice();
1544 /// assert_eq!(slice.into_vec().capacity(), 3);
1545 /// ```
1546 #[cfg(not(no_global_oom_handling))]
1547 #[stable(feature = "rust1", since = "1.0.0")]
1548 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1549 unsafe {
1550 self.shrink_to_fit();
1551 let me = ManuallyDrop::new(self);
1552 let buf = ptr::read(&me.buf);
1553 let len = me.len();
1554 buf.into_box(len).assume_init()
1555 }
1556 }
1557
1558 /// Shortens the vector, keeping the first `len` elements and dropping
1559 /// the rest.
1560 ///
1561 /// If `len` is greater or equal to the vector's current length, this has
1562 /// no effect.
1563 ///
1564 /// The [`drain`] method can emulate `truncate`, but causes the excess
1565 /// elements to be returned instead of dropped.
1566 ///
1567 /// Note that this method has no effect on the allocated capacity
1568 /// of the vector.
1569 ///
1570 /// # Examples
1571 ///
1572 /// Truncating a five element vector to two elements:
1573 ///
1574 /// ```
1575 /// let mut vec = vec![1, 2, 3, 4, 5];
1576 /// vec.truncate(2);
1577 /// assert_eq!(vec, [1, 2]);
1578 /// ```
1579 ///
1580 /// No truncation occurs when `len` is greater than the vector's current
1581 /// length:
1582 ///
1583 /// ```
1584 /// let mut vec = vec![1, 2, 3];
1585 /// vec.truncate(8);
1586 /// assert_eq!(vec, [1, 2, 3]);
1587 /// ```
1588 ///
1589 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1590 /// method.
1591 ///
1592 /// ```
1593 /// let mut vec = vec![1, 2, 3];
1594 /// vec.truncate(0);
1595 /// assert_eq!(vec, []);
1596 /// ```
1597 ///
1598 /// [`clear`]: Vec::clear
1599 /// [`drain`]: Vec::drain
1600 #[stable(feature = "rust1", since = "1.0.0")]
1601 pub fn truncate(&mut self, len: usize) {
1602 // This is safe because:
1603 //
1604 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1605 // case avoids creating an invalid slice, and
1606 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1607 // such that no value will be dropped twice in case `drop_in_place`
1608 // were to panic once (if it panics twice, the program aborts).
1609 unsafe {
1610 // Note: It's intentional that this is `>` and not `>=`.
1611 // Changing it to `>=` has negative performance
1612 // implications in some cases. See #78884 for more.
1613 if len > self.len {
1614 return;
1615 }
1616 let remaining_len = self.len - len;
1617 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1618 self.len = len;
1619 ptr::drop_in_place(s);
1620 }
1621 }
1622
1623 /// Extracts a slice containing the entire vector.
1624 ///
1625 /// Equivalent to `&s[..]`.
1626 ///
1627 /// # Examples
1628 ///
1629 /// ```
1630 /// use std::io::{self, Write};
1631 /// let buffer = vec![1, 2, 3, 5, 8];
1632 /// io::sink().write(buffer.as_slice()).unwrap();
1633 /// ```
1634 #[inline]
1635 #[stable(feature = "vec_as_slice", since = "1.7.0")]
1636 #[rustc_diagnostic_item = "vec_as_slice"]
1637 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1638 pub const fn as_slice(&self) -> &[T] {
1639 // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1640 // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1641 // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1642 // "wrap" through overflowing memory addresses.
1643 //
1644 // * Vec API guarantees that self.buf:
1645 // * contains only properly-initialized items within 0..len
1646 // * is aligned, contiguous, and valid for `len` reads
1647 // * obeys size and address-wrapping constraints
1648 //
1649 // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1650 // check ensures that it is not possible to mutably alias `self.buf` within the
1651 // returned lifetime.
1652 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1653 }
1654
1655 /// Extracts a mutable slice of the entire vector.
1656 ///
1657 /// Equivalent to `&mut s[..]`.
1658 ///
1659 /// # Examples
1660 ///
1661 /// ```
1662 /// use std::io::{self, Read};
1663 /// let mut buffer = vec![0; 3];
1664 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1665 /// ```
1666 #[inline]
1667 #[stable(feature = "vec_as_slice", since = "1.7.0")]
1668 #[rustc_diagnostic_item = "vec_as_mut_slice"]
1669 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1670 pub const fn as_mut_slice(&mut self) -> &mut [T] {
1671 // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1672 // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1673 // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1674 // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1675 //
1676 // * Vec API guarantees that self.buf:
1677 // * contains only properly-initialized items within 0..len
1678 // * is aligned, contiguous, and valid for `len` reads
1679 // * obeys size and address-wrapping constraints
1680 //
1681 // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1682 // borrow-check ensures that it is not possible to construct a reference to `self.buf`
1683 // within the returned lifetime.
1684 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1685 }
1686
1687 /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1688 /// valid for zero sized reads if the vector didn't allocate.
1689 ///
1690 /// The caller must ensure that the vector outlives the pointer this
1691 /// function returns, or else it will end up dangling.
1692 /// Modifying the vector may cause its buffer to be reallocated,
1693 /// which would also make any pointers to it invalid.
1694 ///
1695 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1696 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1697 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1698 ///
1699 /// This method guarantees that for the purpose of the aliasing model, this method
1700 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1701 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1702 /// and [`as_non_null`].
1703 /// Note that calling other methods that materialize mutable references to the slice,
1704 /// or mutable references to specific elements you are planning on accessing through this pointer,
1705 /// as well as writing to those elements, may still invalidate this pointer.
1706 /// See the second example below for how this guarantee can be used.
1707 ///
1708 ///
1709 /// # Examples
1710 ///
1711 /// ```
1712 /// let x = vec![1, 2, 4];
1713 /// let x_ptr = x.as_ptr();
1714 ///
1715 /// unsafe {
1716 /// for i in 0..x.len() {
1717 /// assert_eq!(*x_ptr.add(i), 1 << i);
1718 /// }
1719 /// }
1720 /// ```
1721 ///
1722 /// Due to the aliasing guarantee, the following code is legal:
1723 ///
1724 /// ```rust
1725 /// unsafe {
1726 /// let mut v = vec![0, 1, 2];
1727 /// let ptr1 = v.as_ptr();
1728 /// let _ = ptr1.read();
1729 /// let ptr2 = v.as_mut_ptr().offset(2);
1730 /// ptr2.write(2);
1731 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1732 /// // because it mutated a different element:
1733 /// let _ = ptr1.read();
1734 /// }
1735 /// ```
1736 ///
1737 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1738 /// [`as_ptr`]: Vec::as_ptr
1739 /// [`as_non_null`]: Vec::as_non_null
1740 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1741 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1742 #[rustc_never_returns_null_ptr]
1743 #[rustc_as_ptr]
1744 #[inline]
1745 pub const fn as_ptr(&self) -> *const T {
1746 // We shadow the slice method of the same name to avoid going through
1747 // `deref`, which creates an intermediate reference.
1748 self.buf.ptr()
1749 }
1750
1751 /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1752 /// raw pointer valid for zero sized reads if the vector didn't allocate.
1753 ///
1754 /// The caller must ensure that the vector outlives the pointer this
1755 /// function returns, or else it will end up dangling.
1756 /// Modifying the vector may cause its buffer to be reallocated,
1757 /// which would also make any pointers to it invalid.
1758 ///
1759 /// This method guarantees that for the purpose of the aliasing model, this method
1760 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1761 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1762 /// and [`as_non_null`].
1763 /// Note that calling other methods that materialize references to the slice,
1764 /// or references to specific elements you are planning on accessing through this pointer,
1765 /// may still invalidate this pointer.
1766 /// See the second example below for how this guarantee can be used.
1767 ///
1768 /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1769 /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1770 /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1771 /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1772 /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1773 ///
1774 /// # Examples
1775 ///
1776 /// ```
1777 /// // Allocate vector big enough for 4 elements.
1778 /// let size = 4;
1779 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1780 /// let x_ptr = x.as_mut_ptr();
1781 ///
1782 /// // Initialize elements via raw pointer writes, then set length.
1783 /// unsafe {
1784 /// for i in 0..size {
1785 /// *x_ptr.add(i) = i as i32;
1786 /// }
1787 /// x.set_len(size);
1788 /// }
1789 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1790 /// ```
1791 ///
1792 /// Due to the aliasing guarantee, the following code is legal:
1793 ///
1794 /// ```rust
1795 /// unsafe {
1796 /// let mut v = vec![0];
1797 /// let ptr1 = v.as_mut_ptr();
1798 /// ptr1.write(1);
1799 /// let ptr2 = v.as_mut_ptr();
1800 /// ptr2.write(2);
1801 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1802 /// ptr1.write(3);
1803 /// }
1804 /// ```
1805 ///
1806 /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1807 ///
1808 /// ```
1809 /// use std::mem::{ManuallyDrop, MaybeUninit};
1810 ///
1811 /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1812 /// let ptr = v.as_mut_ptr();
1813 /// let capacity = v.capacity();
1814 /// let slice_ptr: *mut [MaybeUninit<i32>] =
1815 /// std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1816 /// drop(unsafe { Box::from_raw(slice_ptr) });
1817 /// ```
1818 ///
1819 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1820 /// [`as_ptr`]: Vec::as_ptr
1821 /// [`as_non_null`]: Vec::as_non_null
1822 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1823 /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1824 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1825 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1826 #[rustc_never_returns_null_ptr]
1827 #[rustc_as_ptr]
1828 #[inline]
1829 pub const fn as_mut_ptr(&mut self) -> *mut T {
1830 // We shadow the slice method of the same name to avoid going through
1831 // `deref_mut`, which creates an intermediate reference.
1832 self.buf.ptr()
1833 }
1834
1835 /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1836 /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1837 ///
1838 /// The caller must ensure that the vector outlives the pointer this
1839 /// function returns, or else it will end up dangling.
1840 /// Modifying the vector may cause its buffer to be reallocated,
1841 /// which would also make any pointers to it invalid.
1842 ///
1843 /// This method guarantees that for the purpose of the aliasing model, this method
1844 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1845 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1846 /// and [`as_non_null`].
1847 /// Note that calling other methods that materialize references to the slice,
1848 /// or references to specific elements you are planning on accessing through this pointer,
1849 /// may still invalidate this pointer.
1850 /// See the second example below for how this guarantee can be used.
1851 ///
1852 /// # Examples
1853 ///
1854 /// ```
1855 /// #![feature(box_vec_non_null)]
1856 ///
1857 /// // Allocate vector big enough for 4 elements.
1858 /// let size = 4;
1859 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1860 /// let x_ptr = x.as_non_null();
1861 ///
1862 /// // Initialize elements via raw pointer writes, then set length.
1863 /// unsafe {
1864 /// for i in 0..size {
1865 /// x_ptr.add(i).write(i as i32);
1866 /// }
1867 /// x.set_len(size);
1868 /// }
1869 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1870 /// ```
1871 ///
1872 /// Due to the aliasing guarantee, the following code is legal:
1873 ///
1874 /// ```rust
1875 /// #![feature(box_vec_non_null)]
1876 ///
1877 /// unsafe {
1878 /// let mut v = vec![0];
1879 /// let ptr1 = v.as_non_null();
1880 /// ptr1.write(1);
1881 /// let ptr2 = v.as_non_null();
1882 /// ptr2.write(2);
1883 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1884 /// ptr1.write(3);
1885 /// }
1886 /// ```
1887 ///
1888 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1889 /// [`as_ptr`]: Vec::as_ptr
1890 /// [`as_non_null`]: Vec::as_non_null
1891 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1892 #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1893 #[inline]
1894 pub const fn as_non_null(&mut self) -> NonNull<T> {
1895 self.buf.non_null()
1896 }
1897
1898 /// Returns a reference to the underlying allocator.
1899 #[unstable(feature = "allocator_api", issue = "32838")]
1900 #[inline]
1901 pub fn allocator(&self) -> &A {
1902 self.buf.allocator()
1903 }
1904
1905 /// Forces the length of the vector to `new_len`.
1906 ///
1907 /// This is a low-level operation that maintains none of the normal
1908 /// invariants of the type. Normally changing the length of a vector
1909 /// is done using one of the safe operations instead, such as
1910 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1911 ///
1912 /// [`truncate`]: Vec::truncate
1913 /// [`resize`]: Vec::resize
1914 /// [`extend`]: Extend::extend
1915 /// [`clear`]: Vec::clear
1916 ///
1917 /// # Safety
1918 ///
1919 /// - `new_len` must be less than or equal to [`capacity()`].
1920 /// - The elements at `old_len..new_len` must be initialized.
1921 ///
1922 /// [`capacity()`]: Vec::capacity
1923 ///
1924 /// # Examples
1925 ///
1926 /// See [`spare_capacity_mut()`] for an example with safe
1927 /// initialization of capacity elements and use of this method.
1928 ///
1929 /// `set_len()` can be useful for situations in which the vector
1930 /// is serving as a buffer for other code, particularly over FFI:
1931 ///
1932 /// ```no_run
1933 /// # #![allow(dead_code)]
1934 /// # // This is just a minimal skeleton for the doc example;
1935 /// # // don't use this as a starting point for a real library.
1936 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1937 /// # const Z_OK: i32 = 0;
1938 /// # unsafe extern "C" {
1939 /// # fn deflateGetDictionary(
1940 /// # strm: *mut std::ffi::c_void,
1941 /// # dictionary: *mut u8,
1942 /// # dictLength: *mut usize,
1943 /// # ) -> i32;
1944 /// # }
1945 /// # impl StreamWrapper {
1946 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1947 /// // Per the FFI method's docs, "32768 bytes is always enough".
1948 /// let mut dict = Vec::with_capacity(32_768);
1949 /// let mut dict_length = 0;
1950 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1951 /// // 1. `dict_length` elements were initialized.
1952 /// // 2. `dict_length` <= the capacity (32_768)
1953 /// // which makes `set_len` safe to call.
1954 /// unsafe {
1955 /// // Make the FFI call...
1956 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1957 /// if r == Z_OK {
1958 /// // ...and update the length to what was initialized.
1959 /// dict.set_len(dict_length);
1960 /// Some(dict)
1961 /// } else {
1962 /// None
1963 /// }
1964 /// }
1965 /// }
1966 /// # }
1967 /// ```
1968 ///
1969 /// While the following example is sound, there is a memory leak since
1970 /// the inner vectors were not freed prior to the `set_len` call:
1971 ///
1972 /// ```
1973 /// let mut vec = vec![vec![1, 0, 0],
1974 /// vec![0, 1, 0],
1975 /// vec![0, 0, 1]];
1976 /// // SAFETY:
1977 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1978 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1979 /// unsafe {
1980 /// vec.set_len(0);
1981 /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
1982 /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1983 /// # vec.set_len(3);
1984 /// }
1985 /// ```
1986 ///
1987 /// Normally, here, one would use [`clear`] instead to correctly drop
1988 /// the contents and thus not leak memory.
1989 ///
1990 /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1991 #[inline]
1992 #[stable(feature = "rust1", since = "1.0.0")]
1993 pub unsafe fn set_len(&mut self, new_len: usize) {
1994 ub_checks::assert_unsafe_precondition!(
1995 check_library_ub,
1996 "Vec::set_len requires that new_len <= capacity()",
1997 (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1998 );
1999
2000 self.len = new_len;
2001 }
2002
2003 /// Removes an element from the vector and returns it.
2004 ///
2005 /// The removed element is replaced by the last element of the vector.
2006 ///
2007 /// This does not preserve ordering of the remaining elements, but is *O*(1).
2008 /// If you need to preserve the element order, use [`remove`] instead.
2009 ///
2010 /// [`remove`]: Vec::remove
2011 ///
2012 /// # Panics
2013 ///
2014 /// Panics if `index` is out of bounds.
2015 ///
2016 /// # Examples
2017 ///
2018 /// ```
2019 /// let mut v = vec!["foo", "bar", "baz", "qux"];
2020 ///
2021 /// assert_eq!(v.swap_remove(1), "bar");
2022 /// assert_eq!(v, ["foo", "qux", "baz"]);
2023 ///
2024 /// assert_eq!(v.swap_remove(0), "foo");
2025 /// assert_eq!(v, ["baz", "qux"]);
2026 /// ```
2027 #[inline]
2028 #[stable(feature = "rust1", since = "1.0.0")]
2029 pub fn swap_remove(&mut self, index: usize) -> T {
2030 #[cold]
2031 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2032 #[optimize(size)]
2033 fn assert_failed(index: usize, len: usize) -> ! {
2034 panic!("swap_remove index (is {index}) should be < len (is {len})");
2035 }
2036
2037 let len = self.len();
2038 if index >= len {
2039 assert_failed(index, len);
2040 }
2041 unsafe {
2042 // We replace self[index] with the last element. Note that if the
2043 // bounds check above succeeds there must be a last element (which
2044 // can be self[index] itself).
2045 let value = ptr::read(self.as_ptr().add(index));
2046 let base_ptr = self.as_mut_ptr();
2047 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2048 self.set_len(len - 1);
2049 value
2050 }
2051 }
2052
2053 /// Inserts an element at position `index` within the vector, shifting all
2054 /// elements after it to the right.
2055 ///
2056 /// # Panics
2057 ///
2058 /// Panics if `index > len`.
2059 ///
2060 /// # Examples
2061 ///
2062 /// ```
2063 /// let mut vec = vec!['a', 'b', 'c'];
2064 /// vec.insert(1, 'd');
2065 /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2066 /// vec.insert(4, 'e');
2067 /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2068 /// ```
2069 ///
2070 /// # Time complexity
2071 ///
2072 /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2073 /// shifted to the right. In the worst case, all elements are shifted when
2074 /// the insertion index is 0.
2075 #[cfg(not(no_global_oom_handling))]
2076 #[stable(feature = "rust1", since = "1.0.0")]
2077 #[track_caller]
2078 pub fn insert(&mut self, index: usize, element: T) {
2079 let _ = self.insert_mut(index, element);
2080 }
2081
2082 /// Inserts an element at position `index` within the vector, shifting all
2083 /// elements after it to the right, and returning a reference to the new
2084 /// element.
2085 ///
2086 /// # Panics
2087 ///
2088 /// Panics if `index > len`.
2089 ///
2090 /// # Examples
2091 ///
2092 /// ```
2093 /// #![feature(push_mut)]
2094 /// let mut vec = vec![1, 3, 5, 9];
2095 /// let x = vec.insert_mut(3, 6);
2096 /// *x += 1;
2097 /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2098 /// ```
2099 ///
2100 /// # Time complexity
2101 ///
2102 /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2103 /// shifted to the right. In the worst case, all elements are shifted when
2104 /// the insertion index is 0.
2105 #[cfg(not(no_global_oom_handling))]
2106 #[inline]
2107 #[unstable(feature = "push_mut", issue = "135974")]
2108 #[track_caller]
2109 #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2110 pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2111 #[cold]
2112 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2113 #[track_caller]
2114 #[optimize(size)]
2115 fn assert_failed(index: usize, len: usize) -> ! {
2116 panic!("insertion index (is {index}) should be <= len (is {len})");
2117 }
2118
2119 let len = self.len();
2120 if index > len {
2121 assert_failed(index, len);
2122 }
2123
2124 // space for the new element
2125 if len == self.buf.capacity() {
2126 self.buf.grow_one();
2127 }
2128
2129 unsafe {
2130 // infallible
2131 // The spot to put the new value
2132 let p = self.as_mut_ptr().add(index);
2133 {
2134 if index < len {
2135 // Shift everything over to make space. (Duplicating the
2136 // `index`th element into two consecutive places.)
2137 ptr::copy(p, p.add(1), len - index);
2138 }
2139 // Write it in, overwriting the first copy of the `index`th
2140 // element.
2141 ptr::write(p, element);
2142 }
2143 self.set_len(len + 1);
2144 &mut *p
2145 }
2146 }
2147
2148 /// Removes and returns the element at position `index` within the vector,
2149 /// shifting all elements after it to the left.
2150 ///
2151 /// Note: Because this shifts over the remaining elements, it has a
2152 /// worst-case performance of *O*(*n*). If you don't need the order of elements
2153 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2154 /// elements from the beginning of the `Vec`, consider using
2155 /// [`VecDeque::pop_front`] instead.
2156 ///
2157 /// [`swap_remove`]: Vec::swap_remove
2158 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2159 ///
2160 /// # Panics
2161 ///
2162 /// Panics if `index` is out of bounds.
2163 ///
2164 /// # Examples
2165 ///
2166 /// ```
2167 /// let mut v = vec!['a', 'b', 'c'];
2168 /// assert_eq!(v.remove(1), 'b');
2169 /// assert_eq!(v, ['a', 'c']);
2170 /// ```
2171 #[stable(feature = "rust1", since = "1.0.0")]
2172 #[track_caller]
2173 #[rustc_confusables("delete", "take")]
2174 pub fn remove(&mut self, index: usize) -> T {
2175 #[cold]
2176 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2177 #[track_caller]
2178 #[optimize(size)]
2179 fn assert_failed(index: usize, len: usize) -> ! {
2180 panic!("removal index (is {index}) should be < len (is {len})");
2181 }
2182
2183 match self.try_remove(index) {
2184 Some(elem) => elem,
2185 None => assert_failed(index, self.len()),
2186 }
2187 }
2188
2189 /// Remove and return the element at position `index` within the vector,
2190 /// shifting all elements after it to the left, or [`None`] if it does not
2191 /// exist.
2192 ///
2193 /// Note: Because this shifts over the remaining elements, it has a
2194 /// worst-case performance of *O*(*n*). If you'd like to remove
2195 /// elements from the beginning of the `Vec`, consider using
2196 /// [`VecDeque::pop_front`] instead.
2197 ///
2198 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2199 ///
2200 /// # Examples
2201 ///
2202 /// ```
2203 /// #![feature(vec_try_remove)]
2204 /// let mut v = vec![1, 2, 3];
2205 /// assert_eq!(v.try_remove(0), Some(1));
2206 /// assert_eq!(v.try_remove(2), None);
2207 /// ```
2208 #[unstable(feature = "vec_try_remove", issue = "146954")]
2209 #[rustc_confusables("delete", "take", "remove")]
2210 pub fn try_remove(&mut self, index: usize) -> Option<T> {
2211 let len = self.len();
2212 if index >= len {
2213 return None;
2214 }
2215 unsafe {
2216 // infallible
2217 let ret;
2218 {
2219 // the place we are taking from.
2220 let ptr = self.as_mut_ptr().add(index);
2221 // copy it out, unsafely having a copy of the value on
2222 // the stack and in the vector at the same time.
2223 ret = ptr::read(ptr);
2224
2225 // Shift everything down to fill in that spot.
2226 ptr::copy(ptr.add(1), ptr, len - index - 1);
2227 }
2228 self.set_len(len - 1);
2229 Some(ret)
2230 }
2231 }
2232
2233 /// Retains only the elements specified by the predicate.
2234 ///
2235 /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2236 /// This method operates in place, visiting each element exactly once in the
2237 /// original order, and preserves the order of the retained elements.
2238 ///
2239 /// # Examples
2240 ///
2241 /// ```
2242 /// let mut vec = vec![1, 2, 3, 4];
2243 /// vec.retain(|&x| x % 2 == 0);
2244 /// assert_eq!(vec, [2, 4]);
2245 /// ```
2246 ///
2247 /// Because the elements are visited exactly once in the original order,
2248 /// external state may be used to decide which elements to keep.
2249 ///
2250 /// ```
2251 /// let mut vec = vec![1, 2, 3, 4, 5];
2252 /// let keep = [false, true, true, false, true];
2253 /// let mut iter = keep.iter();
2254 /// vec.retain(|_| *iter.next().unwrap());
2255 /// assert_eq!(vec, [2, 3, 5]);
2256 /// ```
2257 #[stable(feature = "rust1", since = "1.0.0")]
2258 pub fn retain<F>(&mut self, mut f: F)
2259 where
2260 F: FnMut(&T) -> bool,
2261 {
2262 self.retain_mut(|elem| f(elem));
2263 }
2264
2265 /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2266 ///
2267 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2268 /// This method operates in place, visiting each element exactly once in the
2269 /// original order, and preserves the order of the retained elements.
2270 ///
2271 /// # Examples
2272 ///
2273 /// ```
2274 /// let mut vec = vec![1, 2, 3, 4];
2275 /// vec.retain_mut(|x| if *x <= 3 {
2276 /// *x += 1;
2277 /// true
2278 /// } else {
2279 /// false
2280 /// });
2281 /// assert_eq!(vec, [2, 3, 4]);
2282 /// ```
2283 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2284 pub fn retain_mut<F>(&mut self, mut f: F)
2285 where
2286 F: FnMut(&mut T) -> bool,
2287 {
2288 let original_len = self.len();
2289
2290 if original_len == 0 {
2291 // Empty case: explicit return allows better optimization, vs letting compiler infer it
2292 return;
2293 }
2294
2295 // Avoid double drop if the drop guard is not executed,
2296 // since we may make some holes during the process.
2297 unsafe { self.set_len(0) };
2298
2299 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2300 // |<- processed len ->| ^- next to check
2301 // |<- deleted cnt ->|
2302 // |<- original_len ->|
2303 // Kept: Elements which predicate returns true on.
2304 // Hole: Moved or dropped element slot.
2305 // Unchecked: Unchecked valid elements.
2306 //
2307 // This drop guard will be invoked when predicate or `drop` of element panicked.
2308 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2309 // In cases when predicate and `drop` never panick, it will be optimized out.
2310 struct BackshiftOnDrop<'a, T, A: Allocator> {
2311 v: &'a mut Vec<T, A>,
2312 processed_len: usize,
2313 deleted_cnt: usize,
2314 original_len: usize,
2315 }
2316
2317 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2318 fn drop(&mut self) {
2319 if self.deleted_cnt > 0 {
2320 // SAFETY: Trailing unchecked items must be valid since we never touch them.
2321 unsafe {
2322 ptr::copy(
2323 self.v.as_ptr().add(self.processed_len),
2324 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2325 self.original_len - self.processed_len,
2326 );
2327 }
2328 }
2329 // SAFETY: After filling holes, all items are in contiguous memory.
2330 unsafe {
2331 self.v.set_len(self.original_len - self.deleted_cnt);
2332 }
2333 }
2334 }
2335
2336 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2337
2338 fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2339 original_len: usize,
2340 f: &mut F,
2341 g: &mut BackshiftOnDrop<'_, T, A>,
2342 ) where
2343 F: FnMut(&mut T) -> bool,
2344 {
2345 while g.processed_len != original_len {
2346 // SAFETY: Unchecked element must be valid.
2347 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2348 if !f(cur) {
2349 // Advance early to avoid double drop if `drop_in_place` panicked.
2350 g.processed_len += 1;
2351 g.deleted_cnt += 1;
2352 // SAFETY: We never touch this element again after dropped.
2353 unsafe { ptr::drop_in_place(cur) };
2354 // We already advanced the counter.
2355 if DELETED {
2356 continue;
2357 } else {
2358 break;
2359 }
2360 }
2361 if DELETED {
2362 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2363 // We use copy for move, and never touch this element again.
2364 unsafe {
2365 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2366 ptr::copy_nonoverlapping(cur, hole_slot, 1);
2367 }
2368 }
2369 g.processed_len += 1;
2370 }
2371 }
2372
2373 // Stage 1: Nothing was deleted.
2374 process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2375
2376 // Stage 2: Some elements were deleted.
2377 process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2378
2379 // All item are processed. This can be optimized to `set_len` by LLVM.
2380 drop(g);
2381 }
2382
2383 /// Removes all but the first of consecutive elements in the vector that resolve to the same
2384 /// key.
2385 ///
2386 /// If the vector is sorted, this removes all duplicates.
2387 ///
2388 /// # Examples
2389 ///
2390 /// ```
2391 /// let mut vec = vec![10, 20, 21, 30, 20];
2392 ///
2393 /// vec.dedup_by_key(|i| *i / 10);
2394 ///
2395 /// assert_eq!(vec, [10, 20, 30, 20]);
2396 /// ```
2397 #[stable(feature = "dedup_by", since = "1.16.0")]
2398 #[inline]
2399 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2400 where
2401 F: FnMut(&mut T) -> K,
2402 K: PartialEq,
2403 {
2404 self.dedup_by(|a, b| key(a) == key(b))
2405 }
2406
2407 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2408 /// relation.
2409 ///
2410 /// The `same_bucket` function is passed references to two elements from the vector and
2411 /// must determine if the elements compare equal. The elements are passed in opposite order
2412 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2413 ///
2414 /// If the vector is sorted, this removes all duplicates.
2415 ///
2416 /// # Examples
2417 ///
2418 /// ```
2419 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2420 ///
2421 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2422 ///
2423 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2424 /// ```
2425 #[stable(feature = "dedup_by", since = "1.16.0")]
2426 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2427 where
2428 F: FnMut(&mut T, &mut T) -> bool,
2429 {
2430 let len = self.len();
2431 if len <= 1 {
2432 return;
2433 }
2434
2435 // Check if we ever want to remove anything.
2436 // This allows to use copy_non_overlapping in next cycle.
2437 // And avoids any memory writes if we don't need to remove anything.
2438 let mut first_duplicate_idx: usize = 1;
2439 let start = self.as_mut_ptr();
2440 while first_duplicate_idx != len {
2441 let found_duplicate = unsafe {
2442 // SAFETY: first_duplicate always in range [1..len)
2443 // Note that we start iteration from 1 so we never overflow.
2444 let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2445 let current = start.add(first_duplicate_idx);
2446 // We explicitly say in docs that references are reversed.
2447 same_bucket(&mut *current, &mut *prev)
2448 };
2449 if found_duplicate {
2450 break;
2451 }
2452 first_duplicate_idx += 1;
2453 }
2454 // Don't need to remove anything.
2455 // We cannot get bigger than len.
2456 if first_duplicate_idx == len {
2457 return;
2458 }
2459
2460 /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2461 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2462 /* Offset of the element we want to check if it is duplicate */
2463 read: usize,
2464
2465 /* Offset of the place where we want to place the non-duplicate
2466 * when we find it. */
2467 write: usize,
2468
2469 /* The Vec that would need correction if `same_bucket` panicked */
2470 vec: &'a mut Vec<T, A>,
2471 }
2472
2473 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2474 fn drop(&mut self) {
2475 /* This code gets executed when `same_bucket` panics */
2476
2477 /* SAFETY: invariant guarantees that `read - write`
2478 * and `len - read` never overflow and that the copy is always
2479 * in-bounds. */
2480 unsafe {
2481 let ptr = self.vec.as_mut_ptr();
2482 let len = self.vec.len();
2483
2484 /* How many items were left when `same_bucket` panicked.
2485 * Basically vec[read..].len() */
2486 let items_left = len.wrapping_sub(self.read);
2487
2488 /* Pointer to first item in vec[write..write+items_left] slice */
2489 let dropped_ptr = ptr.add(self.write);
2490 /* Pointer to first item in vec[read..] slice */
2491 let valid_ptr = ptr.add(self.read);
2492
2493 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2494 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2495 ptr::copy(valid_ptr, dropped_ptr, items_left);
2496
2497 /* How many items have been already dropped
2498 * Basically vec[read..write].len() */
2499 let dropped = self.read.wrapping_sub(self.write);
2500
2501 self.vec.set_len(len - dropped);
2502 }
2503 }
2504 }
2505
2506 /* Drop items while going through Vec, it should be more efficient than
2507 * doing slice partition_dedup + truncate */
2508
2509 // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2510 let mut gap =
2511 FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2512 unsafe {
2513 // SAFETY: we checked that first_duplicate_idx in bounds before.
2514 // If drop panics, `gap` would remove this item without drop.
2515 ptr::drop_in_place(start.add(first_duplicate_idx));
2516 }
2517
2518 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2519 * are always in-bounds and read_ptr never aliases prev_ptr */
2520 unsafe {
2521 while gap.read < len {
2522 let read_ptr = start.add(gap.read);
2523 let prev_ptr = start.add(gap.write.wrapping_sub(1));
2524
2525 // We explicitly say in docs that references are reversed.
2526 let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2527 if found_duplicate {
2528 // Increase `gap.read` now since the drop may panic.
2529 gap.read += 1;
2530 /* We have found duplicate, drop it in-place */
2531 ptr::drop_in_place(read_ptr);
2532 } else {
2533 let write_ptr = start.add(gap.write);
2534
2535 /* read_ptr cannot be equal to write_ptr because at this point
2536 * we guaranteed to skip at least one element (before loop starts).
2537 */
2538 ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2539
2540 /* We have filled that place, so go further */
2541 gap.write += 1;
2542 gap.read += 1;
2543 }
2544 }
2545
2546 /* Technically we could let `gap` clean up with its Drop, but
2547 * when `same_bucket` is guaranteed to not panic, this bloats a little
2548 * the codegen, so we just do it manually */
2549 gap.vec.set_len(gap.write);
2550 mem::forget(gap);
2551 }
2552 }
2553
2554 /// Appends an element to the back of a collection.
2555 ///
2556 /// # Panics
2557 ///
2558 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2559 ///
2560 /// # Examples
2561 ///
2562 /// ```
2563 /// let mut vec = vec![1, 2];
2564 /// vec.push(3);
2565 /// assert_eq!(vec, [1, 2, 3]);
2566 /// ```
2567 ///
2568 /// # Time complexity
2569 ///
2570 /// Takes amortized *O*(1) time. If the vector's length would exceed its
2571 /// capacity after the push, *O*(*capacity*) time is taken to copy the
2572 /// vector's elements to a larger allocation. This expensive operation is
2573 /// offset by the *capacity* *O*(1) insertions it allows.
2574 #[cfg(not(no_global_oom_handling))]
2575 #[inline]
2576 #[stable(feature = "rust1", since = "1.0.0")]
2577 #[rustc_confusables("push_back", "put", "append")]
2578 pub fn push(&mut self, value: T) {
2579 let _ = self.push_mut(value);
2580 }
2581
2582 /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2583 /// otherwise an error is returned with the element.
2584 ///
2585 /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2586 /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2587 ///
2588 /// [`push`]: Vec::push
2589 /// [`reserve`]: Vec::reserve
2590 /// [`try_reserve`]: Vec::try_reserve
2591 ///
2592 /// # Examples
2593 ///
2594 /// A manual, panic-free alternative to [`FromIterator`]:
2595 ///
2596 /// ```
2597 /// #![feature(vec_push_within_capacity)]
2598 ///
2599 /// use std::collections::TryReserveError;
2600 /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2601 /// let mut vec = Vec::new();
2602 /// for value in iter {
2603 /// if let Err(value) = vec.push_within_capacity(value) {
2604 /// vec.try_reserve(1)?;
2605 /// // this cannot fail, the previous line either returned or added at least 1 free slot
2606 /// let _ = vec.push_within_capacity(value);
2607 /// }
2608 /// }
2609 /// Ok(vec)
2610 /// }
2611 /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2612 /// ```
2613 ///
2614 /// # Time complexity
2615 ///
2616 /// Takes *O*(1) time.
2617 #[inline]
2618 #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2619 // #[unstable(feature = "push_mut", issue = "135974")]
2620 pub fn push_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2621 if self.len == self.buf.capacity() {
2622 return Err(value);
2623 }
2624
2625 unsafe {
2626 let end = self.as_mut_ptr().add(self.len);
2627 ptr::write(end, value);
2628 self.len += 1;
2629
2630 // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2631 Ok(&mut *end)
2632 }
2633 }
2634
2635 /// Appends an element to the back of a collection, returning a reference to it.
2636 ///
2637 /// # Panics
2638 ///
2639 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2640 ///
2641 /// # Examples
2642 ///
2643 /// ```
2644 /// #![feature(push_mut)]
2645 ///
2646 ///
2647 /// let mut vec = vec![1, 2];
2648 /// let last = vec.push_mut(3);
2649 /// assert_eq!(*last, 3);
2650 /// assert_eq!(vec, [1, 2, 3]);
2651 ///
2652 /// let last = vec.push_mut(3);
2653 /// *last += 1;
2654 /// assert_eq!(vec, [1, 2, 3, 4]);
2655 /// ```
2656 ///
2657 /// # Time complexity
2658 ///
2659 /// Takes amortized *O*(1) time. If the vector's length would exceed its
2660 /// capacity after the push, *O*(*capacity*) time is taken to copy the
2661 /// vector's elements to a larger allocation. This expensive operation is
2662 /// offset by the *capacity* *O*(1) insertions it allows.
2663 #[cfg(not(no_global_oom_handling))]
2664 #[inline]
2665 #[unstable(feature = "push_mut", issue = "135974")]
2666 #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2667 pub fn push_mut(&mut self, value: T) -> &mut T {
2668 // Inform codegen that the length does not change across grow_one().
2669 let len = self.len;
2670 // This will panic or abort if we would allocate > isize::MAX bytes
2671 // or if the length increment would overflow for zero-sized types.
2672 if len == self.buf.capacity() {
2673 self.buf.grow_one();
2674 }
2675 unsafe {
2676 let end = self.as_mut_ptr().add(len);
2677 ptr::write(end, value);
2678 self.len = len + 1;
2679 // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2680 &mut *end
2681 }
2682 }
2683
2684 /// Removes the last element from a vector and returns it, or [`None`] if it
2685 /// is empty.
2686 ///
2687 /// If you'd like to pop the first element, consider using
2688 /// [`VecDeque::pop_front`] instead.
2689 ///
2690 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2691 ///
2692 /// # Examples
2693 ///
2694 /// ```
2695 /// let mut vec = vec![1, 2, 3];
2696 /// assert_eq!(vec.pop(), Some(3));
2697 /// assert_eq!(vec, [1, 2]);
2698 /// ```
2699 ///
2700 /// # Time complexity
2701 ///
2702 /// Takes *O*(1) time.
2703 #[inline]
2704 #[stable(feature = "rust1", since = "1.0.0")]
2705 #[rustc_diagnostic_item = "vec_pop"]
2706 pub fn pop(&mut self) -> Option<T> {
2707 if self.len == 0 {
2708 None
2709 } else {
2710 unsafe {
2711 self.len -= 1;
2712 core::hint::assert_unchecked(self.len < self.capacity());
2713 Some(ptr::read(self.as_ptr().add(self.len())))
2714 }
2715 }
2716 }
2717
2718 /// Removes and returns the last element from a vector if the predicate
2719 /// returns `true`, or [`None`] if the predicate returns false or the vector
2720 /// is empty (the predicate will not be called in that case).
2721 ///
2722 /// # Examples
2723 ///
2724 /// ```
2725 /// let mut vec = vec![1, 2, 3, 4];
2726 /// let pred = |x: &mut i32| *x % 2 == 0;
2727 ///
2728 /// assert_eq!(vec.pop_if(pred), Some(4));
2729 /// assert_eq!(vec, [1, 2, 3]);
2730 /// assert_eq!(vec.pop_if(pred), None);
2731 /// ```
2732 #[stable(feature = "vec_pop_if", since = "1.86.0")]
2733 pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2734 let last = self.last_mut()?;
2735 if predicate(last) { self.pop() } else { None }
2736 }
2737
2738 /// Returns a mutable reference to the last item in the vector, or
2739 /// `None` if it is empty.
2740 ///
2741 /// # Examples
2742 ///
2743 /// Basic usage:
2744 ///
2745 /// ```
2746 /// #![feature(vec_peek_mut)]
2747 /// let mut vec = Vec::new();
2748 /// assert!(vec.peek_mut().is_none());
2749 ///
2750 /// vec.push(1);
2751 /// vec.push(5);
2752 /// vec.push(2);
2753 /// assert_eq!(vec.last(), Some(&2));
2754 /// if let Some(mut val) = vec.peek_mut() {
2755 /// *val = 0;
2756 /// }
2757 /// assert_eq!(vec.last(), Some(&0));
2758 /// ```
2759 #[inline]
2760 #[unstable(feature = "vec_peek_mut", issue = "122742")]
2761 pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2762 PeekMut::new(self)
2763 }
2764
2765 /// Moves all the elements of `other` into `self`, leaving `other` empty.
2766 ///
2767 /// # Panics
2768 ///
2769 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2770 ///
2771 /// # Examples
2772 ///
2773 /// ```
2774 /// let mut vec = vec![1, 2, 3];
2775 /// let mut vec2 = vec![4, 5, 6];
2776 /// vec.append(&mut vec2);
2777 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2778 /// assert_eq!(vec2, []);
2779 /// ```
2780 #[cfg(not(no_global_oom_handling))]
2781 #[inline]
2782 #[stable(feature = "append", since = "1.4.0")]
2783 pub fn append(&mut self, other: &mut Self) {
2784 unsafe {
2785 self.append_elements(other.as_slice() as _);
2786 other.set_len(0);
2787 }
2788 }
2789
2790 /// Appends elements to `self` from other buffer.
2791 #[cfg(not(no_global_oom_handling))]
2792 #[inline]
2793 unsafe fn append_elements(&mut self, other: *const [T]) {
2794 let count = other.len();
2795 self.reserve(count);
2796 let len = self.len();
2797 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2798 self.len += count;
2799 }
2800
2801 /// Removes the subslice indicated by the given range from the vector,
2802 /// returning a double-ended iterator over the removed subslice.
2803 ///
2804 /// If the iterator is dropped before being fully consumed,
2805 /// it drops the remaining removed elements.
2806 ///
2807 /// The returned iterator keeps a mutable borrow on the vector to optimize
2808 /// its implementation.
2809 ///
2810 /// # Panics
2811 ///
2812 /// Panics if the range has `start_bound > end_bound`, or, if the range is
2813 /// bounded on either end and past the length of the vector.
2814 ///
2815 /// # Leaking
2816 ///
2817 /// If the returned iterator goes out of scope without being dropped (due to
2818 /// [`mem::forget`], for example), the vector may have lost and leaked
2819 /// elements arbitrarily, including elements outside the range.
2820 ///
2821 /// # Examples
2822 ///
2823 /// ```
2824 /// let mut v = vec![1, 2, 3];
2825 /// let u: Vec<_> = v.drain(1..).collect();
2826 /// assert_eq!(v, &[1]);
2827 /// assert_eq!(u, &[2, 3]);
2828 ///
2829 /// // A full range clears the vector, like `clear()` does
2830 /// v.drain(..);
2831 /// assert_eq!(v, &[]);
2832 /// ```
2833 #[stable(feature = "drain", since = "1.6.0")]
2834 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2835 where
2836 R: RangeBounds<usize>,
2837 {
2838 // Memory safety
2839 //
2840 // When the Drain is first created, it shortens the length of
2841 // the source vector to make sure no uninitialized or moved-from elements
2842 // are accessible at all if the Drain's destructor never gets to run.
2843 //
2844 // Drain will ptr::read out the values to remove.
2845 // When finished, remaining tail of the vec is copied back to cover
2846 // the hole, and the vector length is restored to the new length.
2847 //
2848 let len = self.len();
2849 let Range { start, end } = slice::range(range, ..len);
2850
2851 unsafe {
2852 // set self.vec length's to start, to be safe in case Drain is leaked
2853 self.set_len(start);
2854 let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2855 Drain {
2856 tail_start: end,
2857 tail_len: len - end,
2858 iter: range_slice.iter(),
2859 vec: NonNull::from(self),
2860 }
2861 }
2862 }
2863
2864 /// Clears the vector, removing all values.
2865 ///
2866 /// Note that this method has no effect on the allocated capacity
2867 /// of the vector.
2868 ///
2869 /// # Examples
2870 ///
2871 /// ```
2872 /// let mut v = vec![1, 2, 3];
2873 ///
2874 /// v.clear();
2875 ///
2876 /// assert!(v.is_empty());
2877 /// ```
2878 #[inline]
2879 #[stable(feature = "rust1", since = "1.0.0")]
2880 pub fn clear(&mut self) {
2881 let elems: *mut [T] = self.as_mut_slice();
2882
2883 // SAFETY:
2884 // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2885 // - Setting `self.len` before calling `drop_in_place` means that,
2886 // if an element's `Drop` impl panics, the vector's `Drop` impl will
2887 // do nothing (leaking the rest of the elements) instead of dropping
2888 // some twice.
2889 unsafe {
2890 self.len = 0;
2891 ptr::drop_in_place(elems);
2892 }
2893 }
2894
2895 /// Returns the number of elements in the vector, also referred to
2896 /// as its 'length'.
2897 ///
2898 /// # Examples
2899 ///
2900 /// ```
2901 /// let a = vec![1, 2, 3];
2902 /// assert_eq!(a.len(), 3);
2903 /// ```
2904 #[inline]
2905 #[stable(feature = "rust1", since = "1.0.0")]
2906 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2907 #[rustc_confusables("length", "size")]
2908 pub const fn len(&self) -> usize {
2909 let len = self.len;
2910
2911 // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2912 // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2913 // matches the definition of `T::MAX_SLICE_LEN`.
2914 unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2915
2916 len
2917 }
2918
2919 /// Returns `true` if the vector contains no elements.
2920 ///
2921 /// # Examples
2922 ///
2923 /// ```
2924 /// let mut v = Vec::new();
2925 /// assert!(v.is_empty());
2926 ///
2927 /// v.push(1);
2928 /// assert!(!v.is_empty());
2929 /// ```
2930 #[stable(feature = "rust1", since = "1.0.0")]
2931 #[rustc_diagnostic_item = "vec_is_empty"]
2932 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2933 pub const fn is_empty(&self) -> bool {
2934 self.len() == 0
2935 }
2936
2937 /// Splits the collection into two at the given index.
2938 ///
2939 /// Returns a newly allocated vector containing the elements in the range
2940 /// `[at, len)`. After the call, the original vector will be left containing
2941 /// the elements `[0, at)` with its previous capacity unchanged.
2942 ///
2943 /// - If you want to take ownership of the entire contents and capacity of
2944 /// the vector, see [`mem::take`] or [`mem::replace`].
2945 /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2946 /// - If you want to take ownership of an arbitrary subslice, or you don't
2947 /// necessarily want to store the removed items in a vector, see [`Vec::drain`].
2948 ///
2949 /// # Panics
2950 ///
2951 /// Panics if `at > len`.
2952 ///
2953 /// # Examples
2954 ///
2955 /// ```
2956 /// let mut vec = vec!['a', 'b', 'c'];
2957 /// let vec2 = vec.split_off(1);
2958 /// assert_eq!(vec, ['a']);
2959 /// assert_eq!(vec2, ['b', 'c']);
2960 /// ```
2961 #[cfg(not(no_global_oom_handling))]
2962 #[inline]
2963 #[must_use = "use `.truncate()` if you don't need the other half"]
2964 #[stable(feature = "split_off", since = "1.4.0")]
2965 #[track_caller]
2966 pub fn split_off(&mut self, at: usize) -> Self
2967 where
2968 A: Clone,
2969 {
2970 #[cold]
2971 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2972 #[track_caller]
2973 #[optimize(size)]
2974 fn assert_failed(at: usize, len: usize) -> ! {
2975 panic!("`at` split index (is {at}) should be <= len (is {len})");
2976 }
2977
2978 if at > self.len() {
2979 assert_failed(at, self.len());
2980 }
2981
2982 let other_len = self.len - at;
2983 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2984
2985 // Unsafely `set_len` and copy items to `other`.
2986 unsafe {
2987 self.set_len(at);
2988 other.set_len(other_len);
2989
2990 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2991 }
2992 other
2993 }
2994
2995 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2996 ///
2997 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2998 /// difference, with each additional slot filled with the result of
2999 /// calling the closure `f`. The return values from `f` will end up
3000 /// in the `Vec` in the order they have been generated.
3001 ///
3002 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3003 ///
3004 /// This method uses a closure to create new values on every push. If
3005 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3006 /// want to use the [`Default`] trait to generate values, you can
3007 /// pass [`Default::default`] as the second argument.
3008 ///
3009 /// # Panics
3010 ///
3011 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3012 ///
3013 /// # Examples
3014 ///
3015 /// ```
3016 /// let mut vec = vec![1, 2, 3];
3017 /// vec.resize_with(5, Default::default);
3018 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3019 ///
3020 /// let mut vec = vec![];
3021 /// let mut p = 1;
3022 /// vec.resize_with(4, || { p *= 2; p });
3023 /// assert_eq!(vec, [2, 4, 8, 16]);
3024 /// ```
3025 #[cfg(not(no_global_oom_handling))]
3026 #[stable(feature = "vec_resize_with", since = "1.33.0")]
3027 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3028 where
3029 F: FnMut() -> T,
3030 {
3031 let len = self.len();
3032 if new_len > len {
3033 self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3034 } else {
3035 self.truncate(new_len);
3036 }
3037 }
3038
3039 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3040 /// `&'a mut [T]`.
3041 ///
3042 /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3043 /// has only static references, or none at all, then this may be chosen to be
3044 /// `'static`.
3045 ///
3046 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3047 /// so the leaked allocation may include unused capacity that is not part
3048 /// of the returned slice.
3049 ///
3050 /// This function is mainly useful for data that lives for the remainder of
3051 /// the program's life. Dropping the returned reference will cause a memory
3052 /// leak.
3053 ///
3054 /// # Examples
3055 ///
3056 /// Simple usage:
3057 ///
3058 /// ```
3059 /// let x = vec![1, 2, 3];
3060 /// let static_ref: &'static mut [usize] = x.leak();
3061 /// static_ref[0] += 1;
3062 /// assert_eq!(static_ref, &[2, 2, 3]);
3063 /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3064 /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3065 /// # drop(unsafe { Box::from_raw(static_ref) });
3066 /// ```
3067 #[stable(feature = "vec_leak", since = "1.47.0")]
3068 #[inline]
3069 pub fn leak<'a>(self) -> &'a mut [T]
3070 where
3071 A: 'a,
3072 {
3073 let mut me = ManuallyDrop::new(self);
3074 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3075 }
3076
3077 /// Returns the remaining spare capacity of the vector as a slice of
3078 /// `MaybeUninit<T>`.
3079 ///
3080 /// The returned slice can be used to fill the vector with data (e.g. by
3081 /// reading from a file) before marking the data as initialized using the
3082 /// [`set_len`] method.
3083 ///
3084 /// [`set_len`]: Vec::set_len
3085 ///
3086 /// # Examples
3087 ///
3088 /// ```
3089 /// // Allocate vector big enough for 10 elements.
3090 /// let mut v = Vec::with_capacity(10);
3091 ///
3092 /// // Fill in the first 3 elements.
3093 /// let uninit = v.spare_capacity_mut();
3094 /// uninit[0].write(0);
3095 /// uninit[1].write(1);
3096 /// uninit[2].write(2);
3097 ///
3098 /// // Mark the first 3 elements of the vector as being initialized.
3099 /// unsafe {
3100 /// v.set_len(3);
3101 /// }
3102 ///
3103 /// assert_eq!(&v, &[0, 1, 2]);
3104 /// ```
3105 #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3106 #[inline]
3107 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3108 // Note:
3109 // This method is not implemented in terms of `split_at_spare_mut`,
3110 // to prevent invalidation of pointers to the buffer.
3111 unsafe {
3112 slice::from_raw_parts_mut(
3113 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3114 self.buf.capacity() - self.len,
3115 )
3116 }
3117 }
3118
3119 /// Returns vector content as a slice of `T`, along with the remaining spare
3120 /// capacity of the vector as a slice of `MaybeUninit<T>`.
3121 ///
3122 /// The returned spare capacity slice can be used to fill the vector with data
3123 /// (e.g. by reading from a file) before marking the data as initialized using
3124 /// the [`set_len`] method.
3125 ///
3126 /// [`set_len`]: Vec::set_len
3127 ///
3128 /// Note that this is a low-level API, which should be used with care for
3129 /// optimization purposes. If you need to append data to a `Vec`
3130 /// you can use [`push`], [`extend`], [`extend_from_slice`],
3131 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3132 /// [`resize_with`], depending on your exact needs.
3133 ///
3134 /// [`push`]: Vec::push
3135 /// [`extend`]: Vec::extend
3136 /// [`extend_from_slice`]: Vec::extend_from_slice
3137 /// [`extend_from_within`]: Vec::extend_from_within
3138 /// [`insert`]: Vec::insert
3139 /// [`append`]: Vec::append
3140 /// [`resize`]: Vec::resize
3141 /// [`resize_with`]: Vec::resize_with
3142 ///
3143 /// # Examples
3144 ///
3145 /// ```
3146 /// #![feature(vec_split_at_spare)]
3147 ///
3148 /// let mut v = vec![1, 1, 2];
3149 ///
3150 /// // Reserve additional space big enough for 10 elements.
3151 /// v.reserve(10);
3152 ///
3153 /// let (init, uninit) = v.split_at_spare_mut();
3154 /// let sum = init.iter().copied().sum::<u32>();
3155 ///
3156 /// // Fill in the next 4 elements.
3157 /// uninit[0].write(sum);
3158 /// uninit[1].write(sum * 2);
3159 /// uninit[2].write(sum * 3);
3160 /// uninit[3].write(sum * 4);
3161 ///
3162 /// // Mark the 4 elements of the vector as being initialized.
3163 /// unsafe {
3164 /// let len = v.len();
3165 /// v.set_len(len + 4);
3166 /// }
3167 ///
3168 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3169 /// ```
3170 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3171 #[inline]
3172 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3173 // SAFETY:
3174 // - len is ignored and so never changed
3175 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3176 (init, spare)
3177 }
3178
3179 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3180 ///
3181 /// This method provides unique access to all vec parts at once in `extend_from_within`.
3182 unsafe fn split_at_spare_mut_with_len(
3183 &mut self,
3184 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3185 let ptr = self.as_mut_ptr();
3186 // SAFETY:
3187 // - `ptr` is guaranteed to be valid for `self.len` elements
3188 // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3189 // uninitialized
3190 let spare_ptr = unsafe { ptr.add(self.len) };
3191 let spare_ptr = spare_ptr.cast_uninit();
3192 let spare_len = self.buf.capacity() - self.len;
3193
3194 // SAFETY:
3195 // - `ptr` is guaranteed to be valid for `self.len` elements
3196 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3197 unsafe {
3198 let initialized = slice::from_raw_parts_mut(ptr, self.len);
3199 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3200
3201 (initialized, spare, &mut self.len)
3202 }
3203 }
3204
3205 /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3206 /// elements in the remainder. `N` must be greater than zero.
3207 ///
3208 /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3209 /// nearest multiple with a reallocation or deallocation.
3210 ///
3211 /// This function can be used to reverse [`Vec::into_flattened`].
3212 ///
3213 /// # Examples
3214 ///
3215 /// ```
3216 /// #![feature(vec_into_chunks)]
3217 ///
3218 /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3219 /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3220 ///
3221 /// let vec = vec![0, 1, 2, 3];
3222 /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3223 /// assert!(chunks.is_empty());
3224 ///
3225 /// let flat = vec![0; 8 * 8 * 8];
3226 /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3227 /// assert_eq!(reshaped.len(), 1);
3228 /// ```
3229 #[cfg(not(no_global_oom_handling))]
3230 #[unstable(feature = "vec_into_chunks", issue = "142137")]
3231 pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3232 const {
3233 assert!(N != 0, "chunk size must be greater than zero");
3234 }
3235
3236 let (len, cap) = (self.len(), self.capacity());
3237
3238 let len_remainder = len % N;
3239 if len_remainder != 0 {
3240 self.truncate(len - len_remainder);
3241 }
3242
3243 let cap_remainder = cap % N;
3244 if !T::IS_ZST && cap_remainder != 0 {
3245 self.buf.shrink_to_fit(cap - cap_remainder);
3246 }
3247
3248 let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3249
3250 // SAFETY:
3251 // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3252 // - `[T; N]` has the same alignment as `T`
3253 // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3254 // - `len / N <= cap / N` because `len <= cap`
3255 // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3256 // - `cap / N` fits the size of the allocated memory after shrinking
3257 unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3258 }
3259
3260 /// This clears out this `Vec` and recycles the allocation into a new `Vec`.
3261 /// The item type of the resulting `Vec` needs to have the same size and
3262 /// alignment as the item type of the original `Vec`.
3263 ///
3264 /// # Examples
3265 ///
3266 /// ```
3267 /// #![feature(vec_recycle, transmutability)]
3268 /// let a: Vec<u8> = vec![0; 100];
3269 /// let capacity = a.capacity();
3270 /// let addr = a.as_ptr().addr();
3271 /// let b: Vec<i8> = a.recycle();
3272 /// assert_eq!(b.len(), 0);
3273 /// assert_eq!(b.capacity(), capacity);
3274 /// assert_eq!(b.as_ptr().addr(), addr);
3275 /// ```
3276 ///
3277 /// The `Recyclable` bound prevents this method from being called when `T` and `U` have different sizes; e.g.:
3278 ///
3279 /// ```compile_fail,E0277
3280 /// #![feature(vec_recycle, transmutability)]
3281 /// let vec: Vec<[u8; 2]> = Vec::new();
3282 /// let _: Vec<[u8; 1]> = vec.recycle();
3283 /// ```
3284 /// ...or different alignments:
3285 ///
3286 /// ```compile_fail,E0277
3287 /// #![feature(vec_recycle, transmutability)]
3288 /// let vec: Vec<[u16; 0]> = Vec::new();
3289 /// let _: Vec<[u8; 0]> = vec.recycle();
3290 /// ```
3291 ///
3292 /// However, due to temporary implementation limitations of `Recyclable`,
3293 /// this method is not yet callable when `T` or `U` are slices, trait objects,
3294 /// or other exotic types; e.g.:
3295 ///
3296 /// ```compile_fail,E0277
3297 /// #![feature(vec_recycle, transmutability)]
3298 /// # let inputs = ["a b c", "d e f"];
3299 /// # fn process(_: &[&str]) {}
3300 /// let mut storage: Vec<&[&str]> = Vec::new();
3301 ///
3302 /// for input in inputs {
3303 /// let mut buffer: Vec<&str> = storage.recycle();
3304 /// buffer.extend(input.split(" "));
3305 /// process(&buffer);
3306 /// storage = buffer.recycle();
3307 /// }
3308 /// ```
3309 #[unstable(feature = "vec_recycle", issue = "148227")]
3310 #[expect(private_bounds)]
3311 pub fn recycle<U>(mut self) -> Vec<U, A>
3312 where
3313 U: Recyclable<T>,
3314 {
3315 self.clear();
3316 const {
3317 // FIXME(const-hack, 146097): compare `Layout`s
3318 assert!(size_of::<T>() == size_of::<U>());
3319 assert!(align_of::<T>() == align_of::<U>());
3320 };
3321 let (ptr, length, capacity, alloc) = self.into_parts_with_alloc();
3322 debug_assert_eq!(length, 0);
3323 // SAFETY:
3324 // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3325 // - `T` & `U` have the same layout, so `capacity` does not need to be changed and we can safely use `alloc.dealloc` later
3326 // - the original vector was cleared, so there is no problem with "transmuting" the stored values
3327 unsafe { Vec::from_parts_in(ptr.cast::<U>(), length, capacity, alloc) }
3328 }
3329}
3330
3331/// Denotes that an allocation of `From` can be recycled into an allocation of `Self`.
3332///
3333/// # Safety
3334///
3335/// `Self` is `Recyclable<From>` if `Layout::new::<Self>() == Layout::new::<From>()`.
3336unsafe trait Recyclable<From: Sized>: Sized {}
3337
3338#[unstable_feature_bound(transmutability)]
3339// SAFETY: enforced by `TransmuteFrom`
3340unsafe impl<From, To> Recyclable<From> for To
3341where
3342 for<'a> &'a MaybeUninit<To>: TransmuteFrom<&'a MaybeUninit<From>, { Assume::SAFETY }>,
3343 for<'a> &'a MaybeUninit<From>: TransmuteFrom<&'a MaybeUninit<To>, { Assume::SAFETY }>,
3344{
3345}
3346
3347impl<T: Clone, A: Allocator> Vec<T, A> {
3348 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3349 ///
3350 /// If `new_len` is greater than `len`, the `Vec` is extended by the
3351 /// difference, with each additional slot filled with `value`.
3352 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3353 ///
3354 /// This method requires `T` to implement [`Clone`],
3355 /// in order to be able to clone the passed value.
3356 /// If you need more flexibility (or want to rely on [`Default`] instead of
3357 /// [`Clone`]), use [`Vec::resize_with`].
3358 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3359 ///
3360 /// # Panics
3361 ///
3362 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3363 ///
3364 /// # Examples
3365 ///
3366 /// ```
3367 /// let mut vec = vec!["hello"];
3368 /// vec.resize(3, "world");
3369 /// assert_eq!(vec, ["hello", "world", "world"]);
3370 ///
3371 /// let mut vec = vec!['a', 'b', 'c', 'd'];
3372 /// vec.resize(2, '_');
3373 /// assert_eq!(vec, ['a', 'b']);
3374 /// ```
3375 #[cfg(not(no_global_oom_handling))]
3376 #[stable(feature = "vec_resize", since = "1.5.0")]
3377 pub fn resize(&mut self, new_len: usize, value: T) {
3378 let len = self.len();
3379
3380 if new_len > len {
3381 self.extend_with(new_len - len, value)
3382 } else {
3383 self.truncate(new_len);
3384 }
3385 }
3386
3387 /// Clones and appends all elements in a slice to the `Vec`.
3388 ///
3389 /// Iterates over the slice `other`, clones each element, and then appends
3390 /// it to this `Vec`. The `other` slice is traversed in-order.
3391 ///
3392 /// Note that this function is the same as [`extend`],
3393 /// except that it also works with slice elements that are Clone but not Copy.
3394 /// If Rust gets specialization this function may be deprecated.
3395 ///
3396 /// # Panics
3397 ///
3398 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3399 ///
3400 /// # Examples
3401 ///
3402 /// ```
3403 /// let mut vec = vec![1];
3404 /// vec.extend_from_slice(&[2, 3, 4]);
3405 /// assert_eq!(vec, [1, 2, 3, 4]);
3406 /// ```
3407 ///
3408 /// [`extend`]: Vec::extend
3409 #[cfg(not(no_global_oom_handling))]
3410 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3411 pub fn extend_from_slice(&mut self, other: &[T]) {
3412 self.spec_extend(other.iter())
3413 }
3414
3415 /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3416 ///
3417 /// `src` must be a range that can form a valid subslice of the `Vec`.
3418 ///
3419 /// # Panics
3420 ///
3421 /// Panics if starting index is greater than the end index, if the index is
3422 /// greater than the length of the vector, or if the new capacity exceeds
3423 /// `isize::MAX` _bytes_.
3424 ///
3425 /// # Examples
3426 ///
3427 /// ```
3428 /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3429 /// characters.extend_from_within(2..);
3430 /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3431 ///
3432 /// let mut numbers = vec![0, 1, 2, 3, 4];
3433 /// numbers.extend_from_within(..2);
3434 /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3435 ///
3436 /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3437 /// strings.extend_from_within(1..=2);
3438 /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3439 /// ```
3440 #[cfg(not(no_global_oom_handling))]
3441 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3442 pub fn extend_from_within<R>(&mut self, src: R)
3443 where
3444 R: RangeBounds<usize>,
3445 {
3446 let range = slice::range(src, ..self.len());
3447 self.reserve(range.len());
3448
3449 // SAFETY:
3450 // - `slice::range` guarantees that the given range is valid for indexing self
3451 unsafe {
3452 self.spec_extend_from_within(range);
3453 }
3454 }
3455}
3456
3457impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3458 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3459 ///
3460 /// # Panics
3461 ///
3462 /// Panics if the length of the resulting vector would overflow a `usize`.
3463 ///
3464 /// This is only possible when flattening a vector of arrays of zero-sized
3465 /// types, and thus tends to be irrelevant in practice. If
3466 /// `size_of::<T>() > 0`, this will never panic.
3467 ///
3468 /// # Examples
3469 ///
3470 /// ```
3471 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3472 /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3473 ///
3474 /// let mut flattened = vec.into_flattened();
3475 /// assert_eq!(flattened.pop(), Some(6));
3476 /// ```
3477 #[stable(feature = "slice_flatten", since = "1.80.0")]
3478 pub fn into_flattened(self) -> Vec<T, A> {
3479 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3480 let (new_len, new_cap) = if T::IS_ZST {
3481 (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3482 } else {
3483 // SAFETY:
3484 // - `cap * N` cannot overflow because the allocation is already in
3485 // the address space.
3486 // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3487 // valid elements in the allocation.
3488 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3489 };
3490 // SAFETY:
3491 // - `ptr` was allocated by `self`
3492 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3493 // - `new_cap` refers to the same sized allocation as `cap` because
3494 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3495 // - `len` <= `cap`, so `len * N` <= `cap * N`.
3496 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3497 }
3498}
3499
3500impl<T: Clone, A: Allocator> Vec<T, A> {
3501 #[cfg(not(no_global_oom_handling))]
3502 /// Extend the vector by `n` clones of value.
3503 fn extend_with(&mut self, n: usize, value: T) {
3504 self.reserve(n);
3505
3506 unsafe {
3507 let mut ptr = self.as_mut_ptr().add(self.len());
3508 // Use SetLenOnDrop to work around bug where compiler
3509 // might not realize the store through `ptr` through self.set_len()
3510 // don't alias.
3511 let mut local_len = SetLenOnDrop::new(&mut self.len);
3512
3513 // Write all elements except the last one
3514 for _ in 1..n {
3515 ptr::write(ptr, value.clone());
3516 ptr = ptr.add(1);
3517 // Increment the length in every step in case clone() panics
3518 local_len.increment_len(1);
3519 }
3520
3521 if n > 0 {
3522 // We can write the last element directly without cloning needlessly
3523 ptr::write(ptr, value);
3524 local_len.increment_len(1);
3525 }
3526
3527 // len set by scope guard
3528 }
3529 }
3530}
3531
3532impl<T: PartialEq, A: Allocator> Vec<T, A> {
3533 /// Removes consecutive repeated elements in the vector according to the
3534 /// [`PartialEq`] trait implementation.
3535 ///
3536 /// If the vector is sorted, this removes all duplicates.
3537 ///
3538 /// # Examples
3539 ///
3540 /// ```
3541 /// let mut vec = vec![1, 2, 2, 3, 2];
3542 ///
3543 /// vec.dedup();
3544 ///
3545 /// assert_eq!(vec, [1, 2, 3, 2]);
3546 /// ```
3547 #[stable(feature = "rust1", since = "1.0.0")]
3548 #[inline]
3549 pub fn dedup(&mut self) {
3550 self.dedup_by(|a, b| a == b)
3551 }
3552}
3553
3554////////////////////////////////////////////////////////////////////////////////
3555// Internal methods and functions
3556////////////////////////////////////////////////////////////////////////////////
3557
3558#[doc(hidden)]
3559#[cfg(not(no_global_oom_handling))]
3560#[stable(feature = "rust1", since = "1.0.0")]
3561#[rustc_diagnostic_item = "vec_from_elem"]
3562pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3563 <T as SpecFromElem>::from_elem(elem, n, Global)
3564}
3565
3566#[doc(hidden)]
3567#[cfg(not(no_global_oom_handling))]
3568#[unstable(feature = "allocator_api", issue = "32838")]
3569pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3570 <T as SpecFromElem>::from_elem(elem, n, alloc)
3571}
3572
3573#[cfg(not(no_global_oom_handling))]
3574trait ExtendFromWithinSpec {
3575 /// # Safety
3576 ///
3577 /// - `src` needs to be valid index
3578 /// - `self.capacity() - self.len()` must be `>= src.len()`
3579 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3580}
3581
3582#[cfg(not(no_global_oom_handling))]
3583impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3584 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3585 // SAFETY:
3586 // - len is increased only after initializing elements
3587 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3588
3589 // SAFETY:
3590 // - caller guarantees that src is a valid index
3591 let to_clone = unsafe { this.get_unchecked(src) };
3592
3593 iter::zip(to_clone, spare)
3594 .map(|(src, dst)| dst.write(src.clone()))
3595 // Note:
3596 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3597 // - len is increased after each element to prevent leaks (see issue #82533)
3598 .for_each(|_| *len += 1);
3599 }
3600}
3601
3602#[cfg(not(no_global_oom_handling))]
3603impl<T: TrivialClone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3604 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3605 let count = src.len();
3606 {
3607 let (init, spare) = self.split_at_spare_mut();
3608
3609 // SAFETY:
3610 // - caller guarantees that `src` is a valid index
3611 let source = unsafe { init.get_unchecked(src) };
3612
3613 // SAFETY:
3614 // - Both pointers are created from unique slice references (`&mut [_]`)
3615 // so they are valid and do not overlap.
3616 // - Elements implement `TrivialClone` so this is equivalent to calling
3617 // `clone` on every one of them.
3618 // - `count` is equal to the len of `source`, so source is valid for
3619 // `count` reads
3620 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3621 // is valid for `count` writes
3622 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3623 }
3624
3625 // SAFETY:
3626 // - The elements were just initialized by `copy_nonoverlapping`
3627 self.len += count;
3628 }
3629}
3630
3631////////////////////////////////////////////////////////////////////////////////
3632// Common trait implementations for Vec
3633////////////////////////////////////////////////////////////////////////////////
3634
3635#[stable(feature = "rust1", since = "1.0.0")]
3636impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3637 type Target = [T];
3638
3639 #[inline]
3640 fn deref(&self) -> &[T] {
3641 self.as_slice()
3642 }
3643}
3644
3645#[stable(feature = "rust1", since = "1.0.0")]
3646impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3647 #[inline]
3648 fn deref_mut(&mut self) -> &mut [T] {
3649 self.as_mut_slice()
3650 }
3651}
3652
3653#[unstable(feature = "deref_pure_trait", issue = "87121")]
3654unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3655
3656#[cfg(not(no_global_oom_handling))]
3657#[stable(feature = "rust1", since = "1.0.0")]
3658impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3659 fn clone(&self) -> Self {
3660 let alloc = self.allocator().clone();
3661 <[T]>::to_vec_in(&**self, alloc)
3662 }
3663
3664 /// Overwrites the contents of `self` with a clone of the contents of `source`.
3665 ///
3666 /// This method is preferred over simply assigning `source.clone()` to `self`,
3667 /// as it avoids reallocation if possible. Additionally, if the element type
3668 /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3669 /// elements as well.
3670 ///
3671 /// # Examples
3672 ///
3673 /// ```
3674 /// let x = vec![5, 6, 7];
3675 /// let mut y = vec![8, 9, 10];
3676 /// let yp: *const i32 = y.as_ptr();
3677 ///
3678 /// y.clone_from(&x);
3679 ///
3680 /// // The value is the same
3681 /// assert_eq!(x, y);
3682 ///
3683 /// // And no reallocation occurred
3684 /// assert_eq!(yp, y.as_ptr());
3685 /// ```
3686 fn clone_from(&mut self, source: &Self) {
3687 crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3688 }
3689}
3690
3691/// The hash of a vector is the same as that of the corresponding slice,
3692/// as required by the `core::borrow::Borrow` implementation.
3693///
3694/// ```
3695/// use std::hash::BuildHasher;
3696///
3697/// let b = std::hash::RandomState::new();
3698/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3699/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3700/// assert_eq!(b.hash_one(v), b.hash_one(s));
3701/// ```
3702#[stable(feature = "rust1", since = "1.0.0")]
3703impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3704 #[inline]
3705 fn hash<H: Hasher>(&self, state: &mut H) {
3706 Hash::hash(&**self, state)
3707 }
3708}
3709
3710#[stable(feature = "rust1", since = "1.0.0")]
3711impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3712 type Output = I::Output;
3713
3714 #[inline]
3715 fn index(&self, index: I) -> &Self::Output {
3716 Index::index(&**self, index)
3717 }
3718}
3719
3720#[stable(feature = "rust1", since = "1.0.0")]
3721impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3722 #[inline]
3723 fn index_mut(&mut self, index: I) -> &mut Self::Output {
3724 IndexMut::index_mut(&mut **self, index)
3725 }
3726}
3727
3728/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3729///
3730/// # Allocation behavior
3731///
3732/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3733/// That also applies to this trait impl.
3734///
3735/// **Note:** This section covers implementation details and is therefore exempt from
3736/// stability guarantees.
3737///
3738/// Vec may use any or none of the following strategies,
3739/// depending on the supplied iterator:
3740///
3741/// * preallocate based on [`Iterator::size_hint()`]
3742/// * and panic if the number of items is outside the provided lower/upper bounds
3743/// * use an amortized growth strategy similar to `pushing` one item at a time
3744/// * perform the iteration in-place on the original allocation backing the iterator
3745///
3746/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3747/// consumption and improves cache locality. But when big, short-lived allocations are created,
3748/// only a small fraction of their items get collected, no further use is made of the spare capacity
3749/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3750/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3751/// footprint.
3752///
3753/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3754/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3755/// the size of the long-lived struct.
3756///
3757/// [owned slice]: Box
3758///
3759/// ```rust
3760/// # use std::sync::Mutex;
3761/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3762///
3763/// for i in 0..10 {
3764/// let big_temporary: Vec<u16> = (0..1024).collect();
3765/// // discard most items
3766/// let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3767/// // without this a lot of unused capacity might be moved into the global
3768/// result.shrink_to_fit();
3769/// LONG_LIVED.lock().unwrap().push(result);
3770/// }
3771/// ```
3772#[cfg(not(no_global_oom_handling))]
3773#[stable(feature = "rust1", since = "1.0.0")]
3774impl<T> FromIterator<T> for Vec<T> {
3775 #[inline]
3776 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3777 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3778 }
3779}
3780
3781#[stable(feature = "rust1", since = "1.0.0")]
3782impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3783 type Item = T;
3784 type IntoIter = IntoIter<T, A>;
3785
3786 /// Creates a consuming iterator, that is, one that moves each value out of
3787 /// the vector (from start to end). The vector cannot be used after calling
3788 /// this.
3789 ///
3790 /// # Examples
3791 ///
3792 /// ```
3793 /// let v = vec!["a".to_string(), "b".to_string()];
3794 /// let mut v_iter = v.into_iter();
3795 ///
3796 /// let first_element: Option<String> = v_iter.next();
3797 ///
3798 /// assert_eq!(first_element, Some("a".to_string()));
3799 /// assert_eq!(v_iter.next(), Some("b".to_string()));
3800 /// assert_eq!(v_iter.next(), None);
3801 /// ```
3802 #[inline]
3803 fn into_iter(self) -> Self::IntoIter {
3804 unsafe {
3805 let me = ManuallyDrop::new(self);
3806 let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3807 let buf = me.buf.non_null();
3808 let begin = buf.as_ptr();
3809 let end = if T::IS_ZST {
3810 begin.wrapping_byte_add(me.len())
3811 } else {
3812 begin.add(me.len()) as *const T
3813 };
3814 let cap = me.buf.capacity();
3815 IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3816 }
3817 }
3818}
3819
3820#[stable(feature = "rust1", since = "1.0.0")]
3821impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3822 type Item = &'a T;
3823 type IntoIter = slice::Iter<'a, T>;
3824
3825 fn into_iter(self) -> Self::IntoIter {
3826 self.iter()
3827 }
3828}
3829
3830#[stable(feature = "rust1", since = "1.0.0")]
3831impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3832 type Item = &'a mut T;
3833 type IntoIter = slice::IterMut<'a, T>;
3834
3835 fn into_iter(self) -> Self::IntoIter {
3836 self.iter_mut()
3837 }
3838}
3839
3840#[cfg(not(no_global_oom_handling))]
3841#[stable(feature = "rust1", since = "1.0.0")]
3842impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3843 #[inline]
3844 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3845 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3846 }
3847
3848 #[inline]
3849 fn extend_one(&mut self, item: T) {
3850 self.push(item);
3851 }
3852
3853 #[inline]
3854 fn extend_reserve(&mut self, additional: usize) {
3855 self.reserve(additional);
3856 }
3857
3858 #[inline]
3859 unsafe fn extend_one_unchecked(&mut self, item: T) {
3860 // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3861 unsafe {
3862 let len = self.len();
3863 ptr::write(self.as_mut_ptr().add(len), item);
3864 self.set_len(len + 1);
3865 }
3866 }
3867}
3868
3869impl<T, A: Allocator> Vec<T, A> {
3870 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3871 // they have no further optimizations to apply
3872 #[cfg(not(no_global_oom_handling))]
3873 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3874 // This is the case for a general iterator.
3875 //
3876 // This function should be the moral equivalent of:
3877 //
3878 // for item in iterator {
3879 // self.push(item);
3880 // }
3881 while let Some(element) = iterator.next() {
3882 let len = self.len();
3883 if len == self.capacity() {
3884 let (lower, _) = iterator.size_hint();
3885 self.reserve(lower.saturating_add(1));
3886 }
3887 unsafe {
3888 ptr::write(self.as_mut_ptr().add(len), element);
3889 // Since next() executes user code which can panic we have to bump the length
3890 // after each step.
3891 // NB can't overflow since we would have had to alloc the address space
3892 self.set_len(len + 1);
3893 }
3894 }
3895 }
3896
3897 // specific extend for `TrustedLen` iterators, called both by the specializations
3898 // and internal places where resolving specialization makes compilation slower
3899 #[cfg(not(no_global_oom_handling))]
3900 fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3901 let (low, high) = iterator.size_hint();
3902 if let Some(additional) = high {
3903 debug_assert_eq!(
3904 low,
3905 additional,
3906 "TrustedLen iterator's size hint is not exact: {:?}",
3907 (low, high)
3908 );
3909 self.reserve(additional);
3910 unsafe {
3911 let ptr = self.as_mut_ptr();
3912 let mut local_len = SetLenOnDrop::new(&mut self.len);
3913 iterator.for_each(move |element| {
3914 ptr::write(ptr.add(local_len.current_len()), element);
3915 // Since the loop executes user code which can panic we have to update
3916 // the length every step to correctly drop what we've written.
3917 // NB can't overflow since we would have had to alloc the address space
3918 local_len.increment_len(1);
3919 });
3920 }
3921 } else {
3922 // Per TrustedLen contract a `None` upper bound means that the iterator length
3923 // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3924 // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3925 // This avoids additional codegen for a fallback code path which would eventually
3926 // panic anyway.
3927 panic!("capacity overflow");
3928 }
3929 }
3930
3931 /// Creates a splicing iterator that replaces the specified range in the vector
3932 /// with the given `replace_with` iterator and yields the removed items.
3933 /// `replace_with` does not need to be the same length as `range`.
3934 ///
3935 /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3936 ///
3937 /// It is unspecified how many elements are removed from the vector
3938 /// if the `Splice` value is leaked.
3939 ///
3940 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3941 ///
3942 /// This is optimal if:
3943 ///
3944 /// * The tail (elements in the vector after `range`) is empty,
3945 /// * or `replace_with` yields fewer or equal elements than `range`'s length
3946 /// * or the lower bound of its `size_hint()` is exact.
3947 ///
3948 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3949 ///
3950 /// # Panics
3951 ///
3952 /// Panics if the range has `start_bound > end_bound`, or, if the range is
3953 /// bounded on either end and past the length of the vector.
3954 ///
3955 /// # Examples
3956 ///
3957 /// ```
3958 /// let mut v = vec![1, 2, 3, 4];
3959 /// let new = [7, 8, 9];
3960 /// let u: Vec<_> = v.splice(1..3, new).collect();
3961 /// assert_eq!(v, [1, 7, 8, 9, 4]);
3962 /// assert_eq!(u, [2, 3]);
3963 /// ```
3964 ///
3965 /// Using `splice` to insert new items into a vector efficiently at a specific position
3966 /// indicated by an empty range:
3967 ///
3968 /// ```
3969 /// let mut v = vec![1, 5];
3970 /// let new = [2, 3, 4];
3971 /// v.splice(1..1, new);
3972 /// assert_eq!(v, [1, 2, 3, 4, 5]);
3973 /// ```
3974 #[cfg(not(no_global_oom_handling))]
3975 #[inline]
3976 #[stable(feature = "vec_splice", since = "1.21.0")]
3977 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3978 where
3979 R: RangeBounds<usize>,
3980 I: IntoIterator<Item = T>,
3981 {
3982 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3983 }
3984
3985 /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3986 ///
3987 /// If the closure returns `true`, the element is removed from the vector
3988 /// and yielded. If the closure returns `false`, or panics, the element
3989 /// remains in the vector and will not be yielded.
3990 ///
3991 /// Only elements that fall in the provided range are considered for extraction, but any elements
3992 /// after the range will still have to be moved if any element has been extracted.
3993 ///
3994 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3995 /// or the iteration short-circuits, then the remaining elements will be retained.
3996 /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
3997 /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range.
3998 ///
3999 /// [`retain_mut`]: Vec::retain_mut
4000 ///
4001 /// Using this method is equivalent to the following code:
4002 ///
4003 /// ```
4004 /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
4005 /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
4006 /// # let mut vec2 = vec.clone();
4007 /// # let range = 1..5;
4008 /// let mut i = range.start;
4009 /// let end_items = vec.len() - range.end;
4010 /// # let mut extracted = vec![];
4011 ///
4012 /// while i < vec.len() - end_items {
4013 /// if some_predicate(&mut vec[i]) {
4014 /// let val = vec.remove(i);
4015 /// // your code here
4016 /// # extracted.push(val);
4017 /// } else {
4018 /// i += 1;
4019 /// }
4020 /// }
4021 ///
4022 /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
4023 /// # assert_eq!(vec, vec2);
4024 /// # assert_eq!(extracted, extracted2);
4025 /// ```
4026 ///
4027 /// But `extract_if` is easier to use. `extract_if` is also more efficient,
4028 /// because it can backshift the elements of the array in bulk.
4029 ///
4030 /// The iterator also lets you mutate the value of each element in the
4031 /// closure, regardless of whether you choose to keep or remove it.
4032 ///
4033 /// # Panics
4034 ///
4035 /// If `range` is out of bounds.
4036 ///
4037 /// # Examples
4038 ///
4039 /// Splitting a vector into even and odd values, reusing the original vector:
4040 ///
4041 /// ```
4042 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
4043 ///
4044 /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
4045 /// let odds = numbers;
4046 ///
4047 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
4048 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
4049 /// ```
4050 ///
4051 /// Using the range argument to only process a part of the vector:
4052 ///
4053 /// ```
4054 /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
4055 /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
4056 /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
4057 /// assert_eq!(ones.len(), 3);
4058 /// ```
4059 #[stable(feature = "extract_if", since = "1.87.0")]
4060 pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
4061 where
4062 F: FnMut(&mut T) -> bool,
4063 R: RangeBounds<usize>,
4064 {
4065 ExtractIf::new(self, filter, range)
4066 }
4067}
4068
4069/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4070///
4071/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4072/// append the entire slice at once.
4073///
4074/// [`copy_from_slice`]: slice::copy_from_slice
4075#[cfg(not(no_global_oom_handling))]
4076#[stable(feature = "extend_ref", since = "1.2.0")]
4077impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4078 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4079 self.spec_extend(iter.into_iter())
4080 }
4081
4082 #[inline]
4083 fn extend_one(&mut self, &item: &'a T) {
4084 self.push(item);
4085 }
4086
4087 #[inline]
4088 fn extend_reserve(&mut self, additional: usize) {
4089 self.reserve(additional);
4090 }
4091
4092 #[inline]
4093 unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4094 // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4095 unsafe {
4096 let len = self.len();
4097 ptr::write(self.as_mut_ptr().add(len), item);
4098 self.set_len(len + 1);
4099 }
4100 }
4101}
4102
4103/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4104#[stable(feature = "rust1", since = "1.0.0")]
4105impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4106where
4107 T: PartialOrd,
4108 A1: Allocator,
4109 A2: Allocator,
4110{
4111 #[inline]
4112 fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4113 PartialOrd::partial_cmp(&**self, &**other)
4114 }
4115}
4116
4117#[stable(feature = "rust1", since = "1.0.0")]
4118impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4119
4120/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4121#[stable(feature = "rust1", since = "1.0.0")]
4122impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4123 #[inline]
4124 fn cmp(&self, other: &Self) -> Ordering {
4125 Ord::cmp(&**self, &**other)
4126 }
4127}
4128
4129#[stable(feature = "rust1", since = "1.0.0")]
4130unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4131 fn drop(&mut self) {
4132 unsafe {
4133 // use drop for [T]
4134 // use a raw slice to refer to the elements of the vector as weakest necessary type;
4135 // could avoid questions of validity in certain cases
4136 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4137 }
4138 // RawVec handles deallocation
4139 }
4140}
4141
4142#[stable(feature = "rust1", since = "1.0.0")]
4143#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4144impl<T> const Default for Vec<T> {
4145 /// Creates an empty `Vec<T>`.
4146 ///
4147 /// The vector will not allocate until elements are pushed onto it.
4148 fn default() -> Vec<T> {
4149 Vec::new()
4150 }
4151}
4152
4153#[stable(feature = "rust1", since = "1.0.0")]
4154impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4155 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4156 fmt::Debug::fmt(&**self, f)
4157 }
4158}
4159
4160#[stable(feature = "rust1", since = "1.0.0")]
4161impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4162 fn as_ref(&self) -> &Vec<T, A> {
4163 self
4164 }
4165}
4166
4167#[stable(feature = "vec_as_mut", since = "1.5.0")]
4168impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4169 fn as_mut(&mut self) -> &mut Vec<T, A> {
4170 self
4171 }
4172}
4173
4174#[stable(feature = "rust1", since = "1.0.0")]
4175impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4176 fn as_ref(&self) -> &[T] {
4177 self
4178 }
4179}
4180
4181#[stable(feature = "vec_as_mut", since = "1.5.0")]
4182impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4183 fn as_mut(&mut self) -> &mut [T] {
4184 self
4185 }
4186}
4187
4188#[cfg(not(no_global_oom_handling))]
4189#[stable(feature = "rust1", since = "1.0.0")]
4190impl<T: Clone> From<&[T]> for Vec<T> {
4191 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4192 ///
4193 /// # Examples
4194 ///
4195 /// ```
4196 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4197 /// ```
4198 fn from(s: &[T]) -> Vec<T> {
4199 s.to_vec()
4200 }
4201}
4202
4203#[cfg(not(no_global_oom_handling))]
4204#[stable(feature = "vec_from_mut", since = "1.19.0")]
4205impl<T: Clone> From<&mut [T]> for Vec<T> {
4206 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4207 ///
4208 /// # Examples
4209 ///
4210 /// ```
4211 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4212 /// ```
4213 fn from(s: &mut [T]) -> Vec<T> {
4214 s.to_vec()
4215 }
4216}
4217
4218#[cfg(not(no_global_oom_handling))]
4219#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4220impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4221 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4222 ///
4223 /// # Examples
4224 ///
4225 /// ```
4226 /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4227 /// ```
4228 fn from(s: &[T; N]) -> Vec<T> {
4229 Self::from(s.as_slice())
4230 }
4231}
4232
4233#[cfg(not(no_global_oom_handling))]
4234#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4235impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4236 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4237 ///
4238 /// # Examples
4239 ///
4240 /// ```
4241 /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4242 /// ```
4243 fn from(s: &mut [T; N]) -> Vec<T> {
4244 Self::from(s.as_mut_slice())
4245 }
4246}
4247
4248#[cfg(not(no_global_oom_handling))]
4249#[stable(feature = "vec_from_array", since = "1.44.0")]
4250impl<T, const N: usize> From<[T; N]> for Vec<T> {
4251 /// Allocates a `Vec<T>` and moves `s`'s items into it.
4252 ///
4253 /// # Examples
4254 ///
4255 /// ```
4256 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4257 /// ```
4258 fn from(s: [T; N]) -> Vec<T> {
4259 <[T]>::into_vec(Box::new(s))
4260 }
4261}
4262
4263#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4264impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4265where
4266 [T]: ToOwned<Owned = Vec<T>>,
4267{
4268 /// Converts a clone-on-write slice into a vector.
4269 ///
4270 /// If `s` already owns a `Vec<T>`, it will be returned directly.
4271 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4272 /// filled by cloning `s`'s items into it.
4273 ///
4274 /// # Examples
4275 ///
4276 /// ```
4277 /// # use std::borrow::Cow;
4278 /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4279 /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4280 /// assert_eq!(Vec::from(o), Vec::from(b));
4281 /// ```
4282 fn from(s: Cow<'a, [T]>) -> Vec<T> {
4283 s.into_owned()
4284 }
4285}
4286
4287// note: test pulls in std, which causes errors here
4288#[stable(feature = "vec_from_box", since = "1.18.0")]
4289impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4290 /// Converts a boxed slice into a vector by transferring ownership of
4291 /// the existing heap allocation.
4292 ///
4293 /// # Examples
4294 ///
4295 /// ```
4296 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4297 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4298 /// ```
4299 fn from(s: Box<[T], A>) -> Self {
4300 s.into_vec()
4301 }
4302}
4303
4304// note: test pulls in std, which causes errors here
4305#[cfg(not(no_global_oom_handling))]
4306#[stable(feature = "box_from_vec", since = "1.20.0")]
4307impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4308 /// Converts a vector into a boxed slice.
4309 ///
4310 /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4311 ///
4312 /// [owned slice]: Box
4313 /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4314 ///
4315 /// # Examples
4316 ///
4317 /// ```
4318 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4319 /// ```
4320 ///
4321 /// Any excess capacity is removed:
4322 /// ```
4323 /// let mut vec = Vec::with_capacity(10);
4324 /// vec.extend([1, 2, 3]);
4325 ///
4326 /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4327 /// ```
4328 fn from(v: Vec<T, A>) -> Self {
4329 v.into_boxed_slice()
4330 }
4331}
4332
4333#[cfg(not(no_global_oom_handling))]
4334#[stable(feature = "rust1", since = "1.0.0")]
4335impl From<&str> for Vec<u8> {
4336 /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4337 ///
4338 /// # Examples
4339 ///
4340 /// ```
4341 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4342 /// ```
4343 fn from(s: &str) -> Vec<u8> {
4344 From::from(s.as_bytes())
4345 }
4346}
4347
4348#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4349impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4350 type Error = Vec<T, A>;
4351
4352 /// Gets the entire contents of the `Vec<T>` as an array,
4353 /// if its size exactly matches that of the requested array.
4354 ///
4355 /// # Examples
4356 ///
4357 /// ```
4358 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4359 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4360 /// ```
4361 ///
4362 /// If the length doesn't match, the input comes back in `Err`:
4363 /// ```
4364 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4365 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4366 /// ```
4367 ///
4368 /// If you're fine with just getting a prefix of the `Vec<T>`,
4369 /// you can call [`.truncate(N)`](Vec::truncate) first.
4370 /// ```
4371 /// let mut v = String::from("hello world").into_bytes();
4372 /// v.sort();
4373 /// v.truncate(2);
4374 /// let [a, b]: [_; 2] = v.try_into().unwrap();
4375 /// assert_eq!(a, b' ');
4376 /// assert_eq!(b, b'd');
4377 /// ```
4378 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4379 if vec.len() != N {
4380 return Err(vec);
4381 }
4382
4383 // SAFETY: `.set_len(0)` is always sound.
4384 unsafe { vec.set_len(0) };
4385
4386 // SAFETY: A `Vec`'s pointer is always aligned properly, and
4387 // the alignment the array needs is the same as the items.
4388 // We checked earlier that we have sufficient items.
4389 // The items will not double-drop as the `set_len`
4390 // tells the `Vec` not to also drop them.
4391 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4392 Ok(array)
4393 }
4394}