[go: up one dir, main page]

alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::clone::TrivialClone;
78#[cfg(not(no_global_oom_handling))]
79use core::cmp;
80use core::cmp::Ordering;
81use core::hash::{Hash, Hasher};
82#[cfg(not(no_global_oom_handling))]
83use core::iter;
84use core::marker::PhantomData;
85use core::mem::{self, Assume, ManuallyDrop, MaybeUninit, SizedTypeProperties, TransmuteFrom};
86use core::ops::{self, Index, IndexMut, Range, RangeBounds};
87use core::ptr::{self, NonNull};
88use core::slice::{self, SliceIndex};
89use core::{fmt, intrinsics, ub_checks};
90
91#[stable(feature = "extract_if", since = "1.87.0")]
92pub use self::extract_if::ExtractIf;
93use crate::alloc::{Allocator, Global};
94use crate::borrow::{Cow, ToOwned};
95use crate::boxed::Box;
96use crate::collections::TryReserveError;
97use crate::raw_vec::RawVec;
98
99mod extract_if;
100
101#[cfg(not(no_global_oom_handling))]
102#[stable(feature = "vec_splice", since = "1.21.0")]
103pub use self::splice::Splice;
104
105#[cfg(not(no_global_oom_handling))]
106mod splice;
107
108#[stable(feature = "drain", since = "1.6.0")]
109pub use self::drain::Drain;
110
111mod drain;
112
113#[cfg(not(no_global_oom_handling))]
114mod cow;
115
116#[cfg(not(no_global_oom_handling))]
117pub(crate) use self::in_place_collect::AsVecIntoIter;
118#[stable(feature = "rust1", since = "1.0.0")]
119pub use self::into_iter::IntoIter;
120
121mod into_iter;
122
123#[cfg(not(no_global_oom_handling))]
124use self::is_zero::IsZero;
125
126#[cfg(not(no_global_oom_handling))]
127mod is_zero;
128
129#[cfg(not(no_global_oom_handling))]
130mod in_place_collect;
131
132mod partial_eq;
133
134#[unstable(feature = "vec_peek_mut", issue = "122742")]
135pub use self::peek_mut::PeekMut;
136
137mod peek_mut;
138
139#[cfg(not(no_global_oom_handling))]
140use self::spec_from_elem::SpecFromElem;
141
142#[cfg(not(no_global_oom_handling))]
143mod spec_from_elem;
144
145#[cfg(not(no_global_oom_handling))]
146use self::set_len_on_drop::SetLenOnDrop;
147
148#[cfg(not(no_global_oom_handling))]
149mod set_len_on_drop;
150
151#[cfg(not(no_global_oom_handling))]
152use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
153
154#[cfg(not(no_global_oom_handling))]
155mod in_place_drop;
156
157#[cfg(not(no_global_oom_handling))]
158use self::spec_from_iter_nested::SpecFromIterNested;
159
160#[cfg(not(no_global_oom_handling))]
161mod spec_from_iter_nested;
162
163#[cfg(not(no_global_oom_handling))]
164use self::spec_from_iter::SpecFromIter;
165
166#[cfg(not(no_global_oom_handling))]
167mod spec_from_iter;
168
169#[cfg(not(no_global_oom_handling))]
170use self::spec_extend::SpecExtend;
171
172#[cfg(not(no_global_oom_handling))]
173mod spec_extend;
174
175/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
176///
177/// # Examples
178///
179/// ```
180/// let mut vec = Vec::new();
181/// vec.push(1);
182/// vec.push(2);
183///
184/// assert_eq!(vec.len(), 2);
185/// assert_eq!(vec[0], 1);
186///
187/// assert_eq!(vec.pop(), Some(2));
188/// assert_eq!(vec.len(), 1);
189///
190/// vec[0] = 7;
191/// assert_eq!(vec[0], 7);
192///
193/// vec.extend([1, 2, 3]);
194///
195/// for x in &vec {
196///     println!("{x}");
197/// }
198/// assert_eq!(vec, [7, 1, 2, 3]);
199/// ```
200///
201/// The [`vec!`] macro is provided for convenient initialization:
202///
203/// ```
204/// let mut vec1 = vec![1, 2, 3];
205/// vec1.push(4);
206/// let vec2 = Vec::from([1, 2, 3, 4]);
207/// assert_eq!(vec1, vec2);
208/// ```
209///
210/// It can also initialize each element of a `Vec<T>` with a given value.
211/// This may be more efficient than performing allocation and initialization
212/// in separate steps, especially when initializing a vector of zeros:
213///
214/// ```
215/// let vec = vec![0; 5];
216/// assert_eq!(vec, [0, 0, 0, 0, 0]);
217///
218/// // The following is equivalent, but potentially slower:
219/// let mut vec = Vec::with_capacity(5);
220/// vec.resize(5, 0);
221/// assert_eq!(vec, [0, 0, 0, 0, 0]);
222/// ```
223///
224/// For more information, see
225/// [Capacity and Reallocation](#capacity-and-reallocation).
226///
227/// Use a `Vec<T>` as an efficient stack:
228///
229/// ```
230/// let mut stack = Vec::new();
231///
232/// stack.push(1);
233/// stack.push(2);
234/// stack.push(3);
235///
236/// while let Some(top) = stack.pop() {
237///     // Prints 3, 2, 1
238///     println!("{top}");
239/// }
240/// ```
241///
242/// # Indexing
243///
244/// The `Vec` type allows access to values by index, because it implements the
245/// [`Index`] trait. An example will be more explicit:
246///
247/// ```
248/// let v = vec![0, 2, 4, 6];
249/// println!("{}", v[1]); // it will display '2'
250/// ```
251///
252/// However be careful: if you try to access an index which isn't in the `Vec`,
253/// your software will panic! You cannot do this:
254///
255/// ```should_panic
256/// let v = vec![0, 2, 4, 6];
257/// println!("{}", v[6]); // it will panic!
258/// ```
259///
260/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
261/// the `Vec`.
262///
263/// # Slicing
264///
265/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
266/// To get a [slice][prim@slice], use [`&`]. Example:
267///
268/// ```
269/// fn read_slice(slice: &[usize]) {
270///     // ...
271/// }
272///
273/// let v = vec![0, 1];
274/// read_slice(&v);
275///
276/// // ... and that's all!
277/// // you can also do it like this:
278/// let u: &[usize] = &v;
279/// // or like this:
280/// let u: &[_] = &v;
281/// ```
282///
283/// In Rust, it's more common to pass slices as arguments rather than vectors
284/// when you just want to provide read access. The same goes for [`String`] and
285/// [`&str`].
286///
287/// # Capacity and reallocation
288///
289/// The capacity of a vector is the amount of space allocated for any future
290/// elements that will be added onto the vector. This is not to be confused with
291/// the *length* of a vector, which specifies the number of actual elements
292/// within the vector. If a vector's length exceeds its capacity, its capacity
293/// will automatically be increased, but its elements will have to be
294/// reallocated.
295///
296/// For example, a vector with capacity 10 and length 0 would be an empty vector
297/// with space for 10 more elements. Pushing 10 or fewer elements onto the
298/// vector will not change its capacity or cause reallocation to occur. However,
299/// if the vector's length is increased to 11, it will have to reallocate, which
300/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
301/// whenever possible to specify how big the vector is expected to get.
302///
303/// # Guarantees
304///
305/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
306/// about its design. This ensures that it's as low-overhead as possible in
307/// the general case, and can be correctly manipulated in primitive ways
308/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
309/// If additional type parameters are added (e.g., to support custom allocators),
310/// overriding their defaults may change the behavior.
311///
312/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
313/// triplet. No more, no less. The order of these fields is completely
314/// unspecified, and you should use the appropriate methods to modify these.
315/// The pointer will never be null, so this type is null-pointer-optimized.
316///
317/// However, the pointer might not actually point to allocated memory. In particular,
318/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
319/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
320/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
321/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
322/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
323/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
324/// details are very subtle --- if you intend to allocate memory using a `Vec`
325/// and use it for something else (either to pass to unsafe code, or to build your
326/// own memory-backed collection), be sure to deallocate this memory by using
327/// `from_raw_parts` to recover the `Vec` and then dropping it.
328///
329/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
330/// (as defined by the allocator Rust is configured to use by default), and its
331/// pointer points to [`len`] initialized, contiguous elements in order (what
332/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
333/// logically uninitialized, contiguous elements.
334///
335/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
336/// visualized as below. The top part is the `Vec` struct, it contains a
337/// pointer to the head of the allocation in the heap, length and capacity.
338/// The bottom part is the allocation on the heap, a contiguous memory block.
339///
340/// ```text
341///             ptr      len  capacity
342///        +--------+--------+--------+
343///        | 0x0123 |      2 |      4 |
344///        +--------+--------+--------+
345///             |
346///             v
347/// Heap   +--------+--------+--------+--------+
348///        |    'a' |    'b' | uninit | uninit |
349///        +--------+--------+--------+--------+
350/// ```
351///
352/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
353/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
354///   layout (including the order of fields).
355///
356/// `Vec` will never perform a "small optimization" where elements are actually
357/// stored on the stack for two reasons:
358///
359/// * It would make it more difficult for unsafe code to correctly manipulate
360///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
361///   only moved, and it would be more difficult to determine if a `Vec` had
362///   actually allocated memory.
363///
364/// * It would penalize the general case, incurring an additional branch
365///   on every access.
366///
367/// `Vec` will never automatically shrink itself, even if completely empty. This
368/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
369/// and then filling it back up to the same [`len`] should incur no calls to
370/// the allocator. If you wish to free up unused memory, use
371/// [`shrink_to_fit`] or [`shrink_to`].
372///
373/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
374/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
375/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
376/// accurate, and can be relied on. It can even be used to manually free the memory
377/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
378/// when not necessary.
379///
380/// `Vec` does not guarantee any particular growth strategy when reallocating
381/// when full, nor when [`reserve`] is called. The current strategy is basic
382/// and it may prove desirable to use a non-constant growth factor. Whatever
383/// strategy is used will of course guarantee *O*(1) amortized [`push`].
384///
385/// It is guaranteed, in order to respect the intentions of the programmer, that
386/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
387/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
388/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
389/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
390///
391/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
392/// and not more than the allocated capacity.
393///
394/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
395/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
396/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
397/// `Vec` exploits this fact as much as reasonable when implementing common conversions
398/// such as [`into_boxed_slice`].
399///
400/// `Vec` will not specifically overwrite any data that is removed from it,
401/// but also won't specifically preserve it. Its uninitialized memory is
402/// scratch space that it may use however it wants. It will generally just do
403/// whatever is most efficient or otherwise easy to implement. Do not rely on
404/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
405/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
406/// first, that might not actually happen because the optimizer does not consider
407/// this a side-effect that must be preserved. There is one case which we will
408/// not break, however: using `unsafe` code to write to the excess capacity,
409/// and then increasing the length to match, is always valid.
410///
411/// Currently, `Vec` does not guarantee the order in which elements are dropped.
412/// The order has changed in the past and may change again.
413///
414/// [`get`]: slice::get
415/// [`get_mut`]: slice::get_mut
416/// [`String`]: crate::string::String
417/// [`&str`]: type@str
418/// [`shrink_to_fit`]: Vec::shrink_to_fit
419/// [`shrink_to`]: Vec::shrink_to
420/// [capacity]: Vec::capacity
421/// [`capacity`]: Vec::capacity
422/// [`Vec::capacity`]: Vec::capacity
423/// [size_of::\<T>]: size_of
424/// [len]: Vec::len
425/// [`len`]: Vec::len
426/// [`push`]: Vec::push
427/// [`insert`]: Vec::insert
428/// [`reserve`]: Vec::reserve
429/// [`Vec::with_capacity(n)`]: Vec::with_capacity
430/// [`MaybeUninit`]: core::mem::MaybeUninit
431/// [owned slice]: Box
432/// [`into_boxed_slice`]: Vec::into_boxed_slice
433#[stable(feature = "rust1", since = "1.0.0")]
434#[rustc_diagnostic_item = "Vec"]
435#[rustc_insignificant_dtor]
436#[doc(alias = "list")]
437#[doc(alias = "vector")]
438pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
439    buf: RawVec<T, A>,
440    len: usize,
441}
442
443////////////////////////////////////////////////////////////////////////////////
444// Inherent methods
445////////////////////////////////////////////////////////////////////////////////
446
447impl<T> Vec<T> {
448    /// Constructs a new, empty `Vec<T>`.
449    ///
450    /// The vector will not allocate until elements are pushed onto it.
451    ///
452    /// # Examples
453    ///
454    /// ```
455    /// # #![allow(unused_mut)]
456    /// let mut vec: Vec<i32> = Vec::new();
457    /// ```
458    #[inline]
459    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
460    #[rustc_diagnostic_item = "vec_new"]
461    #[stable(feature = "rust1", since = "1.0.0")]
462    #[must_use]
463    pub const fn new() -> Self {
464        Vec { buf: RawVec::new(), len: 0 }
465    }
466
467    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
468    ///
469    /// The vector will be able to hold at least `capacity` elements without
470    /// reallocating. This method is allowed to allocate for more elements than
471    /// `capacity`. If `capacity` is zero, the vector will not allocate.
472    ///
473    /// It is important to note that although the returned vector has the
474    /// minimum *capacity* specified, the vector will have a zero *length*. For
475    /// an explanation of the difference between length and capacity, see
476    /// *[Capacity and reallocation]*.
477    ///
478    /// If it is important to know the exact allocated capacity of a `Vec`,
479    /// always use the [`capacity`] method after construction.
480    ///
481    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
482    /// and the capacity will always be `usize::MAX`.
483    ///
484    /// [Capacity and reallocation]: #capacity-and-reallocation
485    /// [`capacity`]: Vec::capacity
486    ///
487    /// # Panics
488    ///
489    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
490    ///
491    /// # Examples
492    ///
493    /// ```
494    /// let mut vec = Vec::with_capacity(10);
495    ///
496    /// // The vector contains no items, even though it has capacity for more
497    /// assert_eq!(vec.len(), 0);
498    /// assert!(vec.capacity() >= 10);
499    ///
500    /// // These are all done without reallocating...
501    /// for i in 0..10 {
502    ///     vec.push(i);
503    /// }
504    /// assert_eq!(vec.len(), 10);
505    /// assert!(vec.capacity() >= 10);
506    ///
507    /// // ...but this may make the vector reallocate
508    /// vec.push(11);
509    /// assert_eq!(vec.len(), 11);
510    /// assert!(vec.capacity() >= 11);
511    ///
512    /// // A vector of a zero-sized type will always over-allocate, since no
513    /// // allocation is necessary
514    /// let vec_units = Vec::<()>::with_capacity(10);
515    /// assert_eq!(vec_units.capacity(), usize::MAX);
516    /// ```
517    #[cfg(not(no_global_oom_handling))]
518    #[inline]
519    #[stable(feature = "rust1", since = "1.0.0")]
520    #[must_use]
521    #[rustc_diagnostic_item = "vec_with_capacity"]
522    pub fn with_capacity(capacity: usize) -> Self {
523        Self::with_capacity_in(capacity, Global)
524    }
525
526    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
527    ///
528    /// The vector will be able to hold at least `capacity` elements without
529    /// reallocating. This method is allowed to allocate for more elements than
530    /// `capacity`. If `capacity` is zero, the vector will not allocate.
531    ///
532    /// # Errors
533    ///
534    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
535    /// or if the allocator reports allocation failure.
536    #[inline]
537    #[unstable(feature = "try_with_capacity", issue = "91913")]
538    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
539        Self::try_with_capacity_in(capacity, Global)
540    }
541
542    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
543    ///
544    /// # Safety
545    ///
546    /// This is highly unsafe, due to the number of invariants that aren't
547    /// checked:
548    ///
549    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
550    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
551    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
552    ///   only be non-null and aligned.
553    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
554    ///   if the pointer is required to be allocated.
555    ///   (`T` having a less strict alignment is not sufficient, the alignment really
556    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
557    ///   allocated and deallocated with the same layout.)
558    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
559    ///   nonzero, needs to be the same size as the pointer was allocated with.
560    ///   (Because similar to alignment, [`dealloc`] must be called with the same
561    ///   layout `size`.)
562    /// * `length` needs to be less than or equal to `capacity`.
563    /// * The first `length` values must be properly initialized values of type `T`.
564    /// * `capacity` needs to be the capacity that the pointer was allocated with,
565    ///   if the pointer is required to be allocated.
566    /// * The allocated size in bytes must be no larger than `isize::MAX`.
567    ///   See the safety documentation of [`pointer::offset`].
568    ///
569    /// These requirements are always upheld by any `ptr` that has been allocated
570    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
571    /// upheld.
572    ///
573    /// Violating these may cause problems like corrupting the allocator's
574    /// internal data structures. For example it is normally **not** safe
575    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
576    /// `size_t`, doing so is only safe if the array was initially allocated by
577    /// a `Vec` or `String`.
578    /// It's also not safe to build one from a `Vec<u16>` and its length, because
579    /// the allocator cares about the alignment, and these two types have different
580    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
581    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
582    /// these issues, it is often preferable to do casting/transmuting using
583    /// [`slice::from_raw_parts`] instead.
584    ///
585    /// The ownership of `ptr` is effectively transferred to the
586    /// `Vec<T>` which may then deallocate, reallocate or change the
587    /// contents of memory pointed to by the pointer at will. Ensure
588    /// that nothing else uses the pointer after calling this
589    /// function.
590    ///
591    /// [`String`]: crate::string::String
592    /// [`alloc::alloc`]: crate::alloc::alloc
593    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
594    ///
595    /// # Examples
596    ///
597    /// ```
598    /// use std::ptr;
599    ///
600    /// let v = vec![1, 2, 3];
601    ///
602    /// // Deconstruct the vector into parts.
603    /// let (p, len, cap) = v.into_raw_parts();
604    ///
605    /// unsafe {
606    ///     // Overwrite memory with 4, 5, 6
607    ///     for i in 0..len {
608    ///         ptr::write(p.add(i), 4 + i);
609    ///     }
610    ///
611    ///     // Put everything back together into a Vec
612    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
613    ///     assert_eq!(rebuilt, [4, 5, 6]);
614    /// }
615    /// ```
616    ///
617    /// Using memory that was allocated elsewhere:
618    ///
619    /// ```rust
620    /// use std::alloc::{alloc, Layout};
621    ///
622    /// fn main() {
623    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
624    ///
625    ///     let vec = unsafe {
626    ///         let mem = alloc(layout).cast::<u32>();
627    ///         if mem.is_null() {
628    ///             return;
629    ///         }
630    ///
631    ///         mem.write(1_000_000);
632    ///
633    ///         Vec::from_raw_parts(mem, 1, 16)
634    ///     };
635    ///
636    ///     assert_eq!(vec, &[1_000_000]);
637    ///     assert_eq!(vec.capacity(), 16);
638    /// }
639    /// ```
640    #[inline]
641    #[stable(feature = "rust1", since = "1.0.0")]
642    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
643        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
644    }
645
646    #[doc(alias = "from_non_null_parts")]
647    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
648    ///
649    /// # Safety
650    ///
651    /// This is highly unsafe, due to the number of invariants that aren't
652    /// checked:
653    ///
654    /// * `ptr` must have been allocated using the global allocator, such as via
655    ///   the [`alloc::alloc`] function.
656    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
657    ///   (`T` having a less strict alignment is not sufficient, the alignment really
658    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
659    ///   allocated and deallocated with the same layout.)
660    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
661    ///   to be the same size as the pointer was allocated with. (Because similar to
662    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
663    /// * `length` needs to be less than or equal to `capacity`.
664    /// * The first `length` values must be properly initialized values of type `T`.
665    /// * `capacity` needs to be the capacity that the pointer was allocated with.
666    /// * The allocated size in bytes must be no larger than `isize::MAX`.
667    ///   See the safety documentation of [`pointer::offset`].
668    ///
669    /// These requirements are always upheld by any `ptr` that has been allocated
670    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
671    /// upheld.
672    ///
673    /// Violating these may cause problems like corrupting the allocator's
674    /// internal data structures. For example it is normally **not** safe
675    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
676    /// `size_t`, doing so is only safe if the array was initially allocated by
677    /// a `Vec` or `String`.
678    /// It's also not safe to build one from a `Vec<u16>` and its length, because
679    /// the allocator cares about the alignment, and these two types have different
680    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
681    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
682    /// these issues, it is often preferable to do casting/transmuting using
683    /// [`NonNull::slice_from_raw_parts`] instead.
684    ///
685    /// The ownership of `ptr` is effectively transferred to the
686    /// `Vec<T>` which may then deallocate, reallocate or change the
687    /// contents of memory pointed to by the pointer at will. Ensure
688    /// that nothing else uses the pointer after calling this
689    /// function.
690    ///
691    /// [`String`]: crate::string::String
692    /// [`alloc::alloc`]: crate::alloc::alloc
693    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
694    ///
695    /// # Examples
696    ///
697    /// ```
698    /// #![feature(box_vec_non_null)]
699    ///
700    /// let v = vec![1, 2, 3];
701    ///
702    /// // Deconstruct the vector into parts.
703    /// let (p, len, cap) = v.into_parts();
704    ///
705    /// unsafe {
706    ///     // Overwrite memory with 4, 5, 6
707    ///     for i in 0..len {
708    ///         p.add(i).write(4 + i);
709    ///     }
710    ///
711    ///     // Put everything back together into a Vec
712    ///     let rebuilt = Vec::from_parts(p, len, cap);
713    ///     assert_eq!(rebuilt, [4, 5, 6]);
714    /// }
715    /// ```
716    ///
717    /// Using memory that was allocated elsewhere:
718    ///
719    /// ```rust
720    /// #![feature(box_vec_non_null)]
721    ///
722    /// use std::alloc::{alloc, Layout};
723    /// use std::ptr::NonNull;
724    ///
725    /// fn main() {
726    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
727    ///
728    ///     let vec = unsafe {
729    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
730    ///             return;
731    ///         };
732    ///
733    ///         mem.write(1_000_000);
734    ///
735    ///         Vec::from_parts(mem, 1, 16)
736    ///     };
737    ///
738    ///     assert_eq!(vec, &[1_000_000]);
739    ///     assert_eq!(vec.capacity(), 16);
740    /// }
741    /// ```
742    #[inline]
743    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
744    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
745        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
746    }
747
748    /// Creates a `Vec<T>` where each element is produced by calling `f` with
749    /// that element's index while walking forward through the `Vec<T>`.
750    ///
751    /// This is essentially the same as writing
752    ///
753    /// ```text
754    /// vec![f(0), f(1), f(2), …, f(length - 2), f(length - 1)]
755    /// ```
756    /// and is similar to `(0..i).map(f)`, just for `Vec<T>`s not iterators.
757    ///
758    /// If `length == 0`, this produces an empty `Vec<T>` without ever calling `f`.
759    ///
760    /// # Example
761    ///
762    /// ```rust
763    /// #![feature(vec_from_fn)]
764    ///
765    /// let vec = Vec::from_fn(5, |i| i);
766    ///
767    /// // indexes are:  0  1  2  3  4
768    /// assert_eq!(vec, [0, 1, 2, 3, 4]);
769    ///
770    /// let vec2 = Vec::from_fn(8, |i| i * 2);
771    ///
772    /// // indexes are:   0  1  2  3  4  5   6   7
773    /// assert_eq!(vec2, [0, 2, 4, 6, 8, 10, 12, 14]);
774    ///
775    /// let bool_vec = Vec::from_fn(5, |i| i % 2 == 0);
776    ///
777    /// // indexes are:       0     1      2     3      4
778    /// assert_eq!(bool_vec, [true, false, true, false, true]);
779    /// ```
780    ///
781    /// The `Vec<T>` is generated in ascending index order, starting from the front
782    /// and going towards the back, so you can use closures with mutable state:
783    /// ```
784    /// #![feature(vec_from_fn)]
785    ///
786    /// let mut state = 1;
787    /// let a = Vec::from_fn(6, |_| { let x = state; state *= 2; x });
788    ///
789    /// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
790    /// ```
791    #[cfg(not(no_global_oom_handling))]
792    #[inline]
793    #[unstable(feature = "vec_from_fn", reason = "new API", issue = "149698")]
794    pub fn from_fn<F>(length: usize, f: F) -> Self
795    where
796        F: FnMut(usize) -> T,
797    {
798        (0..length).map(f).collect()
799    }
800
801    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
802    ///
803    /// Returns the raw pointer to the underlying data, the length of
804    /// the vector (in elements), and the allocated capacity of the
805    /// data (in elements). These are the same arguments in the same
806    /// order as the arguments to [`from_raw_parts`].
807    ///
808    /// After calling this function, the caller is responsible for the
809    /// memory previously managed by the `Vec`. Most often, one does
810    /// this by converting the raw pointer, length, and capacity back
811    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
812    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
813    /// any method that calls [`dealloc`] with a layout of
814    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
815    /// capacity is zero, nothing needs to be done.
816    ///
817    /// [`from_raw_parts`]: Vec::from_raw_parts
818    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
819    ///
820    /// # Examples
821    ///
822    /// ```
823    /// let v: Vec<i32> = vec![-1, 0, 1];
824    ///
825    /// let (ptr, len, cap) = v.into_raw_parts();
826    ///
827    /// let rebuilt = unsafe {
828    ///     // We can now make changes to the components, such as
829    ///     // transmuting the raw pointer to a compatible type.
830    ///     let ptr = ptr as *mut u32;
831    ///
832    ///     Vec::from_raw_parts(ptr, len, cap)
833    /// };
834    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
835    /// ```
836    #[must_use = "losing the pointer will leak memory"]
837    #[stable(feature = "vec_into_raw_parts", since = "CURRENT_RUSTC_VERSION")]
838    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
839        let mut me = ManuallyDrop::new(self);
840        (me.as_mut_ptr(), me.len(), me.capacity())
841    }
842
843    #[doc(alias = "into_non_null_parts")]
844    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
845    ///
846    /// Returns the `NonNull` pointer to the underlying data, the length of
847    /// the vector (in elements), and the allocated capacity of the
848    /// data (in elements). These are the same arguments in the same
849    /// order as the arguments to [`from_parts`].
850    ///
851    /// After calling this function, the caller is responsible for the
852    /// memory previously managed by the `Vec`. The only way to do
853    /// this is to convert the `NonNull` pointer, length, and capacity back
854    /// into a `Vec` with the [`from_parts`] function, allowing
855    /// the destructor to perform the cleanup.
856    ///
857    /// [`from_parts`]: Vec::from_parts
858    ///
859    /// # Examples
860    ///
861    /// ```
862    /// #![feature(box_vec_non_null)]
863    ///
864    /// let v: Vec<i32> = vec![-1, 0, 1];
865    ///
866    /// let (ptr, len, cap) = v.into_parts();
867    ///
868    /// let rebuilt = unsafe {
869    ///     // We can now make changes to the components, such as
870    ///     // transmuting the raw pointer to a compatible type.
871    ///     let ptr = ptr.cast::<u32>();
872    ///
873    ///     Vec::from_parts(ptr, len, cap)
874    /// };
875    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
876    /// ```
877    #[must_use = "losing the pointer will leak memory"]
878    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
879    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
880        let (ptr, len, capacity) = self.into_raw_parts();
881        // SAFETY: A `Vec` always has a non-null pointer.
882        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
883    }
884}
885
886impl<T, A: Allocator> Vec<T, A> {
887    /// Constructs a new, empty `Vec<T, A>`.
888    ///
889    /// The vector will not allocate until elements are pushed onto it.
890    ///
891    /// # Examples
892    ///
893    /// ```
894    /// #![feature(allocator_api)]
895    ///
896    /// use std::alloc::System;
897    ///
898    /// # #[allow(unused_mut)]
899    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
900    /// ```
901    #[inline]
902    #[unstable(feature = "allocator_api", issue = "32838")]
903    pub const fn new_in(alloc: A) -> Self {
904        Vec { buf: RawVec::new_in(alloc), len: 0 }
905    }
906
907    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
908    /// with the provided allocator.
909    ///
910    /// The vector will be able to hold at least `capacity` elements without
911    /// reallocating. This method is allowed to allocate for more elements than
912    /// `capacity`. If `capacity` is zero, the vector will not allocate.
913    ///
914    /// It is important to note that although the returned vector has the
915    /// minimum *capacity* specified, the vector will have a zero *length*. For
916    /// an explanation of the difference between length and capacity, see
917    /// *[Capacity and reallocation]*.
918    ///
919    /// If it is important to know the exact allocated capacity of a `Vec`,
920    /// always use the [`capacity`] method after construction.
921    ///
922    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
923    /// and the capacity will always be `usize::MAX`.
924    ///
925    /// [Capacity and reallocation]: #capacity-and-reallocation
926    /// [`capacity`]: Vec::capacity
927    ///
928    /// # Panics
929    ///
930    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(allocator_api)]
936    ///
937    /// use std::alloc::System;
938    ///
939    /// let mut vec = Vec::with_capacity_in(10, System);
940    ///
941    /// // The vector contains no items, even though it has capacity for more
942    /// assert_eq!(vec.len(), 0);
943    /// assert!(vec.capacity() >= 10);
944    ///
945    /// // These are all done without reallocating...
946    /// for i in 0..10 {
947    ///     vec.push(i);
948    /// }
949    /// assert_eq!(vec.len(), 10);
950    /// assert!(vec.capacity() >= 10);
951    ///
952    /// // ...but this may make the vector reallocate
953    /// vec.push(11);
954    /// assert_eq!(vec.len(), 11);
955    /// assert!(vec.capacity() >= 11);
956    ///
957    /// // A vector of a zero-sized type will always over-allocate, since no
958    /// // allocation is necessary
959    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
960    /// assert_eq!(vec_units.capacity(), usize::MAX);
961    /// ```
962    #[cfg(not(no_global_oom_handling))]
963    #[inline]
964    #[unstable(feature = "allocator_api", issue = "32838")]
965    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
966        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
967    }
968
969    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
970    /// with the provided allocator.
971    ///
972    /// The vector will be able to hold at least `capacity` elements without
973    /// reallocating. This method is allowed to allocate for more elements than
974    /// `capacity`. If `capacity` is zero, the vector will not allocate.
975    ///
976    /// # Errors
977    ///
978    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
979    /// or if the allocator reports allocation failure.
980    #[inline]
981    #[unstable(feature = "allocator_api", issue = "32838")]
982    // #[unstable(feature = "try_with_capacity", issue = "91913")]
983    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
984        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
985    }
986
987    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
988    /// and an allocator.
989    ///
990    /// # Safety
991    ///
992    /// This is highly unsafe, due to the number of invariants that aren't
993    /// checked:
994    ///
995    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
996    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
997    ///   (`T` having a less strict alignment is not sufficient, the alignment really
998    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
999    ///   allocated and deallocated with the same layout.)
1000    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1001    ///   to be the same size as the pointer was allocated with. (Because similar to
1002    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1003    /// * `length` needs to be less than or equal to `capacity`.
1004    /// * The first `length` values must be properly initialized values of type `T`.
1005    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1006    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1007    ///   See the safety documentation of [`pointer::offset`].
1008    ///
1009    /// These requirements are always upheld by any `ptr` that has been allocated
1010    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1011    /// upheld.
1012    ///
1013    /// Violating these may cause problems like corrupting the allocator's
1014    /// internal data structures. For example it is **not** safe
1015    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1016    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1017    /// the allocator cares about the alignment, and these two types have different
1018    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1019    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1020    ///
1021    /// The ownership of `ptr` is effectively transferred to the
1022    /// `Vec<T>` which may then deallocate, reallocate or change the
1023    /// contents of memory pointed to by the pointer at will. Ensure
1024    /// that nothing else uses the pointer after calling this
1025    /// function.
1026    ///
1027    /// [`String`]: crate::string::String
1028    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1029    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1030    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1031    ///
1032    /// # Examples
1033    ///
1034    /// ```
1035    /// #![feature(allocator_api)]
1036    ///
1037    /// use std::alloc::System;
1038    ///
1039    /// use std::ptr;
1040    ///
1041    /// let mut v = Vec::with_capacity_in(3, System);
1042    /// v.push(1);
1043    /// v.push(2);
1044    /// v.push(3);
1045    ///
1046    /// // Deconstruct the vector into parts.
1047    /// let (p, len, cap, alloc) = v.into_raw_parts_with_alloc();
1048    ///
1049    /// unsafe {
1050    ///     // Overwrite memory with 4, 5, 6
1051    ///     for i in 0..len {
1052    ///         ptr::write(p.add(i), 4 + i);
1053    ///     }
1054    ///
1055    ///     // Put everything back together into a Vec
1056    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1057    ///     assert_eq!(rebuilt, [4, 5, 6]);
1058    /// }
1059    /// ```
1060    ///
1061    /// Using memory that was allocated elsewhere:
1062    ///
1063    /// ```rust
1064    /// #![feature(allocator_api)]
1065    ///
1066    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1067    ///
1068    /// fn main() {
1069    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1070    ///
1071    ///     let vec = unsafe {
1072    ///         let mem = match Global.allocate(layout) {
1073    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1074    ///             Err(AllocError) => return,
1075    ///         };
1076    ///
1077    ///         mem.write(1_000_000);
1078    ///
1079    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1080    ///     };
1081    ///
1082    ///     assert_eq!(vec, &[1_000_000]);
1083    ///     assert_eq!(vec.capacity(), 16);
1084    /// }
1085    /// ```
1086    #[inline]
1087    #[unstable(feature = "allocator_api", issue = "32838")]
1088    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1089        ub_checks::assert_unsafe_precondition!(
1090            check_library_ub,
1091            "Vec::from_raw_parts_in requires that length <= capacity",
1092            (length: usize = length, capacity: usize = capacity) => length <= capacity
1093        );
1094        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1095    }
1096
1097    #[doc(alias = "from_non_null_parts_in")]
1098    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1099    /// and an allocator.
1100    ///
1101    /// # Safety
1102    ///
1103    /// This is highly unsafe, due to the number of invariants that aren't
1104    /// checked:
1105    ///
1106    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1107    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1108    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1109    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1110    ///   allocated and deallocated with the same layout.)
1111    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1112    ///   to be the same size as the pointer was allocated with. (Because similar to
1113    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1114    /// * `length` needs to be less than or equal to `capacity`.
1115    /// * The first `length` values must be properly initialized values of type `T`.
1116    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1117    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1118    ///   See the safety documentation of [`pointer::offset`].
1119    ///
1120    /// These requirements are always upheld by any `ptr` that has been allocated
1121    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1122    /// upheld.
1123    ///
1124    /// Violating these may cause problems like corrupting the allocator's
1125    /// internal data structures. For example it is **not** safe
1126    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1127    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1128    /// the allocator cares about the alignment, and these two types have different
1129    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1130    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1131    ///
1132    /// The ownership of `ptr` is effectively transferred to the
1133    /// `Vec<T>` which may then deallocate, reallocate or change the
1134    /// contents of memory pointed to by the pointer at will. Ensure
1135    /// that nothing else uses the pointer after calling this
1136    /// function.
1137    ///
1138    /// [`String`]: crate::string::String
1139    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1140    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1141    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1142    ///
1143    /// # Examples
1144    ///
1145    /// ```
1146    /// #![feature(allocator_api, box_vec_non_null)]
1147    ///
1148    /// use std::alloc::System;
1149    ///
1150    /// let mut v = Vec::with_capacity_in(3, System);
1151    /// v.push(1);
1152    /// v.push(2);
1153    /// v.push(3);
1154    ///
1155    /// // Deconstruct the vector into parts.
1156    /// let (p, len, cap, alloc) = v.into_parts_with_alloc();
1157    ///
1158    /// unsafe {
1159    ///     // Overwrite memory with 4, 5, 6
1160    ///     for i in 0..len {
1161    ///         p.add(i).write(4 + i);
1162    ///     }
1163    ///
1164    ///     // Put everything back together into a Vec
1165    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1166    ///     assert_eq!(rebuilt, [4, 5, 6]);
1167    /// }
1168    /// ```
1169    ///
1170    /// Using memory that was allocated elsewhere:
1171    ///
1172    /// ```rust
1173    /// #![feature(allocator_api, box_vec_non_null)]
1174    ///
1175    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1176    ///
1177    /// fn main() {
1178    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1179    ///
1180    ///     let vec = unsafe {
1181    ///         let mem = match Global.allocate(layout) {
1182    ///             Ok(mem) => mem.cast::<u32>(),
1183    ///             Err(AllocError) => return,
1184    ///         };
1185    ///
1186    ///         mem.write(1_000_000);
1187    ///
1188    ///         Vec::from_parts_in(mem, 1, 16, Global)
1189    ///     };
1190    ///
1191    ///     assert_eq!(vec, &[1_000_000]);
1192    ///     assert_eq!(vec.capacity(), 16);
1193    /// }
1194    /// ```
1195    #[inline]
1196    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1197    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1198    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1199        ub_checks::assert_unsafe_precondition!(
1200            check_library_ub,
1201            "Vec::from_parts_in requires that length <= capacity",
1202            (length: usize = length, capacity: usize = capacity) => length <= capacity
1203        );
1204        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1205    }
1206
1207    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1208    ///
1209    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1210    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1211    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1212    ///
1213    /// After calling this function, the caller is responsible for the
1214    /// memory previously managed by the `Vec`. The only way to do
1215    /// this is to convert the raw pointer, length, and capacity back
1216    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1217    /// the destructor to perform the cleanup.
1218    ///
1219    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1220    ///
1221    /// # Examples
1222    ///
1223    /// ```
1224    /// #![feature(allocator_api)]
1225    ///
1226    /// use std::alloc::System;
1227    ///
1228    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1229    /// v.push(-1);
1230    /// v.push(0);
1231    /// v.push(1);
1232    ///
1233    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1234    ///
1235    /// let rebuilt = unsafe {
1236    ///     // We can now make changes to the components, such as
1237    ///     // transmuting the raw pointer to a compatible type.
1238    ///     let ptr = ptr as *mut u32;
1239    ///
1240    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1241    /// };
1242    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1243    /// ```
1244    #[must_use = "losing the pointer will leak memory"]
1245    #[unstable(feature = "allocator_api", issue = "32838")]
1246    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1247        let mut me = ManuallyDrop::new(self);
1248        let len = me.len();
1249        let capacity = me.capacity();
1250        let ptr = me.as_mut_ptr();
1251        let alloc = unsafe { ptr::read(me.allocator()) };
1252        (ptr, len, capacity, alloc)
1253    }
1254
1255    #[doc(alias = "into_non_null_parts_with_alloc")]
1256    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1257    ///
1258    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1259    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1260    /// arguments in the same order as the arguments to [`from_parts_in`].
1261    ///
1262    /// After calling this function, the caller is responsible for the
1263    /// memory previously managed by the `Vec`. The only way to do
1264    /// this is to convert the `NonNull` pointer, length, and capacity back
1265    /// into a `Vec` with the [`from_parts_in`] function, allowing
1266    /// the destructor to perform the cleanup.
1267    ///
1268    /// [`from_parts_in`]: Vec::from_parts_in
1269    ///
1270    /// # Examples
1271    ///
1272    /// ```
1273    /// #![feature(allocator_api, box_vec_non_null)]
1274    ///
1275    /// use std::alloc::System;
1276    ///
1277    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1278    /// v.push(-1);
1279    /// v.push(0);
1280    /// v.push(1);
1281    ///
1282    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1283    ///
1284    /// let rebuilt = unsafe {
1285    ///     // We can now make changes to the components, such as
1286    ///     // transmuting the raw pointer to a compatible type.
1287    ///     let ptr = ptr.cast::<u32>();
1288    ///
1289    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1290    /// };
1291    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1292    /// ```
1293    #[must_use = "losing the pointer will leak memory"]
1294    #[unstable(feature = "allocator_api", issue = "32838")]
1295    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1296    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1297        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1298        // SAFETY: A `Vec` always has a non-null pointer.
1299        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1300    }
1301
1302    /// Returns the total number of elements the vector can hold without
1303    /// reallocating.
1304    ///
1305    /// # Examples
1306    ///
1307    /// ```
1308    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1309    /// vec.push(42);
1310    /// assert!(vec.capacity() >= 10);
1311    /// ```
1312    ///
1313    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1314    ///
1315    /// ```
1316    /// #[derive(Clone)]
1317    /// struct ZeroSized;
1318    ///
1319    /// fn main() {
1320    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1321    ///     let v = vec![ZeroSized; 0];
1322    ///     assert_eq!(v.capacity(), usize::MAX);
1323    /// }
1324    /// ```
1325    #[inline]
1326    #[stable(feature = "rust1", since = "1.0.0")]
1327    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1328    pub const fn capacity(&self) -> usize {
1329        self.buf.capacity()
1330    }
1331
1332    /// Reserves capacity for at least `additional` more elements to be inserted
1333    /// in the given `Vec<T>`. The collection may reserve more space to
1334    /// speculatively avoid frequent reallocations. After calling `reserve`,
1335    /// capacity will be greater than or equal to `self.len() + additional`.
1336    /// Does nothing if capacity is already sufficient.
1337    ///
1338    /// # Panics
1339    ///
1340    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1341    ///
1342    /// # Examples
1343    ///
1344    /// ```
1345    /// let mut vec = vec![1];
1346    /// vec.reserve(10);
1347    /// assert!(vec.capacity() >= 11);
1348    /// ```
1349    #[cfg(not(no_global_oom_handling))]
1350    #[stable(feature = "rust1", since = "1.0.0")]
1351    #[rustc_diagnostic_item = "vec_reserve"]
1352    pub fn reserve(&mut self, additional: usize) {
1353        self.buf.reserve(self.len, additional);
1354    }
1355
1356    /// Reserves the minimum capacity for at least `additional` more elements to
1357    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1358    /// deliberately over-allocate to speculatively avoid frequent allocations.
1359    /// After calling `reserve_exact`, capacity will be greater than or equal to
1360    /// `self.len() + additional`. Does nothing if the capacity is already
1361    /// sufficient.
1362    ///
1363    /// Note that the allocator may give the collection more space than it
1364    /// requests. Therefore, capacity can not be relied upon to be precisely
1365    /// minimal. Prefer [`reserve`] if future insertions are expected.
1366    ///
1367    /// [`reserve`]: Vec::reserve
1368    ///
1369    /// # Panics
1370    ///
1371    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1372    ///
1373    /// # Examples
1374    ///
1375    /// ```
1376    /// let mut vec = vec![1];
1377    /// vec.reserve_exact(10);
1378    /// assert!(vec.capacity() >= 11);
1379    /// ```
1380    #[cfg(not(no_global_oom_handling))]
1381    #[stable(feature = "rust1", since = "1.0.0")]
1382    pub fn reserve_exact(&mut self, additional: usize) {
1383        self.buf.reserve_exact(self.len, additional);
1384    }
1385
1386    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1387    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1388    /// frequent reallocations. After calling `try_reserve`, capacity will be
1389    /// greater than or equal to `self.len() + additional` if it returns
1390    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1391    /// preserves the contents even if an error occurs.
1392    ///
1393    /// # Errors
1394    ///
1395    /// If the capacity overflows, or the allocator reports a failure, then an error
1396    /// is returned.
1397    ///
1398    /// # Examples
1399    ///
1400    /// ```
1401    /// use std::collections::TryReserveError;
1402    ///
1403    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1404    ///     let mut output = Vec::new();
1405    ///
1406    ///     // Pre-reserve the memory, exiting if we can't
1407    ///     output.try_reserve(data.len())?;
1408    ///
1409    ///     // Now we know this can't OOM in the middle of our complex work
1410    ///     output.extend(data.iter().map(|&val| {
1411    ///         val * 2 + 5 // very complicated
1412    ///     }));
1413    ///
1414    ///     Ok(output)
1415    /// }
1416    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1417    /// ```
1418    #[stable(feature = "try_reserve", since = "1.57.0")]
1419    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1420        self.buf.try_reserve(self.len, additional)
1421    }
1422
1423    /// Tries to reserve the minimum capacity for at least `additional`
1424    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1425    /// this will not deliberately over-allocate to speculatively avoid frequent
1426    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1427    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1428    /// Does nothing if the capacity is already sufficient.
1429    ///
1430    /// Note that the allocator may give the collection more space than it
1431    /// requests. Therefore, capacity can not be relied upon to be precisely
1432    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1433    ///
1434    /// [`try_reserve`]: Vec::try_reserve
1435    ///
1436    /// # Errors
1437    ///
1438    /// If the capacity overflows, or the allocator reports a failure, then an error
1439    /// is returned.
1440    ///
1441    /// # Examples
1442    ///
1443    /// ```
1444    /// use std::collections::TryReserveError;
1445    ///
1446    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1447    ///     let mut output = Vec::new();
1448    ///
1449    ///     // Pre-reserve the memory, exiting if we can't
1450    ///     output.try_reserve_exact(data.len())?;
1451    ///
1452    ///     // Now we know this can't OOM in the middle of our complex work
1453    ///     output.extend(data.iter().map(|&val| {
1454    ///         val * 2 + 5 // very complicated
1455    ///     }));
1456    ///
1457    ///     Ok(output)
1458    /// }
1459    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1460    /// ```
1461    #[stable(feature = "try_reserve", since = "1.57.0")]
1462    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1463        self.buf.try_reserve_exact(self.len, additional)
1464    }
1465
1466    /// Shrinks the capacity of the vector as much as possible.
1467    ///
1468    /// The behavior of this method depends on the allocator, which may either shrink the vector
1469    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1470    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1471    ///
1472    /// [`with_capacity`]: Vec::with_capacity
1473    ///
1474    /// # Examples
1475    ///
1476    /// ```
1477    /// let mut vec = Vec::with_capacity(10);
1478    /// vec.extend([1, 2, 3]);
1479    /// assert!(vec.capacity() >= 10);
1480    /// vec.shrink_to_fit();
1481    /// assert!(vec.capacity() >= 3);
1482    /// ```
1483    #[cfg(not(no_global_oom_handling))]
1484    #[stable(feature = "rust1", since = "1.0.0")]
1485    #[inline]
1486    pub fn shrink_to_fit(&mut self) {
1487        // The capacity is never less than the length, and there's nothing to do when
1488        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1489        // by only calling it with a greater capacity.
1490        if self.capacity() > self.len {
1491            self.buf.shrink_to_fit(self.len);
1492        }
1493    }
1494
1495    /// Shrinks the capacity of the vector with a lower bound.
1496    ///
1497    /// The capacity will remain at least as large as both the length
1498    /// and the supplied value.
1499    ///
1500    /// If the current capacity is less than the lower limit, this is a no-op.
1501    ///
1502    /// # Examples
1503    ///
1504    /// ```
1505    /// let mut vec = Vec::with_capacity(10);
1506    /// vec.extend([1, 2, 3]);
1507    /// assert!(vec.capacity() >= 10);
1508    /// vec.shrink_to(4);
1509    /// assert!(vec.capacity() >= 4);
1510    /// vec.shrink_to(0);
1511    /// assert!(vec.capacity() >= 3);
1512    /// ```
1513    #[cfg(not(no_global_oom_handling))]
1514    #[stable(feature = "shrink_to", since = "1.56.0")]
1515    pub fn shrink_to(&mut self, min_capacity: usize) {
1516        if self.capacity() > min_capacity {
1517            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1518        }
1519    }
1520
1521    /// Converts the vector into [`Box<[T]>`][owned slice].
1522    ///
1523    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1524    ///
1525    /// [owned slice]: Box
1526    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1527    ///
1528    /// # Examples
1529    ///
1530    /// ```
1531    /// let v = vec![1, 2, 3];
1532    ///
1533    /// let slice = v.into_boxed_slice();
1534    /// ```
1535    ///
1536    /// Any excess capacity is removed:
1537    ///
1538    /// ```
1539    /// let mut vec = Vec::with_capacity(10);
1540    /// vec.extend([1, 2, 3]);
1541    ///
1542    /// assert!(vec.capacity() >= 10);
1543    /// let slice = vec.into_boxed_slice();
1544    /// assert_eq!(slice.into_vec().capacity(), 3);
1545    /// ```
1546    #[cfg(not(no_global_oom_handling))]
1547    #[stable(feature = "rust1", since = "1.0.0")]
1548    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1549        unsafe {
1550            self.shrink_to_fit();
1551            let me = ManuallyDrop::new(self);
1552            let buf = ptr::read(&me.buf);
1553            let len = me.len();
1554            buf.into_box(len).assume_init()
1555        }
1556    }
1557
1558    /// Shortens the vector, keeping the first `len` elements and dropping
1559    /// the rest.
1560    ///
1561    /// If `len` is greater or equal to the vector's current length, this has
1562    /// no effect.
1563    ///
1564    /// The [`drain`] method can emulate `truncate`, but causes the excess
1565    /// elements to be returned instead of dropped.
1566    ///
1567    /// Note that this method has no effect on the allocated capacity
1568    /// of the vector.
1569    ///
1570    /// # Examples
1571    ///
1572    /// Truncating a five element vector to two elements:
1573    ///
1574    /// ```
1575    /// let mut vec = vec![1, 2, 3, 4, 5];
1576    /// vec.truncate(2);
1577    /// assert_eq!(vec, [1, 2]);
1578    /// ```
1579    ///
1580    /// No truncation occurs when `len` is greater than the vector's current
1581    /// length:
1582    ///
1583    /// ```
1584    /// let mut vec = vec![1, 2, 3];
1585    /// vec.truncate(8);
1586    /// assert_eq!(vec, [1, 2, 3]);
1587    /// ```
1588    ///
1589    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1590    /// method.
1591    ///
1592    /// ```
1593    /// let mut vec = vec![1, 2, 3];
1594    /// vec.truncate(0);
1595    /// assert_eq!(vec, []);
1596    /// ```
1597    ///
1598    /// [`clear`]: Vec::clear
1599    /// [`drain`]: Vec::drain
1600    #[stable(feature = "rust1", since = "1.0.0")]
1601    pub fn truncate(&mut self, len: usize) {
1602        // This is safe because:
1603        //
1604        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1605        //   case avoids creating an invalid slice, and
1606        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1607        //   such that no value will be dropped twice in case `drop_in_place`
1608        //   were to panic once (if it panics twice, the program aborts).
1609        unsafe {
1610            // Note: It's intentional that this is `>` and not `>=`.
1611            //       Changing it to `>=` has negative performance
1612            //       implications in some cases. See #78884 for more.
1613            if len > self.len {
1614                return;
1615            }
1616            let remaining_len = self.len - len;
1617            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1618            self.len = len;
1619            ptr::drop_in_place(s);
1620        }
1621    }
1622
1623    /// Extracts a slice containing the entire vector.
1624    ///
1625    /// Equivalent to `&s[..]`.
1626    ///
1627    /// # Examples
1628    ///
1629    /// ```
1630    /// use std::io::{self, Write};
1631    /// let buffer = vec![1, 2, 3, 5, 8];
1632    /// io::sink().write(buffer.as_slice()).unwrap();
1633    /// ```
1634    #[inline]
1635    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1636    #[rustc_diagnostic_item = "vec_as_slice"]
1637    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1638    pub const fn as_slice(&self) -> &[T] {
1639        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1640        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1641        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1642        // "wrap" through overflowing memory addresses.
1643        //
1644        // * Vec API guarantees that self.buf:
1645        //      * contains only properly-initialized items within 0..len
1646        //      * is aligned, contiguous, and valid for `len` reads
1647        //      * obeys size and address-wrapping constraints
1648        //
1649        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1650        //   check ensures that it is not possible to mutably alias `self.buf` within the
1651        //   returned lifetime.
1652        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1653    }
1654
1655    /// Extracts a mutable slice of the entire vector.
1656    ///
1657    /// Equivalent to `&mut s[..]`.
1658    ///
1659    /// # Examples
1660    ///
1661    /// ```
1662    /// use std::io::{self, Read};
1663    /// let mut buffer = vec![0; 3];
1664    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1665    /// ```
1666    #[inline]
1667    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1668    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1669    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1670    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1671        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1672        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1673        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1674        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1675        //
1676        // * Vec API guarantees that self.buf:
1677        //      * contains only properly-initialized items within 0..len
1678        //      * is aligned, contiguous, and valid for `len` reads
1679        //      * obeys size and address-wrapping constraints
1680        //
1681        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1682        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1683        //   within the returned lifetime.
1684        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1685    }
1686
1687    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1688    /// valid for zero sized reads if the vector didn't allocate.
1689    ///
1690    /// The caller must ensure that the vector outlives the pointer this
1691    /// function returns, or else it will end up dangling.
1692    /// Modifying the vector may cause its buffer to be reallocated,
1693    /// which would also make any pointers to it invalid.
1694    ///
1695    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1696    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1697    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1698    ///
1699    /// This method guarantees that for the purpose of the aliasing model, this method
1700    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1701    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1702    /// and [`as_non_null`].
1703    /// Note that calling other methods that materialize mutable references to the slice,
1704    /// or mutable references to specific elements you are planning on accessing through this pointer,
1705    /// as well as writing to those elements, may still invalidate this pointer.
1706    /// See the second example below for how this guarantee can be used.
1707    ///
1708    ///
1709    /// # Examples
1710    ///
1711    /// ```
1712    /// let x = vec![1, 2, 4];
1713    /// let x_ptr = x.as_ptr();
1714    ///
1715    /// unsafe {
1716    ///     for i in 0..x.len() {
1717    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1718    ///     }
1719    /// }
1720    /// ```
1721    ///
1722    /// Due to the aliasing guarantee, the following code is legal:
1723    ///
1724    /// ```rust
1725    /// unsafe {
1726    ///     let mut v = vec![0, 1, 2];
1727    ///     let ptr1 = v.as_ptr();
1728    ///     let _ = ptr1.read();
1729    ///     let ptr2 = v.as_mut_ptr().offset(2);
1730    ///     ptr2.write(2);
1731    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1732    ///     // because it mutated a different element:
1733    ///     let _ = ptr1.read();
1734    /// }
1735    /// ```
1736    ///
1737    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1738    /// [`as_ptr`]: Vec::as_ptr
1739    /// [`as_non_null`]: Vec::as_non_null
1740    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1741    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1742    #[rustc_never_returns_null_ptr]
1743    #[rustc_as_ptr]
1744    #[inline]
1745    pub const fn as_ptr(&self) -> *const T {
1746        // We shadow the slice method of the same name to avoid going through
1747        // `deref`, which creates an intermediate reference.
1748        self.buf.ptr()
1749    }
1750
1751    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1752    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1753    ///
1754    /// The caller must ensure that the vector outlives the pointer this
1755    /// function returns, or else it will end up dangling.
1756    /// Modifying the vector may cause its buffer to be reallocated,
1757    /// which would also make any pointers to it invalid.
1758    ///
1759    /// This method guarantees that for the purpose of the aliasing model, this method
1760    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1761    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1762    /// and [`as_non_null`].
1763    /// Note that calling other methods that materialize references to the slice,
1764    /// or references to specific elements you are planning on accessing through this pointer,
1765    /// may still invalidate this pointer.
1766    /// See the second example below for how this guarantee can be used.
1767    ///
1768    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1769    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1770    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1771    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1772    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1773    ///
1774    /// # Examples
1775    ///
1776    /// ```
1777    /// // Allocate vector big enough for 4 elements.
1778    /// let size = 4;
1779    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1780    /// let x_ptr = x.as_mut_ptr();
1781    ///
1782    /// // Initialize elements via raw pointer writes, then set length.
1783    /// unsafe {
1784    ///     for i in 0..size {
1785    ///         *x_ptr.add(i) = i as i32;
1786    ///     }
1787    ///     x.set_len(size);
1788    /// }
1789    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1790    /// ```
1791    ///
1792    /// Due to the aliasing guarantee, the following code is legal:
1793    ///
1794    /// ```rust
1795    /// unsafe {
1796    ///     let mut v = vec![0];
1797    ///     let ptr1 = v.as_mut_ptr();
1798    ///     ptr1.write(1);
1799    ///     let ptr2 = v.as_mut_ptr();
1800    ///     ptr2.write(2);
1801    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1802    ///     ptr1.write(3);
1803    /// }
1804    /// ```
1805    ///
1806    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1807    ///
1808    /// ```
1809    /// use std::mem::{ManuallyDrop, MaybeUninit};
1810    ///
1811    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1812    /// let ptr = v.as_mut_ptr();
1813    /// let capacity = v.capacity();
1814    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1815    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1816    /// drop(unsafe { Box::from_raw(slice_ptr) });
1817    /// ```
1818    ///
1819    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1820    /// [`as_ptr`]: Vec::as_ptr
1821    /// [`as_non_null`]: Vec::as_non_null
1822    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1823    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1824    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1825    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1826    #[rustc_never_returns_null_ptr]
1827    #[rustc_as_ptr]
1828    #[inline]
1829    pub const fn as_mut_ptr(&mut self) -> *mut T {
1830        // We shadow the slice method of the same name to avoid going through
1831        // `deref_mut`, which creates an intermediate reference.
1832        self.buf.ptr()
1833    }
1834
1835    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1836    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1837    ///
1838    /// The caller must ensure that the vector outlives the pointer this
1839    /// function returns, or else it will end up dangling.
1840    /// Modifying the vector may cause its buffer to be reallocated,
1841    /// which would also make any pointers to it invalid.
1842    ///
1843    /// This method guarantees that for the purpose of the aliasing model, this method
1844    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1845    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1846    /// and [`as_non_null`].
1847    /// Note that calling other methods that materialize references to the slice,
1848    /// or references to specific elements you are planning on accessing through this pointer,
1849    /// may still invalidate this pointer.
1850    /// See the second example below for how this guarantee can be used.
1851    ///
1852    /// # Examples
1853    ///
1854    /// ```
1855    /// #![feature(box_vec_non_null)]
1856    ///
1857    /// // Allocate vector big enough for 4 elements.
1858    /// let size = 4;
1859    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1860    /// let x_ptr = x.as_non_null();
1861    ///
1862    /// // Initialize elements via raw pointer writes, then set length.
1863    /// unsafe {
1864    ///     for i in 0..size {
1865    ///         x_ptr.add(i).write(i as i32);
1866    ///     }
1867    ///     x.set_len(size);
1868    /// }
1869    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1870    /// ```
1871    ///
1872    /// Due to the aliasing guarantee, the following code is legal:
1873    ///
1874    /// ```rust
1875    /// #![feature(box_vec_non_null)]
1876    ///
1877    /// unsafe {
1878    ///     let mut v = vec![0];
1879    ///     let ptr1 = v.as_non_null();
1880    ///     ptr1.write(1);
1881    ///     let ptr2 = v.as_non_null();
1882    ///     ptr2.write(2);
1883    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1884    ///     ptr1.write(3);
1885    /// }
1886    /// ```
1887    ///
1888    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1889    /// [`as_ptr`]: Vec::as_ptr
1890    /// [`as_non_null`]: Vec::as_non_null
1891    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1892    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1893    #[inline]
1894    pub const fn as_non_null(&mut self) -> NonNull<T> {
1895        self.buf.non_null()
1896    }
1897
1898    /// Returns a reference to the underlying allocator.
1899    #[unstable(feature = "allocator_api", issue = "32838")]
1900    #[inline]
1901    pub fn allocator(&self) -> &A {
1902        self.buf.allocator()
1903    }
1904
1905    /// Forces the length of the vector to `new_len`.
1906    ///
1907    /// This is a low-level operation that maintains none of the normal
1908    /// invariants of the type. Normally changing the length of a vector
1909    /// is done using one of the safe operations instead, such as
1910    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1911    ///
1912    /// [`truncate`]: Vec::truncate
1913    /// [`resize`]: Vec::resize
1914    /// [`extend`]: Extend::extend
1915    /// [`clear`]: Vec::clear
1916    ///
1917    /// # Safety
1918    ///
1919    /// - `new_len` must be less than or equal to [`capacity()`].
1920    /// - The elements at `old_len..new_len` must be initialized.
1921    ///
1922    /// [`capacity()`]: Vec::capacity
1923    ///
1924    /// # Examples
1925    ///
1926    /// See [`spare_capacity_mut()`] for an example with safe
1927    /// initialization of capacity elements and use of this method.
1928    ///
1929    /// `set_len()` can be useful for situations in which the vector
1930    /// is serving as a buffer for other code, particularly over FFI:
1931    ///
1932    /// ```no_run
1933    /// # #![allow(dead_code)]
1934    /// # // This is just a minimal skeleton for the doc example;
1935    /// # // don't use this as a starting point for a real library.
1936    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1937    /// # const Z_OK: i32 = 0;
1938    /// # unsafe extern "C" {
1939    /// #     fn deflateGetDictionary(
1940    /// #         strm: *mut std::ffi::c_void,
1941    /// #         dictionary: *mut u8,
1942    /// #         dictLength: *mut usize,
1943    /// #     ) -> i32;
1944    /// # }
1945    /// # impl StreamWrapper {
1946    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1947    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1948    ///     let mut dict = Vec::with_capacity(32_768);
1949    ///     let mut dict_length = 0;
1950    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1951    ///     // 1. `dict_length` elements were initialized.
1952    ///     // 2. `dict_length` <= the capacity (32_768)
1953    ///     // which makes `set_len` safe to call.
1954    ///     unsafe {
1955    ///         // Make the FFI call...
1956    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1957    ///         if r == Z_OK {
1958    ///             // ...and update the length to what was initialized.
1959    ///             dict.set_len(dict_length);
1960    ///             Some(dict)
1961    ///         } else {
1962    ///             None
1963    ///         }
1964    ///     }
1965    /// }
1966    /// # }
1967    /// ```
1968    ///
1969    /// While the following example is sound, there is a memory leak since
1970    /// the inner vectors were not freed prior to the `set_len` call:
1971    ///
1972    /// ```
1973    /// let mut vec = vec![vec![1, 0, 0],
1974    ///                    vec![0, 1, 0],
1975    ///                    vec![0, 0, 1]];
1976    /// // SAFETY:
1977    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1978    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1979    /// unsafe {
1980    ///     vec.set_len(0);
1981    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
1982    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1983    /// #   vec.set_len(3);
1984    /// }
1985    /// ```
1986    ///
1987    /// Normally, here, one would use [`clear`] instead to correctly drop
1988    /// the contents and thus not leak memory.
1989    ///
1990    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1991    #[inline]
1992    #[stable(feature = "rust1", since = "1.0.0")]
1993    pub unsafe fn set_len(&mut self, new_len: usize) {
1994        ub_checks::assert_unsafe_precondition!(
1995            check_library_ub,
1996            "Vec::set_len requires that new_len <= capacity()",
1997            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1998        );
1999
2000        self.len = new_len;
2001    }
2002
2003    /// Removes an element from the vector and returns it.
2004    ///
2005    /// The removed element is replaced by the last element of the vector.
2006    ///
2007    /// This does not preserve ordering of the remaining elements, but is *O*(1).
2008    /// If you need to preserve the element order, use [`remove`] instead.
2009    ///
2010    /// [`remove`]: Vec::remove
2011    ///
2012    /// # Panics
2013    ///
2014    /// Panics if `index` is out of bounds.
2015    ///
2016    /// # Examples
2017    ///
2018    /// ```
2019    /// let mut v = vec!["foo", "bar", "baz", "qux"];
2020    ///
2021    /// assert_eq!(v.swap_remove(1), "bar");
2022    /// assert_eq!(v, ["foo", "qux", "baz"]);
2023    ///
2024    /// assert_eq!(v.swap_remove(0), "foo");
2025    /// assert_eq!(v, ["baz", "qux"]);
2026    /// ```
2027    #[inline]
2028    #[stable(feature = "rust1", since = "1.0.0")]
2029    pub fn swap_remove(&mut self, index: usize) -> T {
2030        #[cold]
2031        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2032        #[optimize(size)]
2033        fn assert_failed(index: usize, len: usize) -> ! {
2034            panic!("swap_remove index (is {index}) should be < len (is {len})");
2035        }
2036
2037        let len = self.len();
2038        if index >= len {
2039            assert_failed(index, len);
2040        }
2041        unsafe {
2042            // We replace self[index] with the last element. Note that if the
2043            // bounds check above succeeds there must be a last element (which
2044            // can be self[index] itself).
2045            let value = ptr::read(self.as_ptr().add(index));
2046            let base_ptr = self.as_mut_ptr();
2047            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2048            self.set_len(len - 1);
2049            value
2050        }
2051    }
2052
2053    /// Inserts an element at position `index` within the vector, shifting all
2054    /// elements after it to the right.
2055    ///
2056    /// # Panics
2057    ///
2058    /// Panics if `index > len`.
2059    ///
2060    /// # Examples
2061    ///
2062    /// ```
2063    /// let mut vec = vec!['a', 'b', 'c'];
2064    /// vec.insert(1, 'd');
2065    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2066    /// vec.insert(4, 'e');
2067    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2068    /// ```
2069    ///
2070    /// # Time complexity
2071    ///
2072    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2073    /// shifted to the right. In the worst case, all elements are shifted when
2074    /// the insertion index is 0.
2075    #[cfg(not(no_global_oom_handling))]
2076    #[stable(feature = "rust1", since = "1.0.0")]
2077    #[track_caller]
2078    pub fn insert(&mut self, index: usize, element: T) {
2079        let _ = self.insert_mut(index, element);
2080    }
2081
2082    /// Inserts an element at position `index` within the vector, shifting all
2083    /// elements after it to the right, and returning a reference to the new
2084    /// element.
2085    ///
2086    /// # Panics
2087    ///
2088    /// Panics if `index > len`.
2089    ///
2090    /// # Examples
2091    ///
2092    /// ```
2093    /// #![feature(push_mut)]
2094    /// let mut vec = vec![1, 3, 5, 9];
2095    /// let x = vec.insert_mut(3, 6);
2096    /// *x += 1;
2097    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2098    /// ```
2099    ///
2100    /// # Time complexity
2101    ///
2102    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2103    /// shifted to the right. In the worst case, all elements are shifted when
2104    /// the insertion index is 0.
2105    #[cfg(not(no_global_oom_handling))]
2106    #[inline]
2107    #[unstable(feature = "push_mut", issue = "135974")]
2108    #[track_caller]
2109    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2110    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2111        #[cold]
2112        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2113        #[track_caller]
2114        #[optimize(size)]
2115        fn assert_failed(index: usize, len: usize) -> ! {
2116            panic!("insertion index (is {index}) should be <= len (is {len})");
2117        }
2118
2119        let len = self.len();
2120        if index > len {
2121            assert_failed(index, len);
2122        }
2123
2124        // space for the new element
2125        if len == self.buf.capacity() {
2126            self.buf.grow_one();
2127        }
2128
2129        unsafe {
2130            // infallible
2131            // The spot to put the new value
2132            let p = self.as_mut_ptr().add(index);
2133            {
2134                if index < len {
2135                    // Shift everything over to make space. (Duplicating the
2136                    // `index`th element into two consecutive places.)
2137                    ptr::copy(p, p.add(1), len - index);
2138                }
2139                // Write it in, overwriting the first copy of the `index`th
2140                // element.
2141                ptr::write(p, element);
2142            }
2143            self.set_len(len + 1);
2144            &mut *p
2145        }
2146    }
2147
2148    /// Removes and returns the element at position `index` within the vector,
2149    /// shifting all elements after it to the left.
2150    ///
2151    /// Note: Because this shifts over the remaining elements, it has a
2152    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2153    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2154    /// elements from the beginning of the `Vec`, consider using
2155    /// [`VecDeque::pop_front`] instead.
2156    ///
2157    /// [`swap_remove`]: Vec::swap_remove
2158    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2159    ///
2160    /// # Panics
2161    ///
2162    /// Panics if `index` is out of bounds.
2163    ///
2164    /// # Examples
2165    ///
2166    /// ```
2167    /// let mut v = vec!['a', 'b', 'c'];
2168    /// assert_eq!(v.remove(1), 'b');
2169    /// assert_eq!(v, ['a', 'c']);
2170    /// ```
2171    #[stable(feature = "rust1", since = "1.0.0")]
2172    #[track_caller]
2173    #[rustc_confusables("delete", "take")]
2174    pub fn remove(&mut self, index: usize) -> T {
2175        #[cold]
2176        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2177        #[track_caller]
2178        #[optimize(size)]
2179        fn assert_failed(index: usize, len: usize) -> ! {
2180            panic!("removal index (is {index}) should be < len (is {len})");
2181        }
2182
2183        match self.try_remove(index) {
2184            Some(elem) => elem,
2185            None => assert_failed(index, self.len()),
2186        }
2187    }
2188
2189    /// Remove and return the element at position `index` within the vector,
2190    /// shifting all elements after it to the left, or [`None`] if it does not
2191    /// exist.
2192    ///
2193    /// Note: Because this shifts over the remaining elements, it has a
2194    /// worst-case performance of *O*(*n*). If you'd like to remove
2195    /// elements from the beginning of the `Vec`, consider using
2196    /// [`VecDeque::pop_front`] instead.
2197    ///
2198    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2199    ///
2200    /// # Examples
2201    ///
2202    /// ```
2203    /// #![feature(vec_try_remove)]
2204    /// let mut v = vec![1, 2, 3];
2205    /// assert_eq!(v.try_remove(0), Some(1));
2206    /// assert_eq!(v.try_remove(2), None);
2207    /// ```
2208    #[unstable(feature = "vec_try_remove", issue = "146954")]
2209    #[rustc_confusables("delete", "take", "remove")]
2210    pub fn try_remove(&mut self, index: usize) -> Option<T> {
2211        let len = self.len();
2212        if index >= len {
2213            return None;
2214        }
2215        unsafe {
2216            // infallible
2217            let ret;
2218            {
2219                // the place we are taking from.
2220                let ptr = self.as_mut_ptr().add(index);
2221                // copy it out, unsafely having a copy of the value on
2222                // the stack and in the vector at the same time.
2223                ret = ptr::read(ptr);
2224
2225                // Shift everything down to fill in that spot.
2226                ptr::copy(ptr.add(1), ptr, len - index - 1);
2227            }
2228            self.set_len(len - 1);
2229            Some(ret)
2230        }
2231    }
2232
2233    /// Retains only the elements specified by the predicate.
2234    ///
2235    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2236    /// This method operates in place, visiting each element exactly once in the
2237    /// original order, and preserves the order of the retained elements.
2238    ///
2239    /// # Examples
2240    ///
2241    /// ```
2242    /// let mut vec = vec![1, 2, 3, 4];
2243    /// vec.retain(|&x| x % 2 == 0);
2244    /// assert_eq!(vec, [2, 4]);
2245    /// ```
2246    ///
2247    /// Because the elements are visited exactly once in the original order,
2248    /// external state may be used to decide which elements to keep.
2249    ///
2250    /// ```
2251    /// let mut vec = vec![1, 2, 3, 4, 5];
2252    /// let keep = [false, true, true, false, true];
2253    /// let mut iter = keep.iter();
2254    /// vec.retain(|_| *iter.next().unwrap());
2255    /// assert_eq!(vec, [2, 3, 5]);
2256    /// ```
2257    #[stable(feature = "rust1", since = "1.0.0")]
2258    pub fn retain<F>(&mut self, mut f: F)
2259    where
2260        F: FnMut(&T) -> bool,
2261    {
2262        self.retain_mut(|elem| f(elem));
2263    }
2264
2265    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2266    ///
2267    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2268    /// This method operates in place, visiting each element exactly once in the
2269    /// original order, and preserves the order of the retained elements.
2270    ///
2271    /// # Examples
2272    ///
2273    /// ```
2274    /// let mut vec = vec![1, 2, 3, 4];
2275    /// vec.retain_mut(|x| if *x <= 3 {
2276    ///     *x += 1;
2277    ///     true
2278    /// } else {
2279    ///     false
2280    /// });
2281    /// assert_eq!(vec, [2, 3, 4]);
2282    /// ```
2283    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2284    pub fn retain_mut<F>(&mut self, mut f: F)
2285    where
2286        F: FnMut(&mut T) -> bool,
2287    {
2288        let original_len = self.len();
2289
2290        if original_len == 0 {
2291            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2292            return;
2293        }
2294
2295        // Avoid double drop if the drop guard is not executed,
2296        // since we may make some holes during the process.
2297        unsafe { self.set_len(0) };
2298
2299        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2300        //      |<-              processed len   ->| ^- next to check
2301        //                  |<-  deleted cnt     ->|
2302        //      |<-              original_len                          ->|
2303        // Kept: Elements which predicate returns true on.
2304        // Hole: Moved or dropped element slot.
2305        // Unchecked: Unchecked valid elements.
2306        //
2307        // This drop guard will be invoked when predicate or `drop` of element panicked.
2308        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2309        // In cases when predicate and `drop` never panick, it will be optimized out.
2310        struct BackshiftOnDrop<'a, T, A: Allocator> {
2311            v: &'a mut Vec<T, A>,
2312            processed_len: usize,
2313            deleted_cnt: usize,
2314            original_len: usize,
2315        }
2316
2317        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2318            fn drop(&mut self) {
2319                if self.deleted_cnt > 0 {
2320                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2321                    unsafe {
2322                        ptr::copy(
2323                            self.v.as_ptr().add(self.processed_len),
2324                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2325                            self.original_len - self.processed_len,
2326                        );
2327                    }
2328                }
2329                // SAFETY: After filling holes, all items are in contiguous memory.
2330                unsafe {
2331                    self.v.set_len(self.original_len - self.deleted_cnt);
2332                }
2333            }
2334        }
2335
2336        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2337
2338        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2339            original_len: usize,
2340            f: &mut F,
2341            g: &mut BackshiftOnDrop<'_, T, A>,
2342        ) where
2343            F: FnMut(&mut T) -> bool,
2344        {
2345            while g.processed_len != original_len {
2346                // SAFETY: Unchecked element must be valid.
2347                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2348                if !f(cur) {
2349                    // Advance early to avoid double drop if `drop_in_place` panicked.
2350                    g.processed_len += 1;
2351                    g.deleted_cnt += 1;
2352                    // SAFETY: We never touch this element again after dropped.
2353                    unsafe { ptr::drop_in_place(cur) };
2354                    // We already advanced the counter.
2355                    if DELETED {
2356                        continue;
2357                    } else {
2358                        break;
2359                    }
2360                }
2361                if DELETED {
2362                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2363                    // We use copy for move, and never touch this element again.
2364                    unsafe {
2365                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2366                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2367                    }
2368                }
2369                g.processed_len += 1;
2370            }
2371        }
2372
2373        // Stage 1: Nothing was deleted.
2374        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2375
2376        // Stage 2: Some elements were deleted.
2377        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2378
2379        // All item are processed. This can be optimized to `set_len` by LLVM.
2380        drop(g);
2381    }
2382
2383    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2384    /// key.
2385    ///
2386    /// If the vector is sorted, this removes all duplicates.
2387    ///
2388    /// # Examples
2389    ///
2390    /// ```
2391    /// let mut vec = vec![10, 20, 21, 30, 20];
2392    ///
2393    /// vec.dedup_by_key(|i| *i / 10);
2394    ///
2395    /// assert_eq!(vec, [10, 20, 30, 20]);
2396    /// ```
2397    #[stable(feature = "dedup_by", since = "1.16.0")]
2398    #[inline]
2399    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2400    where
2401        F: FnMut(&mut T) -> K,
2402        K: PartialEq,
2403    {
2404        self.dedup_by(|a, b| key(a) == key(b))
2405    }
2406
2407    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2408    /// relation.
2409    ///
2410    /// The `same_bucket` function is passed references to two elements from the vector and
2411    /// must determine if the elements compare equal. The elements are passed in opposite order
2412    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2413    ///
2414    /// If the vector is sorted, this removes all duplicates.
2415    ///
2416    /// # Examples
2417    ///
2418    /// ```
2419    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2420    ///
2421    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2422    ///
2423    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2424    /// ```
2425    #[stable(feature = "dedup_by", since = "1.16.0")]
2426    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2427    where
2428        F: FnMut(&mut T, &mut T) -> bool,
2429    {
2430        let len = self.len();
2431        if len <= 1 {
2432            return;
2433        }
2434
2435        // Check if we ever want to remove anything.
2436        // This allows to use copy_non_overlapping in next cycle.
2437        // And avoids any memory writes if we don't need to remove anything.
2438        let mut first_duplicate_idx: usize = 1;
2439        let start = self.as_mut_ptr();
2440        while first_duplicate_idx != len {
2441            let found_duplicate = unsafe {
2442                // SAFETY: first_duplicate always in range [1..len)
2443                // Note that we start iteration from 1 so we never overflow.
2444                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2445                let current = start.add(first_duplicate_idx);
2446                // We explicitly say in docs that references are reversed.
2447                same_bucket(&mut *current, &mut *prev)
2448            };
2449            if found_duplicate {
2450                break;
2451            }
2452            first_duplicate_idx += 1;
2453        }
2454        // Don't need to remove anything.
2455        // We cannot get bigger than len.
2456        if first_duplicate_idx == len {
2457            return;
2458        }
2459
2460        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2461        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2462            /* Offset of the element we want to check if it is duplicate */
2463            read: usize,
2464
2465            /* Offset of the place where we want to place the non-duplicate
2466             * when we find it. */
2467            write: usize,
2468
2469            /* The Vec that would need correction if `same_bucket` panicked */
2470            vec: &'a mut Vec<T, A>,
2471        }
2472
2473        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2474            fn drop(&mut self) {
2475                /* This code gets executed when `same_bucket` panics */
2476
2477                /* SAFETY: invariant guarantees that `read - write`
2478                 * and `len - read` never overflow and that the copy is always
2479                 * in-bounds. */
2480                unsafe {
2481                    let ptr = self.vec.as_mut_ptr();
2482                    let len = self.vec.len();
2483
2484                    /* How many items were left when `same_bucket` panicked.
2485                     * Basically vec[read..].len() */
2486                    let items_left = len.wrapping_sub(self.read);
2487
2488                    /* Pointer to first item in vec[write..write+items_left] slice */
2489                    let dropped_ptr = ptr.add(self.write);
2490                    /* Pointer to first item in vec[read..] slice */
2491                    let valid_ptr = ptr.add(self.read);
2492
2493                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2494                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2495                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2496
2497                    /* How many items have been already dropped
2498                     * Basically vec[read..write].len() */
2499                    let dropped = self.read.wrapping_sub(self.write);
2500
2501                    self.vec.set_len(len - dropped);
2502                }
2503            }
2504        }
2505
2506        /* Drop items while going through Vec, it should be more efficient than
2507         * doing slice partition_dedup + truncate */
2508
2509        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2510        let mut gap =
2511            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2512        unsafe {
2513            // SAFETY: we checked that first_duplicate_idx in bounds before.
2514            // If drop panics, `gap` would remove this item without drop.
2515            ptr::drop_in_place(start.add(first_duplicate_idx));
2516        }
2517
2518        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2519         * are always in-bounds and read_ptr never aliases prev_ptr */
2520        unsafe {
2521            while gap.read < len {
2522                let read_ptr = start.add(gap.read);
2523                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2524
2525                // We explicitly say in docs that references are reversed.
2526                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2527                if found_duplicate {
2528                    // Increase `gap.read` now since the drop may panic.
2529                    gap.read += 1;
2530                    /* We have found duplicate, drop it in-place */
2531                    ptr::drop_in_place(read_ptr);
2532                } else {
2533                    let write_ptr = start.add(gap.write);
2534
2535                    /* read_ptr cannot be equal to write_ptr because at this point
2536                     * we guaranteed to skip at least one element (before loop starts).
2537                     */
2538                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2539
2540                    /* We have filled that place, so go further */
2541                    gap.write += 1;
2542                    gap.read += 1;
2543                }
2544            }
2545
2546            /* Technically we could let `gap` clean up with its Drop, but
2547             * when `same_bucket` is guaranteed to not panic, this bloats a little
2548             * the codegen, so we just do it manually */
2549            gap.vec.set_len(gap.write);
2550            mem::forget(gap);
2551        }
2552    }
2553
2554    /// Appends an element to the back of a collection.
2555    ///
2556    /// # Panics
2557    ///
2558    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2559    ///
2560    /// # Examples
2561    ///
2562    /// ```
2563    /// let mut vec = vec![1, 2];
2564    /// vec.push(3);
2565    /// assert_eq!(vec, [1, 2, 3]);
2566    /// ```
2567    ///
2568    /// # Time complexity
2569    ///
2570    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2571    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2572    /// vector's elements to a larger allocation. This expensive operation is
2573    /// offset by the *capacity* *O*(1) insertions it allows.
2574    #[cfg(not(no_global_oom_handling))]
2575    #[inline]
2576    #[stable(feature = "rust1", since = "1.0.0")]
2577    #[rustc_confusables("push_back", "put", "append")]
2578    pub fn push(&mut self, value: T) {
2579        let _ = self.push_mut(value);
2580    }
2581
2582    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2583    /// otherwise an error is returned with the element.
2584    ///
2585    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2586    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2587    ///
2588    /// [`push`]: Vec::push
2589    /// [`reserve`]: Vec::reserve
2590    /// [`try_reserve`]: Vec::try_reserve
2591    ///
2592    /// # Examples
2593    ///
2594    /// A manual, panic-free alternative to [`FromIterator`]:
2595    ///
2596    /// ```
2597    /// #![feature(vec_push_within_capacity)]
2598    ///
2599    /// use std::collections::TryReserveError;
2600    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2601    ///     let mut vec = Vec::new();
2602    ///     for value in iter {
2603    ///         if let Err(value) = vec.push_within_capacity(value) {
2604    ///             vec.try_reserve(1)?;
2605    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2606    ///             let _ = vec.push_within_capacity(value);
2607    ///         }
2608    ///     }
2609    ///     Ok(vec)
2610    /// }
2611    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2612    /// ```
2613    ///
2614    /// # Time complexity
2615    ///
2616    /// Takes *O*(1) time.
2617    #[inline]
2618    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2619    // #[unstable(feature = "push_mut", issue = "135974")]
2620    pub fn push_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2621        if self.len == self.buf.capacity() {
2622            return Err(value);
2623        }
2624
2625        unsafe {
2626            let end = self.as_mut_ptr().add(self.len);
2627            ptr::write(end, value);
2628            self.len += 1;
2629
2630            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2631            Ok(&mut *end)
2632        }
2633    }
2634
2635    /// Appends an element to the back of a collection, returning a reference to it.
2636    ///
2637    /// # Panics
2638    ///
2639    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2640    ///
2641    /// # Examples
2642    ///
2643    /// ```
2644    /// #![feature(push_mut)]
2645    ///
2646    ///
2647    /// let mut vec = vec![1, 2];
2648    /// let last = vec.push_mut(3);
2649    /// assert_eq!(*last, 3);
2650    /// assert_eq!(vec, [1, 2, 3]);
2651    ///
2652    /// let last = vec.push_mut(3);
2653    /// *last += 1;
2654    /// assert_eq!(vec, [1, 2, 3, 4]);
2655    /// ```
2656    ///
2657    /// # Time complexity
2658    ///
2659    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2660    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2661    /// vector's elements to a larger allocation. This expensive operation is
2662    /// offset by the *capacity* *O*(1) insertions it allows.
2663    #[cfg(not(no_global_oom_handling))]
2664    #[inline]
2665    #[unstable(feature = "push_mut", issue = "135974")]
2666    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2667    pub fn push_mut(&mut self, value: T) -> &mut T {
2668        // Inform codegen that the length does not change across grow_one().
2669        let len = self.len;
2670        // This will panic or abort if we would allocate > isize::MAX bytes
2671        // or if the length increment would overflow for zero-sized types.
2672        if len == self.buf.capacity() {
2673            self.buf.grow_one();
2674        }
2675        unsafe {
2676            let end = self.as_mut_ptr().add(len);
2677            ptr::write(end, value);
2678            self.len = len + 1;
2679            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2680            &mut *end
2681        }
2682    }
2683
2684    /// Removes the last element from a vector and returns it, or [`None`] if it
2685    /// is empty.
2686    ///
2687    /// If you'd like to pop the first element, consider using
2688    /// [`VecDeque::pop_front`] instead.
2689    ///
2690    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2691    ///
2692    /// # Examples
2693    ///
2694    /// ```
2695    /// let mut vec = vec![1, 2, 3];
2696    /// assert_eq!(vec.pop(), Some(3));
2697    /// assert_eq!(vec, [1, 2]);
2698    /// ```
2699    ///
2700    /// # Time complexity
2701    ///
2702    /// Takes *O*(1) time.
2703    #[inline]
2704    #[stable(feature = "rust1", since = "1.0.0")]
2705    #[rustc_diagnostic_item = "vec_pop"]
2706    pub fn pop(&mut self) -> Option<T> {
2707        if self.len == 0 {
2708            None
2709        } else {
2710            unsafe {
2711                self.len -= 1;
2712                core::hint::assert_unchecked(self.len < self.capacity());
2713                Some(ptr::read(self.as_ptr().add(self.len())))
2714            }
2715        }
2716    }
2717
2718    /// Removes and returns the last element from a vector if the predicate
2719    /// returns `true`, or [`None`] if the predicate returns false or the vector
2720    /// is empty (the predicate will not be called in that case).
2721    ///
2722    /// # Examples
2723    ///
2724    /// ```
2725    /// let mut vec = vec![1, 2, 3, 4];
2726    /// let pred = |x: &mut i32| *x % 2 == 0;
2727    ///
2728    /// assert_eq!(vec.pop_if(pred), Some(4));
2729    /// assert_eq!(vec, [1, 2, 3]);
2730    /// assert_eq!(vec.pop_if(pred), None);
2731    /// ```
2732    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2733    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2734        let last = self.last_mut()?;
2735        if predicate(last) { self.pop() } else { None }
2736    }
2737
2738    /// Returns a mutable reference to the last item in the vector, or
2739    /// `None` if it is empty.
2740    ///
2741    /// # Examples
2742    ///
2743    /// Basic usage:
2744    ///
2745    /// ```
2746    /// #![feature(vec_peek_mut)]
2747    /// let mut vec = Vec::new();
2748    /// assert!(vec.peek_mut().is_none());
2749    ///
2750    /// vec.push(1);
2751    /// vec.push(5);
2752    /// vec.push(2);
2753    /// assert_eq!(vec.last(), Some(&2));
2754    /// if let Some(mut val) = vec.peek_mut() {
2755    ///     *val = 0;
2756    /// }
2757    /// assert_eq!(vec.last(), Some(&0));
2758    /// ```
2759    #[inline]
2760    #[unstable(feature = "vec_peek_mut", issue = "122742")]
2761    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2762        PeekMut::new(self)
2763    }
2764
2765    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2766    ///
2767    /// # Panics
2768    ///
2769    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2770    ///
2771    /// # Examples
2772    ///
2773    /// ```
2774    /// let mut vec = vec![1, 2, 3];
2775    /// let mut vec2 = vec![4, 5, 6];
2776    /// vec.append(&mut vec2);
2777    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2778    /// assert_eq!(vec2, []);
2779    /// ```
2780    #[cfg(not(no_global_oom_handling))]
2781    #[inline]
2782    #[stable(feature = "append", since = "1.4.0")]
2783    pub fn append(&mut self, other: &mut Self) {
2784        unsafe {
2785            self.append_elements(other.as_slice() as _);
2786            other.set_len(0);
2787        }
2788    }
2789
2790    /// Appends elements to `self` from other buffer.
2791    #[cfg(not(no_global_oom_handling))]
2792    #[inline]
2793    unsafe fn append_elements(&mut self, other: *const [T]) {
2794        let count = other.len();
2795        self.reserve(count);
2796        let len = self.len();
2797        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2798        self.len += count;
2799    }
2800
2801    /// Removes the subslice indicated by the given range from the vector,
2802    /// returning a double-ended iterator over the removed subslice.
2803    ///
2804    /// If the iterator is dropped before being fully consumed,
2805    /// it drops the remaining removed elements.
2806    ///
2807    /// The returned iterator keeps a mutable borrow on the vector to optimize
2808    /// its implementation.
2809    ///
2810    /// # Panics
2811    ///
2812    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2813    /// bounded on either end and past the length of the vector.
2814    ///
2815    /// # Leaking
2816    ///
2817    /// If the returned iterator goes out of scope without being dropped (due to
2818    /// [`mem::forget`], for example), the vector may have lost and leaked
2819    /// elements arbitrarily, including elements outside the range.
2820    ///
2821    /// # Examples
2822    ///
2823    /// ```
2824    /// let mut v = vec![1, 2, 3];
2825    /// let u: Vec<_> = v.drain(1..).collect();
2826    /// assert_eq!(v, &[1]);
2827    /// assert_eq!(u, &[2, 3]);
2828    ///
2829    /// // A full range clears the vector, like `clear()` does
2830    /// v.drain(..);
2831    /// assert_eq!(v, &[]);
2832    /// ```
2833    #[stable(feature = "drain", since = "1.6.0")]
2834    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2835    where
2836        R: RangeBounds<usize>,
2837    {
2838        // Memory safety
2839        //
2840        // When the Drain is first created, it shortens the length of
2841        // the source vector to make sure no uninitialized or moved-from elements
2842        // are accessible at all if the Drain's destructor never gets to run.
2843        //
2844        // Drain will ptr::read out the values to remove.
2845        // When finished, remaining tail of the vec is copied back to cover
2846        // the hole, and the vector length is restored to the new length.
2847        //
2848        let len = self.len();
2849        let Range { start, end } = slice::range(range, ..len);
2850
2851        unsafe {
2852            // set self.vec length's to start, to be safe in case Drain is leaked
2853            self.set_len(start);
2854            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2855            Drain {
2856                tail_start: end,
2857                tail_len: len - end,
2858                iter: range_slice.iter(),
2859                vec: NonNull::from(self),
2860            }
2861        }
2862    }
2863
2864    /// Clears the vector, removing all values.
2865    ///
2866    /// Note that this method has no effect on the allocated capacity
2867    /// of the vector.
2868    ///
2869    /// # Examples
2870    ///
2871    /// ```
2872    /// let mut v = vec![1, 2, 3];
2873    ///
2874    /// v.clear();
2875    ///
2876    /// assert!(v.is_empty());
2877    /// ```
2878    #[inline]
2879    #[stable(feature = "rust1", since = "1.0.0")]
2880    pub fn clear(&mut self) {
2881        let elems: *mut [T] = self.as_mut_slice();
2882
2883        // SAFETY:
2884        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2885        // - Setting `self.len` before calling `drop_in_place` means that,
2886        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2887        //   do nothing (leaking the rest of the elements) instead of dropping
2888        //   some twice.
2889        unsafe {
2890            self.len = 0;
2891            ptr::drop_in_place(elems);
2892        }
2893    }
2894
2895    /// Returns the number of elements in the vector, also referred to
2896    /// as its 'length'.
2897    ///
2898    /// # Examples
2899    ///
2900    /// ```
2901    /// let a = vec![1, 2, 3];
2902    /// assert_eq!(a.len(), 3);
2903    /// ```
2904    #[inline]
2905    #[stable(feature = "rust1", since = "1.0.0")]
2906    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2907    #[rustc_confusables("length", "size")]
2908    pub const fn len(&self) -> usize {
2909        let len = self.len;
2910
2911        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2912        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2913        // matches the definition of `T::MAX_SLICE_LEN`.
2914        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2915
2916        len
2917    }
2918
2919    /// Returns `true` if the vector contains no elements.
2920    ///
2921    /// # Examples
2922    ///
2923    /// ```
2924    /// let mut v = Vec::new();
2925    /// assert!(v.is_empty());
2926    ///
2927    /// v.push(1);
2928    /// assert!(!v.is_empty());
2929    /// ```
2930    #[stable(feature = "rust1", since = "1.0.0")]
2931    #[rustc_diagnostic_item = "vec_is_empty"]
2932    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2933    pub const fn is_empty(&self) -> bool {
2934        self.len() == 0
2935    }
2936
2937    /// Splits the collection into two at the given index.
2938    ///
2939    /// Returns a newly allocated vector containing the elements in the range
2940    /// `[at, len)`. After the call, the original vector will be left containing
2941    /// the elements `[0, at)` with its previous capacity unchanged.
2942    ///
2943    /// - If you want to take ownership of the entire contents and capacity of
2944    ///   the vector, see [`mem::take`] or [`mem::replace`].
2945    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2946    /// - If you want to take ownership of an arbitrary subslice, or you don't
2947    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2948    ///
2949    /// # Panics
2950    ///
2951    /// Panics if `at > len`.
2952    ///
2953    /// # Examples
2954    ///
2955    /// ```
2956    /// let mut vec = vec!['a', 'b', 'c'];
2957    /// let vec2 = vec.split_off(1);
2958    /// assert_eq!(vec, ['a']);
2959    /// assert_eq!(vec2, ['b', 'c']);
2960    /// ```
2961    #[cfg(not(no_global_oom_handling))]
2962    #[inline]
2963    #[must_use = "use `.truncate()` if you don't need the other half"]
2964    #[stable(feature = "split_off", since = "1.4.0")]
2965    #[track_caller]
2966    pub fn split_off(&mut self, at: usize) -> Self
2967    where
2968        A: Clone,
2969    {
2970        #[cold]
2971        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2972        #[track_caller]
2973        #[optimize(size)]
2974        fn assert_failed(at: usize, len: usize) -> ! {
2975            panic!("`at` split index (is {at}) should be <= len (is {len})");
2976        }
2977
2978        if at > self.len() {
2979            assert_failed(at, self.len());
2980        }
2981
2982        let other_len = self.len - at;
2983        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2984
2985        // Unsafely `set_len` and copy items to `other`.
2986        unsafe {
2987            self.set_len(at);
2988            other.set_len(other_len);
2989
2990            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2991        }
2992        other
2993    }
2994
2995    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2996    ///
2997    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2998    /// difference, with each additional slot filled with the result of
2999    /// calling the closure `f`. The return values from `f` will end up
3000    /// in the `Vec` in the order they have been generated.
3001    ///
3002    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3003    ///
3004    /// This method uses a closure to create new values on every push. If
3005    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3006    /// want to use the [`Default`] trait to generate values, you can
3007    /// pass [`Default::default`] as the second argument.
3008    ///
3009    /// # Panics
3010    ///
3011    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3012    ///
3013    /// # Examples
3014    ///
3015    /// ```
3016    /// let mut vec = vec![1, 2, 3];
3017    /// vec.resize_with(5, Default::default);
3018    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3019    ///
3020    /// let mut vec = vec![];
3021    /// let mut p = 1;
3022    /// vec.resize_with(4, || { p *= 2; p });
3023    /// assert_eq!(vec, [2, 4, 8, 16]);
3024    /// ```
3025    #[cfg(not(no_global_oom_handling))]
3026    #[stable(feature = "vec_resize_with", since = "1.33.0")]
3027    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3028    where
3029        F: FnMut() -> T,
3030    {
3031        let len = self.len();
3032        if new_len > len {
3033            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3034        } else {
3035            self.truncate(new_len);
3036        }
3037    }
3038
3039    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3040    /// `&'a mut [T]`.
3041    ///
3042    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3043    /// has only static references, or none at all, then this may be chosen to be
3044    /// `'static`.
3045    ///
3046    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3047    /// so the leaked allocation may include unused capacity that is not part
3048    /// of the returned slice.
3049    ///
3050    /// This function is mainly useful for data that lives for the remainder of
3051    /// the program's life. Dropping the returned reference will cause a memory
3052    /// leak.
3053    ///
3054    /// # Examples
3055    ///
3056    /// Simple usage:
3057    ///
3058    /// ```
3059    /// let x = vec![1, 2, 3];
3060    /// let static_ref: &'static mut [usize] = x.leak();
3061    /// static_ref[0] += 1;
3062    /// assert_eq!(static_ref, &[2, 2, 3]);
3063    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3064    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3065    /// # drop(unsafe { Box::from_raw(static_ref) });
3066    /// ```
3067    #[stable(feature = "vec_leak", since = "1.47.0")]
3068    #[inline]
3069    pub fn leak<'a>(self) -> &'a mut [T]
3070    where
3071        A: 'a,
3072    {
3073        let mut me = ManuallyDrop::new(self);
3074        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3075    }
3076
3077    /// Returns the remaining spare capacity of the vector as a slice of
3078    /// `MaybeUninit<T>`.
3079    ///
3080    /// The returned slice can be used to fill the vector with data (e.g. by
3081    /// reading from a file) before marking the data as initialized using the
3082    /// [`set_len`] method.
3083    ///
3084    /// [`set_len`]: Vec::set_len
3085    ///
3086    /// # Examples
3087    ///
3088    /// ```
3089    /// // Allocate vector big enough for 10 elements.
3090    /// let mut v = Vec::with_capacity(10);
3091    ///
3092    /// // Fill in the first 3 elements.
3093    /// let uninit = v.spare_capacity_mut();
3094    /// uninit[0].write(0);
3095    /// uninit[1].write(1);
3096    /// uninit[2].write(2);
3097    ///
3098    /// // Mark the first 3 elements of the vector as being initialized.
3099    /// unsafe {
3100    ///     v.set_len(3);
3101    /// }
3102    ///
3103    /// assert_eq!(&v, &[0, 1, 2]);
3104    /// ```
3105    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3106    #[inline]
3107    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3108        // Note:
3109        // This method is not implemented in terms of `split_at_spare_mut`,
3110        // to prevent invalidation of pointers to the buffer.
3111        unsafe {
3112            slice::from_raw_parts_mut(
3113                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3114                self.buf.capacity() - self.len,
3115            )
3116        }
3117    }
3118
3119    /// Returns vector content as a slice of `T`, along with the remaining spare
3120    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3121    ///
3122    /// The returned spare capacity slice can be used to fill the vector with data
3123    /// (e.g. by reading from a file) before marking the data as initialized using
3124    /// the [`set_len`] method.
3125    ///
3126    /// [`set_len`]: Vec::set_len
3127    ///
3128    /// Note that this is a low-level API, which should be used with care for
3129    /// optimization purposes. If you need to append data to a `Vec`
3130    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3131    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3132    /// [`resize_with`], depending on your exact needs.
3133    ///
3134    /// [`push`]: Vec::push
3135    /// [`extend`]: Vec::extend
3136    /// [`extend_from_slice`]: Vec::extend_from_slice
3137    /// [`extend_from_within`]: Vec::extend_from_within
3138    /// [`insert`]: Vec::insert
3139    /// [`append`]: Vec::append
3140    /// [`resize`]: Vec::resize
3141    /// [`resize_with`]: Vec::resize_with
3142    ///
3143    /// # Examples
3144    ///
3145    /// ```
3146    /// #![feature(vec_split_at_spare)]
3147    ///
3148    /// let mut v = vec![1, 1, 2];
3149    ///
3150    /// // Reserve additional space big enough for 10 elements.
3151    /// v.reserve(10);
3152    ///
3153    /// let (init, uninit) = v.split_at_spare_mut();
3154    /// let sum = init.iter().copied().sum::<u32>();
3155    ///
3156    /// // Fill in the next 4 elements.
3157    /// uninit[0].write(sum);
3158    /// uninit[1].write(sum * 2);
3159    /// uninit[2].write(sum * 3);
3160    /// uninit[3].write(sum * 4);
3161    ///
3162    /// // Mark the 4 elements of the vector as being initialized.
3163    /// unsafe {
3164    ///     let len = v.len();
3165    ///     v.set_len(len + 4);
3166    /// }
3167    ///
3168    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3169    /// ```
3170    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3171    #[inline]
3172    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3173        // SAFETY:
3174        // - len is ignored and so never changed
3175        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3176        (init, spare)
3177    }
3178
3179    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3180    ///
3181    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3182    unsafe fn split_at_spare_mut_with_len(
3183        &mut self,
3184    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3185        let ptr = self.as_mut_ptr();
3186        // SAFETY:
3187        // - `ptr` is guaranteed to be valid for `self.len` elements
3188        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3189        // uninitialized
3190        let spare_ptr = unsafe { ptr.add(self.len) };
3191        let spare_ptr = spare_ptr.cast_uninit();
3192        let spare_len = self.buf.capacity() - self.len;
3193
3194        // SAFETY:
3195        // - `ptr` is guaranteed to be valid for `self.len` elements
3196        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3197        unsafe {
3198            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3199            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3200
3201            (initialized, spare, &mut self.len)
3202        }
3203    }
3204
3205    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3206    /// elements in the remainder. `N` must be greater than zero.
3207    ///
3208    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3209    /// nearest multiple with a reallocation or deallocation.
3210    ///
3211    /// This function can be used to reverse [`Vec::into_flattened`].
3212    ///
3213    /// # Examples
3214    ///
3215    /// ```
3216    /// #![feature(vec_into_chunks)]
3217    ///
3218    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3219    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3220    ///
3221    /// let vec = vec![0, 1, 2, 3];
3222    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3223    /// assert!(chunks.is_empty());
3224    ///
3225    /// let flat = vec![0; 8 * 8 * 8];
3226    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3227    /// assert_eq!(reshaped.len(), 1);
3228    /// ```
3229    #[cfg(not(no_global_oom_handling))]
3230    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3231    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3232        const {
3233            assert!(N != 0, "chunk size must be greater than zero");
3234        }
3235
3236        let (len, cap) = (self.len(), self.capacity());
3237
3238        let len_remainder = len % N;
3239        if len_remainder != 0 {
3240            self.truncate(len - len_remainder);
3241        }
3242
3243        let cap_remainder = cap % N;
3244        if !T::IS_ZST && cap_remainder != 0 {
3245            self.buf.shrink_to_fit(cap - cap_remainder);
3246        }
3247
3248        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3249
3250        // SAFETY:
3251        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3252        // - `[T; N]` has the same alignment as `T`
3253        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3254        // - `len / N <= cap / N` because `len <= cap`
3255        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3256        // - `cap / N` fits the size of the allocated memory after shrinking
3257        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3258    }
3259
3260    /// This clears out this `Vec` and recycles the allocation into a new `Vec`.
3261    /// The item type of the resulting `Vec` needs to have the same size and
3262    /// alignment as the item type of the original `Vec`.
3263    ///
3264    /// # Examples
3265    ///
3266    ///  ```
3267    /// #![feature(vec_recycle, transmutability)]
3268    /// let a: Vec<u8> = vec![0; 100];
3269    /// let capacity = a.capacity();
3270    /// let addr = a.as_ptr().addr();
3271    /// let b: Vec<i8> = a.recycle();
3272    /// assert_eq!(b.len(), 0);
3273    /// assert_eq!(b.capacity(), capacity);
3274    /// assert_eq!(b.as_ptr().addr(), addr);
3275    /// ```
3276    ///
3277    /// The `Recyclable` bound prevents this method from being called when `T` and `U` have different sizes; e.g.:
3278    ///
3279    ///  ```compile_fail,E0277
3280    /// #![feature(vec_recycle, transmutability)]
3281    /// let vec: Vec<[u8; 2]> = Vec::new();
3282    /// let _: Vec<[u8; 1]> = vec.recycle();
3283    /// ```
3284    /// ...or different alignments:
3285    ///
3286    ///  ```compile_fail,E0277
3287    /// #![feature(vec_recycle, transmutability)]
3288    /// let vec: Vec<[u16; 0]> = Vec::new();
3289    /// let _: Vec<[u8; 0]> = vec.recycle();
3290    /// ```
3291    ///
3292    /// However, due to temporary implementation limitations of `Recyclable`,
3293    /// this method is not yet callable when `T` or `U` are slices, trait objects,
3294    /// or other exotic types; e.g.:
3295    ///
3296    /// ```compile_fail,E0277
3297    /// #![feature(vec_recycle, transmutability)]
3298    /// # let inputs = ["a b c", "d e f"];
3299    /// # fn process(_: &[&str]) {}
3300    /// let mut storage: Vec<&[&str]> = Vec::new();
3301    ///
3302    /// for input in inputs {
3303    ///     let mut buffer: Vec<&str> = storage.recycle();
3304    ///     buffer.extend(input.split(" "));
3305    ///     process(&buffer);
3306    ///     storage = buffer.recycle();
3307    /// }
3308    /// ```
3309    #[unstable(feature = "vec_recycle", issue = "148227")]
3310    #[expect(private_bounds)]
3311    pub fn recycle<U>(mut self) -> Vec<U, A>
3312    where
3313        U: Recyclable<T>,
3314    {
3315        self.clear();
3316        const {
3317            // FIXME(const-hack, 146097): compare `Layout`s
3318            assert!(size_of::<T>() == size_of::<U>());
3319            assert!(align_of::<T>() == align_of::<U>());
3320        };
3321        let (ptr, length, capacity, alloc) = self.into_parts_with_alloc();
3322        debug_assert_eq!(length, 0);
3323        // SAFETY:
3324        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3325        // - `T` & `U` have the same layout, so `capacity` does not need to be changed and we can safely use `alloc.dealloc` later
3326        // - the original vector was cleared, so there is no problem with "transmuting" the stored values
3327        unsafe { Vec::from_parts_in(ptr.cast::<U>(), length, capacity, alloc) }
3328    }
3329}
3330
3331/// Denotes that an allocation of `From` can be recycled into an allocation of `Self`.
3332///
3333/// # Safety
3334///
3335/// `Self` is `Recyclable<From>` if `Layout::new::<Self>() == Layout::new::<From>()`.
3336unsafe trait Recyclable<From: Sized>: Sized {}
3337
3338#[unstable_feature_bound(transmutability)]
3339// SAFETY: enforced by `TransmuteFrom`
3340unsafe impl<From, To> Recyclable<From> for To
3341where
3342    for<'a> &'a MaybeUninit<To>: TransmuteFrom<&'a MaybeUninit<From>, { Assume::SAFETY }>,
3343    for<'a> &'a MaybeUninit<From>: TransmuteFrom<&'a MaybeUninit<To>, { Assume::SAFETY }>,
3344{
3345}
3346
3347impl<T: Clone, A: Allocator> Vec<T, A> {
3348    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3349    ///
3350    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3351    /// difference, with each additional slot filled with `value`.
3352    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3353    ///
3354    /// This method requires `T` to implement [`Clone`],
3355    /// in order to be able to clone the passed value.
3356    /// If you need more flexibility (or want to rely on [`Default`] instead of
3357    /// [`Clone`]), use [`Vec::resize_with`].
3358    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3359    ///
3360    /// # Panics
3361    ///
3362    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3363    ///
3364    /// # Examples
3365    ///
3366    /// ```
3367    /// let mut vec = vec!["hello"];
3368    /// vec.resize(3, "world");
3369    /// assert_eq!(vec, ["hello", "world", "world"]);
3370    ///
3371    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3372    /// vec.resize(2, '_');
3373    /// assert_eq!(vec, ['a', 'b']);
3374    /// ```
3375    #[cfg(not(no_global_oom_handling))]
3376    #[stable(feature = "vec_resize", since = "1.5.0")]
3377    pub fn resize(&mut self, new_len: usize, value: T) {
3378        let len = self.len();
3379
3380        if new_len > len {
3381            self.extend_with(new_len - len, value)
3382        } else {
3383            self.truncate(new_len);
3384        }
3385    }
3386
3387    /// Clones and appends all elements in a slice to the `Vec`.
3388    ///
3389    /// Iterates over the slice `other`, clones each element, and then appends
3390    /// it to this `Vec`. The `other` slice is traversed in-order.
3391    ///
3392    /// Note that this function is the same as [`extend`],
3393    /// except that it also works with slice elements that are Clone but not Copy.
3394    /// If Rust gets specialization this function may be deprecated.
3395    ///
3396    /// # Panics
3397    ///
3398    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3399    ///
3400    /// # Examples
3401    ///
3402    /// ```
3403    /// let mut vec = vec![1];
3404    /// vec.extend_from_slice(&[2, 3, 4]);
3405    /// assert_eq!(vec, [1, 2, 3, 4]);
3406    /// ```
3407    ///
3408    /// [`extend`]: Vec::extend
3409    #[cfg(not(no_global_oom_handling))]
3410    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3411    pub fn extend_from_slice(&mut self, other: &[T]) {
3412        self.spec_extend(other.iter())
3413    }
3414
3415    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3416    ///
3417    /// `src` must be a range that can form a valid subslice of the `Vec`.
3418    ///
3419    /// # Panics
3420    ///
3421    /// Panics if starting index is greater than the end index, if the index is
3422    /// greater than the length of the vector, or if the new capacity exceeds
3423    /// `isize::MAX` _bytes_.
3424    ///
3425    /// # Examples
3426    ///
3427    /// ```
3428    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3429    /// characters.extend_from_within(2..);
3430    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3431    ///
3432    /// let mut numbers = vec![0, 1, 2, 3, 4];
3433    /// numbers.extend_from_within(..2);
3434    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3435    ///
3436    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3437    /// strings.extend_from_within(1..=2);
3438    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3439    /// ```
3440    #[cfg(not(no_global_oom_handling))]
3441    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3442    pub fn extend_from_within<R>(&mut self, src: R)
3443    where
3444        R: RangeBounds<usize>,
3445    {
3446        let range = slice::range(src, ..self.len());
3447        self.reserve(range.len());
3448
3449        // SAFETY:
3450        // - `slice::range` guarantees that the given range is valid for indexing self
3451        unsafe {
3452            self.spec_extend_from_within(range);
3453        }
3454    }
3455}
3456
3457impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3458    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3459    ///
3460    /// # Panics
3461    ///
3462    /// Panics if the length of the resulting vector would overflow a `usize`.
3463    ///
3464    /// This is only possible when flattening a vector of arrays of zero-sized
3465    /// types, and thus tends to be irrelevant in practice. If
3466    /// `size_of::<T>() > 0`, this will never panic.
3467    ///
3468    /// # Examples
3469    ///
3470    /// ```
3471    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3472    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3473    ///
3474    /// let mut flattened = vec.into_flattened();
3475    /// assert_eq!(flattened.pop(), Some(6));
3476    /// ```
3477    #[stable(feature = "slice_flatten", since = "1.80.0")]
3478    pub fn into_flattened(self) -> Vec<T, A> {
3479        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3480        let (new_len, new_cap) = if T::IS_ZST {
3481            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3482        } else {
3483            // SAFETY:
3484            // - `cap * N` cannot overflow because the allocation is already in
3485            // the address space.
3486            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3487            // valid elements in the allocation.
3488            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3489        };
3490        // SAFETY:
3491        // - `ptr` was allocated by `self`
3492        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3493        // - `new_cap` refers to the same sized allocation as `cap` because
3494        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3495        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3496        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3497    }
3498}
3499
3500impl<T: Clone, A: Allocator> Vec<T, A> {
3501    #[cfg(not(no_global_oom_handling))]
3502    /// Extend the vector by `n` clones of value.
3503    fn extend_with(&mut self, n: usize, value: T) {
3504        self.reserve(n);
3505
3506        unsafe {
3507            let mut ptr = self.as_mut_ptr().add(self.len());
3508            // Use SetLenOnDrop to work around bug where compiler
3509            // might not realize the store through `ptr` through self.set_len()
3510            // don't alias.
3511            let mut local_len = SetLenOnDrop::new(&mut self.len);
3512
3513            // Write all elements except the last one
3514            for _ in 1..n {
3515                ptr::write(ptr, value.clone());
3516                ptr = ptr.add(1);
3517                // Increment the length in every step in case clone() panics
3518                local_len.increment_len(1);
3519            }
3520
3521            if n > 0 {
3522                // We can write the last element directly without cloning needlessly
3523                ptr::write(ptr, value);
3524                local_len.increment_len(1);
3525            }
3526
3527            // len set by scope guard
3528        }
3529    }
3530}
3531
3532impl<T: PartialEq, A: Allocator> Vec<T, A> {
3533    /// Removes consecutive repeated elements in the vector according to the
3534    /// [`PartialEq`] trait implementation.
3535    ///
3536    /// If the vector is sorted, this removes all duplicates.
3537    ///
3538    /// # Examples
3539    ///
3540    /// ```
3541    /// let mut vec = vec![1, 2, 2, 3, 2];
3542    ///
3543    /// vec.dedup();
3544    ///
3545    /// assert_eq!(vec, [1, 2, 3, 2]);
3546    /// ```
3547    #[stable(feature = "rust1", since = "1.0.0")]
3548    #[inline]
3549    pub fn dedup(&mut self) {
3550        self.dedup_by(|a, b| a == b)
3551    }
3552}
3553
3554////////////////////////////////////////////////////////////////////////////////
3555// Internal methods and functions
3556////////////////////////////////////////////////////////////////////////////////
3557
3558#[doc(hidden)]
3559#[cfg(not(no_global_oom_handling))]
3560#[stable(feature = "rust1", since = "1.0.0")]
3561#[rustc_diagnostic_item = "vec_from_elem"]
3562pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3563    <T as SpecFromElem>::from_elem(elem, n, Global)
3564}
3565
3566#[doc(hidden)]
3567#[cfg(not(no_global_oom_handling))]
3568#[unstable(feature = "allocator_api", issue = "32838")]
3569pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3570    <T as SpecFromElem>::from_elem(elem, n, alloc)
3571}
3572
3573#[cfg(not(no_global_oom_handling))]
3574trait ExtendFromWithinSpec {
3575    /// # Safety
3576    ///
3577    /// - `src` needs to be valid index
3578    /// - `self.capacity() - self.len()` must be `>= src.len()`
3579    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3580}
3581
3582#[cfg(not(no_global_oom_handling))]
3583impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3584    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3585        // SAFETY:
3586        // - len is increased only after initializing elements
3587        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3588
3589        // SAFETY:
3590        // - caller guarantees that src is a valid index
3591        let to_clone = unsafe { this.get_unchecked(src) };
3592
3593        iter::zip(to_clone, spare)
3594            .map(|(src, dst)| dst.write(src.clone()))
3595            // Note:
3596            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3597            // - len is increased after each element to prevent leaks (see issue #82533)
3598            .for_each(|_| *len += 1);
3599    }
3600}
3601
3602#[cfg(not(no_global_oom_handling))]
3603impl<T: TrivialClone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3604    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3605        let count = src.len();
3606        {
3607            let (init, spare) = self.split_at_spare_mut();
3608
3609            // SAFETY:
3610            // - caller guarantees that `src` is a valid index
3611            let source = unsafe { init.get_unchecked(src) };
3612
3613            // SAFETY:
3614            // - Both pointers are created from unique slice references (`&mut [_]`)
3615            //   so they are valid and do not overlap.
3616            // - Elements implement `TrivialClone` so this is equivalent to calling
3617            //   `clone` on every one of them.
3618            // - `count` is equal to the len of `source`, so source is valid for
3619            //   `count` reads
3620            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3621            //   is valid for `count` writes
3622            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3623        }
3624
3625        // SAFETY:
3626        // - The elements were just initialized by `copy_nonoverlapping`
3627        self.len += count;
3628    }
3629}
3630
3631////////////////////////////////////////////////////////////////////////////////
3632// Common trait implementations for Vec
3633////////////////////////////////////////////////////////////////////////////////
3634
3635#[stable(feature = "rust1", since = "1.0.0")]
3636impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3637    type Target = [T];
3638
3639    #[inline]
3640    fn deref(&self) -> &[T] {
3641        self.as_slice()
3642    }
3643}
3644
3645#[stable(feature = "rust1", since = "1.0.0")]
3646impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3647    #[inline]
3648    fn deref_mut(&mut self) -> &mut [T] {
3649        self.as_mut_slice()
3650    }
3651}
3652
3653#[unstable(feature = "deref_pure_trait", issue = "87121")]
3654unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3655
3656#[cfg(not(no_global_oom_handling))]
3657#[stable(feature = "rust1", since = "1.0.0")]
3658impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3659    fn clone(&self) -> Self {
3660        let alloc = self.allocator().clone();
3661        <[T]>::to_vec_in(&**self, alloc)
3662    }
3663
3664    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3665    ///
3666    /// This method is preferred over simply assigning `source.clone()` to `self`,
3667    /// as it avoids reallocation if possible. Additionally, if the element type
3668    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3669    /// elements as well.
3670    ///
3671    /// # Examples
3672    ///
3673    /// ```
3674    /// let x = vec![5, 6, 7];
3675    /// let mut y = vec![8, 9, 10];
3676    /// let yp: *const i32 = y.as_ptr();
3677    ///
3678    /// y.clone_from(&x);
3679    ///
3680    /// // The value is the same
3681    /// assert_eq!(x, y);
3682    ///
3683    /// // And no reallocation occurred
3684    /// assert_eq!(yp, y.as_ptr());
3685    /// ```
3686    fn clone_from(&mut self, source: &Self) {
3687        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3688    }
3689}
3690
3691/// The hash of a vector is the same as that of the corresponding slice,
3692/// as required by the `core::borrow::Borrow` implementation.
3693///
3694/// ```
3695/// use std::hash::BuildHasher;
3696///
3697/// let b = std::hash::RandomState::new();
3698/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3699/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3700/// assert_eq!(b.hash_one(v), b.hash_one(s));
3701/// ```
3702#[stable(feature = "rust1", since = "1.0.0")]
3703impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3704    #[inline]
3705    fn hash<H: Hasher>(&self, state: &mut H) {
3706        Hash::hash(&**self, state)
3707    }
3708}
3709
3710#[stable(feature = "rust1", since = "1.0.0")]
3711impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3712    type Output = I::Output;
3713
3714    #[inline]
3715    fn index(&self, index: I) -> &Self::Output {
3716        Index::index(&**self, index)
3717    }
3718}
3719
3720#[stable(feature = "rust1", since = "1.0.0")]
3721impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3722    #[inline]
3723    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3724        IndexMut::index_mut(&mut **self, index)
3725    }
3726}
3727
3728/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3729///
3730/// # Allocation behavior
3731///
3732/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3733/// That also applies to this trait impl.
3734///
3735/// **Note:** This section covers implementation details and is therefore exempt from
3736/// stability guarantees.
3737///
3738/// Vec may use any or none of the following strategies,
3739/// depending on the supplied iterator:
3740///
3741/// * preallocate based on [`Iterator::size_hint()`]
3742///   * and panic if the number of items is outside the provided lower/upper bounds
3743/// * use an amortized growth strategy similar to `pushing` one item at a time
3744/// * perform the iteration in-place on the original allocation backing the iterator
3745///
3746/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3747/// consumption and improves cache locality. But when big, short-lived allocations are created,
3748/// only a small fraction of their items get collected, no further use is made of the spare capacity
3749/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3750/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3751/// footprint.
3752///
3753/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3754/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3755/// the size of the long-lived struct.
3756///
3757/// [owned slice]: Box
3758///
3759/// ```rust
3760/// # use std::sync::Mutex;
3761/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3762///
3763/// for i in 0..10 {
3764///     let big_temporary: Vec<u16> = (0..1024).collect();
3765///     // discard most items
3766///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3767///     // without this a lot of unused capacity might be moved into the global
3768///     result.shrink_to_fit();
3769///     LONG_LIVED.lock().unwrap().push(result);
3770/// }
3771/// ```
3772#[cfg(not(no_global_oom_handling))]
3773#[stable(feature = "rust1", since = "1.0.0")]
3774impl<T> FromIterator<T> for Vec<T> {
3775    #[inline]
3776    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3777        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3778    }
3779}
3780
3781#[stable(feature = "rust1", since = "1.0.0")]
3782impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3783    type Item = T;
3784    type IntoIter = IntoIter<T, A>;
3785
3786    /// Creates a consuming iterator, that is, one that moves each value out of
3787    /// the vector (from start to end). The vector cannot be used after calling
3788    /// this.
3789    ///
3790    /// # Examples
3791    ///
3792    /// ```
3793    /// let v = vec!["a".to_string(), "b".to_string()];
3794    /// let mut v_iter = v.into_iter();
3795    ///
3796    /// let first_element: Option<String> = v_iter.next();
3797    ///
3798    /// assert_eq!(first_element, Some("a".to_string()));
3799    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3800    /// assert_eq!(v_iter.next(), None);
3801    /// ```
3802    #[inline]
3803    fn into_iter(self) -> Self::IntoIter {
3804        unsafe {
3805            let me = ManuallyDrop::new(self);
3806            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3807            let buf = me.buf.non_null();
3808            let begin = buf.as_ptr();
3809            let end = if T::IS_ZST {
3810                begin.wrapping_byte_add(me.len())
3811            } else {
3812                begin.add(me.len()) as *const T
3813            };
3814            let cap = me.buf.capacity();
3815            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3816        }
3817    }
3818}
3819
3820#[stable(feature = "rust1", since = "1.0.0")]
3821impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3822    type Item = &'a T;
3823    type IntoIter = slice::Iter<'a, T>;
3824
3825    fn into_iter(self) -> Self::IntoIter {
3826        self.iter()
3827    }
3828}
3829
3830#[stable(feature = "rust1", since = "1.0.0")]
3831impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3832    type Item = &'a mut T;
3833    type IntoIter = slice::IterMut<'a, T>;
3834
3835    fn into_iter(self) -> Self::IntoIter {
3836        self.iter_mut()
3837    }
3838}
3839
3840#[cfg(not(no_global_oom_handling))]
3841#[stable(feature = "rust1", since = "1.0.0")]
3842impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3843    #[inline]
3844    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3845        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3846    }
3847
3848    #[inline]
3849    fn extend_one(&mut self, item: T) {
3850        self.push(item);
3851    }
3852
3853    #[inline]
3854    fn extend_reserve(&mut self, additional: usize) {
3855        self.reserve(additional);
3856    }
3857
3858    #[inline]
3859    unsafe fn extend_one_unchecked(&mut self, item: T) {
3860        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3861        unsafe {
3862            let len = self.len();
3863            ptr::write(self.as_mut_ptr().add(len), item);
3864            self.set_len(len + 1);
3865        }
3866    }
3867}
3868
3869impl<T, A: Allocator> Vec<T, A> {
3870    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3871    // they have no further optimizations to apply
3872    #[cfg(not(no_global_oom_handling))]
3873    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3874        // This is the case for a general iterator.
3875        //
3876        // This function should be the moral equivalent of:
3877        //
3878        //      for item in iterator {
3879        //          self.push(item);
3880        //      }
3881        while let Some(element) = iterator.next() {
3882            let len = self.len();
3883            if len == self.capacity() {
3884                let (lower, _) = iterator.size_hint();
3885                self.reserve(lower.saturating_add(1));
3886            }
3887            unsafe {
3888                ptr::write(self.as_mut_ptr().add(len), element);
3889                // Since next() executes user code which can panic we have to bump the length
3890                // after each step.
3891                // NB can't overflow since we would have had to alloc the address space
3892                self.set_len(len + 1);
3893            }
3894        }
3895    }
3896
3897    // specific extend for `TrustedLen` iterators, called both by the specializations
3898    // and internal places where resolving specialization makes compilation slower
3899    #[cfg(not(no_global_oom_handling))]
3900    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3901        let (low, high) = iterator.size_hint();
3902        if let Some(additional) = high {
3903            debug_assert_eq!(
3904                low,
3905                additional,
3906                "TrustedLen iterator's size hint is not exact: {:?}",
3907                (low, high)
3908            );
3909            self.reserve(additional);
3910            unsafe {
3911                let ptr = self.as_mut_ptr();
3912                let mut local_len = SetLenOnDrop::new(&mut self.len);
3913                iterator.for_each(move |element| {
3914                    ptr::write(ptr.add(local_len.current_len()), element);
3915                    // Since the loop executes user code which can panic we have to update
3916                    // the length every step to correctly drop what we've written.
3917                    // NB can't overflow since we would have had to alloc the address space
3918                    local_len.increment_len(1);
3919                });
3920            }
3921        } else {
3922            // Per TrustedLen contract a `None` upper bound means that the iterator length
3923            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3924            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3925            // This avoids additional codegen for a fallback code path which would eventually
3926            // panic anyway.
3927            panic!("capacity overflow");
3928        }
3929    }
3930
3931    /// Creates a splicing iterator that replaces the specified range in the vector
3932    /// with the given `replace_with` iterator and yields the removed items.
3933    /// `replace_with` does not need to be the same length as `range`.
3934    ///
3935    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3936    ///
3937    /// It is unspecified how many elements are removed from the vector
3938    /// if the `Splice` value is leaked.
3939    ///
3940    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3941    ///
3942    /// This is optimal if:
3943    ///
3944    /// * The tail (elements in the vector after `range`) is empty,
3945    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3946    /// * or the lower bound of its `size_hint()` is exact.
3947    ///
3948    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3949    ///
3950    /// # Panics
3951    ///
3952    /// Panics if the range has `start_bound > end_bound`, or, if the range is
3953    /// bounded on either end and past the length of the vector.
3954    ///
3955    /// # Examples
3956    ///
3957    /// ```
3958    /// let mut v = vec![1, 2, 3, 4];
3959    /// let new = [7, 8, 9];
3960    /// let u: Vec<_> = v.splice(1..3, new).collect();
3961    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3962    /// assert_eq!(u, [2, 3]);
3963    /// ```
3964    ///
3965    /// Using `splice` to insert new items into a vector efficiently at a specific position
3966    /// indicated by an empty range:
3967    ///
3968    /// ```
3969    /// let mut v = vec![1, 5];
3970    /// let new = [2, 3, 4];
3971    /// v.splice(1..1, new);
3972    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3973    /// ```
3974    #[cfg(not(no_global_oom_handling))]
3975    #[inline]
3976    #[stable(feature = "vec_splice", since = "1.21.0")]
3977    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3978    where
3979        R: RangeBounds<usize>,
3980        I: IntoIterator<Item = T>,
3981    {
3982        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3983    }
3984
3985    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3986    ///
3987    /// If the closure returns `true`, the element is removed from the vector
3988    /// and yielded. If the closure returns `false`, or panics, the element
3989    /// remains in the vector and will not be yielded.
3990    ///
3991    /// Only elements that fall in the provided range are considered for extraction, but any elements
3992    /// after the range will still have to be moved if any element has been extracted.
3993    ///
3994    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3995    /// or the iteration short-circuits, then the remaining elements will be retained.
3996    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
3997    /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range.
3998    ///
3999    /// [`retain_mut`]: Vec::retain_mut
4000    ///
4001    /// Using this method is equivalent to the following code:
4002    ///
4003    /// ```
4004    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
4005    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
4006    /// # let mut vec2 = vec.clone();
4007    /// # let range = 1..5;
4008    /// let mut i = range.start;
4009    /// let end_items = vec.len() - range.end;
4010    /// # let mut extracted = vec![];
4011    ///
4012    /// while i < vec.len() - end_items {
4013    ///     if some_predicate(&mut vec[i]) {
4014    ///         let val = vec.remove(i);
4015    ///         // your code here
4016    /// #         extracted.push(val);
4017    ///     } else {
4018    ///         i += 1;
4019    ///     }
4020    /// }
4021    ///
4022    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
4023    /// # assert_eq!(vec, vec2);
4024    /// # assert_eq!(extracted, extracted2);
4025    /// ```
4026    ///
4027    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
4028    /// because it can backshift the elements of the array in bulk.
4029    ///
4030    /// The iterator also lets you mutate the value of each element in the
4031    /// closure, regardless of whether you choose to keep or remove it.
4032    ///
4033    /// # Panics
4034    ///
4035    /// If `range` is out of bounds.
4036    ///
4037    /// # Examples
4038    ///
4039    /// Splitting a vector into even and odd values, reusing the original vector:
4040    ///
4041    /// ```
4042    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
4043    ///
4044    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
4045    /// let odds = numbers;
4046    ///
4047    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
4048    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
4049    /// ```
4050    ///
4051    /// Using the range argument to only process a part of the vector:
4052    ///
4053    /// ```
4054    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
4055    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
4056    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
4057    /// assert_eq!(ones.len(), 3);
4058    /// ```
4059    #[stable(feature = "extract_if", since = "1.87.0")]
4060    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
4061    where
4062        F: FnMut(&mut T) -> bool,
4063        R: RangeBounds<usize>,
4064    {
4065        ExtractIf::new(self, filter, range)
4066    }
4067}
4068
4069/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4070///
4071/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4072/// append the entire slice at once.
4073///
4074/// [`copy_from_slice`]: slice::copy_from_slice
4075#[cfg(not(no_global_oom_handling))]
4076#[stable(feature = "extend_ref", since = "1.2.0")]
4077impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4078    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4079        self.spec_extend(iter.into_iter())
4080    }
4081
4082    #[inline]
4083    fn extend_one(&mut self, &item: &'a T) {
4084        self.push(item);
4085    }
4086
4087    #[inline]
4088    fn extend_reserve(&mut self, additional: usize) {
4089        self.reserve(additional);
4090    }
4091
4092    #[inline]
4093    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4094        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4095        unsafe {
4096            let len = self.len();
4097            ptr::write(self.as_mut_ptr().add(len), item);
4098            self.set_len(len + 1);
4099        }
4100    }
4101}
4102
4103/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4104#[stable(feature = "rust1", since = "1.0.0")]
4105impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4106where
4107    T: PartialOrd,
4108    A1: Allocator,
4109    A2: Allocator,
4110{
4111    #[inline]
4112    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4113        PartialOrd::partial_cmp(&**self, &**other)
4114    }
4115}
4116
4117#[stable(feature = "rust1", since = "1.0.0")]
4118impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4119
4120/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4121#[stable(feature = "rust1", since = "1.0.0")]
4122impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4123    #[inline]
4124    fn cmp(&self, other: &Self) -> Ordering {
4125        Ord::cmp(&**self, &**other)
4126    }
4127}
4128
4129#[stable(feature = "rust1", since = "1.0.0")]
4130unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4131    fn drop(&mut self) {
4132        unsafe {
4133            // use drop for [T]
4134            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4135            // could avoid questions of validity in certain cases
4136            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4137        }
4138        // RawVec handles deallocation
4139    }
4140}
4141
4142#[stable(feature = "rust1", since = "1.0.0")]
4143#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4144impl<T> const Default for Vec<T> {
4145    /// Creates an empty `Vec<T>`.
4146    ///
4147    /// The vector will not allocate until elements are pushed onto it.
4148    fn default() -> Vec<T> {
4149        Vec::new()
4150    }
4151}
4152
4153#[stable(feature = "rust1", since = "1.0.0")]
4154impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4155    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4156        fmt::Debug::fmt(&**self, f)
4157    }
4158}
4159
4160#[stable(feature = "rust1", since = "1.0.0")]
4161impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4162    fn as_ref(&self) -> &Vec<T, A> {
4163        self
4164    }
4165}
4166
4167#[stable(feature = "vec_as_mut", since = "1.5.0")]
4168impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4169    fn as_mut(&mut self) -> &mut Vec<T, A> {
4170        self
4171    }
4172}
4173
4174#[stable(feature = "rust1", since = "1.0.0")]
4175impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4176    fn as_ref(&self) -> &[T] {
4177        self
4178    }
4179}
4180
4181#[stable(feature = "vec_as_mut", since = "1.5.0")]
4182impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4183    fn as_mut(&mut self) -> &mut [T] {
4184        self
4185    }
4186}
4187
4188#[cfg(not(no_global_oom_handling))]
4189#[stable(feature = "rust1", since = "1.0.0")]
4190impl<T: Clone> From<&[T]> for Vec<T> {
4191    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4192    ///
4193    /// # Examples
4194    ///
4195    /// ```
4196    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4197    /// ```
4198    fn from(s: &[T]) -> Vec<T> {
4199        s.to_vec()
4200    }
4201}
4202
4203#[cfg(not(no_global_oom_handling))]
4204#[stable(feature = "vec_from_mut", since = "1.19.0")]
4205impl<T: Clone> From<&mut [T]> for Vec<T> {
4206    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4207    ///
4208    /// # Examples
4209    ///
4210    /// ```
4211    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4212    /// ```
4213    fn from(s: &mut [T]) -> Vec<T> {
4214        s.to_vec()
4215    }
4216}
4217
4218#[cfg(not(no_global_oom_handling))]
4219#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4220impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4221    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4222    ///
4223    /// # Examples
4224    ///
4225    /// ```
4226    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4227    /// ```
4228    fn from(s: &[T; N]) -> Vec<T> {
4229        Self::from(s.as_slice())
4230    }
4231}
4232
4233#[cfg(not(no_global_oom_handling))]
4234#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4235impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4236    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4237    ///
4238    /// # Examples
4239    ///
4240    /// ```
4241    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4242    /// ```
4243    fn from(s: &mut [T; N]) -> Vec<T> {
4244        Self::from(s.as_mut_slice())
4245    }
4246}
4247
4248#[cfg(not(no_global_oom_handling))]
4249#[stable(feature = "vec_from_array", since = "1.44.0")]
4250impl<T, const N: usize> From<[T; N]> for Vec<T> {
4251    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4252    ///
4253    /// # Examples
4254    ///
4255    /// ```
4256    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4257    /// ```
4258    fn from(s: [T; N]) -> Vec<T> {
4259        <[T]>::into_vec(Box::new(s))
4260    }
4261}
4262
4263#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4264impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4265where
4266    [T]: ToOwned<Owned = Vec<T>>,
4267{
4268    /// Converts a clone-on-write slice into a vector.
4269    ///
4270    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4271    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4272    /// filled by cloning `s`'s items into it.
4273    ///
4274    /// # Examples
4275    ///
4276    /// ```
4277    /// # use std::borrow::Cow;
4278    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4279    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4280    /// assert_eq!(Vec::from(o), Vec::from(b));
4281    /// ```
4282    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4283        s.into_owned()
4284    }
4285}
4286
4287// note: test pulls in std, which causes errors here
4288#[stable(feature = "vec_from_box", since = "1.18.0")]
4289impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4290    /// Converts a boxed slice into a vector by transferring ownership of
4291    /// the existing heap allocation.
4292    ///
4293    /// # Examples
4294    ///
4295    /// ```
4296    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4297    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4298    /// ```
4299    fn from(s: Box<[T], A>) -> Self {
4300        s.into_vec()
4301    }
4302}
4303
4304// note: test pulls in std, which causes errors here
4305#[cfg(not(no_global_oom_handling))]
4306#[stable(feature = "box_from_vec", since = "1.20.0")]
4307impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4308    /// Converts a vector into a boxed slice.
4309    ///
4310    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4311    ///
4312    /// [owned slice]: Box
4313    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4314    ///
4315    /// # Examples
4316    ///
4317    /// ```
4318    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4319    /// ```
4320    ///
4321    /// Any excess capacity is removed:
4322    /// ```
4323    /// let mut vec = Vec::with_capacity(10);
4324    /// vec.extend([1, 2, 3]);
4325    ///
4326    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4327    /// ```
4328    fn from(v: Vec<T, A>) -> Self {
4329        v.into_boxed_slice()
4330    }
4331}
4332
4333#[cfg(not(no_global_oom_handling))]
4334#[stable(feature = "rust1", since = "1.0.0")]
4335impl From<&str> for Vec<u8> {
4336    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4337    ///
4338    /// # Examples
4339    ///
4340    /// ```
4341    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4342    /// ```
4343    fn from(s: &str) -> Vec<u8> {
4344        From::from(s.as_bytes())
4345    }
4346}
4347
4348#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4349impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4350    type Error = Vec<T, A>;
4351
4352    /// Gets the entire contents of the `Vec<T>` as an array,
4353    /// if its size exactly matches that of the requested array.
4354    ///
4355    /// # Examples
4356    ///
4357    /// ```
4358    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4359    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4360    /// ```
4361    ///
4362    /// If the length doesn't match, the input comes back in `Err`:
4363    /// ```
4364    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4365    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4366    /// ```
4367    ///
4368    /// If you're fine with just getting a prefix of the `Vec<T>`,
4369    /// you can call [`.truncate(N)`](Vec::truncate) first.
4370    /// ```
4371    /// let mut v = String::from("hello world").into_bytes();
4372    /// v.sort();
4373    /// v.truncate(2);
4374    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4375    /// assert_eq!(a, b' ');
4376    /// assert_eq!(b, b'd');
4377    /// ```
4378    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4379        if vec.len() != N {
4380            return Err(vec);
4381        }
4382
4383        // SAFETY: `.set_len(0)` is always sound.
4384        unsafe { vec.set_len(0) };
4385
4386        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4387        // the alignment the array needs is the same as the items.
4388        // We checked earlier that we have sufficient items.
4389        // The items will not double-drop as the `set_len`
4390        // tells the `Vec` not to also drop them.
4391        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4392        Ok(array)
4393    }
4394}