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A Remark on Plotkin’s Bound

Warwick de Launey and Daniel M. Gordon

Abstract— Let A(n, d) denote the greatest number of code-

words possible in a binary block code of length n and dis-

tance d. Plotkin gave a simple counting argument which

leads to an upper bound B(n, d) for A(n, d) when d ≥ n/2.
Levenshtein proved that if Hadamard’s conjecture is true

then Plotkin’s bound is sharp. Though Hadamard’s conjec-

ture is probably true, its resolution remains a difficult open

question. So it is natural to ask what one can prove about

the ratio R(n, d) = A(n, d)/B(n, d). This note presents an ef-

ficient heuristic for constructing for any d ≥ n/2, a binary

code which has at least 0.495B(n, d) codewords. A computer

calculation confirms that R(n, d) > 0.495 for d up to one tril-

lion.

Keywords— Plotkin bound, Hadamard matrix, Paley ma-

trix, Goldbach conjecture, high distance binary block codes

I. Preliminaries and Overview

For n > d > 0, let A(n, d) denote the maximum number

of codewords possible in a binary block code of length n

and minimum (Hamming) distance d. Notice that, if d is

odd, then C is an (n, M, d) code if and only if the code C′

obtained by adding a parity check bit to each codeword

in C is an (n + 1, M, d + 1) code. Therefore, if d is even,

then A(n, d) = A(n − 1, d − 1). So in order to understand

the behaviour of A(n, d) it is sufficient to understand its

behaviour for d even.

An elementary counting argument gives Plotkin’s bound.

This states that for d even,

A(n, d) ≤ B(n, d) =

{

2
⌊

d
2d−n

⌋

if 2d > n ≥ d,

4d if n = 2d.

An r × n partial Hadamard matrix is a (1,−1)-matrix H

such that

HH⊤ = nIr.

It is easy to show that r ≤ n, and that if r > 2, then n = 4t

is divisible by four. If r = n, then H is a Hadamard matrix.

In this case, the matrix is said to be complete.

The connection between partial Hadamard matrices and

Plotkin’s bound is provided by the following lemma which

was proved in [4] by using partial Hadamard matrices

in place of the Hadamard matrices in Levenshtein’s well

known construction for high distance binary block codes.
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Lemma 1: If there is a c2t × 2t partial Hadamard matrix

for all even t ≥ N , then for all 2d ≥ n ≥ (2 − 1/N)d,

cB(n, d) ≤ A(n, d) ≤ B(n, d).

In 1893, Hadamard conjectured that a complete matrix

exists for any order divisible by four. So (as Leven-

shtein proved in [8]) if Hadamard’s conjecture is true then

Plotkin’s bound is sharp. Even though there is an extensive

literature on Hadamard matrices, the conjecture remains

unproven. It is therefore natural to ask what we can prove

about the ratio R(n, d) = A(n, d)/B(n, d).

A recent paper [4] contains the following asymptotic result.

Theorem 2: For any ǫ > 0, there exists an integer N , such

that for all integers n and d satisfying 2d ≥ n ≥ d(2 − 1
N ),

we have R(n, d) > 1
3 (1 − ǫ).

In other words, provided that the distance d is rather close

to n/2 or B(n, d) is large, for n sufficiently large Plotkin’s

bound is at worst off by a factor close to three.

Theorem 2 is ultimately a consequence of a recent result in

analytic number theory which states that any sufficiently

large odd number may be written as the sum of three

primes which are all close to each other. The idea is to

paste together three truncated Paley Hadamard matrices

with nearly equal orders.

However, we think that there are actually enough pairs of

known Hadamard matrices to allow us to replace the factor

one third in Theorem 2 by one half.

Firstly, as noted at the end of [4], pairs of Paley matrices

might be used to give Theorem 2 with the factor equal to

one half. However a proof along these lines seems beyond

our reach, since it would imply an asymptotic form of the

long standing Goldbach conjecture which states that any

even integer greater than two may be written as the sum of

two primes. We will examine this approach in more detail

later in this paper.

Secondly, if we use one Paley Hadamard and one Hadamard

matrix whose existence is given by Craigen’s recent asymp-

totic results [1] 1, then the problem reduces to finding a

prime in a short arithmetic sequence. This suggests assum-

ing the Extended Riemann Hypothesis (ERH), and seeing

what can be proved. Indeed, if we let r(n) denote the great-

1It is interesting to note that Craigen’s improvements over Seberry’s
earlier asymptotic existence result are essential.
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est number of rows in a partial Hadamard matrix with n

columns, and let ǫ > 0, then in [5] the authors proved that

if the ERH is true then for every sufficiently large n ≡ 0

(mod 4)

r(n) ≥
n

2
− n

17

22
+ǫ. (1)

This equation implies that for any c < 1/2, there is an

integer N such that for every n > N congruent to zero

modulo four we have r(n) ≥ cn. Lemma 1 with t = n/2

then shows that (assuming the ERH is true) we can take

the factor in Theorem 2 equal to one half.

Regardless of how high we can make the factor in Theo-

rem 2, the theorem has two major deficiencies. Firstly, it

seems to be difficult to estimate how large N needs to be,

and secondly, if N needs to be large, then d will be forced

to be very close to n/2.

In this correspondence, we study an efficient heuristic, em-

ploying only Paley Hadamard matrices and Hadamard ma-

trices of small orders, for constructing, for any block size

n and distance d ≥ n/2, codes with at least 0.495B(n, d)

codewords.

The heuristic relies on the following observation.

Lemma 3: If 2(t − 1) = p1 + p2 where p1 and p2 > p1

are primes then there is a 2(p1 + 1)× 4t partial Hadamard

matrix.

Proof: Paley showed that there is a Hadamard matrix

of order 2(q+1) for any prime power. So the desired partial

Hadamard matrix can be obtained by concatenating the

matrices obtained by taking the first 2(p1 + 1) rows of the

Hadamard matrices obtained by taking q equal to p1 and

p2.

So if we use pairs of Paley matrices, we are left with the

problem of expressing 2(t − 1) as the sum of two primes

which are close together. Of course it seems to be difficult

to prove that the primes p1 and p2 of Lemma 3 exist for

every t > 1. Nevertheless, we can describe a simple prob-

abilistic model which predicts with some accuracy how far

apart the two primes are likely to be.

As t grows, Lemma 3 gives partial Hadamard matrices

which are very close to half complete. However, for small

t it is useful to use all the known Hadamard matrices of

order up to, say, twelve thousand. This seems to allow us

to form for any t a c4t×4t partial Hadamard matrix where

c > 0.495.

To test our model (and to obtain a supply of nearly half

complete partial Hadamard matrices) we used a computer

to find the optimal pair of primes for each even number

up to 1012. The computer calculation implies the following

result.

Theorem 4: For all integers d ≤ 1012 and n satisfying 2d ≥

n ≥ d we have R(n, d) > 0.495.

The calculation also confirms the probabilistic model for

d up to 1012, suggesting that Theorem 4 is true for all

d. In any case, for d ≤ 1012 the rate of the largest code

of length n ∈ [d, 2d] is very close to the theoretical limit
1
n log2 B(n, d). We note that proving R(n, d) > 0.5 would

require a completely different approach to that taken in

this paper.

II. Modeling the Offset

Definition 5: Suppose an even integer 2n may be repre-

sented as the sum of two primes. For any representation

2n = p1 + p2 with p1 ≤ p2, call p2 − n = n − p1 the sepa-

ration. An optimal representation has minimal separation,

which we will call the offset for n.

Goldbach’s Conjecture simply states that the offset is well

defined for every even integer larger than two.

Cramér’s model (Granville, in [7], gives an interesting de-

scription of his model and modifications of it) treats pri-

mality as a random event, allowing one to use standard

probabilistic methods to model the behavior of primes. For

a given n and small k, the prime number theorem implies

that n − k will be prime with probability asymptotically

equal to 1/ logn. If n − k is prime, it is likely (but un-

proven) that n + k will be prime with probability about

equal to 2/ logn (since n + k must be odd). So if we try

(log2 n)/2 values for k starting at zero and increasing by

one, we would expect that about one of the values for k

will have n + k and n − k both prime.

Now if P is the probability of success in each of a se-

quence of Bernoulli trials, then the expected number of

trials needed to obtain a single success (on the last at-

tempt) is 1/P . Therefore under the current model, the

expected value of the smallest k for which n + k and n− k

are both prime would be (log2 n)/2.

This model can be made more accurate using ideas in [2].

If some prime ℓ divides n, then the probability that ℓ does

not divide n − k and ℓ does not divide n + k is (ℓ − 1)/ℓ

instead of (ℓ − 1)2/ℓ2. On the other hand, if ℓ does not

divide n, then the probability that ℓ does not divide n− k

and ℓ does not divide n+k is (ℓ−2)/ℓ instead of (ℓ−1)2/ℓ2.

Thus, the expected size of the offset will be

log2 n/2 ·





∏

ℓ|n

ℓ − 1

ℓ









∏

ℓ |6 n

(ℓ − 1)2

ℓ(ℓ − 2)



 ,

where each prime ℓ appears in one of the products. See [9]
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for extensive computations on the accuracy of this formula.

For a random n, the probability of being divisible by ℓ is

just 1/ℓ, so assuming independence of the scaling factors

for each prime ℓ, the expected offset becomes

log2 n/2 ·
∏

l prime

(

ℓ − 1

ℓ
·
1

ℓ
+

(ℓ − 1)2

ℓ(ℓ − 2)
·
ℓ − 1

ℓ

)

= log2 n/2 ·
∏

ℓ prime

(

1 +
1

ℓ2(ℓ − 2)

)

≈ 0.5665 log2 n.

We are of course most interested in the extremal behaviour

of the offset. In the worst case, where n is prime or rel-

atively prime to the smallest primes, the probability of a

given p, n − p pair both being prime is

2

log2 n

∏

l

l(l − 2)

(l − 1)2
≈ 1.32/ log2 n.

The probability of c log3 n consecutive pairs all failing is

(

1 −
1.32

log2 n

)c log3 n

≤ e−c log n/0.757 = n−c/0.757.

Notice that for c > 0.757, this probability is less than n−1;

so for any c > 0.757 the expected number of n for which

the gap is greater than c log3 n is finite but arbitrarily large

as c approaches 0.757. For c > 0.757 we obtain the follow-

ing estimate for the number of integers n > N with offset

greater than c log3 n:

∫ ∞

N

n−c/0.757dn =
N1−c/0.757

c/0.757− 1

So combined with Lemma 3 our model suggests that for

any c > 0.757 and

n > (c/0.757− 1)−(c/0.757−1)−1

(2)

divisible by four we have

r(n) ≥
1

2
(n − c log3 n) (3)

which is much better than (1). Note that when c = 2 ×

0.757, the lower bound (2) on n is one.

III. Computational Experiments

It is easy to find good partial Hadamard matrices for a

wide range of n. For large n, one simply looks for opti-

mal pairs. These may not give the best possible bounds,

but asymptotically they do very well. For smaller n, one

may use tables of known Hadamard matrices, such as Ta-

ble 24.33 of [1], concatenating pairs of Hadamard matrices

with orders close together.

TABLE I

n with partial Hadamard matrices with < 0.498n rows

n a b a/n
428 212 216 0.495327
668 332 336 0.497006
716 356 360 0.497207
764 380 384 0.497382
892 444 448 0.497758
956 476 480 0.497908
1436 712 724 0.495822
1912 952 960 0.497908
1916 952 964 0.496868
3832 1908 1924 0.497912

TABLE II

Moving average of the offsets for n up to 1014

n average offset/ log2 n
106 .4746
107 .4858
108 .4985
109 .5081
1010 .5149
1011 .5199
1012 .5252
1013 .5285
1014 .5315

Table III shows all n < 1012 for which the best partial

Hadamard matrix had fewer than 0.498n rows. They are

all very small, and cannot be improved without a differ-

ent construction for partial Hadamard matrices or new

results about Hadamard matrices. For example, to im-

prove n = 428 we would either need to find a Hadamard

matrix of order 428 or construct a partial r × 428 partial

Hadamard matrix by some means other than concatenat-

ing two Hadamard matrices. In any case, our computer

calculation confirms that there are enough good partial

Hadamard matrices to prove Theorem 4.

We also tested our heuristic model for the offsets. We first

computed a moving average for the offsets as n increased up

to 1012. For larger values, we computed the average offset

for a range of 109 integers. Table III shows the results.

We would expect this average to have an asymptote at

about 0.5665, but in order to test for the presence of the

asymptote we would have to examine very large numbers.

This slow convergence is not surprising; similar behavior

has been observed in the size of the gaps between succes-

sive prime numbers, where computations up to 1014 were

not sufficient to give evidence for or against Cramér’s con-

jecture [7]. Nevertheless, Table III supports our model in

the sense that the expected value of the offset is roughly



4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30

of
fs

et
/lo

g^
3 

n

log n

Fig. 1. Maximal raw offsets for n up to 1012

proportional to log2 n.

Next we tested the distribution of maximal raw offsets as

n increases. These computations were the most expensive,

and were done in a weekend run on 128 nodes of a CRAY

T3D. We expected that the largest offsets would grow to

about 0.757 log3 n and then level off. Figure 1 shows be-

havior consistent with this, suggesting that the inequality

(3) holds, for c close to 0.757, for all n, and hence that

Theorem 4 is true for all n.
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