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Perfect single error-correcting codes in the
Johnson scheme

Daniel M. Gordon

Abstract— Delsarte conjectured in 1973 that there are no
nontrivial pefect codes in the Johnson scheme. Etzion and
Schwartz recently showed that perfect codes must bek-regular
for large k, and used this to show that there are no perfect codes
correcting single errors in J(n, w) for n ≤ 50,000. In this paper
we show that there are no perfect single error-correcting codes
for n ≤ 2250.

I. I NTRODUCTION

The Johnson graphJ(n, w) has vertices corresponding to
V n

w , the w-subsets of the setN = {1, 2, . . . , n}, with two
vertices adjacent if their intersection has sizew − 1.

The distance between twow-sets is half the size of their
symmetric difference. Thee-sphere of a point, the set of all
w-sets within distancee, has cardinality

Φe(n, w) =

e
∑

i=0

(

w

i

)(

n − w

i

)

.

A codeC ⊂ J(n, w) is callede-perfect if the e-spheres of
all the codewords ofC form a partition ofV n

w . Delsarte [2]
conjectured that no nontrivial perfect codes exist inJ(n, w).

Etzion and Schwartz [3] introduced the concept ofk-regular
codes. In this paper we use their results to improve the lower
bound on the size of a 1-perfect code. The method of proof will
be to look at the factors ofΦ1(w, a). We show thatΦ1(w, a) is
squarefree, and for each primepi|Φ1(w, a), there is an integer
αi such thatpαi

i must be close ton − w. Then we will show
that theαi’s are distinct and pairwise coprime, and the sum of
their reciprocals is close to two. A computer search for perfect
powers in short intervals then shows that no such codes exist
with n < 2250.

For the rest of this paper we will deal with the casee =
1, and writen = 2w + a. This may be done without loss
of generality, since the complement of ane-perfect code in
J(n, w) is e-perfect in J(n, n − w). Also, to simplify the
statements of theorems, we will assume throughout the paper
that C is a nontrivial 1-perfect code inJ(n, w).

II. REGULARITY OF 1-PERFECT CODES

In this section we summarize the results of Etzion and
Schwartz [3] that we will need. LetA be a k-subset of
N = {1, 2, . . . , n}. For all 0 ≤ i ≤ k, define

CA(i) = |{c ∈ C : |c ∩A| = i}|,

and for eachI ⊆ A, define

CA(I) = |{c ∈ C : c ∩A = I}|.

C is k-regular if:
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1) There exist numbersα(0), α(1), . . . , α(k) such that for
any k-setA in N , CA(i) = α(i), for i = 0, 1, . . . , k.

2) For any k-set A in N , there exist numbers
βA(0), βA(1), . . . , βA(k) such that if I ⊆ A, then
CA(I) = βA(|I|).

Etzion and Schwarz give a necessary condition for a code
to be regular:

Theorem 1: If C is k-regular, then

Φ1(w, a) = 1 + w(w + a)

∣

∣

∣

∣

(

2w + a − i

w + a

)

(1)

for i = 0, . . . , k.
They then show that 1-perfect codes must be highly regular.
Theorem 2: C is k-regular if the polynomial

σ1(w, a, m) = m2 − (2w + a + 1)m + w(w + a) + 1 (2)

has no integer roots for1 ≤ m ≤ k.
Let

L(w, a) =
2w + a + 1 −

√

(a + 1)2 + 4(w − 1)

2
.

The smallest root of (2) isL(w, a), so
Theorem 3: C is k-regular for anyk < L(w, a).
This means that we can rule out 1-perfect codes by showing

that there is somei with 0 ≤ i ≤ L(w, a) such that (1) is not
satisfied.L(w, a) is an increasing function ofa, so

Lemma 1: L(w, a) ≥ L(w, 0) > w − ⌈√w⌉.
Lemma 2: We have

0 < a < w/2.
Proof: Theorem 13 in [3], which is a strengthening of a

theorem of Roos [7], givesa < w − 3. If a = 0 thenC is a
trivial code.

If a ≥ w/2, then

L(w, a) > L

(

w,
w − 7

2

)

= w − 2,

so C is (w − 2)-regular. C is also (w − 1)-regular, since
σ1(w, a, w − 1) = a − (w − 3) 6= 0 for a < w − 3.

Since C corrects single errors, any two codewords are at
least distance 3 apart inJ(n, w). Let A be a (w − 1)-set
contained in some codewordc1. Remove any element ofA
and add one not inc1 to get a new(w − 1)-setA′. SinceC
is (w − 1)-regular, there is a codewordc2 containingA′, but
c1 andc2 have distance 2 inJ(n, w), a contradiction.

III. D IVISORS OFΦ1(w, a)

We will derive necessary conditions for 1-perfect codes by
looking at possible prime divisors ofΦ1(w, a). One tool will
be:

Lemma 3: (Kummer) Let p be a prime. The number of
timesp appears in the factorization of

(

a
b

)

equals the number
of carries when addingb to a − b in basep.

Theorem 3 and Lemmas 1 and 3 imply
Corollary 1: If p is a prime withpk|Φ1(w, a), then there

are at leastk carries when addingw + a to j = w − i for
j = ⌈√w ⌉ + 1, ⌈√w ⌉ + 2, . . . , w.
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Let

w + a = (rm, rm−1, . . . , r1, r0)p (3)

be the basep representation ofw + a, with rm ≥ 1. Let
l = ⌊m/2⌋.

Lemma 4: ri = p − 1 for i = l + 1, l + 2, . . . , m.
Proof: For anyi with ⌈√w⌉+1 ≤ pi ≤ w, addingpi to

w+a must have a carry by Corollary 1, so the lemma follows
for i = l + 1, . . . , m − 1. To complete the proof, we need to
show thatw ≥ pm. We have

w + a ≥ pm + (p − 1)pm−1 ≥ 3

2
pm.

Sincea < w/2 by Lemma 2, this impliesw > pm.
Theorem 4: Φ1(w, a) must be squarefree.

Proof: Adding pm to w + a has only one carry, so by
Corollary 1 only one power ofp dividesΦ1(w, a).

Theorem 5: For any primep dividing Φ1(w, a), let α =
m + 1 = ⌊logp(w + a)⌋ + 1. Then

pα − ⌈√w⌉ − 1 ≤ w + a < pα (4)
Proof: We havew + a < pα from (3). By Lemma 4, we

must haveri = p − 1 for i = l + 1, l + 2, . . . , m. Let

(tl, tl−1, . . . , t0)p

be the basep representation of⌈√w ⌉. The left inequality of
(4) is equivalent to

pα − 1 − (w + a) = (p − 1 − rl, . . . , p − 1 − r0)p

≤ (tl, tl−1, . . . , t0)p = ⌈√w⌉.

If this is not satisfied, leti be the largest integer such that
p−1−ri > ti. The number(tl, tl−1, . . . , ti+1, ti+1, 0, . . . , 0)p

is greater than⌈√w⌉ and has no carries when when added to
w + a in basep, which contradicts Corollary 1.

Thus we have thatpα is in a short interval aroundw + a.
We will use this result in the following form:

Corollary 2: For a primep dividing Φ1(w, a), we have

0 < logw+a p − 1

α
<

1

α

(

1√
w + a

+
4

(w + a)

)

. (5)

Proof: From (4), we have

pα > w + a ≥ pα

(

1 − ⌈√w⌉ + 1

pα

)

> pα

(

1 − 1√
w + a

− 2

w + a

)

using ⌈√w⌉ + 1 <
√

w + a + 2. Taking the log basew + a,
we have

α logw+a p > 1 > α logw+a p+logw+a

(

1 − 1√
w + a

− 2

w + a

)

Using the bound− log(1 − x) < x + x2 for x < 1/2 gives
the corollary.

IV. POWERS INSHORT INTERVALS

Theorem 5 shows that for a 1-perfect code to exist, several
prime powers must be close tow + a. Having a large number
of prime powers in a short interval seems unlikely. Loxton [6]
showed (a gap in the proof was later fixed by Bernstein [1])
that the number of perfect powers in[w, w +

√
w ] is at most

exp(40
√

log log w log log log w).

Loxton conjectured that the number of perfect powers in such
an interval is bounded by a constant, but a proof seems very
far off.

For the rest of this paper, take

p1p2 . . . pr = Φ1(w, a) = 1 + w(w + a). (6)

Taking the log of (6) gives
r

∑

i=1

logw+a pi = logw+a(w(w + a) + 1),

so

0 <

r
∑

i=1

logw+a pi − (1 + logw+a w)

= logw+a(1 +
1

w(w + a)
) (7)

≤ 1

w(w + a)
.

Theorem 6:
∣

∣

∣

∣

∣

r
∑

i=1

1

αi
− (1 + logw+a w)

∣

∣

∣

∣

∣

<
4√

w + a
.

Proof: If
∑r

i=1
1
αi

− (1+ logw+a w) ≥ 0, then the theo-
rem follows immediately from (7) and Corollary 2. Otherwise,
summing (5) we have

0 < (1 + logw+a w) −
r

∑

i=1

1

αi

<

r
∑

i=1

logw+a pi −
r

∑

i=1

1

αi

<

r
∑

i=1

1

αi

(

1√
w + a

+
4

w + a

)

< 2
2√

w + a
.

Clearly the constant 4 in Theorem 6 can be strengthened,
but this will be enough for our purposes.

For 0 < a < w/2, we havew + a < 3w/2, so

1 − logw+a 3/2 < logw+a w < 1

and Theorem 6 says that we have an Egyptian fraction
representing a number close to 2. Etzion and Schwartz showed
that there are no 1-perfect codes withn ≤ 50000, and so

1

α1
+

1

α2
+ . . .

1

αr
∈ [1.934, 2.026] . (8)

Lemma 5: The αi’s are distinct and pairwise coprime.
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Proof: We cannot haveαi = αj = 1, since thenpi, pj >
(w+a) impliespipj > 1+w(w+a) = Φ1(w, a), contradicting
(6).

Suppose we haveαi, αj with gcd(αi, αj) = g > 1. Then
by Theorem 5,pαi

i andp
αj

j are twogth powers in an interval
aroundw + a of length

√
w + a, which is impossible.

For an integerk, let p−(k) denote the smallest prime factor
of k.

Corollary 3: Someαi hasp−(αi) ≥ 7.
Proof: If there are more than fourα’s, clearly one of

them must have a prime factor bigger than 5. For fourα’s,
the set{1, 2, 3, 5} has sum of reciprocals2.033, which by
(8) is too big, and an easy computation finds that any set of
powers of these numbers has a sum of reciprocals that is too
small. The largest is{1, 2, 3, 25}, with sum1.8733.

Let γ(n) denote the largest squarefree divisor ofn. Theabc
conjecture asserts that, for anyǫ > 0 there are only finitely
many integersa, b andc such thata + b = c and

max{a, b, c} ≤ Cǫγ(abc)1+ǫ.

See [4] for information and references about theabc conjecture
For any choice ofα’s satisfying (8), Masser-Oesterlé’sabc

conjecture implies there are only a finite number of solutions.
For example, takeα1 = 1, α2 = 2, α3 = 3, andα4 = 7. Let
a = p3

3, c = p7
4 and b be their difference, which is at most

max{p3/2
3 , p

7/2
4 } by Theorem 5. Then

max{a, b, c} ≈ w + a ≤ Cǫp3p4c

< (w + a)(1+ǫ)(1/3+1/7+1/2)

< (w + a)0.98

for all but finitely manyw’s.

V. A N EW LOWER BOUND FORn

While we cannot show that there are no perfect codes,
Theorem 5 gives us an efficient way to search for possible
codes, by searching for powers in short intervals.

To show a bound of2C for n, we need to check for primes
a, b ≥ 2 and integers3 ≤ p, q < C with

0 < ap − bq <
√

ap.

It suffices to consider prime values ofp andq, since anykth
power is also ap−(k)th power. It is possible to run through
the possibilities efficiently. Let{p1 = 3, p2 = 5, . . . , pk} be
the odd primes up toC. The following procedure will find all
pairs i, j and integersbi, bj for which bpi

i andb
pj

j are close:

1) Start withb1 = b2 · · · = bk = 2. Compute powersci =
bpi

i for i = 1, 2, . . . , k.
2) Let ci be the smallest power, andcj the second smallest.

Compare them to see if they are close enough.
3) Increment the basebi, recomputeci, and continue.
4) Stop when all powers are larger than2C .

If two powers less than2C are in a short interval, they
will eventually be the two smallest powers in the list, and
will be found. A heap (see, for example, [5]) is an efficient
data structure to maintain the powers in, requiring only one

p
α1

1
p

α2

2
difference

27 53 3

133 37 10

32513 327 83883

337 34933 178820

19657813 4987 1539250669

TABLE I

PAIRS OF HIGHER POWERS INSHORT INTERVALS UP TO2
109

comparison to find the two smallest powers, and≤ log2 k
steps to reorder the heap after changingci.

Note that the above algorithm looks for any integersbi

and bj with powers in a short interval, not just primes. Only
considering primes would reduce the number of comparisons,
but complicate the rule for stepping the basesbi.

In five hours on a 2.6 GHz Opteron, an implementation of
this algorithm eliminated everything up to2109. It found 60
powers higher than squares in short intervals, most of which
involved a cube and fifth power. By Corollary 3, we may
discount these. The only higher powers are given in Table I.

Only the first two pairs are powers of primes, and they are in
the range already eliminated by Etzion and Schwartz’s result.
The larger ones all involve at least one composite, so they do
not result in a 1-perfect code. Therefore we have

Theorem 7: There are no 1-perfect codes inJ(n, w) for all
n < 2109.

Finally, we may bootstrap this result to a stronger one. Using
this larger bound in Theorem 6, we can tighten (8) to

1

α1
+

1

α2
+ . . .

1

αr
∈ [1.99, 2.001] .

No set of fourαi’s have a sum of reciprocals in this interval,
and the only sets of five that do are{1, 2, 3, 7, k}, wherek ∈
[41, 71] with gcd(k, 2 · 3 · 7) = 1. Any set of sixαi’s clearly
have twoα’s with a factor≥ 7, so we have

Corollary 4: At least twoαi’s havep−(αi) ≥ 7.
Therefore we may do a search as above, but starting with

p1 = 7 instead of 3. The search work is proportional to2C/p1 ,
so this greatly reduces the search time. A search for seventh
and higher powers up to2250 in a short interval took four
hours and found none, so

Theorem 8: There are no 1-perfect codes inJ(n, w) for all
n < 2250.
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