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Abstract— Delsarte conjectured in 1973 that there are no
nontrivial pefect codes in the Johnson scheme. Etzion and
Schwartz recently showed that perfect codes must bg-regular
for large k, and used this to show that there are no perfect codes
correcting single errors in J(n,w) for n < 50,000. In this paper
we show that there are no perfect single error-correcting cdes
for n < 2250,

I. INTRODUCTION

The Johnson grapli(n,w) has vertices corresponding to
V., the w-subsets of the sel = {1,2,...,n}, with two
vertices adjacent if their intersection has size- 1.

The distance between twe-sets is half the size of their
symmetric difference. The-sphere of a point, the set of all
w-sets within distance, has cardinality

= £ ()(77)

=0
A codeC C J(n,w) is callede-perfect if the e-spheres of
all the codewords of form a partition of V)

conjectured that no nontrivial perfect codes existim, w).
Etzion and Schwartz [3] introduced the conceptatgular

codes. In this paper we use their results to improve the lower
bound on the size of a 1-perfect code. The method of proof will

be to look at the factors @b, (w, a). We show thatb; (w, a) is

1) There exist numbers(0), (1), ..., a(k) such that for
any k-set A in NV, C 4 (i) = a(i), fori = 0,1,... k.

2) For any k-set A in N, there exist numbers
ﬁA(O),ﬁA(l),...,ﬁA(k) such that ifZ C A, then
CA(T) = B4(T)).

Etzion and Schwarz give a necessary condition for a code

to be regular;

Theorem 1: If C is k-regular, then
2w+a—1
w+a

They then show that 1-perfect codes must be highly regular.
Theorem 2: C is k-regular if the polynomial

Dy (w,a) =1+ w(w + a) (1)

fori=0,...,k.

or(w,a,m) =m* - Qu+a+1)m+ww+a)+1 (2)

has no integer roots far < m < k.
Let

2 1- 1)2+4(w-1
L(w,a) = wrat \/((;—i_ friw-l)
The smallest root of (2) i€.(w,a), so
Theorem 3: C is k-regular for anyk < L(w,a).

This means that we can rule out 1-perfect codes by showing

that there is someé with 0 < i < L(w, a) such that (1) is not
. Delsarte [2] satisfied.L(w, a) is an increasing function of, so

Lemma 1. L(w,a) > L(w,0) > w — [yw].
Lemma 2: We have

0<a<w/2
Proof: Theorem 13 in [3], which is a strengthening of a

theorem of Roos [7], givea < w — 3. If a = 0 thenC is a

squarefree, and for each primg®; (w, a), there is an integer trivial code.

a; such thatp?* must be close taw — w. Then we will show

that thea;’s are distinct and pairwise coprime, and the sum of

their reciprocals is close to two. A computer search for gxetrf

powers in short intervals then shows that no such codes exist
so C is (w — 2)-regular.C is also (w — 1)-regular, since
o1(w,a,w—1)=a—(w—3)#0fora < w-—3.

with n < 2250,
For the rest of this paper we will deal with the case-
1, and writen = 2w + a. This may be done without loss

If a > w/2, then

w —

7
"7

L(w,a) > L (w,

SinceC corrects single errors, any two codewords are at

of generality, since the complement of arperfect code in |east distance 3 apart if(n,w). Let A be a(w — 1)-set

J(n,w) is e-perfect in J(n,n — w). Also, to simplify the contained in some codeword. Remove any element ofl
statements of theorems, we will assume throughout the paggti add one not ir; to get a new(w — 1)-set A’. SinceC

thatC is a nontrivial 1-perfect code id(n,w).

is (w — 1)-regular, there is a codeword containing.A’, but

¢1 andcy have distance 2 i(n, w), a contradiction.

Il. REGULARITY OF 1-PERFECT CODES

In this section we summarize the results of Etzion and

Schwartz [3] that we will need. Lefd be a k-subset of
N ={1,2,...,n}. Forall0 <i <k, define

[1l. DIVISORS OF®;(w,a)
We will derive necessary conditions for 1-perfect codes by

looking at possible prime divisors d@f; (w, a). One tool will

CA(i)=|{ceC:len Al =i},

and for eachZ C A, define

be:

Lemma 3;: (Kummer) Letp be a prime. The number of

timesp appears in the factorization cég) equals the number

Cp(Z)=H{cel:cNA=T}|
C is k-regular if:
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of carries when adding to a — b in basep.

Theorem 3 and Lemmas 1 and 3 imply
Corollary 1: If p is a prime withp*|®; (w,a), then there

are at least carries when addingy + a to j = w — i for

G=[yol+ L [Val+2,... v



Let IV. POWERS INSHORT INTERVALS

WA a = (T, i1y ,71,70)p (3) Theorem 5 shows that for a 1-perfect code to exist, several
prime powers must be close t0+ a. Having a large number
be the base representation ofv + a, with r,, > 1. Let of prime powers in a short interval seems unlikely. Loxtoh [6
l=|m/2]. showed (a gap in the proof was later fixed by Bernstein [1])
Lemmad: r;=p—1fori=1+1,14+2,...,m. that the number of perfect powers fim, w + /w] is at most
Proof: For anyi with [/w] +1 < p* < w, addingp’ to
w+ a must have a carry by Corollary 1, so the lemma follows

exp(40+/loglog wlogloglog w).

fori=14+1,...,m — 1. To complete the proof, we need toLoxton conjectured that the number of perfect powers in such
show thatw > p™. We have an interval is bounded by a constant, but a proof seems very
far off.
w+a>pt+(p—1pnt > §pm. For the rest of this paper, take
- -2
: . pipz- - pr = ®1(w,a) = 1+ w(w + a). (6)
Sincea < w/2 by Lemma 2, this impliesv > p™. ] _ _
Theorem 4: &, (w, a) must be squarefree. Taking the log of (6) gives
Proof: Adding p™ to w + a has only one carry, so by r
Corollary 1 only one power of divides ®; (w, a). N D 108, 1o pi = log,, ;o (w(w + a) + 1),
Theorem 5: For any primep dividing ®;(w,a), let a = i=1
m+1 = |log,(w+a)| + 1. Then S0
po‘— "\/EW —-1< u)—|—a<po‘ (4) 0 < ZIng-i—api_ (1+10gw+aw)
Proof: We havew + a < p® from (3). By Lemma 4, we =1 .
must haver; =p—1fori=1+1,1+2,...,m. Let = 1 14— 7
p ngJra( + w(w+a)) ( )
(tlatlflv"'vto)p < #
— w(w+a)

be the base representation of /w ]. The left inequality of  Theorem 6:
(4) is equivalent to

1 4
— — (1 +41og,iqw)| < .
p*—1—(w+a) = (p—1—-m,...,p—1—10)p ;ai ( Bu-ta ) vw+a
< (tyticg, .. to)p = [Vl Proof: If >0, ai — (141log,,,, w) > 0, then the theo-

rem follows immediately from (7) and Corollary 2. Otherwise
If this is not satisfied, let be the largest integer such thasumming (5) we have

p—1—r; > t;. The numbeft;, t;—1, ..., ti+1,t+1,0,...,0), "
is greater tharf\/w] and has no carries when when added to 0 < (I+logy,y,w)— Z -
w + a in basep, which contradicts Corollary 1. ] iz i
Thus we have thapt® is in a short interval around + a. r "1
We will use this result in the following form: < Zlogw+a Pi — Z @
Corollary 2: For a primep dividing ®; (w, a), we have =t . . =l A
11 1 4 < .Zoz_i(s/w—i—a—’—w—i—a)
0<log, op——<~— + ) =1
a a\vw+ta (w+a) 2
Proof: From (4), we have < 2 :
w+a
(07 > (o7 ’— w + 1 .
pr>wta > ptll- I Clearly the constant 4 in Theorem 6 can be strengthened,
1 9 but this will be enough for our purposes.
> pa<1_m—w+a> For0 < a < w/2, we havew + a < 3w/2, so
. ) 1—log, ,3/2<log, ,w<1
using [vw] + 1 < y/w + a + 2. Taking the log base + a,
we have and Theorem 6 says that we have an Egyptian fraction
. ) representing a number close to 2. Etzion and Schwartz showed
hat there are no 1-perfect codes with< 50000, and so
1 >1>al 1 1-— — K )
@ ngJrap o ngJra p+ ngJra < \/w——i-a w + a 1 1 1
— 4+ — +...— €[1.934,2.026]. (8)
Using the bound-log(1 — z) < = + z? for = < 1/2 gives ar Q2 Qr

the corollary. [ ] Lemma 5: The a;’s are distinct and pairwise coprime.



Proof: We cannot havey; = a; = 1, since therp;, p; >
(w+a) impliesp;p; > 1+w(w+a) = &1 (w, a), contradicting
(6).

Suppose we have;, «; with ged(o;, ;) = g > 1. Then
by Theorem 5p;" andp?j are tWOgt powers in an interval
aroundw + a of length /w + a, which is impossible.

[ |

P Do difference
27 53 3
133 37 10
32513 327 83883
337 34933 178820
19657813 | 4987 | 1539250669
TABLE |

PAIRS OF HIGHER POWERS INSHORT INTERVALS UP T0 2109

For an integek, let p~ (k) denote the smallest prime factor

of k.
Corollary 3: Somec; hasp~(a;) > 7.
Proof: If there are more than fous’s, clearly one of
them must have a prime factor bigger than 5. For fois,
the set{1,2,3,5} has sum of reciprocal8.033, which by

(8) is too big, and an easy computation finds that any set Yt
powers of these numbers has a sum of reciprocals that is

small. The largest ig1, 2, 3,25}, with sum1.8733. [ ]

Let v(n) denote the largest squarefree divisomofThe abc
conjecture asserts that, for amy> 0 there are only finitely
many integers:, b and ¢ such thata + b = ¢ and

max{a,b, c} < Cey(abe)' .

See [4] for information and references aboutdhe conjecture
For any choice ofv’s satisfying (8), Masser-Oesterlé&iéc

conjecture implies there are only a finite number of solution

For example, takev; = 1, as = 2, a3 = 3, anday = 7. Let

a = p3, ¢ = p] andb be their difference, which is at most

maX{pg/Q,pZ/Q} by Theorem 5. Then
max{a, b, C} ~w+a < Cepspsc
< (w+ a)(1+e)(1/3+1/7+1/2)
< (w+a)*%®

for all but finitely manyw'’s.

V. ANEwW LOWERBOUND FORMN

comparison to find the two smallest powers, afdlog, k
steps to reorder the heap after changipg
Note that the above algorithm looks for any integérs
db; with powers in a short interval, not just primes. Only
Et%'lsidering primes would reduce the number of comparisons,
ut complicate the rule for stepping the bases

In five hours on a 2.6 GHz Opteron, an implementation of
this algorithm eliminated everything up ®%. It found 60
powers higher than squares in short intervals, most of which
involved a cube and fifth power. By Corollary 3, we may
discount these. The only higher powers are given in Table I.

Only the first two pairs are powers of primes, and they are in
the range already eliminated by Etzion and Schwartz’s tesul
The larger ones all involve at least one composite, so they do
not result in a 1-perfect code. Therefore we have

Theorem 7. There are no 1-perfect codes.jiin, w) for all
n < 2109,

Finally, we may bootstrap this result to a stronger one. gJsin
this larger bound in Theorem 6, we can tighten (8) to

1 1 1
4+ — 4...— €[1.99,2.001].
Q2 Qy

No set of foura;’s have a sum of reciprocals in this interval,
and the only sets of five that do afe, 2,3,7, k}, wherek €
[41,71] with ged(k,2 -3 -7) = 1. Any set of sixa;’s clearly
have twoa’s with a factor> 7, so we have

aq

While we cannot show that there are no perfect codes,Corollary 4: At least twoa;’'s havep™ (a;) > 7. o
Theorem 5 gives us an efficient way to search for possible Therefore we may do a search as above, but starting with

codes, by searching for powers in short intervals.

p1 = 7 instead of 3. The search work is proportionalfd’,

To show a bound o2€ for n, we need to check for primesS© this greatly reduces the search time. A search for seventh

a,b > 2 and integerss < p,q < C with
0<al —b? < Var.

It suffices to consider prime values pfandq, since anykth

and higher powers up t8%°° in a short interval took four
hours and found none, so

Theorem 8: There are no 1-perfect codes.itin, w) for all
n < 2250,

power is also @~ (k)th power. It is possible to run through .

the possibilities efficiently. Lefp; = 3,p» = 5,...,p} be Acknowledgments.The author would like to thank the anony-
the odd primes up t@'. The following procedure will find all Mous referee, who suggested changes which greatly improved
pairsi, j and integers;, b; for which b* andb?’ are close: the presentation of this paper, and pointed out Lemma 2.

1) Start withb; = by --- = by, = 2. Compute powers;
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