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ON SEQUENCES WITHOUT GEOMETRIC
PROGRESSIONS

BRIENNE E. BROWN AND DANIEL M. GORDON

ABSTRACT. Several papers have investigated sequences which have no k-
term arithmetic progressions, finding bounds on their density and look-
ing at sequences generated by greedy algorithms. Rankin in 1960 sug-
gested looking at sequences without k-term geometric progressions, and
constructed such sequences for each k£ with positive density. In this pa-
per we improve on Rankin’s results, derive upper bounds, and look at
sequences generated by a greedy algorithm.

1. INTRODUCTION

Erd6s and Turan [1] defined 7 (n) to be the least r for which any sequence
of r numbers less than n must contain a k-term arithmetic progression.
Roth [7] showed that r3(n) = O(n/loglogn), and Szemerédi [8] showed
that 75 (n) = o(n) for all k.

We will denote all sets of nonnegative integers without a k-term arithmetic
progression by APF (for arithmetic progression-free). Erdds conjectured
that the sum of reciprocals of the (nonzero) terms of any such sequence
converge, and offered $3,000 for a proof or disproof.

One way to generate an arithmetic progression-free sequence is to use a
greedy algorithm: start with 0, and add the smallest number which does not
form a k-term arithmetic progression. Variations on the resulting sequences
have been studied by several people [2, 3, 5|. For prime k, greedy sequences
are just the integers whose base-k representation has no digits equal to k—1.
For composite k their behavior is still mysterious.

In [4], the span of a set is defined to be the difference of its largest and
smallest elements, and sp(k,n) to be the smallest span of a set in APF},
with n members, and a table of values for sp(k,n) for small k£ and n due to
Usiskin is given. The value given for sp(3,10) in that table is wrong; Table
1 corrects it and gives sp(k,n) for a larger range of k and n.

The corresponding questions for sequences with no geometric progressions
have received little attention. Rankin [6] used sequences in APF, to form
sequences with no k-term geometric progressions, and found their density.
In §2 we review his methods, and show how sequences coming from a greedy
method are superior to his for £ > 3. In §3 we derive upper bounds for the
density of such sequences.
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TABLE 1. Smallest span for APF;

kE\n | 345 6 7 8 9 10 11 12 13 14 15 16 17
313 4 8 10 12 13 19 23 25 29 31 35 39 40 50
4 4 5 7 8 9 12 14 16 18 21 22 24 26 27
5 5 6 7 8 10 11 12 13 15 16 17 18 23
6 6 7 8 9 11 12 13 14 16 17 18 19

Throughout this paper, A will denote an arbitrary sequence of nonnega-
tive integers, Ay will be an arbitary sequence in APFy, and A; will be the
greedy sequence described above.

2. GEOMETRIC PROGRESSION-FREE SEQUENCES

Let GPF}; denote all sets of positive integers with no k-term geometric
progressions. The only previous consideration of geometric progression-free
sequences we know of is by Rankin [6]. An obvious sequence in GPF}3 is the
set of squarefree numbers, which have density 6/72 ~ 0.608.

Rankin showed that sequences in APFj can be used to form denser se-
quences in GPFy:

For a nonnegative sequence of integers A = {a1,asg,... }, let G(A) be the
set of all integers

(1) N =pi'p5* - pi7,

where the p; are distinct primes, r is any nonnegative integer, and e; € A
fori=1,...,r.

Theorem 1. If A is in APFy, then G(A) is in GPF.

Proof. Let {a,as,as?, ... ,ask_l} be any set of integers in a geometric pro-
gression. (Note that, while a € Z, s may be a rational noninteger, e.g. the
progression 9,12,16). Any prime dividing the numerator or denominator of
s occurs to powers ¢,c +d,c + 2d,... ,c+ (k — 1)d, for some ¢ € Z* and
d € Z. These powers form a k-term arithmetic progression, which cannot

be contained in A, and so the numbers in the geometric progression cannot
all be in G(A). O

Let GJ, be the set in GPF}, generated by the greedy algorithm; g; = 1, and
g; is the smallest integer which does not form a k-term geometric progression
with g1,...,9i—1.

Theorem 2. We have G}, = G(A}).

Proof. Let m be the smallest number in G}, which is not in G(A}). We will
show that m is in a geometric progression with & — 1 numbers in G(A4j).
This contradicts the definition of G}, since G}, is equal to G(A}) up to m,
proving that no such m exists.
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Let m = Hj pjj I ql , where the e; are in Ay, and the f; are not. Then
for each fj, there is an arithmetic progression {f; 1, fi2,... , fix = fi} with

fit,--o 5 fig—1 € Ag. Then
Hp] ]_[qul7

-1 1
J l

Nier =[] [T
7 l

together with m would form a geometric progression. All of Ny,...Ni_1
are less than m, and so would be in Gy, since they do not form arithmetic
progressions with other numbers in G(Aj). O

Rankin also gave a method to compute the density of a sequence G(A) €
GPF}, of the form (1). The Dirichlet series

famy(s) =Y n*
neG

has the Euler product
=[[Faltr™),
p
where, for |z| < 1,
(2) Fy(x) = qu.

geA

When £k is prime, A = Aj consists of numbers with no digits equal to
k — 1 base k, and (2) becomes

o0

Far(z) = ][] (1 +a 2 x(k_z)k”)
v=0
oo 1 (k—1)k?

= =

v=0

which implies

(3) fe (s HC =) k” 5

The asymptotic density of G equals the residue at s = 1 of fg(s). For
G = G5, this is 0.7197 (Rankin gave the same sequence). Even for com-
posite k, where there is no known closed form for fex (s), we may still
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compute the residue to any desired precision. For example, for k = 4,
A; ={0,1,2,4,5,... }, and

fei(s) = H(1+p_8+p_25+p_45+---)
p
= (][O -pP+p—p 4.,
p

which has residue ~ 0.895.
This is better than the density 0.8626 GPF4 sequence Rankin found. In
fact, we can show that the greedy sequence is the best of the form (1):

Theorem 3. If G = G(Ag) for k > 3 and some APFy sequence Ay, then
its density is no greater than the greedy sequence.

Proof. Any sequence G = G(A) has a Dirichlet series of the form

(4) fa(s) =[] (a0 + arp™ + app™ +--+),

where a; = 1 if i € A, and a; = 0 otherwise. As stated above, the residue at
s = 1 of this function gives the density of the corresponding sequence.

Suppose there is another sequence A’ for which G = G(A’) has density
greater than the greedy sequence G(A). Let a) be the coefficients for the
Dirichlet series for(s). The density of G’ is greater than G if and only if the
residue of fg/(s) at s = 1 is greater than the residue of fg(s).

At some point A’ diverges from the greedy sequence, and we have a; = 1
and a; = 0 for some i. Let H be the greedy sequence truncated at i, and
H' be the same sequence with i removed and containing all 7 > 7. Then H
has density less than G and H' has density greater than G’ so it suffices to
show that

(5) fa(s) =11 (ao +tap 4 +aip T4 p_i5>
p

has a larger residue at s = 1 than

fu(s) = H (ao et ai—lp_(i_l)s +p—(i+1)s +p—(i+2)s 1. >
P
. —(i+1)s
(6) = H ag—+---+ ai_lp_(l_l)s + pi_s ]
P 1-p
This is equivalent to showing that

lim fh(s) > 1.
s=1 [ (s)

But this is obvious, since for p = 2 the terms in (5) and (6) are equal at
s =1, and for all p > 2 and s > 1 the term in (5) is larger.
U
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This leaves open the question of whether geometric progression-free se-
quences not of the form (1) have better density than greedy sequences. They
can certainly do better over finite ranges; the greedy GPF3 sequence:

12 3 5 6 7 8 10 11 13
14 15 16 17 19 21 22 23 24 26
27r 29 30 31 33 34 35 37 38 39
40 41 42 43 46

may be improved by removing 5 and adding 25 and 45.

3. UPPER BOUNDS

It is easy to show that the density of a GPF} sequence is strictly less than
one:

Theorem 4. For any k > 3, the density of a sequence in GPF} is at most
1—27F,

Proof. For any N, let a be an odd number less than N/2*~1. Then the k
numbers a, 2a,4aq, ... , 2" 'a cannot all appear in a GPF}, sequence. There
are N/2F different a’s, so this excludes N/2* numbers less than N from the
sequence. O

Theorem 4 can be improved slightly:

Theorem 5. For any k > 3, the density of a sequence in GPFy is at most
5—(k—1) _ 6—(k—1)

1—27F—
2
Proof. Let b be an odd number, N/6*~1 < b < N/5¥~1. Then the num-
bers 3510, 3%5=25b, ... ,5¥=1b cannot all appear in the sequence. There are

N/(2 - 51 — N/(2 - 6*71) such b’s, and none of them are the numbers
a,2a,...,2" 1q from Theorem 4, since they are all odd, and 3*~1b > q for a
and b in the ranges chosen. Moreover, since 6°~1/5%~1 < 5/3, the numbers
3F=1p, 35250, ..., 5F=1p are distinct for different b in the range. O

The bounds can be further improved by taking fractions of larger primes
over smaller ranges, but the improvements become marginal very quickly.

Table 2 gives the best known upper and lower bounds for the density of
sequences in GPFy for k < 7. For k = 3 and 4 they are still far apart, but
as k gets large they approach each other.

Theorem 6. As k — oo, the optimal density for a sequence in GPFy is
1—27%(1 —o(1)).

Proof. From Theorem 4, we have that the density is no greater than 1 —27%.
Therefore, it suffices to show that the greedy sequence G(Ay) has the stated
density.
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TABLE 2. Densities for geometric progression-free sequences

k | greedy density | upper bound
3 0.71974 0.868889
4 0.89537 0.935815
5 0.95805 0.968336
6 0.98085 0.984279
7 0.99116 0.992166

It is easy to see that the greedy APF} sequence Ay starts off
{0,1,... ,k—2,k,k+1,...,2k—3,2k — 1}
for k£ even and
{0,1,... ,k—2,k,k+1,... ,2k— 2,2k}

for k > 3 odd. For simplicity, we will handle the odd case (the even case is
virtually identical). The density of G(Ay) is the residue at s = 1 of

H<1_|_p—s_|_”.+p—(k—2)s+p—ks+.“+p—(2k—2)s+p—2ks+'“),

p

_ H 1 _1p_s (1 _ p—(k—l)s +p ks p—(%—l)s 4. )
p

_ C(S) H (1 o p—(k—l)s + p—ks _ p—(2k—1)5 . ) .

P
The residue of {(s) is one, so the density is

I1 (1 I )
p

(1— 27k — o= (2k=1)) H (1 _ p—(k—1)>

p>2

v

1—9°k_ 2—(2k—1)
(1 =270~k — 1)

For large k, we have ((k — 1) — 1+ 2~ =1 and the density becomes
1—27%(1 - o(1)).
]
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