
1

Optimal hash functions for approximate closest
pairs on the n-cube

Daniel M. Gordon, Victor Miller and Peter Ostapenko

Abstract

One way to find closest pairs in large datasets is to use hash functions [6], [12]. In recent years locality-sensitive
hash functions for various metrics have been given: projecting an n-cube onto k bits is simple hash function that
performs well.

In this paper we investigate alternatives to projection. For various parameters hash functions given by complete
decoding algorithms for codes work better, and asymptotically random codes perform better than projection.

I. INTRODUCTION

Given a set of M n-bit vectors, the closest pair problem is to find the two with smallest Hamming
distance. This problem has applications in numerous areas, such as information retrieval and DNA sequence
comparison. One approach ([6], [9], [12]) is to apply a hash function to the vectors, choosing the hash to
be locality-sensitive, so that the probability of two vectors colliding is large if they are close, and small
otherwise.

The standard hash to use is projection onto k of the n coordinates. This hash is the best known for
general n and k [9]. An alternative family of hashes is based on minimum-weight decoding with error-
correcting codes [4], [16]. A [n, k] code C with a complete decoding algorithm defines a hash hC , where
each v ∈ V := F

n
2 is mapped to the codeword c ∈ C ⊂ V that v decodes to. Using linear codes for

hashing schemes has been independently suggested many times; see [4], [7], and the patents [3] and [16].
In [4] the binary Golay code is suggested to find approximate matches in bit-vectors. Data is given that

suggests it is effective, but it is still not clear when the Golay or other codes work better than projection.
In this paper we attempt to quantify this, using tools from coding theory.

Let PC(p) be the probability that hC(x) = hC(x + e), where x is a random element of V and where
each bit of the error vector e is nonzero with probability p. For a linear code with a complete translation
invariant decoding algorithm (so that h(x) = c implies that h(x+ c′) = c+ c′), studying PC is equivalent
to studying the properties of the set S of all points in V that decode to 0.

Suppose that we pick a random x ∈ S. Then the probability that y = x + e is in S is

PS(p) =
1

|S|

∑

x,y∈S

pd(x,y)(1 − p)n−d(x,y). (1)

This function has been studied extensively in the setting of error-detecting codes [13]. In the case where
S is a code, PS(p) is the probability of an undetected error, and the goal is to minimize this probability.
Here, on the other hand, we will call a region optimal for p if no region in V of size |S| has greater
probability.

As the error rate p approaches 1/2, this coincides with the definition of distance-sum optimal sets,
which were first studied by Ahlswede and Katona [1].

Define the error exponent of a code C to be

EC(p) = −
1

n
lg PC(p).

D. Gordon and P. Ostapenko are with the IDA Center for Communications Research, 4320 Westerra Court, San Diego, 92121, e-mail:
{gordon,peter}@ccrwest.org

V. Miller is with the IDA Center for Communications Research, 805 Bunn Drive, Princeton, New Jersey 08540, e-mail: vic-
tor.miller@idaccr.org

2

In this paper lg denotes log to base 2. We are interested in properties of the error exponent over codes
of rate R = k/n as n → ∞. In Section IV we will show that hash functions from random (nonlinear)
codes have a better error exponent than projection.

II. HASH FUNCTIONS FROM CODES

For a set S ⊂ V , let
Ai = #{(x,y) : x,y ∈ S and d(x,y) = i}

count the number of pairs of words in S at distance i. The distance distribution function is

A(S, ζ) :=
n
∑

i=0

Aiζ
i. (2)

This function is directly connected to PS(p) [13]. If x is a random element of S, and y = x+ e, where
e is an error vector where each bit is nonzero with probability p, then the probability that y ∈ S is

PS(p) :=
1

|S|

∑

x,y∈S

pd(x,y)(1 − p)n−d(x,y) (3)

=
1

|S|

n
∑

i=0

Aip
i(1 − p)n−i

=
(1 − p)n

|S|
A

(

S,
p

1 − p

)

.

In this section we will evaluate (3) for projection and for perfect codes, and then consider other linear
codes.

A. Projection
The simplest hash is to project vectors in V onto k coordinates. Let k-projection denote the [n, k] code

Pn,k corresponding to this hash. The associated S of vectors mapped to 0 is an 2n−k-subcube of V . The
distance distribution function is

A(S, ζ) = (2(1 + ζ))n−k , (4)

so the probability of collision is

PPn,k(p) =
(1 − p)n

2n−k

(

2

1 − p

)n−k

= (1 − p)k. (5)

Pn,k is not a good error-correcting code, but for sufficiently small error rates its hash function is optimal.
Theorem 1: Let S be the 2n−k-subcube of V . For any error rate p ∈ (0, 2−2(n−k)), S is an optimal

region, and so k-projection is an optimal hash.
Proof: The distance distribution function for S is

A(S, ζ) = 2n−k(1 + ζ)n−k.

The edge isoperimetric inequality for an n-cube [10] states that
Lemma 2: Any subset S of the vertices of the n-dimensional cube Qn has at most

1

2
|S| lg |S|

edges between vertices in S, with equality if and only if S is a subcube.
Any set S ′ with 2n−k points has distance distribution function

A(S ′, ζ) =
k
∑

i=0

ciζ
i,

3

where c0 = 2n−k, c1 < (n−k)2n−k by Lemma 2, and the sum of the ci’s is 22(n−k). By (5) the probability
of collision is (1 − p)n2n−kA(S′, p/(1 − p)).

A(S ′, ζ) ≤ 2n−k + ζ((n − k)2n−k − 1)

+ζ2
(

22(n−k) − (n − k + 1)2n−k + 1
)

,

and

A(S, ζ) − A(S ′, ζ)

≥ ζ − ζ2
(

22(n−k) + 2n−k−1
(

n − k2 + n − k + 2
)

+ 1
)

> ζ − ζ2(22(n−k) − 1).

This is positive if p < 1/2 and (1 − p)/p > 22(n−k) − 1, i.e., for p < 2−2(n−k).

B. Concatenated Hashes
Here we show that if h and h′ are good hashes, then the concatenation is as well. First we identify

C with F
k
2 and treat hC as a hash h from F

n
2 → F

k
2. We denote PC by Ph. From h : F

n
2 → F

k
2 and

h′ : F
n′

2 → F
k′

2 , we get a concatenated hash (h, h′) : F
n+n′

2 → F
k+k′

2 .
Lemma 3: Fix p ∈ (0, 1/2). Let h and h′ be hashes. Then

min{Eh(p), Eh′

(p)} ≤ E(h,h′)(p) ≤ max{Eh(p), Eh′

(p)} ,

with strict inequalities if Eh(p) 6= Eh′

(p).
Proof: Since p is fixed, we drop it from the notation. Suppose Eh ≤ Eh′

. Then

lg Ph

n
≤

lg Ph + lg Ph′

n + n′
≤

lg Ph′

n′
.

Since P(h,h′) = Ph Ph′

, we have Eh ≤ E(h,h′) ≤ Eh′

.

C. Perfect Codes
An e-sphere around a vector x is the set of all vectors y with d(x,y) ≤ e. An [n, k, 2e + 1] code Π

is perfect if the e-spheres around codewords cover V . Minimum weight decoding with perfect codes is
a reasonable starting point for hashing schemes, since all vectors are closest to a unique codeword. The
only perfect binary codes are trivial repetition codes, the Hamming codes, and the binary Golay code.
Repetition codes do badly, but the other perfect codes give good hash functions.

1) Binary Golay Code: The [23, 12, 7] binary Golay code G is an important perfect code. The 3-spheres
around each code codeword cover F

23
2 . The 3-sphere around 0 in the 23-cube has distance distribution

function

2048 + 11684ζ + 128524ζ2 + 226688ζ3 + 1133440ζ4 + 672980ζ5 + 2018940ζ6 .

From this we find EG(p) > EP23,12(p) for p ∈ (0.2555, 1/2).

4

TABLE I
CROSSOVER ERROR RATES p FOR HAMMING CODES Hm .

m k p

4 11 0.2826
5 26 0.1518
6 57 0.0838
7 120 0.0468

2) Hamming Codes: Aside from the repetition codes and the Golay code, the only perfect binary codes
are the Hamming codes. The [2m − 1, 2m − m − 1, 3] Hamming code Hm corrects one error.

The distance distribution function for a 1-sphere is

2m + 2(2m − 1)ζ + (2m − 1)(2m − 2)ζ2, (6)

so the probability of collision PHm(p) is

(1 − p)2m−1

2m
(2m + 2(2m − 1)

p

1 − p
+ (2m − 1)(2m − 2)

p2

(1 − p)2
) (7)

Table I gives the crossover error rates where the first few Hamming codes become better than projection.
Theorem 4: For any m > 4 and p > m/(2m−m), the Hamming code Hm beats (2m−m−1)-projection.

Proof: The difference between the distribution functions of the cube and the 1-sphere in dimension
2m − 1 is

fm(ζ) := A(S, ζ) − A(Hm, ζ) (8)
= 2m(1 + ζ)m − (2m + 2(2m − 1)ζ + (2m − 1)(2m − 2)ζ2).

We will show that, for m ≥ 4, fm(ζ) has exactly one root in (0, 1), denoted by αm, and that αm ∈
((m − 2)/2m, m/2m).

We calculate

fm(ζ) = ((m − 2)2m + 1)ζ −

(

22m −

(

3 +

(

m

2

))

2m + 2

)

ζ2 + 2m
m
∑

i=3

(

m

i

)

ζ i.

All the coefficients of fm(ζ) are non-negative with the exception of the coefficient of ζ 2, which is negative
for m ≥ 2. Thus, by Descartes’ rule of signs f(ζ) has 0 or 2 positive roots. However, it has a root at
ζ = 1. Call the other positive root αm. We have fm(0) = fm(1) = 0, and since f ′(0) = (m−2)2m +2 > 0
and f ′(1) = 22m−1(m − 4) + 2m+2 − 2 > 0 for m ≥ 4, we must have αm < 1 for m ≥ 4.

For p > αm the Hamming code Hm beats projection.
Using (8) and Bernoulli’s inequality, it is easy to show that fm(ζ) > 0 for ζ < c(m − 2)/2m for any

c < 1 and m ≥ 4. For the other direction, we may use Taylor’s theorem to show

2m
(

1 +
m

2m

)m

< 2m + m2 +
m4

2m+1

(

1 +
m

2m

)m−2

.

Plugging this into (8), we have that fm(m/2m) < 0 for m > 6.

D. Other Linear Codes
The above codes give hashing strategies for a few values of n and k, but we would like hashes for a

wider range. For a hashing strategy using error-correcting codes, we need a code with an efficient complete
decoding algorithm; that is a way to map every vector to a codeword. Given a translation invariant decoder,
we may determine S, the set of vectors that map to 0, in order to compare strategies as the error rate
changes.

5

k

p

d = 3

H4

H5

d = 5
d = 7

G

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 1. Crossover error rates for minimum length linear codes.

Magma [5] has a built-in database of linear codes over F2 of length up to 256. Most of these do not
come with efficient complete decoding algorithms, but magma does provide syndrome decoding. Using
this database new hashing schemes were found. For each dimension k and minimum distance d, an
[n, k, d] binary linear code with minimum length n was chosen for testing.1 (This criterion excludes any
codes formed by concatenating with a projection code.) Figure 1 shows the results. Not surprisingly, the
[23, 12, 7] Golay code G and Hamming codes H4 and H5 all do well. The facts that concatenating the
Golay code with projection beats the chosen code for 13 ≤ k ≤ 17 and concatenating Hm with projection
beats the chosen codes for 27 ≤ k ≤ 30 show that factors other than minimum length are important in
determining an optimal hashing code.

III. OPTIMAL REGIONS

An [n, k] code with a complete decoding algorithm gives a hashing region of size 2n−k. In the previous
section we looked at the performances of regions associated with various good error-correcting codes. In
this section we consider general regions S ⊂ F

n
2 .

The general question of finding an optimal region of size 2t in V for an error rate p is quite hard. In
this section we will find the answer for t ≤ 6, and look at what happens when p is near 1/2.

A. Optimal Regions of Small Size
For a vector x = (x1, . . . , xn) ∈ V , let

ri(x) := (x1, x2, . . . , xi−1, 1 − xi, xi+1, . . . xn)

be x with the i-th coordinate complemented, and let

sij(x) := (x1, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . xn)

be x with the i-th and j-th coordinates switched.
Definition 5: Two sets are isomorphic if one can be gotten from the other by a series of ri and sij

transformations.
The corresponding non-invertible transformation are:

ρi(x) := (x1, x2, . . . , xi−1, 0, xi+1, . . . xn) ,

σij(x) :=

{

x, xmin(i,j) = 0,
sij(x), xmin(i,j) = 1.

1The magma call BLLC(GF(2),k,d) was used to choose a code.

6

Definition 6: A set S ⊂ V is a down-set if ρi(S) ⊂ S for all i ≤ n.
Definition 7: A set S ⊂ V is right-shifted if σij(S) ⊂ S for all i, j ≤ n.
Theorem 8: If a set S is optimal, then it is isomorphic to a right-shifted down-set.

Proof: We will show that any optimal region is isomorphic to a right-shifted set. The proof that it
must be isomorphic to a down-set as well is similar. A similar proof for distance-sum optimal regions
(see Section III-B) was given by Kündgen in [14]).

Recall that
PS(p) =

(1 − p)n

|S|

∑

x,y∈S

ζd(x,y),

where ζ = p/(1 − p) ∈ (0, 1). If S is not right-shifted, there is some x ∈ S with xi = 1, xj = 0, and
i < j. Let ϕij(S) replace all such sets x with rij(x). We only need to show that this will not decrease
PS(p).

Consider such an x and any y ∈ S. If yi = yj, then d(x,y) = d(rij(x),y), and PS(p) will not change.
If yi = 0 and yj = 1, then d(x,y) = d(rij(x),y) − 2, and since ζ l−2 ≥ ζ l, that term’s contribution to
PS(p) increases.

Suppose yi = 1 and yj = 0. If rij(y) ∈ S, then d(x,y)+d(x, rij(y)) = d(rij(x),y)+d(rij(x), rij(y)),
and PS(p) is unchanged. Otherwise, ϕij(S) will replace y by rij(y), and d(x,y) = d(rij(x), rij(y))
means that PS(p) will again be unchanged.

Let Rs,n denote an optimal region of size s in F
n
2 . By computing all right-shifted down-sets of size 2t,

for t ≤ 6, we have the following result:
Theorem 9: The optimal regions R2t,n for t ∈ {1, . . . , 6} correspond to Tables III [pg. 10] and IV

[pg. 11].
These figures, and details of the computations, are given the Appendix. Some of the optimal regions

for t = 6 do better than the regions corresponding to the codes in Figure 1, although it is not known
whether they tile V .

B. Optimal Regions for Large Error Rates
Theorem 1 states that for any n and k, for a sufficiently small error rate p, a 2n−k-subcube is an optimal

region. One may also ask what an optimal region is at the other extreme, a large error rate. In this section
we use existing results about minimum average distance subsets to list additional regions that are optimal
as p → 1/2−.

We have

PS(p) :=
(1 − p)n

|S|
A

(

S,
p

1 − p

)

=
1

|S|

∑

i
Aip

i(1 − p)n−i .

Letting p = 1/2 − ε and s = |S|, PS(γ) becomes

s−1
∑

i
Ai (1/2 − ε)i (1/2 + ε)n−i

=
1

s 2n

(

∑

i
Ai + ε

(

∑

i
2(n − 2i)Ai

)

+ O(ε2)
)

=
s

2n
(1 + 2nε) −

4ε

s 2n

∑

i
iAi + O(ε2) .

Therefore, an optimal region for p → 1/2− must minimize the distance-sum of S

d(S) :=
1

2

∑

x,y∈S

d(x,y) =
1

2

∑

i
iAi . (9)

Denote the minimal distance sum by

f(s, n) := min {d(S) : S ⊂ F
n
2 , |S| = s} .

7

If d(S) = f(s, n) for a set S of size s, we say that S is distance-sum optimal. The question of which
sets are distance-sum optimal was proposed by Ahlswede and Katona in 1977; see Kündgen [14] for
references and recent results.

This question is also difficult. Kündgen presents distance-sum optimal regions for small s and n, which
include the ones of size 16 from Table III. Jaeger et al. [11] found the distance-sum optimal region for
n large.

Theorem 10: (Jaeger, et al. [11], cf. [14, pg. 151]) For n ≥ s−1, a generalized 1-sphere (with s points)
is distance-sum optimal unless s ∈ {4, 8} (in which case the subcube is optimal).

From this we have:
Corollary 11: For n ≥ 2t − 1, with t ≥ 4 and p sufficiently close to 1/2, a (2t − 1)-dimensional

1-sphere is hashing optimal.

IV. HASHES FROM RANDOM CODES

In this section we will show that hashes from random linear codes under minimum weight decoding2

perform better than projection. Let R be a random linear code of rate R = k/n. The error exponent for
k-projection is

−
1

n
lg(1 − p)k = −R lg(1 − p).

Theorem 4 shows that for any p > 0 there are codes with rate R ≈ 1 which beat projection. In this
section we will show that this is true for random codes with any R.

Let H be the binary entropy

H(δ) := −δ lg δ − (1 − δ) lg(1 − δ) . (10)

Fix δ ∈ [0, 1/2). Let d := bδnc, let Sd(x) denote the sphere of radius d around x, and let V (d) :=
|Sd(x)|. From [8], Theorem 2.2, we have

Lemma 12: Let R be a random linear code of rate R. For c ∈ R, the probability that there is another
codeword in Sd(c) is at most

1

1 − 2δ

√

1 − δ

2πnδ
en(H(δ)−1+R).

Lemma 12 implies that, with high probability, everything in Sd(c) will be decoded to c, including any
vector x of distance exactly d from c. Let PR(p) be the probability that a random point x and x+e both
hash to c. This is greater than the probability that x + e has weight exactly d, so

PR(p) >
d
∑

i=0

(

d

i

)(

n − d

i

)

p2i(1 − p)n−2i.

Theorem 4 of [2] gives a bound for this:
Theorem 13:

lim sup
n→∞

(

−
1

n
lg PR(p)

)

≥ ε lg p + (1 − ε) lg(1 − p)

+ δH
(

ε

2δ

)

+ (1 − δ)H

(

ε

2(1 − δ)

)

for any ε ≤ 1/2. The right hand side is maximized at εmax satisfying

(2δ − εmax)(2(1 − δ) − εmax)

εmax
2

=
(1 − p)2

p2
.

2Ties arising in minimum weight decoding are broken in some unspecified manner.

8

Define

D(p, δ, ε) := ε lg p + (1 − ε) lg(1 − p) + δH
(

ε

2δ

)

+(1 − δ)H

(

ε

2(1 − δ)

)

− (1 − H(δ)) lg(1 − p) .

This function bounds the difference between the expected log probability of collisions for random codes
and for projection. The following theorem shows that for any error probability and code rate, a random
code is expected to do better than projection.

Theorem 14: D(p, δ, εmax) is positive for any δ, p ∈ (0, 1/2).
Proof: Fix δ ∈ (0, 1/2), and let f(p) := D(p, δ, εmax). It is easy to check that:

lim
p→0+

f(p) = 0,

lim
p→1/2−

f(p) = 0,

lim
p→0+

f ′(p) > 0,

lim
p→1/2−

f ′(p) < 0,

Therefore, it suffices to show that f ′(p) has only one zero in (0, 1/2). Observe that εmax is chosen so that
∂D
∂ε

(δ, p, εmax) = 0. Hence

f ′(p) =
∂D

∂p
(δ, p, εmax)

=
εmax

p log(2)
−

1 − εmax

(1 − p) lg(2)
+

1 − H(δ)

(1 − p) log(2)
,

so

log(2)f ′(p) =
εmax

p
−

1 − εmax

1 − p
+

1 − H(δ)

1 − p
.

Therefore f ′(p) = 0 when εmax = pH(δ). From Theorem 13 we find

p =
4δ(1 − δ) − H(δ)2

2(H(δ) − H(δ)2)
.

An immediate consequence of Theorem 14 is the non-optimality of projections.
Theorem 15: Fix the error rate p ∈ (0, 1/2). For any R ∈ (0, 1) and n sufficiently large, the expected

probability of collision for a random code of rate R is higher than projection.

ACKNOWLEDGEMENTS.
The authors would like to thank William Bradley, David desJardins and David Moulton for stimulating

discussions which helped initiate this work. Also, Tom Dorsey and Amit Khetan provided the simpler
proof of Theorem 14 given here.

9

TABLE II
NUMBER OF RIGHT-SHIFTED DOWN-SETS

size number
2 1
3 1
4 2
5 2
6 3
7 4
8 6
9 7

10 10

size number
11 13
12 18
13 23
14 31
15 40
16 54
17 69
18 91
19 118
20 155

size number
21 199
22 260
23 334
24 433
32 3140
48 130979
64 4384627

APPENDIX

By Theorem 8, we may find all optimal regions by examining all right-shifted down-sets. Right-shifted
down-sets correspond to ideals in the poset whose elements are in F

n
2 and with partial order x � y if x

can be obtained from y by a series of ρi and σij operations. It turns out that there are not too many such
ideals, and they may be computed efficiently.

Our method for producing the ideals is not new, but since the main references are unpublished, we
describe them briefly here. In Section 4.12.2 of [15], Ruskey describes a procedure GenIdeal for listing
the ideals in a poset P . Let ↓x denote all the elements � x, and ↑x denote all the elements � x.

procedure GenIdeal(Q: Poset, I: Ideal)
local x: PosetElement
begin

if Q = φ then PrintIt(I);
else

x := some element in Q;
GenIdeal(Q− ↓x, I ∪ ↓x);
GenIdeal(Q− ↑x, I);

end
The idea is to start with I empty, and Q = P . Then for each x, an ideal either contains x, in which

case it will be found by the first call to GenIdeal, or it does not, in which case the second call will find
it.

Finding ↑x and ↓x may be done efficiently if we precompute two |P| × |P| incidence matrices
representing these sets for each element of P . This precomputation takes time O(|P|2), and then the
time per ideal is O(|P|). This is independent of the choice of x. Squire (see [15] for details) realized that,
by picking x to be the middle element of Q in some linear extension, the time per ideal can be shown
to be O(lg |P|).

We are only interested in down-sets that are right-shifted and also are of fairly small size. The feasibility
of our computations involves both issues. In particular, within GenIdeal we may restrict to x ∈ F

n
2 with

Size(↓x) no more than the target size of the region we are looking for. If we were using GenIdeal with
the poset whose ideals correspond to down-sets of size 64 in F

63
2 , there would be 83278001 such x

to consider. However, for our situation with right-shifted down-sets, there are only 257 such x and the
problem becomes quite manageable. Furthermore, instead of stopping when Q is empty, we stop when I
is at or above the desired size.

Table II gives the number of right-shifted down-sets of different sizes. The computation for size 32 sets
took just over a second on one processor of an HP Superdome. Size 64 sets took 23 minutes. Let Rs,n

refer to an optimal region of size s in F
n
2 . Tables III and IV list R2t,n for all t ≤ 6 and all n < 2t.

10

TABLE III
OPTIMAL RIGHT-SHIFTED DOWN-SETS R2t,n (t ≤ 5).

t n pcross distance distribution function R2t,n

1 1 0 2(1 + x) 〈1〉
2 2 0 4(1 + x)2 〈22 − 1〉
3 3 0 8(1 + x)3 〈23 − 1〉

4 4 0 16(1 + x)4 〈24 − 1〉
12 0.4560 16 + 36x + 144x2 + 60x3 〈211, 23 + 1〉
” ” ” 〈211, 3 · 2〉

13 0.3929 16 + 34x + 162x2 + 44x3 〈212, 22 + 1〉
14 0.3333 16 + 32x + 184x2 + 24x3 〈213, 2 + 1〉
15 0.2826 16 + 30x + 210x2 〈214〉

5 5 0 32(1 + x)5 〈25 − 1〉
12 0.4882 32 + 100x + 368x2 + 380x3 + 144x4 〈211 + 1, 29 + 2〉
” ” ” 〈211, 210 + 2〉

13 0.4492 32 + 98x + 378x2 + 396x3 + 120x4 〈212 + 1, 27 + 2〉
14 0.3929 2(1 + x)(16 + 34x + 162x2 + 44x3) 〈213 + 1, 23 + 3〉
15 0.3333 2(1 + x)(16 + 32x + 184x2 + 24x3) 〈214 + 1, 7〉
16 0.2826 2(1 + x)(16 + 30x + 210x2) 〈215 + 1〉

19 0.3333 32 + 86x + 498x2 + 408x3 〈218, 212 + 1〉
20 0.2799 32 + 84x + 512x2 + 396x3 〈219, 211 + 1〉
21 0.2724 32 + 82x + 530x2 + 380x3 〈220, 210 + 1〉
22 0.2627 32 + 80x + 552x2 + 360x3 〈221, 29 + 1〉
23 0.2515 32 + 78x + 578x2 + 336x3 〈222, 28 + 1〉
24 0.2390 32 + 76x + 608x2 + 308x3 〈223, 27 + 1〉
25 0.2259 32 + 74x + 642x2 + 276x3 〈224, 26 + 1〉
26 0.2126 32 + 72x + 680x2 + 240x3 〈225, 25 + 1〉
27 0.1992 32 + 70x + 722x2 + 200x3 〈226, 24 + 1〉
28 0.1864 32 + 68x + 768x2 + 156x3 〈227, 23 + 1〉
” ” ” 〈227, 3 · 2〉

29 0.1741 32 + 66x + 818x2 + 108x3 〈228, 22 + 1〉
30 0.1626 32 + 64x + 872x2 + 56x3 〈229, 2 + 1〉
31 0.1518 32 + 62x + 930x2 〈230〉

Several features of Tables III and IV require explanation. First we identify the binary expansion x =
∑

i<n 2ixn−i with the vector x = (x1, . . . , xn). Second, for each optimal right-shifted down-set R2t,n we
have listed a minimal set of generators. For example 〈24 − 1〉 corresponds to the 4-dimensional cube while
〈214〉, as a subset of F

15
2 , corresponds to the 15-dimensional 1-sphere.

For each region pcross indicates the crossover value for p at which point that region performs better
than any preceding entry in the table. For example, the 4-dimensional cube 〈24 − 1〉 is optimal for all
p ∈ (0, 0.5) if 4 ≤ n ≤ 11 but is only optimal for p ∈ (0, 0.4560) if n = 12. For (t, n) = (4, 13), the
4-dimensional cube is optimal for p ∈ (0, 0.3929) while the right-shifted down-set 〈212, 22 + 1〉 is optimal
for p ∈ (0.3929, 0.5).

There are several specific (t, n) for which more than two nonisomorphic right-shifted down-sets are
optimal. In several cases the nonisomorphic optimal right-shifted down-sets have the same distance
distribution. (The two nonisomorphic regions R24,12 were originally found by Kündgen [14, pg. 160:
Table 1].) In other cases different regions are optimal for different values of p. (Such cases are highlighted
with a box · .) For example, with (t, n) = (5, 19), the 5-dimensional cube 〈25 − 1〉 is optimal for
p ∈ (0, 0.2826), 〈215 + 1〉 is optimal on (0.2826, 0.3333), while 〈218, 212 + 1〉 is optimal on (0.3333, 0.5).
Somewhat similar situations involve t = 6 and n ∈ {19, 28, 29, 35, 36, 37, 38, 58, 59}.3 For t ≤ 6 and for

3For n = 28, the three regions are 〈26 − 1〉 on (0, 0.199), 〈227 + 1, 25 + 3〉 on (0.199, 0.25) and 〈227 + 1, 29 + 2〉 on (0.25, 0.5).

11

any n, there are at most three different optimal regions.

TABLE IV
OPTIMAL RIGHT-SHIFTED DOWN-SETS R64,n (t = 6)

n pcross distance distribution function R64,n

6 0 64 + 384x + 960x2 + 1280x3 + 960x4 + 384x + 64 〈26 − 1〉

12 0.487 64 + 228x + 1092x2 + 1020x3 + 1692x4 〈211 , 210 + 25, 3 · 28〉

13 0.470 64 + 226x + 1086x2 + 1100x3 + 1620x4 〈212 , 210 + 24, 3 · 28〉

14 0.439 64 + 250x + 1002x2 + 1508x3 + 1032x4 + 240x5 〈213 + 22, 213 + 3, 23 + 5〉

15 0.391 64 + 248x + 1024x2 + 1592x3 + 992x4 + 176x5 〈214 + 3, 210 + 22〉

16 0.333 4(1 + x)2(16 + 32x + 184x2 + 24x3) 〈215 + 3, 24 − 1〉

17 0.283 4(1 + x)2(16 + 30x + 210x2) 〈216 + 3〉

19 0.36 64 + 232x + 1184x2 + 1784x3 + 832x4 〈218 + 2, 210 + 3〉

20 0.277 64 + 224x + 1240x2 + 1752x3 + 816x4 〈219 + 2, 27 + 3〉

21 0.263 64 + 216x + 1320x2 + 1704x3 + 792x4 〈220 + 2, 24 + 3〉

22 0.244 64 + 208x + 1424x2 + 1640x3 + 760x4 〈221 + 2〉

23 0.242 64 + 206x + 1426x2 + 1680x3 + 720x4 〈222 + 1, 219 + 2〉

24 0.238 64 + 204x + 1440x2 + 1716x3 + 672x4 〈223 + 1, 217 + 2〉

25 0.231 64 + 202x + 1466x2 + 1748x3 + 616x4 〈224 + 1, 215 + 2〉

26 0.222 64 + 200x + 1504x2 + 1776x3 + 552x4 〈225 + 1, 213 + 2〉

27 0.212 64 + 198x + 1554x2 + 1800x3 + 480x4 〈226 + 1, 211 + 2〉

28 0.199 2(1 + x)(32 + 70x + 722x2 + 200x3) 〈227 + 1, 25 + 3〉

” 0.25 64 + 196x + 1616x2 + 1820x3 + 400x4 〈227 + 1, 29 + 2〉

29 0.186 2(1 + x)(32 + 68x + 768x2 + 156x3) 〈228 + 1, 24 + 3〉

” ” ” 〈228 + 1, 3 · 22 + 1〉

” 0.333 64 + 194x + 1690x2 + 1836x3 + 312x4 〈228 + 1, 27 + 2〉

30 0.174 2(1 + x)(32 + 66x + 818x2 + 108x3) 〈229 + 1, 23 + 3〉

31 0.163 2(1 + x)(32 + 64x + 872x2 + 56x3) 〈230 + 1, 7〉

32 0.152 2(1 + x)(32 + 62x + 930x2) 〈231 + 1〉

35 0.1538 64 + 182x + 2002x2 + 1848x3 〈234 , 228 + 1〉

36 0.1537 64 + 180x + 2016x2 + 1836x3 〈235 , 227 + 1〉

37 0.153 64 + 178x + 2034x2 + 1820x3 〈236 , 226 + 1〉

38 0.152 64 + 176x + 2056x2 + 1800x3 〈237 , 225 + 1〉

39 0.151 64 + 174x + 2082x2 + 1776x3 〈238 , 224 + 1〉

40 0.150 64 + 172x + 2112x2 + 1748x3 〈239 , 223 + 1〉

41 0.148 64 + 170x + 2146x2 + 1716x3 〈240 , 222 + 1〉

42 0.146 64 + 168x + 2184x2 + 1680x3 〈241 , 221 + 1〉

43 0.144 64 + 166x + 2226x2 + 1640x3 〈242 , 220 + 1〉

44 0.141 64 + 164x + 2272x2 + 1596x3 〈243 , 219 + 1〉

45 0.139 64 + 162x + 2322x2 + 1548x3 〈244 , 218 + 1〉

46 0.136 64 + 160x + 2376x2 + 1496x3 〈245 , 217 + 1〉

47 0.133 64 + 158x + 2434x2 + 1440x3 〈246 , 216 + 1〉

48 0.130 64 + 156x + 2496x2 + 1380x3 〈247 , 215 + 1〉

49 0.127 64 + 154x + 2562x2 + 1316x3 〈248 , 214 + 1〉

50 0.123 64 + 152x + 2632x2 + 1248x3 〈249 , 213 + 1〉

51 0.120 64 + 150x + 2706x2 + 1176x3 〈250 , 212 + 1〉

52 0.117 64 + 148x + 2784x2 + 1100x3 〈251 , 211 + 1〉

53 0.114 64 + 146x + 2866x2 + 1020x3 〈252 , 210 + 1〉

54 0.110 64 + 144x + 2952x2 + 936x3 〈253 , 29 + 1〉

55 0.107 64 + 142x + 3042x2 + 848x3 〈254 , 28 + 1〉

56 0.104 64 + 140x + 3136x2 + 756x3 〈255 , 27 + 1〉

57 0.101 64 + 138x + 3234x2 + 660x3 〈256 , 26 + 1〉

58 0.0978 64 + 138x + 3330x2 + 452x3 + 112x4 〈257 , 23 + 1, 3 · 2〉

” 0.1047 64 + 136x + 3336x2 + 560x3 〈257 , 25 + 1〉

59 0.0946 64 + 136x + 3440x2 + 344x3 + 112x4 〈258 , 7〉

” 0.1179 64 + 134x + 3442x2 + 456x3 〈259 , 24 + 1〉

60 0.0920 64 + 132x + 3552x2 + 348x3 〈259 , 23 + 1〉

” ” ” 〈259 , 3 · 2〉

61 0.0891 64 + 130x + 3666x2 + 236x3 〈260 , 22 + 1〉

62 0.0864 64 + 128x + 3784x2 + 120x3 〈261 , 2 + 1〉

63 0.0838 64 + 126x + 3906x2 〈262〉

Some of the optimal regions R64,n are better than those for any known hash function. Table V gives
the best known regions for each k, and their generators. If any new regions were shown to tile their cube,
we would have an improvement to Figure 1.

REFERENCES

[1] R. Ahlswede and G. O. H. Katona. Contributions to the geometry of Hamming spaces. Discrete
Math., 17:1–22, 1977.

[2] A. E. Ashikhmin, G. D. Cohen, M. Krivelevich, and S. N. Litsyn. Bounds on distance distributions
in codes of known size. IEEE Trans. Info. Theory, 51:250–258, 2005.

12

TABLE V
OPTIMAL RIGHT-SHIFTED DOWN-SETS R64,n BEATING KNOWN CODES. (THERE ARE NO SUCH DOWN-SETS R2t,n FOR t ≤ 5.)

k n cross R64,n

6 12 0.487 〈211, 210 + 25, 3 · 28〉
7 13 0.470 〈212, 210 + 24, 3 · 28〉
8 14 0.439 〈213 + 22, 213 + 3, 23 + 22 + 1〉
9 15 0.391 〈214 + 3, 210 + 22〉

16 22 0.244 〈221 + 2〉
17 23 0.242 〈222 + 1, 219 + 2〉
18 24 0.238 〈223 + 1, 217 + 2〉
19 25 0.231 〈224 + 1, 215 + 2〉
20 26 0.222 〈225 + 1, 213 + 2〉
21 27 0.212 〈226 + 1, 211 + 2〉

[3] E. Berkovich. Method of and system for searching a data dictionary with fault tolerant indexing.
United States Patent: 7,168,025, January 2007. Filed: 10/11/2001 (Appl. No. 09/973,792).

[4] S. Y. Berkovich and E. El-Qawasmeh. Reversing the error-correction scheme for a fault-tolerant
indexing. The Computer Journal, 43(1):54–64, 1999.

[5] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. J. Symb.
Comp., 24:235–269, 1997. Software version: 2.13-7.

[6] A. Broder. Filtering near-duplicate documents. In Proc. FUN, 1998.
[7] D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Parnas. Neighborhood preserving hashing and

approximate queries. In SODA ’94: Proceedings of the fifth annual ACM-SIAM Symposium on
Discrete Algorithms, pages 251–259, 1994.

[8] R. G. Gallager. Low-density parity-check codes. MIT Press, Cambridge, MA, 1963.
[9] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In

Proceedings of the 25th VLDB Conference, 1999.
[10] L. H. Harper. Optimal assignment of numbers to vertices. J. Soc. Ind. Appl. Math., 12:131–135,

1964.
[11] F. Jaeger, A. Khelladi, and M. Mollard. On shorted cocycle covers of graphs. J. Combin. Theory

Ser. B, 39:153–163, 1985.
[12] R. M. Karp, O. Waarts, and G. Zweig. The bit vector intersection problem. In Proc. 36th Annual

Symposium on Foundations of Computer Science, 1995.
[13] T. Kløve and V. I. Korzhik. Error Detecting Codes: General Theory and Their Application in

Feedback Communication Systems. Kluwer Academic Publisheres, 1995.
[14] André Kündgen. Minimum average distance subsets in the Hamming cube. Discrete Math., 249:149–

165, 2002.
[15] Frank Ruskey. Combinatorial generation. online draft, 2003. available from http://www.-

1stworks.com/ref/RuskeyCombGen.pdf.
[16] L. Weng. Hashing system utilizing error correction coding techniques. United States Patent:

7,085,988, August 2006. Filed: 3/20/2003 (Appl. No. 10/393,096).

