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1 Introduction

The problem of efficiently evaluating powers has been studied by many
people (see [11, section 4.6.4] for an extensive survey). One standard method
is to define an addition chain: a sequence of integers

1:a07ala"'7al =n
such that for each i = 1,...,l, a; = a; + a;, for some j and k less than
7. Then z™ may be computed by starting with z% = x and computing
M oxt L x% =% % = o™,

As an example, the “square-and-multiply” method of exponentiation (also
known as the left-to-right binary method, see [11, page 441]) can be viewed
as an addition chain of the form

1, 2d0, 2d0 + dl, 2(2d0 + dl), 2(2d0 + dl) + d2, e,y

where n is written in binary as 1", d;2™"*. This clearly takes at most
llogn| 4+ v(n) — 1 multiplications, where logn is the base 2 logarithm, and
v(n) is the number of 1’s in the binary representation of n. Any addition
chain will require at least [logn| multiplications, since this many doublings
are needed to get to a number of size n.

Addition chains can be used to great advantage when the exponent n is
fixed (as in the RSA cryptosystem), and the goal is to quickly compute x"
for randomly chosen bases x. For a randomly chosen 512-bit exponent, we
expect the binary algorithm to take an average of about 765 multiplications.
Results in [4] report that addition chains of length around 605 are relatively
easy to compute, resulting in a 21% improvement. Note that no addition
chain could do better than 512 multiplications.

We shall consider a slightly different problem in this paper, for which
it is actually possible to break the barrier of 512 multiplications for a 512-
bit exponent. For many cryptosystems (e.g. [1],[5],[6],[17]), the dominating
computation is to compute for a fixed base g the power ¢" for a randomly
chosen exponent n. For this problem, we achieve a substantial improvement
over addition chains by storing a set of precomputed values.

Unless otherwise noted, we will assume that g is an element of Z/qZ,
where ¢ is a large integer (say 512 bits), and we need to repeatedly calculate
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powers of g up to g™~ where N is also large. The Schnorr scheme [17]
uses N of 140 bits, the DSS scheme [1] uses N of 160 bits, and the Brickell-
McCurley scheme [6] has N of 512 bits. We will assume that operations other
than multiplications mod ¢ will use negligible time.

One simple method (see [8]) is to precompute the set

S = {gQi

i=1,..[logN] -1}

Then g™ may be computed in v(n)—1 multiplications by multiplying together
the powers corresponding to nonzero digits in the binary representation of
n. This reduces the work to [log N| — 1 multiplications in worst case, and
[log N1/2 — 1 on average, at a cost of storing [log N| powers. In Section 3
we show that we can do much better:

THEOREM 1. If O(log N/loglog N) powers are precomputed, then we
may compute g" (0 <n < N) using only (14 o(1))log N/loglog N multipli-
cations.

The method works for any group, and in Section 4 we discuss its use in
GF(p™), where p is a small prime and m is large. In Section 5 we discuss
parallelizing the method. Finally, in Section 6 we give lower bounds which
show that Theorem 1 is asymptotically optimal.

For the rest of this paper, it will be assumed that g is fixed, and n is
uniformly distributed on {0,..., N —1}.

2 Basic strategies

Using the square-and-multiply method, ¢g" may be computed using at
most 2[log N'| multiplications, and on average < 3[log N'|/2 multiplications.
The simple method mentioned in the introduction of storing powers g2  re-
duces this to [log N|] — 1 in worst case and [log N|/2 — 1 on average, at a
cost of storing [log N'| powers.

There is no reason that powers of 2 have to be stored. Suppose we
precompute and store g™, ¢!, ..., g"™! for some integers xg,...,T,_1. If
we are then able to find a decomposition

n= a;x;, (2.1)



where 0 < a; < h for 0 <7 < m, then we can compute

h
g" = H cg, (2.2)
d=1
where
ca= [ 9™ (2.3)
i:a;=d

Typically the z; will be powers of a base b, and (2.1) will be the base b
representation of n. If (2.2) were computed using optimal addition chains
for 1,2,..., h, the total number of multiplications to compute g™ would be
about m+O(hlogh). However, (2.2) can be computed much more efficiently,
as the following result shows.

LEMMA 1. Suppose n = Y7  a;z;, where 0 < a; < h, and g% has been
precomputed for each 0 < i < m. If n # 0 then g" can be computed with
m + h — 2 multiplications.

ProOOF: The following is an algorithm to compute g".

b—1
a1
ford=hto1lby —1
for each ¢ such that a; = d
b« bx g™
a <« ax*b.
return a.
It is easy to prove by induction that, aftelr going through the loop ¢ times,
P

we have b = cpcp_1 -+ cpip1 and a = clcy | - cp_iy1. After traversing the

loop h times, it follows that a = [T%_, c2.

It remains to count the number of multiplications performed by the algo-
rithm. We shall count only those multiplications where both multiplicands
are unequal to 1, since the others can be accomplished simply by assignments.
There are m terms in the decomposition n = Y, a;x;, so the b < b* ¢g* line



gets executed at most m times. The a < a * b line gets executed h times.
Finally, at least two of these multiplications are free since a and b are ini-
tially 1. (If » = 0 then A = m = 0, and 0 rather than -2 multiplications are
required. But n # 0 implies A # 0 and m # 0, and the free multiplications
do exist.) O

Embodied in the algorithm is a method for computing the product [T%_, ¢2
in at most 2h — 2 multiplications. Given the ¢;’s, we can argue that in the
absence of any relations between them, this is optimal. Notice that if we
take any algorithm to compute [J%_, ¢4 and remove multiplications involving
¢, we have computed H’;;% ¢, which takes 2k — 4 multiplications by our
induction hypothesis. There cannot be only one multiplication by ¢, since
then ¢ would be raised to the same power as whatever it was multiplied by.

Therefore at least two extra multiplications are needed.

PrROOF OF THEOREM 1: For any b > 1, we may represent N base b with at
most m = [log, N| digits. Precompute g fork=1,..., [log, N|—1. Using
Lemma 1, we may then compute ¢ in at most [log, N'|+b—3 multiplications.
For large N, the optimal value of b is about log N/ log? log N, which gives us
Theorem 1. O

For a randomly chosen exponent n, we expect that a digit will be zero
about 1/b of the time, so that on average we expect the b < b * g line to
be executed %71 [log, N times, giving an expected number of multiplications
that is at most b_Tl [log, N|+b—3. For a 512-bit exponent, the optimal value
of b is 26. This method requires at most 127.9 multiplications on average,
132 multiplications in the worst case, and requires 109 stored values.

Note that some minimal effort may be required to convert the exponent
from binary to base b, but this is probably negligible compared to the modular
multiplications (certainly this is the case for exponentiation in Z/qZ). Even
if this is not the case, then we can simply use base 32, which allows us to
compute the digits for the exponent by extracting 5 bits at a time. Using
this choice, the scheme will require at most 128.8 multiplications on average,
132 multiplications in the worst case, and 103 stored values.



3 Other number systems

In the last section, (2.1) was only used as a base b representation. There
are many other number systems that could be used, some of which give
better results in practice (although they are the same asymptotically). In
this section we will explore some of these alternative number systems.

Call a set of integers D a basic digit set for base b if any integer can be
represented as
akbk + ak_lbk_l + ...+ Cllb + ap, (31)

for some k& where each a; € D. This definition differs from that in [13] in
that we allow redundancy; there may be more than b numbers in D, and so
the representation may not be unique.

Before we examine the problem of finding basic digit sets for our problem,
we should first remark that the difficulty of finding a representation of the
form (3.1) is almost exactly the same difficulty as finding the (ordinary)
base b representation. The algorithm for finding such a representation was
published by Matula [13], and a particularly simple description was later
given in [11, Exercise 4.1.19)].

In searching for good basic digit sets, we can make use of the following re-
sult of Matula [13], which provides a very efficient algorithm for determining
if a set is basic.

THEOREM 2. Suppose that D contains a representative of each residue
class modulo b. Let dyy, = min{s | s € D} and dpax = max{s | s € D}.
Then D is a basic digit set for base b if there are representations (3.1) for
each i with

In the methods that we consider now, we shall store powers gmbj, for
J < [log, N] and m in a set M of multipliers. We need to choose M and h
for which
D(M,h) ={km|me M,0 <k <h}

is a basic digit set. Given a representation n = > d;b’ in terms of this



basic digit set, we can represent d; = m;k; and compute

9" =11 <'H gmi”i) =1 (3.2)

In this notation, the method of the last section has parameters M = {1},
h=0b-1.

The next four theorems give other examples of basic digit sets which give
efficient exponentiation schemes. As our first example of this approach, if b is
an integer, then every integer n such that |n| < (b™—1)/2 may be represented
as Yot agbt, where each a; € (—[(b—1)/2], [(b—1)/2]], by Theorem 2. If
the powers ¢g*!, g%, ..., g=*" " are precomputed, then we compute

cqg= H gsz’gn(a]-)bj )
Jilajl=d
THEOREM 3. M = {£1}, h=[(b—1)/2], is a basic digit set.

This digit set is particularly useful when inverses are easy to compute, as
for elliptic curves (see [14]). When b = 2, there is a unique representation
with no two adjacent nonzeros, which reduces the worst case number of
multiplications to [log N|/2 and the average to [log N|/3 (see [3]).

By taking a slightly larger multiplier set, we may further reduce h.
THEOREM 4. Suppose b is odd. Let M = {£1,£2} and h = |b/3]. Then
D(M, h) is a basic digit set.

PROOF: 1t is easily checked that the set D(M,h) includes at least one
representative of each congruence class mod b. Then Theorem 2 applies
trivially, since dpin = —2(b/3] and dyax = 2[0/3]. O

An alternative approach is to take large multiplier sets and small values
of h. For instance, taking h = 2, let

My={d|1<d<b, ws(d)=0 (mod2)}, (3.3)

where w,(d) is the largest power of p that divides d, i.e., k = w,(d) if and only
if p* || d. Tt suffices to store the values, {gdbz | d e Mg}. Then for 1 < a; <0,

g = g™ or g2 for some d € M. This shows:
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THEOREM 5. M = My, h =2, is a basic digit set.

Continuing this line of reasoning, we can take
Ms={d|1<d<b,wy(d)+ws(d)=0 (mod 2)}. (3.4)

Each integer d between 1 and b — 1 is in M3, 2M3, or 3Ms5.
THEOREM 6. M = M;, h = 3, is a basic digit set.

The following result shows that the number of digits in a representation
using a basic digit set D(M, h) for a base b has at most one more digit than
the standard base b representation.

THEOREM 7. Let D = D(M,h) be a basic digit set modulo b such that
maxgen |a] < b—1, and such that {—1,1} C M. For every n < b™, we can
find a sequence of digits d; € D for 0 < i < m such that n = Y1" d;b".

ProoF: We define sequences n; and d; inductively by setting no = n, and
for j = 0...m, choosing d; € D such that d; = n; mod b, and n;1; =
(nj—d;)/b. If n; mod b is a random number modulo b, independent of the less
significant base-b digits of n, then d; = 0 with probability 1/b, independent
of the previous digits.

It is easy to verify that n = nj+1bj+1 + ZLO d;b* for 0 < j < m. We will
finish the proof by showing that d,, can be chosen to force n,,; = 0.

Let n = Zi:_ol a;b', where 0 < a; < b for 0 < i < m — 1. We shall prove
by induction on j that n; = ¢; + 375" ab™7 for some ¢; with |¢;] < h for
0 < j < m. Clearly we have ¢y = 0. Note that

nj = (nj—d;)/b

m—1
= (Cj + aj — d])/b + Z G,ibi_j_l.

i=j+1
Let ¢j41 = (¢; + aj — d;)/b. Then by the induction hypothesis,
lcju1] < (h+b+h(b—1))/b=h+1.

Since ¢;41 is an integer, it follows that |c;11| < h. By defining d,,, = n,,, we
achieve n,,. 1 = 0. O



It is clear from the proof that the high order digit in a base b represen-
tation using digits from D(M, h) is bounded in absolute value by h. Con-
sequently, the only values of k for which ¢**" needs to be stored are for
k= +1.

Tables 1 and 2 summarize the effects of the various methods presented
above on the storage and complexity of the parameters that might be used for
the DSS and Brickell-McCurley schemes, namely 160 and 512 bit exponents
respectively. The larger sets of multipliers were found by a computer search.
Large sets of good multipliers become harder to find, and use increasing
amounts of storage for progressively smaller reductions in computation.

These tables also give an upper bound on the expected number of mul-
tiplications, based on the assumption that the probability of any digit being
zero is 1/b. Empirical evidence suggests that this is true for representations
created using the algorithm of Theorem 7, and for redundant digit sets there
are often other algorithms which have a higher probability of zeros [3].

A lower bound for the amount of computation required using this method
is given by the fact that for a fixed value of |M|, we require h|M| > b — 1
in order for the set D(M, h) to represent every value modulo b. Hence for a
given base b, the worst case number of multiplications is bounded below by

[log, N1 +h —2 > [log, N]+ [(b—1)/|M]|] — 2. (3.5)

For example, using a set M with 2 elements and a 512 bit exponent, we
can do no better than 114 multiplications in the worst case, and the entry
given in Table 2 achieves this (although the storage might be reduced to as
little as 176 values from our 188). Similarly, using a set M with 8 elements,
b =72, and a 512 bit exponent, we can do no better than 90 multiplications
in the worst case, and no matter what b is, we cannot do better than 88
multiplications. The entry in Table 2 for |M| = 8 achieves 93 multiplications
in the worst case.

While the preceding argument shows that there is not much room for
improvement using (3.2), slight improvements may be achieved by modifying
the product [[7_, cf. For example, it can easily be verified that the set

D={km|ke K meM},
where

K = {0,1,2,3,4,6,8,11}
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M = {+1,+12}.

is a basic digit set for the base 29. Thus it suffices to store powers ™2

m € M, and compute a product of the form c;cicicicSciei!. Tt can be shown
that the latter product can be computed in only 12 multiplications, and the
average number of multiplications required for a 160-bit exponent is at most
37.9. This does better than the entries in Table 1, but we do not include it

in the table because it does not fit the schemes using (3.2).

time
b M h | storage | expected | worst-case | lower bnd
12 {1} 11 45 50.35 54 31
19 {£1} 9 76 43.05 45 30
29 {£1,+2} 9 134 39.90 41 27
29 {£1,-2,9,10} 8 167 38.90 40 26
29 {£1,+2, £9} 7 200 37.90 39 26
36 {£1,9,£14, +17} 7 219 36.17 37 25
36 {£1,43, £11,+13} 6 250 35.17 36 25
36 | {£1,+3,4+6,£11,+13} | 5 312 34.17 35 24
36 Ms 3 620 31.17 32 21
53 M; 3 840 28.49 29 20
64 Ms 3 972 27.59 28 20
64 M, 2 1134 26.59 27 19
102 M; 3 1440 24.77 25 19
128 M; 3 1748 23.83 24 18
128 M, 2 1955 22.83 23 18
155 M, 2 2244 21.86 22 17
256 M, 2 2751 20.92 21 17

Table 1: Parameters for a 160-bit exponent (N = 21%9). By comparison,
the binary method requires 237 + 3/2'% multiplications on average, and 318
multiplications in the worst case. Time is measured in multiplications, and
storage is measured in group elements. The entries under “expected time” are
rigorous upper bounds on the expected time given random inputs. Included
also are lower bounds for the worst-case number of multiplications given the
amount of storage used. The worst case lower bounds, derived in Section 7,
are not much larger than average case lower bounds.
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time
b M h | storage | expected | worst-case | lower bnd
26 {1} 25 109 127.85 132 78
45 {£1} 22 188 111.94 114 75
53 {£1,+2} 17| 362 104.32 106 70
53 {£1,-9, 18,27} 16 452 103.32 105 68
67 {£1, +2, £23} 16 512 98.75 100 67
75 | {£1,5,14,-16,29, —31} | 15 583 95.91 97 66
81 {+£1, £3, £26, 28} 13 650 92.01 93 66
72 | {£1,4£3,+4,4£23,£25} | 11 832 91.86 93 64
64 M; 3 3096 85.67 87 54
122 Ms 3 5402 74.40 75 o1
256 M, 2 | 10880 63.75 64 47
256 {1,2,...,255} 1 | 16320 62.75 63 44

Table 2: Parameters for a 512-bit exponent (N = 2°'2). By comparison, the
binary method requires 765 + 3/2°12 multiplications on average and 1022 in
the worst case.

4 Exponentiation in GF(p")

The above methods work for any group, but for special cases we may
take advantage of special structure. Suppose that g is in GF(p"), where
p is a small prime (p = 2 is the most-studied case, and has been pro-
posed for use in cryptographic systems [15]). A normal basis has the form
{B,67,37 ..., 3"} (see, for example, [12] for details). Using a normal ba-
sis representation, the pth power of an element is simply a cyclic shift, and
so is almost free compared to a standard multiplication.

This fact may be used to eliminate the extra storage. If the base b is
chosen to be p¥, then the powers ¢” may be calculated rapidly by cyclic shifts,
and the exponentiation may be done as before, storing only the powers g™
for each m in the set of multipliers. This is a generalization of the methods
given in [2], [9], and [18].

It has been shown [18] that exponentiation in GF'(2") can be done in
[n/k] + 281 — 2 multiplications. Taking N = 2" and b = 2" in (2.2), and
using no precomputation, (i.e. starting with g and computing ¢g?’ using
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cyclic shifts), the algorithm of Lemma 1 takes [n/k] + 2% — 3 multiplications.
However, a slight variation of the algorithm takes the same number of multi-
plications as [18]. Given the conditions of Lemma 1, and h odd, the following
algorithm computes ¢" with m + (h + 1)/2 — 2 multiplications and at most
m cyclic shifts.

b—1
a«—1
for d=h to 1 by —2
for each i such that a; = d x 2/
b b (g%)""
a < ax*b.

return a.

If we precompute and store only ¢g—!, then this algorithm takes only

[n/k]+ 2572 — 2 multiplications. But Agnew, Mullin, and Vanstone [2] show
that g~! can be computed in |log, n| +v(n) — 2 multiplications. Thus, with-
out any precomputation, we require only [n/k] + 2572 + |logyn| + v(n) — 4
multiplications. For GF(25%), this improves Stinson’s results from 129 mul-
tiplications to 124 multiplications.

For these fields, large speedups can be obtained with small amounts of
precomputation and storage. Suppose we take N = 2" and b = 2* as above,
but use a multiplier set M = {1,2,...,2¥ —1}. Then any power g™ for
m € M can be calculated by shifting ¢™ by the appropriate amount, so we
only need [n/k] — 1 multiplications to combine these terms. With multiple
processors, this may easily be parallelized using binary fan-in multiplication
as in [18].

For example, consider computations in GF(2°%). In [18], Stinson shows
that exponentiation can be done in at most 129 multiplications with one
processor, 77 rounds with four processors, and 11 rounds with 32 processors.
These numbers can be improved significantly, as shown in Table 3.
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processors | storage | worst-case time
1 32 98
1 64 84
1 128 74
2 32 49
4 32 26
8 32 15
16 32 10
32 32 8

Table 3: Parameters for GF(25%).

5 Parallelizing the algorithm

We give two parallel algorithms for computing ¢". They both run in
O(loglog N) time. The first is randomized and uses O(log N/log?log N)
processors, while the second is deterministic and uses O(log N/ loglog N)
Processors.

The first method for computing a power ¢" that we presented in section 2
consisted of three main steps:

1. Determine a representation n = ag + a1b+ ...+ am_10™ 1.
2. Calculate ¢4 = [1j.0,=d g” ford=1,...,h.

3. Calculate g" = [T, 2.

As we mentioned previously, the algorithm of Matula makes the first step
easy, even with a large set of multipliers. Most time is spent in the second
and third steps. Both of these may be parallelized. Suppose we have h
processors. Then for step 2, each processor can calculate its ¢, separately.
The time needed to calculate ¢; depends on the number of a;’s equal to d.
Thus the time for step 2 will be the d with the largest number of a’s equal
to it.

To simplify the run-time analysis, let’s take the multiplier set M to be
{1} and h = b — 1. Then the digits a; of n will be approximately uni-
formly distributed, so that the time for step 2 is equivalent to the maximum
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bucket occupancy problem: given m balls randomly distributed in A buck-
ets, what is the expected maximum bucket occupancy? This is discussed
in [19], in connection with analysis of hashing algorithms. Taking b to be
O(log N/log®log N), so m/h = ©(loglog N), the expected maximum value
is O(loglog N).

For step 3, each processor can compute c? for one d using a standard
addition chain method, taking at most 2log h multiplications. Then the c%’s
may be combined by multiplying them together in pairs repeatedly to form
g" (this is referred to as binary fan-in multiplication in [18]). This takes log h
rounds.

Therefore, taking h = O(log N/log”log N), we may calculate powers
in O(loglog N) expected rounds with O(log N/ log?log N) processors, given
random inputs. If we wish the algorithm to have no bad inputs, then on
input n randomly choose = < n, compute g* and ¢"~*, and multiply them.

THEOREM 8. With O(log N/log?log N) processors, we may compute
powers in O(loglog N) expected time.

[THE NEXT FEW SENTENCES NEED REVISION] For example, stor-
ing only powers of b, we may compute powers for a 160-bit exponent in 13
rounds using 15 processors, taking b = 16 and M = {1}. For a 512-bit
exponent, we can compute powers with 27 processors in 17 rounds, using

b= 28.

One disadvantage to this method is that each processor needs access to
each of the powers g%, so we either need a shared memory or every power
stored at every processor. An alternative approach allows us to use dis-
tributed memory, and is deterministic.

For this method, we will have m processors, each of which computes
one ¢%" using a stored value and an addition chain for a;. This will take
at most 2logh rounds. Then the processors multiply together their results
using binary fan-in multiplication to get ¢g”. The total time spent is at most
2log h + log m, which gives

THEOREM 9. With O(log N/ loglog N) processors, we may compute pow-
ers in O(loglog N) time.

If the number of processors is not a concern, then the optimal choice of
base is b = 2, for which we need log N processors and loglog N rounds. We
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could compute powers for a 512-bit exponent with 512 processors in 9 rounds,
and for a 160-bit exponent with 160 processors in 8 rounds. Taking a larger
base reduces the number of processors, but increases the time.

6 Lower Bounds

There are many approaches to the problem of calculating ¢" efficiently,
of which the schemes given in the previous sections are only a small part.
Other number systems could be used, such as the Fibonacci number system
(see [10, exercise 1.2.8.34]), where a number is represented as the sum of
Fibonacci numbers. Other possibilities include representing numbers by sums
of terms of other recurrent sequences, binomial coefficients, or arbitrary sets
that happen to work well. These, and a number of other number systems,
are given in [11]. For a given N and amount of storage, it seems difficult to
prove that a scheme is optimal.

In this section we derive lower bounds for the number of multiplications
required for a given value of N and a given amount of storage. We assume
a model of computation in which the only way to compute ¢g* (z # 0,1) is
to multiply ¢** by ¢*? where x; + x5 = x. Note that this is a fairly strong
assumption, and in particular our lower bounds neglect any improvement
that might result from knowledge of the order of the cyclic group generated
by g.

In Section 2 we saw how to compute powers with (14+0(1)) log N/ loglog N
multiplications when O(log N/ loglog N) values have been precomputed. The
following theorem shows that asymptotically we cannot do better with a
reasonable amount of storage.

THEOREM 10. If the number of stored values is bounded by a polynomial

in log N, then the number of multiplications required to compute a power is
Q(log N/loglog N). If the number of stored values is O(log N/loglog N),
then (14 o(1))(log N/loglog N) multiplications are required.

This theorem follows directly from the following lemma.

LEMMA 2. If the number of stored values s is not too small (specifically
s > elogN/logs, where e = 2.718...), then more than log N/logs — 3
multiplications are required in the worst case.

The same methods used to prove this result will also be used to derive
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concrete lower bounds for a given amount of storage.

In our model, an exponentiation corresponds to a vector addition chain.
A scalar addition chain is a sequence of numbers 1 = aqg, ..., q; so that for
each 0 < k <[ there are indices 7, j < k with a; = a; +a;. A vector addition
chain generalizes scalar addition chains. Let the s unit vectors of N* (s > 0)
be denoted eq,...,e,_1. A vector addition chain is a sequence of vectors
€.1=4a 4.1,...,€ = Qp,...,a so that for each 0 < k <[ there are indices
t,J < k with a; = a; + a;. The length of the chain is .

Any exponentiation operation which uses s stored values and [ multipli-
cations forms a vector addition chain, with a_,,1,...,ay representing the s
stored values, and a; for ¢ = 1,...,[ representing the multiplication of either
stored values or the results of earlier multiplications.

Let R(s,1) be the set of vectors v € IN* contained in some vector addition
chain of length [, together with 0, and let R(s,l) = |R(s,l)]. To prove
Lemma 2, we will show that R(s,l) < N when [ <log N/logs— 3. This will
imply that for any set of s stored values, there is some power that cannot be
computed with [ multiplications.

Let P(s, 1) be the vectors in R(s, ) for which all s entries are nonzero (i.e.
all s stored values were used in the computation), and P(s,l) = |P(s,1)|. For
convenience, define P(0,1) = 1. Clearly P(s,l) =0 for s > [ + 1.

LEMMA 3. For every s,l > 0,

R(s,1) = Z (j/)P(s’,l) (6.1)

s'=0

PrROOF: Every vector in R(s,[) has some number s" of nonzero entries. For
each s’ < s, there are (;,) ways to choose which entries those are. O

Next we need a bound for P(s,[). Let C(I) denote the set of scalar addition
chains of length [, where the numbers in each chain are arranged in strictly
increasing order, and C(1) = |C(])].

The following lemma is from [16]:

LEMMA 4. A vector v = (vy,...,vs) is in P(s,1) if and only if there is a
scalar addition chain of length | — s + 1 such that each v; is in the chain.
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From this we have
P(s,l) <C(l—s+1)(l—s+2)°, (6.2)

since from Lemma 4 any vector v in P(s, ) may be formed by taking a chain
in C(l — s+ 1) and choosing any of the numbers ag, ay, ..., a_s1 for each of
the s entries of v.

We now require an upper bound for C(), which with (6.1) and (6.2) will
give a bound for R(s,l). The first few values of C(l) can be calculated by
brute force, but the numbers grow very quickly.

RO c(l)
0] 1] 8 73101
1| 1] 9 833597
2| 21|10 10917343
3] 61|11 162402263
4] 25|12 2715430931
5| 135 || 13| 50576761471
6| 913 || 14| 1041203832858
7| 7499 || 15 | 2352845888598

Table 4: The first few values of C(I).

Suppose that ag,aq,...,q; is an addition chain. Each a; for positive 7
may be written as a,, + a,,, where 0 <y; < z; < 7. Thus, the addition chain
corresponds to a set of [ unordered pairs:

{z) [i=1,...,1 and 0<y; <2 <i}.

Any set of [ such pairs corresponds to at most one addition chain with
strictly increasing entries. If we take [ pairs and arrange them to form a
representation for an addition chain, at the ith step there may be several
pairs (y, z) which have y and z less than i (if there are none, then the set
does not correspond to any chain). If there is more than one such pair, we
must choose the smallest one first, in order to make the numbers in the chain
strictly increasing.

Some chains will correspond to more than one set of pairs, if some a; may
be formed as the sum of earlier a’s in more than one way. Let the canonical
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representation be the unique set where, if there is more than one choice for
an (y;, z;), the pair with the minimal y; is chosen.

Let F(m,l) be the set of chains in C(l) where each y; and z; is less than
m, and F(m,l) = |F(m,l)|. Then F(0,0) =1, F(0,{) = 0 for I > 0, and
F(m,l)=F(,1)=C() for m > L.

LEMMA 5.

?)F(m— 1,1 - j). (6.3)

I—(m—1)
Fam< 3 (
=0

PrROOF: Let j be the number of pairs in the chain with z; = m — 1. If these
pairs are removed, the remaining pairs will determine a chain in F(m—1,1—j)
(the remaining pairs still form a canonical sequence). In each of the j removed
pairs, gz is between 0 and m — 1. Each of the y;’s must be different, so there

are Zn possibilities. O

While Lemma 5 gives us a good bound in practice, we need a simple
closed-form upper bound to prove Lemma 2.

LEMMA 6.
F(m,l) < (m+ 1)l

PRrROOF: The base case of m = 0 is trivial. Suppose the lemma is true for
m — 1. We may assume [ > m. From Lemma 5 we have

F(m,l) <> <?>ml_j =m'(1+1/m)™ < (m+ 1)

J=0

O

From this we get C(I) < (I +1)!. We are now ready to put these lemmas
together and prove Lemma 2.
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PROOF: Recall that we are assuming that s > elog N/logs. We will show
that if [ <log N/logs — 3, then R(s,l) < N.

min(s,l+1) s
OIS S M LEX)

s'=0
I+1 Ss’ s’ ,
S Z FC(Z—5,+1)(Z—S/+2)S
s'=0
+1 s’ s’
< Y- 42
s'=0 s
+1 s’ s’
< Y I (1422
s'=0
+1 Ss’
R(s,l) < (1+2)*% —
s'=0

Because s > e(l+1), the largest term in the summation occurs when s’ = [+1.

I+1
) < (+2)—0u—
Risd) < (0425
R(s,1) < (14 2)%s'™
R(S,l) < Sl+3 < SlogN/logs — N

O

We can prove better bounds for particular values of N and s. We bound
F(m,1) by using (6.3), which with (6.1) and (6.2) give a bound for R(s,).
To improve the bounds for R(s,1), we computed P(s,!) exactly for s +5 > [
using Lemma 4, and calculated F(m,[) exactly for [ < 15 by a depth-first
search. Our results are summarized included in Tables 3 and 3. The worst
case lower bounds are not much larger than average case lower bounds.

From these bounds we see that the methods of this paper are reasonably
close to optimal for a method in which we compute ¢g* by multiplying together
stored powers of g. For example, for a 512-bit exponent, if we store 650
values, then the method of this paper allows us to compute ¢g* in at most 93
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multiplications, but we prove that any method using this much storage must
use at least 66 multiplications in the worst case. Note also that the number
of multiplications for the algorithm of Section 3 differ from the lower bounds
we give by a factor of between 1.23 and 1.75.
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