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Abstract. We give an efficient algorithm for factoring polynomials over
finite algebraic extensions of the p-adic numbers. This algorithm uses
ideas of Chistov’s random polynomial-time algorithm, and is suitable for
practical implementation.

1 Introduction

Factoring polynomials over the p-adic numbers Qp is an important problem in
computational number theory. One application is determining the prime ideals of
a number field Q(α), and how a given rational prime p factors into prime ideals
in that field. See Cohen [10] and the references cited therein for some methods
currently in use.

These algorithms, while generally good in practice, will take exponential time
for some polynomials. A. L. Chistov ([7], [8], and [9]) has given an algorithm
which runs in random polynomial time for all polynomials, but would be very
difficult to implement efficiently. In this paper we give a random polynomial-
time algorithm which works well in practice. The algorithm is non-deterministic
only because all known efficient algorithms for factoring polynomials over finite
fields IFpn ([3], [5]) are non-deterministic. Note that any polynomial-time p-adic
factoring algorithm can factor polynomials over IFpn in polynomial time. It has
been implemented in PARI, and is available on the second author’s web site [13].

We will factor polynomials over a finite algebraic extension K of Qp. See
Chapter 5 of [14] for properties of these extensions. Let π be a uniformizer of
K. In the case when K is an unramified extension of Qp, we choose π = p. For
x in the ring of integers OK of K, x̄ will denote the image of x in the residue
class field K. We will fix a set of representatives A = {0, a1, . . . apf−1} ⊂ OK

for the elements of K. This set may be lifted to representatives for unramified
extensions of K in a straightforward manner.

The valuation of an element x ∈ K will be denoted |x|, and its order by ordx.
We assume that | | has been normalized so that |p| = 1/p. There is a unique

extension of the valuation | | on K to its algebraic closure K̃; we assume that | |
has been so extended.

Just as for real numbers, one cannot, in general, explicitly represent a p-adic
number exactly, but only an approximation which is a rational number. Thus



our algorithm will find approximations to factors of F (X). Elements x of K may
be written x =

∑∞
i=−m aiπ

i, with ai ∈ A. In Section 8 we discuss where this
series can be truncated to guarantee a correct answer.

Let F (X) be a monic polynomial with coefficients in OK which has no re-
peated factors. See Zippel [29, pp 294–295] for a simple method of removing
repeated factors. Unlike Chistov’s algorithm, our method does not require com-
puting in, or even constructing, ramified extensions of K. The algorithm is ap-
plied recursively, at each step either finding a new factor or terminating with an
irreducible factor and certificate of its irreducibility. The certificate of irreducibil-
ity will be a generalized Eisenstein polynomial with coefficients in the maximal
unramified (over K) subfield of K(x), where x is a root of the irreducible factor.

The p-adic Factor algorithm works by looking for a polynomial A(X) for
which we can determine the factorization of

R(Y ) = ResX(F (X), Y − A(X)). (1.1)

In Section 2 we show that a factor of R(Y ) lets us find a factor of F (X), and a
certificate of irreducibility for R(Y ) also applies to F (X). Once such an A(X) is
found, we apply the information to F (X) and, if necessary, recurse on remaining
factors of the original polynomial.

The standard “easy” method for factoring a polynomial over the p-adics, the
Newton diagram method, is given in Section 3. If the Newton diagram of the
polynomial is not a straight line, then Hensel’s Lemma may be used to find a
factor. If the Newton diagram is a straight line with slope k/n, where n is the
degree of F (X) and k is relatively prime to n, then F (X) is irreducible.

Otherwise the Newton diagram method fails, and we use an extension of
Hensel’s Lemma given in Section 4.1. We proceed by looking at the factorization
of F (X) in K. If the reduction F ∗(X) (defined in Section 3) has two relatively
prime factors, then using Hensel’s Lemma we may lift these to factors over K.
If F ∗(X) is the power of an irreducible polynomial of degree d ≥ 2, then we
may factor F (X) over an unramified extension of degree d of K, leading to
a factorization of F (X) over K. These methods form the basis of the Hensel
Factor routine given in Section 4.2. The only case Hensel Factor cannot handle
is when

R(Y ) = an (Y r − bπs)
m

+ [terms above the Newton diagram]. (1.2)

In this case we have ordA(x) = s/r for each root x of F (X) in K̃, the closure of
K. The p-adic Factor algorithm then finds a new polynomial A(X) such that
either Hensel Factor successfully factors R(Y ), or (1.2) still holds with either
ordA(x) or deg A(X) increased. Since deg A(X) < n, and ordA(x) is bounded
by Corollary 5.8, this will terminate after a bounded number of steps.

In Section 7 we illustrate how the algorithm works on two examples. Section 8
gives a worst-case bound for the bit complexity of the algorithm

O
(
n8+ǫ log3 |∆F | log2 pk

)
, (1.3)



where n is the degree of F (X), ∆F is the discriminant of F (X), and k is the
degree of K over Qp.

Our algorithm may be extended to any local field complete with respect to
a discrete rank-1 valuation, under the assumptions that the residue class field is
perfect and that an algorithm for factoring polynomials defined over the residue-
class field is given. For example, applying it to the field IFq((X)) of Laurent series,
it can be used to resolve singularities of plane curves. A future paper will extend
the algorithm to other local fields, and include some proofs which have been
omitted here due to space constraints.

We thank Stephen DiPippo and Robert Segal for many helpful discussions.
John Cannon told us of developments with MAGMA’s local rings and fields pack-
age, and informed us that the MAGMA group has developed a similar algorithm
for factoring polynomials over Qp, which is currently being implemented.

2 Some Criteria for Factorization

In this section we give simple criteria for polynomial factorization and polynomial
irreducibility. Let ResX(A(X), B(X)) denote the resultant of two polynomials
A(X) and B(X). See Lang [19] or Cassels [6] for details. Due to space constraints
we omit proofs of the lemmas in this section. They follow in a straightforward
way from the properties of the resultant.

Lemma 2.1. Suppose that F (X) and A(X) are polynomials in the field K[X ]
with F (X) monic of degree n. Put

R(Y ) = ResX(F (X), Y − A(X)). (2.2)

Then

1. R(Y ) is a monic polynomial of degree n in Y and
2. the polynomial F (X) divides the polynomial R(A(X)).

The following lemma provides a way of factoring a polynomial.

Lemma 2.3. Suppose that F (X) and A(X) are polynomials in K[X ], with
F (X) monic. Put

R(Y ) = ResX(F (X), Y − A(X)). (2.4)

Suppose further that R(Y ) = R1(Y )R2(Y ) is a factorization of R(Y ) into rela-
tively prime, non-constant factors. Then

F (X) = F1(X)F2(X), (2.5)

where

F1(X) = gcd(F (X), R1(A(X)) and F2(X) = gcd(F (X), R2(A(X)), (2.6)

is a factorization of F (X) into relatively prime, non-constant factors. Further-
more,

deg F1(X) = deg R1(Y ) and deg F2(X) = deg R2(Y ). (2.7)



The following Lemma provides a partial converse to Lemma 2.3.

Lemma 2.8. Suppose that F (X) is a monic polynomial of degree n, that A(X)
is a polynomial, and that both have coefficients in the field K. If the polyno-
mial R(Y ) = ResX(F (X), Y − A(X)) is irreducible over K, then F (X) is also
irreducible over K.

If neither Lemma 2.3 nor Lemma 2.8 applies, we may need to go to an
unramified extension field of K. The following lemma shows how irreducible
factors of F (X) over an extension field L of K lead to irreducible factors over K.

Lemma 2.9. Suppose that F (X) is a monic polynomial in K[X ] with no re-
peated factors of degree ≥ 1, that L is a finite algebraic extension of K, and that
G(X) is a monic, irreducible, polynomial in L[X ] of degree ≥ 1 which divides
F (X). Put H(X) = NormL/K G(X). Then,

1. gcd(F (X), H(X)) is an irreducible factor of degree ≥ 1 of F (X) in K[X ];
and

2. if the field extension L/K is generated by the coefficients of G(X), then
H(X) is already an irreducible factor of F (X) in K[X ].

3 Newton Diagrams

In this section we give our notation for Newton diagrams and some related items.
For details see Artin [1], Cassels [6], or Gouvea [14, Section 6.4].

Suppose that

R(Y ) =
n∑

i=0

aiY
i (3.1)

is a polynomial in K[Y ] of (exact) degree n ≥ 1. As usual, we associate to
R(Y ) a finite, non-empty point set S ⊂ IR2 consisting of points (i, ordai) ∈ IR2

corresponding to each nonzero term aiY
i of R(Y ).

Definition 3.2. We define, as is customary, the Newton diagram of R(Y ) to be
the lower boundary of the convex hull of S.

Following Cassels [6], we use the following definition:

Definition 3.3. Suppose that R(Y ) is a given by (3.1). We shall call R(Y ) pure
if a0 6= 0, n ≥ 1, and the Newton diagram of R(Y ) is a straight line.

If the Newton diagram is not pure, we may immediately factor R(Y ). The follow-
ing is is well known (see Cassels [6]), and is also a corollary of our Theorem 4.21.

Lemma 3.4. Suppose that R(Y ) =
∑k

i=0 aiY
i is a polynomial of degree k ≥ 1

and that a0 is not zero. If the polynomial R(Y ) is not pure (so that its Newton
diagram consists of two or more straight line-segments necessarily of different
slopes), then R(Y ) factors into two non-constant polynomials in K[Y ].



If the Newton diagram is pure, we may sometimes use its slope to show that
R(Y ) is irreducible.

Lemma 3.5. (Generalized Eisenstein criterion) Suppose R(Y ) is pure, and its
Newton diagram has slope k/n, where k is an integer relatively prime to n.
Then R(Y ) is irreducible.

Proof. If y is a root of R(y) in K̃, then ord y = k/n. Hence K(y)/K is a totally
ramified extension and has degree n, so R(Y ) is irreducible. ⊓⊔

Remark 3.6. The customary form of Eisenstein’s criterion is the special case
when k = −1 (see, for example, [29]).

Now suppose that R(Y ) is pure and has slope −s/r. Because the points
(0, orda0) and (n, ordan) are the end-points of the Newton diagram, n must be
an integral multiple of r, say, n = mr. Put

αi = ari/
(
anπs(m−i)

)
(3.7)

so that αi ∈ OK . We can then write

R(Y ) = an

m∑

i=0

αiπ
s(m−i)Y ri + [terms above the Newton diagram]. (3.8)

Here “terms above the Newton diagram” refers to those non-zero terms of R(Y )
whose corresponding points in the Newton set S lie strictly above the Newton
diagram. These are the non-zero terms of the form aiY

i for which ordai >
s(m − i)/r + ordan.

Definition 3.9. Suppose R(Y ) as given by (3.1) is pure and suppose that the
αi are given by (3.7). Define

R∗(Y ) =

m∑

i=0

ᾱiY
i. (3.10)

The polynomial R∗(Y ) is monic and has coefficients in K. In the next section
we will show how to factor F (X) using Hensel’s Lemma if we can write R∗(Y )
as the product of two relatively prime factors, perhaps over an extension field
of K. Otherwise, we will use a reduction method extending the one used by
Chistov [8].

4 Factoring with Hensel’s Lemma

4.1 Hensel’s Lemma

Hensel’s Lemma refers to an algorithm, due to Hensel [17], which shows how
to find a factorization of a polynomial R(Y ) ∈ K[Y ] from an “approximate
factorization”. Here we describe an extension of this algorithm. The extension is



related to that of Artin [1]. The main novelty is Corollary 4.30. In the special
case when the slope of the Newton diagram of R(Y ) is zero, it is well known.
Dealing with general slopes avoids the need to go to ramified extension fields as
in [8], making the algorithm much more practical.

Definition 4.1. Suppose that λ is a positive real number. If

A(Y ) =
k∑

i=0

aiY
i ∈ K[Y ]. (4.2)

define its λ-norm ‖A(Y )‖λ to be maxi |ai|λ
i. If λ is understood we shall write

simply ‖A(Y )‖ instead of ‖A(Y )‖λ.

When A(Y ) is the constant polynomial a0, that is, when n = 0, then ‖A(Y )‖λ =
|a0|, independent of λ. Suppose λ = |π|s/r, then, ‖aXr‖λ = |aπs|. If A(Y ) =∑n

i=0 aiY
i is pure (see definition 3.3) with slope −s/r then ‖A(Y )‖λ = |a0|.

Lemma 4.3. Suppose that

1. A(Y ) =
∑k

i=0 aiY
i is a polynomial in K[Y ] of degree k;

2. B(Y ) =
∑l

i=0 biY
i is a non-zero polynomial in K[Y ] of degree l ≤ k;

3. ‖B(Y )‖ = ‖blY
l‖; equivalently, |bl|λ

l = maxi |bi|λ
i.

Define C(Y ) = A(Y ) − Y k−l(ak/bl)B(Y ). In other words, C(Y ) is the first
remainder and (ak/bl)Y

k−l is the first quotient obtained when dividing A(Y ) by
B(Y ) using the classical division algorithm. Then

1. ‖C(Y )‖ ≤ ‖A(Y )‖, and

2. ‖(ak/bl)Y
k−l‖ ≤ ‖A(Y )‖/‖B(Y )‖.

Proof. Define bi = 0 when i < 0. Then

C(Y ) =
k∑

i=1

(
ak−i −

akbl−i

bl

)
Y k−i. (4.4)

Hence,

‖C(Y ‖ = max
1≤i≤k

λk−i
∣∣∣ak−i −

akbl−i

bl

∣∣∣

≤ max
1≤i≤k

max
(
λk−i|ak−i|,

λk|ak|λ
l−i|bl−i|

λl|bl|

)

≤ max
0≤i≤k

max (λk−i|ak−i|, λk|ak|)

=‖A(Y )‖.

(4.5)

The remainder of the proof is clear. ⊓⊔



Lemma 4.6. Suppose that A(Y ) and B(Y ) are polynomials satisfying hypoth-
esis 1, 2, and 3 of Lemma 4.3. Suppose that Q(Y ) and V (Y ) are the quotient
and remainder, respectively, when A(Y ) is divided by B(Y ); that is,

A(Y ) = B(Y )Q(Y ) + V (Y ), (4.7)

where A(Y ), B(Y ), Q(Y ), and V (Y ) are polynomials in K[Y ] such that deg V (Y ) <
deg B(Y ). Then

‖V (Y )‖ ≤ ‖A(Y )‖ and ‖Q(Y )‖ ≤ ‖A(Y )‖/‖B(Y )‖. (4.8)

Proof. Apply Lemma 4.3 repeatedly. ⊓⊔

Lemma 4.9. Suppose that we are given a 7-tuple

(
k, µ, B(Y ), C(Y ), u(Y ), v(Y ), ǫ(Y )

)
(4.10)

where k is a positive integer, where µ is real number ≥ 1, and where the remain-
ing five entries are polynomials in K[Y ]. Suppose that the following conditions
are satisfied:

1. B(Y ) =
∑l

i=0 biY
i and C(Y ) =

∑m
i=0 ciY

i are non-zero polynomials in K[Y ]
of degrees, respectively, l and m, such that

‖B(Y )‖ = ‖blY
l‖ = ‖C(Y )‖ = 1; (4.11)

2. ‖u(Y )‖ ≤ µ and ‖v(Y )‖ ≤ µ;

3. ‖u(Y )B(Y ) + v(Y )C(Y ) − 1‖ < 1;

4. deg ǫ(Y ) ≤ k and l + m ≤ k.

Then there exist a pair of polynomials (U(Y ), V (Y )), each in K[Y ], such
that:

1. ‖U(Y )‖ ≤ µ‖ǫ(Y )‖ and deg U(Y ) ≤ k − l;

2. ‖V (Y )‖ ≤ µ‖ǫ(Y )‖ and deg V (Y ) ≤ l − 1;

3. ‖U(Y )B(Y ) + V (Y )C(Y ) − ǫ(Y )‖ < ‖ǫ(Y )‖.

Proof. From hypothesis 3 we obtain

‖ǫ(Y )u(Y )B(Y ) + ǫ(Y )v(Y )C(Y ) − ǫ(Y )‖ < ‖ǫ(Y )‖ (4.12)

Let Q(Y ) be the quotient and V (Y ) be the remainder when ǫ(Y )v(Y ) is
divided by B(Y ); that is, ǫ(Y )v(Y ) = Q(Y )B(Y ) + V (Y ), where Q(Y ) and
V (Y ) are polynomials in K[Y ] with deg V (Y ) ≤ l − 1. By Lemma 4.6,

‖V (Y )‖ ≤ ‖ǫ(Y )v(Y )‖ ≤ µ‖ǫ(Y )‖ (4.13)

and

‖Q(Y )‖ ≤ ‖ǫ(Y )v(Y )‖/‖B(Y )‖ ≤ µ‖ǫ(Y )‖ (4.14)



Next,

ǫ(Y )u(Y )B(Y ) + ǫ(Y )v(Y )C(Y ) − ǫ(Y )

=ǫ(Y )u(Y )B(Y ) +
(
Q(Y )B(Y ) + V (Y )

)
C(Y ) − ǫ(Y )

=
(
ǫ(Y )u(Y ) + Q(Y )C(Y )

)
B(Y ) + V (Y )C(Y ) − ǫ(Y )

=U ′(Y )B(Y ) + V (Y )C(Y ) − ǫ(Y ),

(4.15)

where

U ′(Y ) = ǫ(Y )u(Y ) + Q(Y )C(Y ). (4.16)

Then,

‖U ′(Y )‖ ≤ max(‖ǫ(Y )u(Y )‖, ‖Q(Y )C(Y )‖)

≤ µ‖ǫ(Y )‖
(4.17)

and

‖U ′(Y )B(Y ) + V (Y )C(Y ) − ǫ(Y )‖ < ‖ǫ(Y )‖. (4.18)

The polynomial V (Y ) already meets the requirements of the Lemma. We show
that we can modify U ′(Y ) to obtain the required polynomial U(Y ). Write

U ′(Y ) =
∑

i

uiY
i. (4.19)

If any monomial uiY
i satisfies ‖uiY

i‖ < ‖ǫ(Y )‖, then we may replace ui by 0;
this will not affect the validity of (4.18). Define U(Y ) to be the polynomial
obtained from U ′(Y ) by replacing all such monomials uiY

i by 0. Then,

‖U(Y )B(Y ) + V (Y )C(Y ) − ǫ(Y )‖ < ‖ǫ(Y )‖. (4.20)

Put j = deg U(Y ). If j ≤ k − l, we are done. If not, then, the term of highest
degree in the product U(Y )B(Y ) has degree j+l > k. Since deg V (Y )C(Y ) ≤ l−
1+m < k and deg ǫ(Y ) ≤ k, the term of highest degree in the product U(Y )B(Y )
must also be the term of highest degree in the left-hand side of U(Y )B(Y ) +
V (Y )C(Y ) − ǫ(Y ). The norm of this term is ‖ujY

j‖ ‖blY
l‖ ≥ ‖ǫ(Y )‖. This

contradicts (4.20) and shows that j + l ≤ k, equivalently deg U(Y ) ≤ k − l. ⊓⊔

For the remainder of this section we assume that λ is a rational power of |π|.
Specifically, λ = |π|s/r , where r and s are relatively prime integers with r ≥ 1.
In particular, we require that if s = 0, then r = 1. Under this assumption, the
norm ‖A(Y )‖ of any non-zero polynomial A(Y ) ∈ K[Y ] will be an integral power
of |π|1/r.

We can now state the form of Hensel’s Lemma that we use.

Theorem 4.21. (Hensel’s Lemma) Suppose that h is a non-negative integer
and that we are given a 5-tuple of polynomials

(
R(Y ), B0(Y ), C0(Y ), u(Y ), v(Y )

)
(4.22)

each with coefficients in K such that



1. R(Y ) has degree k and satisfies ‖R(Y )‖ = 1;

2. B0(Y ) =
∑l

i=0 biY
i has degree l and satisfies ‖B0(Y )‖ = ‖blY

l‖ = 1;

3. C0(Y ) =
∑m

i=0 ciY
i has degree m and satisfies ‖C0(Y )‖ = 1;

4. ‖R(Y ) − B0(Y )C0(Y )‖ ≤ |π|(2h+1)/r;

5. ‖u(Y )‖ ≤ |π|−h/r, ‖v(Y )‖ ≤ |π|−h/r;

6. ‖u(Y )B0(Y ) + v(Y )C0(Y ) − 1‖ < 1.

Then there exist polynomials B(Y ) and C(Y ) in K[Y ] such that

1. R(Y ) = B(Y )C(Y );

2. ‖B(Y ) − B0(Y )‖ < |π|h/r;

3. ‖C(Y ) − C0(Y )‖ < |π|h/r;

4. deg B(Y ) = deg B0(Y ).

Proof. We first show that we may assume that k ≥ m + l. If k < l + m, then
the term of highest degree of R(Y ) − B0(Y )C0(Y ) is −blcmY m+1 whose norm,
by hypotheses (2) and (4), satisfies

‖blY
l‖ ‖cmY m‖ = ‖blcmY l+m‖ ≤ |π|(2h+1)/r, (4.23)

so that ‖cmY m‖ ≤ |π|(2h+1)/r. It follows that if we replace C0(Y ) by by the
lower degree polynomial C0(Y )−cmY m and replace m by the degree of this new
C0(Y ), then the hypotheses remain satisfied. For the remainder of this proof we
assume that k ≥ l + m.

We shall construct sequences of polynomials {Bi(Y )} and {Ci(Y )} for i =
1, 2, . . . such that

1. ‖Bi(Y ) − Bi−1(Y )‖ ≤ |π|(h+i)/r and deg Bi(Y ) = l;

2. ‖Ci(Y ) − Ci−1(Y )‖ ≤ |π|(h+i)/r and deg Ci(Y ) ≤ m − l;

3. ‖R(Y ) − Bi(Y )Ci(Y )‖ ≤ |π|(2h+i+1)/r .

Putting B(Y ) = limi→∞ Bi(Y ) and C(Y ) = limi→∞ Ci(Y ) will complete the
proof.

We proceed by induction on the variable i, starting with i = 1. Put ǫi(Y ) =
R(Y )−Bi−1(Y )Ci−1(Y ) so that, by hypothesis (when i = 1) or induction (when
i > 1), ‖ǫi(Y )‖ ≤ |π|(2h+i)/r . Apply Lemma 4.9 to the 7-tuple

(k, |π|−h, Bi(Y ), Ci(Y ), u(Y ), v(Y ), ǫi(Y )). (4.24)

Lemma 4.9 returns a pair of polynomials which we denote (Ui(Y ), Vi(U)). These
polynomials satisfy

1. ‖Ui(Y )‖ ≤ |π|(h+i)/r and deg Ui(Y ) ≤ m − 1;

2. ‖Vi(Y )‖ ≤ |π|(h+i)/r and deg Vi(Y ) ≤ l − 1;

3. ‖Ui(Y )B0(Y ) + Vi(Y )C0(Y ) − ǫi(Y )‖ ≤ |π|(2h+i+1)/r .



Define

Bi(Y ) = Bi−1(Y ) + Vi(Y ), Ci(Y ) = Ci−1(Y ) + Ui(Y ) (4.25)

Then

‖R(Y ) − Bi(Y )Ci(Y )‖

= ‖R(Y ) −
(
Bi−1(Y ) + Vi(Y )

)(
Ci−1(Y ) + Ui(Y )

)
‖

=
∥∥(

R(Y ) − Bi−1(Y )Ci−1(Y )
)

−
(
Ui(Y )Bi−1(Y ) + Vi(Y )Ci−1(Y )

)
− Ui(Y )Vi(Y )

∥∥

=
∥∥(

ǫi(Y ) −
(
Ui(Y )Bi−1(Y ) + Vi(Y )Ci−1(Y )

))

− Ui(Y )Vi(Y )
∥∥

≤ max
(
|π|2h+1, |π|2h+2i

)

= |π|(2h+i+1)/r

(4.26)

⊓⊔

The proof of Hensel’s Lemma consists of an algorithm. If only approximations
to the factors R(Y ) and B(Y ) are needed, then the algorithm is finite. We shall
call the algorithm Hensel’s Lemma, also.

Now suppose that we are given a polynomial R(Y ) which is pure and whose
Newton diagram has slope −s/r, where r and s are relatively prime integers
with r > 0. The degree of R(Y ) must be a multiple of r, say kr. Both of the
points (0, orda0) and (kr, ordakr) must lie on this segment. We can write

R(Y ) =
k∑

i=0

aiπ
−isY ir + [terms above the Newton diagram] (4.27)

where |ai| ≤ 1 for 0 ≤ i ≤ k, and where, In the λ = |π|s/r norm,

‖R(Y )‖ = |a0| = ‖akrY
kr‖ = |ak|. (4.28)

Equation (4.27) can be restated as

‖R(Y ) −

k∑

i=0

aiπ
−isY ir‖ < ‖R(Y )‖. (4.29)

When this is the case we have

Corollary 4.30. Suppose that R(Y ) is a pure polynomial of degree kr, of
the form (4.27) which satisfies (4.28) and suppose further that the polynomial

R∗(Y ) =
∑k

i=0 āiY
i satisfies R∗(Y ) = β(Y )γ(Y ) where β(Y ) and γ(Y ) are

monic, relatively prime polynomials in K[Y ]. Then R(Y ) = B(Y )C(Y ) where
B(Y ) and C(Y ) are relatively prime polynomials in K[Y ] satisfying B∗(Y ) =
β(Y ) and C∗(Y ) = γ(Y ).



Proof. By multiplying R(Y ) by an appropriate power of π, we may assume
that ‖R(Y )‖ = 1. Suppose that deg β(Y ) = l and deg γ(Y ) = m. There exist
polynomials µ(Y ) and ν(Y ) in K[Y ] such that µ(Y )β(Y ) + ν(Y )γ(Y ) = 1 and
such that deg µ(Y ) < m and deg ν(Y ) < l. Choose elements bi, ci, ui, and vi in
K such that

β(Y ) =

l∑

i=0

b̄iY
i, γ(Y ) =

m∑

i=0

c̄iY
i,

µ(Y ) =
m−1∑

i=0

ūiY
i, ν(Y )=

l−1∑

i=0

v̄iY
i.

(4.31)

Define

B0(Y ) =

l∑

i=0

biπ
−isY ir, C0(Y )=

m∑

i=0

ciπ
−isY ir,

u(Y ) =

m−1∑

i=0

uiπ
−isY ir , v(Y ) =

l−1∑

i=0

viπ
−isY ir .

(4.32)

Then B0(Y )∗ = β(Y ), C0(Y )∗ = γ(Y ), u(Y )∗ = µ(Y ) and v(Y )∗ = µ(Y ). Apply
Theorem 4.21 with h = 0 to the 5-tuple

(R(Y ), B0(Y ), C0(Y ), u(Y ), v(Y )). (4.33)

The result will be two polynomials B(Y ) and C(Y ) which meet the requirements
of this corollary. ⊓⊔

The special case of this Corollary when C(Y ) is pure with horizontal Newton
diagram appears as Lemma 4.1 in [6].

4.2 Hensel Factor

We may now define Hensel Factor , an important subroutine of our algorithm.
It takes as input a triple (K, F (X), A(X)), where K is a field, F (X) is a poly-
nomial of degree ≥ 2 to be factored, and A(X) is a non-zero polynomial of
degree < deg F (X). We will say the algorithm succeeds if one of Lemmas 3.4,
3.5 or Corollary 4.30 apply. If Lemma 3.5 holds, then (K, F (X), A(X)) forms
a certificate for the irreducibility of F (X), and we are done. If Lemma 3.4 or
Corollary 4.30 hold, then we have found a factor G(X) of F (X) over a field
L, and we recursively call p-adic Factor with input (L, G(X)). If none of the
lemmas apply, we say it fails.

Hensel Factor. Input (K, F (X), A(X)).

1. Compute R(Y ) = ResX(F (X), Y − A(X)).



Comment. Each of the elements A(x), where x is a root of F (X), is a root
of R(Y ). If the resultant R(Y ) were a monomial, then the n distinct roots x
of F (X) would satisfy the polynomial A(X), of degree < n. Thus R(Y ) is
not a monomial.

2. There are now four sub-cases, at most one of which can hold:

(a) The polynomial R(Y ) is not pure.

Factor R(Y ) using Lemma 3.4. Then factor F (X) using Lemma 2.3. Let
G(X) be a factor of least degree. Restart p-adic Factor with the pair
(K, G(X)).

(b) The polynomial R(Y ) is pure and R∗(Y ) can be written as a product of
two relatively prime factors, each of degree ≥ 1 in K[X ].

Factor R(Y ) using Corollary 4.30 of Hensel’s Lemma. Then factor F (X)
using Lemma 2.3. Let G(X) be a factor of least degree. Restart p-adic
Factor with the pair (K, G(X)).

(c) The polynomial R(Y ) is pure and R∗(Y ) is the eth power of an irreducible
monic polynomial α(Y ) of degree ≥ 2 in K[Y ].

Choose a polynomial u(Y ) ∈ K[Y ] such that ū(Y ) = α(Y ). Denote by L
the unramified extension field of K obtained by adjoining a root y of
u(Y ) to K. Put β(Y ) = (Y − ȳ)e and put γ(Y ) = R∗(Y )/β(Y ). Then
R∗(Y ) = β(Y )γ(Y ) where (β(Y ), γ(Y )) = 1. By Corollary 4.30 we can
factor R(Y ) as R(Y ) = B(Y )C(Y ) where B∗(Y ) = β(Y ). Factor F (X)
over L using Lemma 2.3 with R1(Y ) = B(Y ) and R2(Y ) = C(Y ). Let
F1(X) be the factor of F (X) corresponding to R1(Y ). Restart p-adic
Factor with the pair (L, F1(X)).

Comment. Note that the field L is determined uniquely by K and
α(Y ); it is independent of the specific choice of u(Y ) (see Artin [1, page

69, Theorem 2A]). Moreover, if x is a root of F1(X) in K̃, then ȳ = F1(x).
Hence the field L is contained in the field K(x).

(d) The polynomial R(Y ) is pure and the slope of its Newton diagram is
k/n where (k, n) = 1.

By Lemma 3.5, F (X) is irreducible and the algorithm terminates with
the triple (K, F (X), A(X)).

3. None of the four cases (2a), (2b), (2c), or (2d) applies, so that R∗(Y ) is a
power of a linear factor in K[Y ].

Return failure

5 Some Technical Lemmas

We state here some simple results which will be used in the next section. We
first have a lemma from elementary number theory. Its proof is constructive.



Lemma 5.1. Suppose that h is a positive integer and that for 1 ≤ j ≤ h we
are given fractions sj/rj where rj and sj are relatively prime positive integers.
Define t0 = 1 and for 1 ≤ j ≤ h, define tj = lcm(r1, r2, . . . , rj). Then, for any
integer u, there exist integers ej, for 1 ≤ j ≤ h, satisfying 0 ≤ ej < tj/tj−1 and
such that

h∑

j=1

ejsj/rj − u/th (5.2)

is an integer.

Proof. The proof proceeds by induction on h. When h = 1, then t1 = r1, and
the unique choice for e1 is the least non-negative, integral solution to e1s1 ≡
u (mod r1).

Suppose that h > 1. We will show that there exist integers v and eh such
that 0 ≤ eh < th/th−1 and such that

ehsh/rh + v/th−1 − u/th (5.3)

is an integer. This will reduce the problem to the h − 1 case with u replaced
by v. Multiplying (5.3) by th shows that we must choose eh and v to satisfy

ehshth/rh + vth/th−1 ≡ u (mod th) (5.4)

Now suppose that p is a prime dividing th, that pα‖rh (this means that pα is
the exact power of p dividing rh), and that pβ‖th−1. Put γ = max(α, β). Since
th = lcm(th−1, rh), we see that pγ‖th. Then pγ−α‖(th/rh) and pγ−β‖(th/th−1).
If α = γ, then p divides rh, hence does not divide sh, so that p does not divide
shth/rh. If β = γ, then p does not divide th/th−1. Thus p divides at most one of
shth/rh and th/th−1. It follows that shth/rh and th/th−1 are relatively prime.
Hence there exists a solution eh and v to (5.4) (even with equality replacing
congruence). For any integer k the pair (eh + kth/th−1, v − kshth/rh) is also a
solution of (5.4). Replacing eh by eh + kth/th−1 for an appropriate integer k
allows us to choose eh to satisfy 0 ≤ eh < th/th−1. ⊓⊔

This immediately gives the following corollary, which will be used in the
algorithm to construct a polynomial E(X) with specified values of E(x) for the
roots x of F (X).

Corollary 5.5. Suppose that h, the fractions sj/rj and the integers tj satisfy

the hypotheses of Lemma 5.1. Suppose that A1, A2, . . . , Ah are elements of Q̃p

such that ordAj = sj/rj . Then for any integer u there exist integers e1, e2,. . . ,eh

satisfying 0 ≤ ej < tj/tj−1 and an integer e0 such that ordπe0

∏h
j=1 A

ej

j = u/t.

The next lemma shows that if a monic polynomial of degree m is “small” at
n > m distinct points, then at least two of these points must be “close” to each
other. If the points are given in advance, then there is a limit to how “small”
the polynomial can be at all n points.



Lemma 5.6. Suppose that x1, x2, . . . , xn are elements of K̃ and that A(X)

is a monic polynomial in K̃[X ] of degree m < n. Then minj 6=j′ |xj − xj′ |
m ≤

maxi |A(xi)|.

Proof. Put ǫ = maxj |A(xj)|. We can write A(X) =
∏m

i=1(X − θi) where the

θi ∈ Q̃p are the roots of A(X). Then for each j,

ǫ ≥ |A(xj)| =
m∏

i=1

|xj − θi|. (5.7)

Not all of the factors |xj−θi| on the right-hand side of (5.7) can be > ǫ1/m. Hence
there must exist a value of i, call it σ(j), such that |xj − θσ(j)| ≤ ǫ1/m. By doing
this for all j, we obtain a map σ from the set {1, 2, . . . , n} to the set {1, 2, . . . , m}.
Since n > m, there must be two values, j 6= j′ such that σ(j) = σ(j′). Call this
common value k. Then both |xj − σk| ≤ ǫ1/m and |xj′ − σk| ≤ ǫ1/m. Hence
|xj − xj′ | ≤ ǫ1/m ⊓⊔

Corollary 5.8. Suppose that F (X) is a monic polynomial in OK [X ] of degree n
with distinct roots x1, x2, . . . , xn. If A(X) is a monic polynomial in K[X ] of
degree m < n, then, for at least one i, we have |A(xi)| ≥ |∆F |m.

Proof. Because all |xi| ≤ 1, we have

∆F =
∏

i6=j

|xi − xj | ≤ min
i6=j

|xi − xj | (5.9)

Now apply Lemma 5.6. ⊓⊔

6 The p-adic Factor Algorithm

In this section, we describe the main algorithm. It will find an irreducible factor
H(X) of F (X) along with a certificate that H(X) is irreducible. To completely
factor F (X), the algorithm may have to be repeated, perhaps several times, with
F (X)/H(X) replacing F (X) until this quotient is 1.

The algorithm will attempt to factor F (X) using Hensel Factor with A(X) =
X . This will fail only when F ∗(X) has the form (X − α)m. When this occurs,
the algorithm will systematically look for a polynomial A(X) ∈ K[X ] for which
Hensel Factor succeeds.

Because the algorithm is recursive and both the polynomial to be factored
and the local field may change during the course of the algorithm we will, for the
remainder of this paper, denote by F0(X) the original polynomial to be factored
over the original field K0.

The input to the algorithm is a pair (K, F (X)), where K is either K0 or a
finite, unramified extension of K0, and F (X) is a monic polynomial of degree
n ≥ 2 with coefficients in OK dividing F0(X). We assume F (X) has no multiple
factors and F (0) 6= 0. Since we compute approximations to the factors, F (X) will



not in general be known exactly. In Section 8 we determine how much precision
is needed to avoid errors in the factorization.

The p-adic Factor algorithm will return a field L which is an unramified
extension of K of degree ≤ n, a polynomial G(X) in L[X ] dividing F (X), and
a polynomial B(X) ∈ L[X ] of degree < deg G(X). By Lemma 3.5, the triple
(L, G(X), B(X)) provides the proof that G(X) is irreducible.

By Lemma 2.9,

H(X) = NormL/K G(X). (6.1)

is an irreducible factor of F (X). As noted above, the algorithm may then be
called recursively on the pair (K, F (X)/H(X)) to complete the factorization of
F (X).

Section 6.1 presents the algorithm, after which Section 6.2 describes in more
detail what certain steps are doing, and why they work.

6.1 The Algorithm

p-adic Factor. Input: (K, F (X)).

Step 1. Apply Hensel Factor to (K, F (X), X) (in this case
ResX(F (X), Y − X) = F (Y )).

Step 2. We reach this step only if Hensel Factor did not succeed in Step 1, so
F ∗(X) is a power of a linear polynomial. Choose α ∈ A such that

F (X) = (Xr − απs)m + [terms above the Newton diagram] (6.2)

where

(a) ᾱ is the unique root of F ∗(X) in K and ordα = 0;
(b) r < n and m > 1;
(c) mr = n; gcd(r, s) = 1;
(d) the Newton diagram of F (X) has slope −s/r.

Step 3. We initiate the outer loop by putting A1(X) = X , R1(Y ) = F (Y ),
r1 = r, s1 = s, t0 = 1, and t1 = r1.

Step 4. (Outer loop) For h = 1, 2, . . . , perform Steps 5 through 11.

Step 5. To begin the inner loop, put

B0(X) = Ah(X)th/th−1 ,

S0(Y ) = ResX(F (X), Y − B0(X)),

u0 = sht2h/(rhth−1).

Step 6. (Inner Loop) For i = 0, 1, . . . , perform Steps 7 through 10.

Step 7. Use Corollary 5.5 to choose integers ej , for 0 ≤ j ≤ h, such that

(a) 0 ≤ ej ≤ tj/tj−1 − 1 when 1 ≤ j ≤ h,



(b) e0 +
∑h

j=1 ejsj/rj = ui/th (in the notation of Corollary 5.5, e0 =

u/th −
∑h

j=1 ejsj/rj).

Define a polynomial E(X) by

E(X) = πe0A1(X)e1A2(x)e2 · · ·Ah(X)eh . (6.3)

Step 8. Define

C(X) = Bi(X)E(X)−1 (mod F (X)) (6.4)

and

T (Y ) = ResX(F (X), Y − C(X)). (6.5)

Apply Hensel Factor to the triple (K, F (X), C(X)).

Step 9. Put B(X) = Bi(X)−αE(X) and S(Y ) = ResX(F (X), Y −B(X). Apply
Hensel Factor to the triple (K, F (X), B(X)).

Step 10. If the common value ordB(x) can be written in the form u/th, where u
is an integer, then put Bi+1(X) = B(X), Si+1(Y ) = S(Y ), ui+1 = u.
and continue the “inner loop” by returning to Step 6.

Step 11. Denote the common value of ordB(x) by sh+1/rh+1, where rh+1 and
sh+1 are relatively prime, non-negative integers as before. Put Ah+1(X) =
B(X), Rh+1(Y ) = S(Y ), and th+1 = lcm(th, rh+1).
(a) If th+1 < n continue the “outer loop” by returning to Step 4, with

h increased by 1.
(b) Otherwise use Corollary 5.5 to choose integers ej for 0 ≤ j ≤ h + 1

such that
i. 0 ≤ ej ≤ tj/tj−1 − 1 when 1 ≤ j ≤ h and

ii.
∑h+1

j=1 ejsj/rj − 1/th+1 = e0;
Define E(X) by

E(X) = πe0A1(X)e1A2(x)e2 · · ·Ah(X)eh (6.6)

and apply Hensel Factor to the triple (K, F (X), E(X)).

6.2 Discussion of the Algorithm

In Step 2, each (unknown) root x of F (X) has ordx = s/r by (6.2). This shows
that the ramification index of each of the n field extensions of the form K(x)/K
is divisible by r.

Starting with A1(X) = X at Step 3, the outer loop defines a finite sequence
of polynomials A1(X), A2(X), . . . and a corresponding sequence of pairs of non-
negative integers, (r1, s1), (r2, s2), . . . , where each of the pairs (ri, si) are rela-
tively prime. We have Rh(Y ) = ResX(F (X), Y −Ah(X)), t0 = 1, and for h ≥ 0,
define th = lcm(r1, r2, . . . , rh). The the following properties are easily checked:



1. Each of the rh and each of the th divides n.
2. The polynomial Ah(X) is monic of degree th−1.
3. There exists an element α ∈ A such that ordα = 0 and

Rh(Y ) = (Y rh − απsh)n/rh + [terms above the Newton diagram].

It follows that for each root x of F (X), we have

ordAh(x) = sh/rh. (6.7)

Thus the multiplicative group generated by |π|, |A1(x)|, |A2(x)|, · · · , |Ah(x)|
is independent of the choice of x and contains the value group of K. Hence,
for each root x of F (x), the ramification index of the field extension K(x)/K
is divisible by rh.

4. The integer rh does not divide th−1 and for each root x of F (X), the rami-
fication index of of the field extension K(x)/K is divisible by th. It follows
that t1 < t2 < · · · < th ≤ n.

Since ti is a proper divisor of ti+1, we must have h ≤ log2 n. This limits the
number of steps of the outer loop.

To determine Ah+1(X), we attempt in the inner loop to find a monic poly-
nomial B(X) of degree th satisfied by all roots x of F (X). Since F (X) has
n > th distinct roots, this attempt must fail. Its failure either leads to a situation
where we can factor F (X) using Hensel’s lemma or leads to the determination of
Ah+1(X). The inner loop finds Ah+1(X) by defining a sequence of polynomials

B0(X), B1(X), B2(X), . . . (6.8)

and a corresponding, strictly increasing, finite sequence of non-negative integers
u0 < u1 < u2, . . . .

Each polynomial Bi(X) is monic of degree th. Each root x of F (X) will
satisfy ordBi(x) = ui/th. Corollary 5.8 provides an upper bound for ui and
hence the sequence B0(X), B1(X), . . . will be finite.

In Step 7, we have constructed E(X) so that ordE(x) = ui/th for every
root x of F (X). Since deg Aj(X) ≤ tj−1, we obtain, from Step 7a, have

deg E(X) ≤

h∑

j=1

(tj/tj−1 − 1)tj−1

=

h∑

j=1

(tj − tj−1)

= th − 1.

(6.9)

In Step 8, (6.4) is valid because E(X) and F (X) have no common zeros. The
polynomial T (Y ) is monic of degree n and, for each root x of F (X), we have
|C(x)| = |Bi(x)/E(x)| = 1. Consequently, the Newton diagram of T (Y ) is the
horizontal line-segment connecting the points (0, 0) and (n, 0). It follows that



the polynomial T ∗(Y ) is monic of degree n and its constant term is not zero. If
Hensel Factor fails, then we can write

T (Y ) = (Y − α)n + [terms above the Newton diagram] (6.10)

where α ∈ A and ordα = 0.
After Step 10, since Bi(X) is monic of degree th and deg E(X) < th, B(X)

is monic of degree th. By the definition of α, we have ordBi(x) − αE(x) > 0
for each root x of F (X). It follows that ordB(x) > ordBi(X) for each such x.
If Hensel Factor fails, then ordB(x) is the same for all roots x of F (X) and
is > ui/th.

Put δ = ord |∆F |. Step 6 will increase i by 1. Since th divides n and the
the ui are non-negative integers and strictly increasing we have ui/th ≥ i/n. By
Corollary 5.8, we see that ui/th ≤ δn. Thus i ≤ δn2. This means that for each
value of h, the inner-loop is performed at most δn2 times.

In Step 11a, rh+1 does not divide th, so that th+1 > th. In Step 11b, we have
ordE(x) = 1/n for every root x of F (X), so case 2d of Hensel Factor will
succeed, and this will lead to finding an irreducible factor of F0(X).

7 Two Examples

We decided to implement the algorithm, both to verify its correctness and prac-
ticality, and to allow experimentation. The first decision was to choose a mathe-
matical package in which to implement it. MAGMA [4] was the original choice,
but a package to perform local field operations was delayed several times, so the
implementation was done in GP instead. GP is a part of the PARI system devel-
oped by Henri Cohen [2]. It does support p-adic fields, and is flexible enough to
support unramified extension fields of the p-adics relatively easily. A new version
of MAGMA with local fields has recently appeared, so a port of the algorithm
to MAGMA is planned.

The resulting code is available at the second author’s web site [13]. Because
of the overhead of GP, it is slower than the PARI routine factorpadic for most
polynomials. An implementation in C using the PARI library would run in about
the same time as factorpadic for most polynomials.

For an example of how the algorithm functions, we will factor the polynomial

F (X) = (X − 4)2(X2 − 2) + 2100 (7.1)

over Q2.
If we apply p-adic Factor to this polynomial, it starts by attempting to

apply Hensel Factor. The Newton diagram of R(Y ) = F (Y ) is not pure, so
using Hensel’s Lemma we find factors

G1(X) = (X2 − 2) + (2101 + 2105 + · · · )X + (299 + 2102 + · · · ) (7.2)

and

G2(X) = (X − 4)2 + (2101 + 2102 + · · · )X + (299 + 2100 + · · · ) (7.3)



Attempting to factor G1(X), we call Hensel Factor again. This time, the New-
ton diagram is pure, and we are in subcase (2d). Thus G1(X) is irreducible.

G2(X) is also pure, but its slope and degree are both even, so Hensel Factor
does not apply. We have G∗

2(X) = (X − 1)2.
In Step 2 of p-adic Factor, we have α = 1, r = 1, s = 2, and n = m = 2.

We arrive in Step 7 with E(X) = 4, C(X) = X/4, and

T (Y ) = Y 2 − 2Y + (1 + 295 + · · · ). (7.4)

The Newton diagram of T (Y ) is now horizontal, but T ∗(Y ) = (Y − 1)2 is
still a power of a linear polynomial, so the call to Hensel Factor in Step 8 fails.

In Step 9, we have α = 1 and B(X) = X − 4. This gives

S(Y ) = Y 2 + (2101 + · · · )Y + (299 + · · · ). (7.5)

The call to Hensel Factor in Step 9 now goes to subcase (2d), and we have
proved that G2(X) is irreducible, completing the factorization of F (X).

Very few polynomials make it all the way through the inner loop more than
once. One that does is

F (X) = (X2 − 2 − 220)(X2 − 2 + 220) (7.6)

over Q2.
We have F ∗(X) = (X − 1)2, so Hensel Factor fails. In Step 2 we choose

α = 1, r = 2, s = 1, m = 2, and n = 1. Entering the inner loop, we find
E(X) = 2, C(X) = X2/2, and

T (Y ) = Y 4 − 4Y 3 + (6 − 239)Y 2 + (−4 + 240)Y + (1 − 239 + 276). (7.7)

Again, Hensel Factor fails. In Step 9 we set B(X) = X2 − 2, and have

S(Y ) = Y 4 − 241Y 2 + 280. (7.8)

Hensel Factor fails on S(Y ), and ordB(x) = 20 for each root x of F (X), so
we continue the inner loop. Returning to Step 7, we have E(X) = 220, C(X) =
2−20X2 − 2−19, and T (Y ) = Y 4 − 2Y 2 + 1. Once again, Hensel Factor fails.

Finally, we succeed in Step 9. This time we have B(X) = X2 − 2 − 220, and
S(Y ) = Y 4 + 222Y 3 + 242Y 2. The factor of Y 2 in S(Y ) yields the factor

G1(X) = X2 − 2 − 220. (7.9)

Both this factor and the other one immediately are shown to be irreducible
by subcase (2d) of Hensel Factor.

8 Bounds on Required Precision and Complexity

From the discussion in Section 6.2, it is clear that the loops of p-adic Factor
will be executed a polynomial number of times in n and log |∆F |. Therefore, to



show that p-adic Factor is a random polynomial-time algorithm, we only need
to bound the precision needed in the computations.

In general, we can only approximately compute the factors of the p-adic
polynomial F (X). This causes two problems. First, in the gcd computation in
Lemma 2.3:

Fi(X) = gcd(F (X), Ri(A(X)), (8.1)

we do not know the Ri exactly, and so terms in the computation that appear to
be zero may not be. In this situation it is difficult to give a reasonable a priori
estimate of the accuracy of Ri(Y ) that is needed to compute the gcd to the
desired accuracy.

To circumvent this difficulty, we give an alternative method of computing
Fi(X), which involves solving a system of linear equations.

Lemma 8.2. Suppose that F (X) ∈ K[X ] is a monic polynomial of degree
n with distinct roots x1, x2, . . . , xn in the algebraic closure K of K. Suppose
that A(X) ∈ K[X ]. Put yi = A(xi), and suppose that the yi are distinct. Put
R(Y ) = ResX(F (X), Y −A(X)). Then there exists a polynomial B(X) ∈ K[Y ] of
degree ≤ n − 1 such that B(A(X)) ≡ X (mod F (X)). Furthermore, if R(Y ) =
R1(Y )R2(Y ) is a nontrivial factorization of R(Y), then F (X) = F1(X)F2(X)
where Fi(X) = ResY (Ri(Y ), X − B(Y )). Finally, deg Fi(X) = deg Ri(Y ).

Proof. We first show that the n polynomials A(X)k (mod F )(X) for 0 ≤ k ≤
n − 1 are linearly independent over K. Suppose that we have a relation

n−1∑

i=0

biA(X)i ≡ 0 (mod F (X)). (8.3)

Substituting the values x = xk into (8.3) yields the system of linear equations

n−1∑

i=0

biy
i
k = 0 for 1 ≤ i ≤ n. (8.4)

The matrix of the equations (8.4) is a Vandermonde. Since the yk are distinct it
is nonsingular. This shows that all of the bi are zero. It follows that the equation

n−1∑

i=0

biA(X)i ≡ X (mod F (X)) (8.5)

has a unique solution b0, b1, . . . bn−1. Put B(Y ) =
∑n−1

i=0 biY
i. Then

B(A(X)) =

n−1∑

i=0

biA(X)i ≡ X (mod F (X)). (8.6)



Suppose that deg R1(Y ) = r. By renumbering we may suppose that the roots
of R1(Y ) are y1, y2, . . . , yr where r < n. The roots x of F1(X) are those x for
which there exists y such that R(y) = 0 and x − B(y) = 0. Thus the roots of
F1(X) are x1, x2, . . . , xr where xi = B(yi). This shows that F1(X) is a factor
of F (X) of degree r. Similarly, F2(X) is a factor of F (X) of degree n − r. It is
immediate from the definition of resultant that deg Fi(X) = deg Ri(X). ⊓⊔

The other potential problem of using approximations to Ri(Y ) is that, if
we do not use sufficient accuracy, the factorization might be changed. Corol-
laries 8.7 and 8.19 give bounds on the accuracy needed to preserve the correct
factorization.

Corollary 8.7. Suppose that R(Y ), B0(Y ), and C0(Y ) are polynomials in Y
of degrees k, l, and m, respectively, and

‖R(Y ) − B0(Y )C0(Y )‖ < |ResY (B0(Y ), C0(Y ))|2. (8.8)

Then if the polynomials R(Y ), B0(Y ), and C0(Y ) satisfy hypotheses 1, 2,
and 3 of Hensel’s Lemma, there exist an integer h and polynomials u(Y ) and
v(Y ) such that h and the 5-tuple

(
R(Y ), B0(Y ), C0(Y ), u(Y ), v(Y )

)
satisfy the

hypotheses and hence the conclusions of Hensel’s Lemma.

Proof. Put

h = r · ordRes(B0(Y ), C0(Y )). (8.9)

Then, using this value of h, hypothesis 4 of Hensel’s Lemma is satisfied.
We will choose polynomials u(Y ) and v(Y ) in K[Y ] of degrees ≤ m − 1 and

≤ l − 1, repectively, to satisfy

u(Y )B0(Y ) + v(Y )C0(Y ) = 1. (8.10)

Suppose that u(Y ) =
∑m−1

i=0 uiY
i and v(Y ) =

∑l−1
i=0 viY

i. Equation (8.10)
amounts to a system of l + m linear equations in the l + m unknowns, u0,
u1, . . . , um−1 and v0, v1, . . . , vl−1. The matrix of this system of linear equations
is, up to sign, the Sylvester (resultant) matrix of B0(Y ) and C0(Y ) (see, for
example, [10], Section 3.3.2). Since the determinant of this matrix is non-zero,
the coefficients of u(Y ) and v(Y ) are uniquely determined elements of K, not

all 0. We may estimate them as elements of the field K̃. Choose τ ∈ K̃ to satisfy
τr = π−s so that |τ | = ‖π−r/s = 1/λ. Put

uτ (Y ) = u(Y/τ), Bτ
0 (Y )= B0(Y/τ),

vτ (Y ) = v(Y/τ), Cτ
0 (Y ) = C0(Y/τ).

(8.11)

Then,

‖uτ(Y )‖1 = ‖u(Y )‖, ‖Bτ
0 (Y )‖1= ‖B0(Y )‖,

‖vτ (Y )‖1 = ‖v(Y )‖, ‖Cτ
0 (Y )‖1 = ‖C0(Y )‖.

(8.12)



Substituting Y/τ for Y , equation (8.10) becomes

uτ (Y )Bτ
0 (Y ) + vτ (Y )Cτ

0 (Y ) = 1 (8.13)

As above, equation (8.13) may be considered as a system of linear equations in
the coefficients of uτ (z) and vτ (z), which may be obtained from the matrix of
equation (8.10) by elementary row operations, giving

|ui/τ i| ≤ 1/|ResY (B0(Y ), C0(Y ))| . (8.14)

It follows that

‖u(Y )‖ ≤ |ResY (B0(Y ), C0(Y ))|−1, (8.15)

and similarly

‖v(Y )‖ ≤ |ResY (B0(Y ), C0(Y ))|−1. (8.16)

Thus the remaining hypotheses of Hensel’s Lemma hold. ⊓⊔

This corollary shows that if R(Y ) is computed to accuracy given by (8.9),
then any factorization found will be correct. To show that a proof of irreducibility
is also not changed by small pertubations of R(Y ), we first need two easy lemmas.

Lemma 8.17. Suppose that B(Y ) and C(Y ) are polynomials in K[Y ] whose
product A(Y ) is pure. Then both B(Y ) and C(Y ) are pure. Furthermore, the
Newton diagrams of the three polynomials A(Y ), B(Y ), and C(Y ) have the same
slope.

Proof. This follows by repeated applications of Theorem 3.1 and Lemma 3.2 of
Chapter 6 of [6].

Lemma 8.18. Suppose that A(Y ) and B(Y ) are polynomials in K[Y ] of the
same degree k. Suppose further that ‖A(Y ) − B(Y )‖ < ‖A(Y )‖. Then, if A(Y )
is pure, so is B(Y ) and their Newton diagrams have the same slope.

Proof. Put α = ‖A(Y ))‖. Suppose that A(Y ) =
∑k

i=0 aiY
i and that B(Y ) =∑k

i=0 biY
i. Then |ai| ≤ αλ−i and |ai − bi| < αλ−i. It follows that |bi| ≤ αλ−i.

Since |a0| = |α| and |ak| = |α|λ−k, we see that |b0| = |α| and that |bk| = |α|λ−k.

Corollary 8.19. Suppose that R(Y ) is an irreducible polynomial of degree n
satisfying ‖R(Y )‖ = 1, so that, in particular, R(Y ) is pure. Suppose that the
Newton diagram of R(Y ) has slope −s/r ≤ 0. If R0(Y ) is a polynomial of degree
n satisfying ‖R0(Y )‖ = 1 and ‖R0(Y ) − R(Y )‖ < min(1, |∆R0

|)2, then R0(Y )
is irreducible.



Proof. Suppose that R0(Y ) factors as R0(Y ) = B0(Y )C0(Y ). By Lemma 8.18,
R0(Y ) is pure, and by Lemmas 8.17 both B0(Y ) and C0(Y ) are pure, and
their Newton diagrams have slope −s/r. We may assume that ‖B0(Y )‖ =
‖C0(Y )‖ = 1. Using the definitions and standard properties of the resultant
and discriminant (see Lang [19, pp 200–204]), we find that |∆R0

| = |∆R |, and
that |Res(B0(Y ), C0(Y ))| ≥ |∆R |. Hence

‖R(Y ) − R0(Y )‖ < |Res(B0(Y ), C0(Y ))|2. (8.20)

By Corollary 8.7, R(Y ) factors, contradicting the hypotheses. ⊓⊔

Theorem 8.21. Let K be an extension of degree k of Qp, and F (X) ∈ K[X ]
have degree n. Algorithm p-adic Factor will find an irreducible factor of F (X)
in random time

O
(
n8+ǫ log3 |∆F | log2 pk

)
. (8.22)

Proof. By Corollaries 8.7 and 8.19, we will find the correct factorization if we
compute terms to O(|∆F |2) precision. Note that, although we are starting in
an extension of degree k of Qp, we may need to go to an extension of degree n
of that field.

The dominant computation is the resultant, which in worst case takes time
O(n4 log2(|∆F |2npnk)) (see [10], Section 3.3). From the discussion in Section 6.2,
the outer loop of the algorithm will be executed at most O(log n) times, and the
inner loop at most O(n2 log |∆F |) times. When Hensel Factor succeeds, we
may have to call p-adic Factor on a factor of degree at most n/2, so that no
more than O(log n) recursive calls will be needed. Combining these bounds, we
have (8.22). ⊓⊔

The implied constant in (8.22) depends upon the choice of uniformizer π
and representatives A. Note that this is a pessimistic worst-case bound. Most
polynomials factor on the first call to Hensel Factor, and it takes an effort to
construct a polynomial which goes through the inner and outer loops more than
once. Since we have not used fast arithmetic algorithms, and it is unlikely that
all the worst cases can occur simultaneously, with a more detailed analysis the
n8+ǫ in (8.22) can be improved.
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