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Abstract

A (v, k, t) covering design, or covering, is a family of k-subsets,
called blocks, chosen from a v-set, such that each t-subset is contained
in at least one of the blocks. The number of blocks is the covering’s
size, and the minimum size of such a covering is denoted by C(v, k, t).
This paper gives three new methods for constructing good coverings:
a greedy algorithm similar to Conway and Sloane’s algorithm for lex-
icographic codes [6], and two methods that synthesize new coverings
from preexisting ones. Using these new methods, together with re-
sults in the literature, we build tables of upper bounds on C(v, k, t)
for v ≤ 32, k ≤ 16, and t ≤ 8.

1 Introduction

Let the covering number C(v, k, t) denote the smallest number of k-
subsets of a v-set that cover all t-subsets. These numbers have been
studied extensively. Mills and Mullin [19] give known results and
many references. Hundreds of papers have been written for particular
values of v, k, and t. The best general lower bound on C(v, k, t), due
to Schönheim [27], comes from the following inequality:

Theorem 1

C(v, k, t) ≥
⌈v

k
C(v−1, k−1, t−1)

⌉

.
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Iterating this gives the Schönheim bound C(v, k, t) ≥ L(v, k, t), where

L(v, k, t) =
⌈v

k

⌈v − 1

k − 1
. . .
⌈v − t + 1

k − t + 1

⌉

. . .
⌉⌉

.

Sometimes a lower bound of de Caen [7] is slightly better than the
Schönheim bound when k and t are not too small:

C(v, k, t) ≥
(t + 1)(v − t)

(k + 1)(v − k)

(

v

t

)/(

k

t

)

.

The best general upper bound on C(v, k, t) is due to Rödl [26]:
Define the density of a covering to be the average number of blocks
containing a t-set. The minimum density of a (v, k, t) covering is
C(v, k, t)

(k
t

)

/
(v
t

)

and is obviously at least 1. Rödl shows that for k and t
fixed there exist coverings with density approaching 1 as v gets large.
Erdős and Spencer [11] give the bound

C(v, k, t)

(

k

t

)/(

v

t

)

≤ 1 + ln

(

k

t

)

,

which is weaker but applies to all v, k, and t. Furthermore it can be
improved by at most a factor of 4 ln 2 ≈ 2.77 asymptotically, because
a (v, v−1, ⌊v/2⌋) covering that achieves the Schönheim lower bound
has density asymptotic to v/4, while the Erdős-Spencer upper bound
in that case corresponds to a density asymptotic to v ln 2.

This paper presents new constructions for coverings. The greedy
method of Section 2 produces reasonably good coverings and it is
completely general—it applies to all possible values of v, k, and t,
and it doesn’t rely on the existence of other good coverings. The
finite geometries of Section 3 produce very good (often optimal) cov-
erings, but they apply only to certain sets of v, k, and t values. The
induced-covering method of Section 4, which constructs coverings from
larger ones, and the dynamic programming method of Section 5, which
constructs coverings from smaller ones, both apply to all parameter
values, but they rely on preexisting coverings. (We show in a pa-
per with Spencer [12] that the greedy construction, as well as the
induced-covering method applied to certain finite geometry coverings,
both produce coverings that match Rödl’s bound.) Finally, the previ-
ously known methods of Section 6, when combined with the methods
of earlier sections, yield the tables of upper bounds in Section 7.
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2 Greedy Coverings

Our greedy algorithm for generating coverings is analogous to the sur-
prisingly good greedy algorithm of Conway and Sloane [6] for generat-
ing codes. That algorithm may be stated very concisely: To construct
a code of length n and minimum distance d, arrange the binary n-
tuples in lexicographic order, and repeatedly choose the first one in
the list that is distance d or more from all n-tuples chosen earlier;
the n-tuples chosen are the codewords. The resulting code is called a
lexicographic code, or lexicode.

This simple method has several nice features: Lexicodes tend to
be fairly good (at packing codewords into the space), they are linear,
and they include some well-known codes such as Hamming codes and
the binary Golay codes. Brouwer, Shearer, Sloane, and Smith [3,
page 1349] use the same method to make constant weight codes, by
choosing only n-tuples of a given weight.

The greedy algorithm does not require lexicographic order. Brualdi
and Pless [4] show that a large family of orders lead to linear codes.
And sometimes Gray code orders, for example, lead to better codes.

Constructing good codes and good constant weight codes are pack-
ing problems. But a similar method applies to covering problems. A
greedy (v, k, t) covering is one generated by the following algorithm:

1. Arrange the k-subsets of a v-set in a list.

2. Choose from the list the k-subset that contains the maximum
number of t-sets that are still uncovered. In case of ties, choose
the k-subset occurring earliest in the list.

3. Repeat Step 2 until all t-sets are covered.

The list of k-sets can be in any order. Some natural orders are
lexicographic, colex (which is similar to lexicographic but the subsets
are read from right to left rather than left to right), and a generalized
Gray code order (where successive sets differ only by one deletion and
one addition). The resulting lists, when k = 3 and v = 5, are

123 124 125 134 135 145 234 235 245 345 (lexicographic);
123 124 134 234 125 135 235 145 245 345 (colex);
123 134 234 124 145 245 345 135 235 125 (gray).

Nijenhuis and Wilf [22] give algorithms to generate lexicographic and
Gray code orders. Stanton and White [30] discuss colex algorithms.
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It is natural to investigate the greedy algorithm with random order,
too, since we know [12] that random order does well asymptotically.
To keep with the constructive spirit of this paper, we used an easily
reproduced “random” permutation of the k-sets. To generate the per-
mutation, start with the k-sets lexicographically ordered in positions
1 through

(v
k

)

, then successively swap the k-sets in positions i and i+j,
for i = 1, 2, . . . ,

(v
k

)

, where j is Xi mod (
(v
k

)

− i + 1) and where the
sequence of pseudo-random X’s comes from the linear congruential
generator Xi+1 = (41Xi + 7) mod 230. The seed X0 is 1, and when
there are multiple random-order runs on the same set of (v, k, t) pa-
rameters, the subsequent seeds are 2, 3, . . . . Knuth [15] discusses the
linear congruential method.

Greedy coverings are not in general optimal, but as happens with
codes (Brouwer, Shearer, Sloane, and Smith [3], Brualdi and Pless [4],
Conway and Sloane [6]) they are often quite good—about 42% of the
table entries come from greedy coverings. Interestingly, the Steiner
system S(24, 8, 5), which Conway and Sloane [6, page 347] showed is
a constant-weight lexicographic code, also arises as a greedy covering.

The problem with greedy coverings is that they are expensive to
compute. Our implementation of the algorithm above uses two arrays:
one with

(v
k

)

locations corresponding to the k-subsets, and one with
(v
t

)

locations corresponding to the t-subsets. Each k-set array location
contains the number of uncovered t-sets contained in that k-set, and is
initialized to

(k
t

)

. Each t-set array location contains a 0 or 1, indicating
whether that t-set has been covered. Each time through Step 2, each
t-set contained in the selected k-set must be checked. If the t-set is
uncovered, it is marked as covered, and each k-set containing it must
have its array location decremented. For fixed k and t, the algorithm
asymptotically takes time and space O(vk).

We ran a program to generate greedy coverings for all entries in our
tables, for all four orders described above. For random order, we used
10e runs, where e = 3[v≤20]+[v≤15]+[v≤10]+[k≤10]+[k≤5]+2[U ]
and where U is the predicate ‘t = 2 and C(v, k, 2) is unknown’ (the
symbol [P ] is 1 if the predicate P is true, 0 otherwise).

For the range of parameters of our tables, the four orders produced
coverings of roughly the same size, but lexicographic order performed
slightly better on average than colex order, which performed better
than Gray code order, which performed better than a single run of
random order.
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3 Finite Geometry Coverings

Finite geometries may be used to construct very good coverings for
certain sets of parameters. Anderson [2] has a nice discussion of finite
geometries.

Let PG(m, q) denote the projective geometry of dimension m over
GF(q), where q is a prime power. The points of PG(m, q) are the
equivalence classes of nonzero vectors u = (u0, u1, . . . , um), where two
vectors u and v are equivalent if u = λv for some nonzero λ ∈ GF(q).
There are (qm+1 − 1)/(q − 1) such points.

A k-flat is a k-dimensional subspace of PG(m, q), for 1 ≤ k ≤ m,
determined by m − k independent homogeneous linear equations. A
k-flat has (qk+1 − 1)/(q − 1) points, and there are

[m+1

k+1

]

q
different

k-flats in PG(m, q), where
[

n

k

]

q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)

is the q-binomial coefficient.
By removing all points with u0 = 0 we obtain the affine (or Eu-

clidean) geometry AG(m, q). It has qm points and qm−k
[m

k

]

q
different

k-flats, each of which contains qk points.
For either geometry, any k + 1 independent points determine a k-

flat, and k + 1 dependent points are contained in multiple k-flats, so
the k-flats cover every set of k + 1 points. Thus, taking the points of
the geometry as the v-set of the covering, and taking the points of a
k-flat as a block of the covering, we get the following two theorems.

Theorem 2

C

(

qm+1 − 1

q − 1
,
qk+1 − 1

q − 1
, k+1

)

≤

[

m + 1

k + 1

]

q

.

Theorem 3

C(qm, qk, k+1) ≤ qm−k

[

m

k

]

q

.

Equality holds for both theorems when k = m − 1 or k = 1.
Theorem 2 is due to Ray-Chaudhuri [25], and Theorem 3 follows easily
from results of Abraham, Ghosh, and Ray-Chaudhuri [1], although
the idea of using finite geometries to construct coverings dates back
at least to Veblen and Bussey [38] in 1906.
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4 Induced coverings

The main drawback of the finite geometry coverings is that they exist
only for certain families of parameters. But they are such good cov-
erings that they can be used to construct pretty good coverings for
other parameters.

Suppose we have a good (v, k, t) covering, say from a geometry, and
we want to construct a (v′, k′, t) covering, where v′ < v and k′ < k.
Consider the family of sets obtained from the (k-element) blocks by
randomly choosing v′ elements of the v-set, deleting all other elements
from the blocks, and throwing out any blocks with fewer than t ele-
ments (since those blocks cover no t-sets).

The remaining blocks cover all t-subsets of the v′ elements, but
have different sizes. Suppose some block has ℓ elements. If ℓ = k′ its
size is correct as is, and it becomes a block of our new covering. If
ℓ < k′, add any k′ − ℓ elements to the block. And if ℓ > k′, replace
the block by an (ℓ, k′, t) covering, which covers all t-sets the original
block covered.

The new blocks each have k′ elements, and together they cover all
t-sets, so the new family forms a (v′, k′, t) induced covering.

In small cases, the method tends to do best when k′/k is about
v′/v. In large cases, the method does well if for every ℓ near v′k/v,
a good (ℓ, k′, t) covering is available. Also, it need not start with a
finite geometry covering—any (v, k, t) covering will do. But generally
the better the covering it starts with, the better the result.

The induced coverings in our tables come either from using the
simple special cases of Section 6.1 or from finite geometries. We
constructed each finite geometry covering based on PG(m,p) and
AG(m, p) with p ≤ 11 prime and with at most 104 points and 106 flats.
For each such covering, and for each v and k in the relevant table, we
used a random set of v points to construct an induced covering as
described above, trying 100 random sets in each case.

5 Combining Smaller Coverings

Suppose we want to form a (v1 +v2, k, t) covering. Let the (v1+v2)-
set be the disjoint union of a v1-set and a v2-set. Given an s with
0 ≤ s ≤ t, choose a (v1, ℓ, s) covering and a (v2, k−ℓ, t−s) covering
for some ℓ, which must be in the range s ≤ ℓ ≤ k − t + s. For each
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possible arrangement of t elements as an s-subset of the v1-set and
a (t−s)-subset of the v2-set, there is an ℓ-set from the first covering
and a (k−ℓ)-set from the second covering whose union is a k-set that
covers the t-set. Thus the number of blocks that cover all such t-sets
is at most the product of the sizes of the two coverings. Choosing an
optimal ℓ for each s gives us our (v1+v2, k, t) covering built up from
smaller coverings. This construction gives the bound

C(v1+v2, k, t) ≤
t
∑

s=0

min
ℓ

C(v1, ℓ, s) · C(v2, k−ℓ, t−s) .

Furthermore we can try all choices of v1 and v2 summing to the v of
interest.

The coverings produced by this method tend to have some redun-
dancy. To remove redundancy when v1 = 2, for example, we can
try combining a (v, k, t) covering and a (2, 0, 0) covering (which has
one block, the empty set), along with a (v, k−2, t−1) covering and a
(2, 2, 2) covering. This forms a (v+2, k, t) covering, and is sometimes
an improvement over the basic construction above:

C(v+2, k, t) ≤ C(v, k, t) + C(v, k−2, t−1) .

This example has replaced the s and s + 1 terms of the basic
construction’s bound, when s = 1, with the single term

min
ℓ

C(v1, ℓ, s + 1) · C(v2, k−ℓ, t−s) .

The new term corresponds to covering any t-subset having either
s or s + 1 elements in the v1-set, by using one product of coverings,
rather than two. If changing C(v1, ℓ, s) to C(v1, ℓ, s+1) does not cost
too much, the bound will improve.

To generalize this combining of terms, define ci,j for 0 ≤ i ≤ j ≤ t
to be the number of blocks required to cover any t-subset that has
between i and j elements in the v1-set, and between t − j and t − i
elements in the v2-set. Since ci,j ≤ ci,r + cr+1,j for any i ≤ r < j, we
have

ci,j ≤ min
(

min
ℓ

C(v1, ℓ, j) · C(v2, k−ℓ, t−i), min
i≤r<j

(ci,r+cr+1,j)
)

.

Using dynamic programming, we may efficiently compute a bound
for c0,t, which is an upper bound for C(v1+v2, k, t).
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This general construction produces about 30% of the entries in our
tables. It includes as special cases several of the simple constructions
of Section 6.1, as well as the direct-product construction of Morley
and van Rees [21], which yields the bound

C(2v+y, v+k+y, t+s+1) ≤ C(v, k, t) + C(v+y, k+y, s) .

6 Other Constructions

6.1 Simple Constructions

There are several simple and well-known methods for building cover-
ings from other coverings. All but the last of these methods are special
cases of the methods in the previous two sections.

Adding a random element to each block of a (v, k, t) covering gives
a (v, k+1, t) covering of the same size. Thus

C(v, k+1, t) ≤ C(v, k, t) .

Adding a new element to a v-set, and including it in every block in
a (v, k, t) covering, forms a (v+1, k+1, t) covering of the same size,
hence

C(v+1, k+1, t) ≤ C(v, k, t) .

Combining a (v, k, t) covering and a (v, k−1, t−1) covering over the
same v-set, by adding a new v+1st element to all of the blocks of
the (v, k−1, t−1) covering but to none of the blocks of the (v, k, t)
covering, forms a (v+1, k, t) covering, of size the sum of the other two
sizes, thus

C(v+1, k, t) ≤ C(v, k, t) + C(v, k−1, t−1) .

Those constructions are special cases of the method of Section 5.
Deleting one element from a v-set, and adding a random element

to any block of a (v, k, t) covering that contains the deleted element,
creates a (v−1, k, t) covering of the same size. Thus

C(v−1, k, t) ≤ C(v, k, t) .

Choosing the element of a covering that occurs in the fewest blocks,
throwing away all other blocks, and then throwing away the chosen
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element, results in a (v−1, k−1, t−1) covering. This method, due to
Schönheim, is a reformulation of Theorem 1; the corresponding upper
bound is

C(v−1, k−1, t−1) ≤
⌊k

v
C(v, k, t)

⌋

.

Those two constructions are special cases of the induced-covering
method of Section 4.

Replacing each element of the v-set in a (v, k, t) covering by m dif-
ferent elements gives an (mv,mk, t) covering of the same size, thus

C(mv,mk, t) ≤ C(v, k, t) .

6.2 Steiner Systems

A Steiner system is a covering in which the covering density is 1—every
t-set is covered exactly once. Clearly a Steiner system is an optimal
covering, as well as an optimal packing, and C(v, k, t) = L(v, k, t).
The projective and affine coverings by lines (1-flats), for example, are
Steiner systems. Brouwer, Shearer, Sloane, and Smith [3, page 1342]
and Chee, Colbourn, and Kreher [5] give tables of small Steiner sys-
tems.

If a (v, k, t) Steiner system exists then C(v+1, k, t) = L(v+1, k, t).
This result is due to Schönheim [27, Theorem II]; the proof also ap-
pears in Mills and Mullin [19, Theorem 1.3].

6.3 Turán Theory

The Turán number T (n, ℓ, r) is the minimum number of r-subsets of
an n-set such that every ℓ-subset contains at least one of the r-subsets.
It is easy to see that

C(v, k, t) = T (v, v−t, v−k) ,

so covering numbers are just Turán numbers reordered. The two sets
of numbers, however, have been studied for different parameter ranges
(de Caen’s lower bound in the introduction, for instance, is useful
primarily for Turán theory ranges). Most papers on coverings have
v large compared with k and t, while most papers on Turán numbers
have n large compared with ℓ and r, often focusing on the quantity
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limn→∞ T (n, ℓ, r)/
(n
r

)

for fixed ℓ and r. Thus Turán theory usually
studies C(v, k, t) for k and t not too far from v.

Fifty years ago Turán [37] determined T (n, ℓ, 2) exactly, showing
that C(v, v−2, t) = L(v, v−2, t), the Schönheim lower bound. He
also gave upper bounds and conjectures for T (n, 4, 3) and T (n, 5, 3),
which stimulated much of the research. The results labeled ‘Turán
theory’ in our tables either are described in recent survey papers by
de Caen [8] and Sidorenko [29], or follow from constructions due to
de Caen, Kreher, and Wiseman [10] or to Sidorenko [28].

Sidorenko [28] also recently told us of a Turán theory construction,
similar in spirit to the combining constructions of Section 5, that im-
proves many bounds in the table. In terms of covering theory, let x
be an element occurring in the most blocks of a (v, k, t) covering, and
replace x by x′ and x′′: If a block b did not contain x, replace it by
two blocks, b ∪ {x′} and b ∪ {x′′}; if b did contain x, replace it by the
single block b−{x}∪{x′, x′′}. Finally, add a (v−1, k+1, t+1) covering
on the same elements minus x′ and x′′. It is not hard to see that this
is a (v+1, k+1, t+1) covering, and that it gives the bound

C(v+1, k+1, t+1) ≤ ⌊(2v − k)C(v, k, t)/v⌋ + C(v−1, k+1, t+1) .

6.4 Cyclic Coverings

Another well-known method that is often successful when applicable—
when the size of a prospective covering is v—is to construct a cyclic
covering: Choose some k-subset as the first block, and choose the
v − 1 cyclic shifts of that block as the remaining blocks. Trying this
for all possible k-sets is fairly cheap, and frequently it produces a
covering. The entries C(19, 9, 3) ≤ 19 and C(24, 10, 3) = 24 in our
tables, for example, are generated by the k-sets 1 2 3 4 6 8 13 14 17
and 1 2 3 5 6 8 12 13 15 21, and are unmatched by any other method.

Incidentally, if the size of a prospective covering is a multiple of v,
say 2v, the same method applies by taking the cyclic shifts of two
starting blocks; the few cases we tried for this variation produced no
improvements in the tables.

6.5 Hill-Climbing

For cases of interest—with v not too large—random coverings are not
very good, but hill-climbing sometimes finds good coverings: Start
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with a fixed number of random k-sets, say L(v, k, t)+ ǫ for some small
integer ǫ. Rank the k-sets by the number of t-sets they cover that
no other k-set covers, and replace one with lowest rank by another
random k-set. Repeat until all t-sets are covered or until time runs
out.

We found a few good coverings with this method, but Nurmela
and Österg̊ard [23] went much further, using simulated annealing—a
more sophisticated hill-climbing—to find many good coverings. In fact
many of the bounds in the tables could be improved, by starting with a
covering produced by one of the other methods and then hill-climbing;
but generally the improvements would be small.

7 Tables of Upper Bounds on C(v, k, t)

We constructed Tables 2 through 8 using the methods described above,
together with results from the literature. Each table entry indicates
the upper bound, the method of construction, and whether the cov-
ering is known to be optimal. We have tried to provide constructions
for as many sets of parameters as possible, so we list a method of con-
struction from this paper even when a result in the literature achieves
the same bound. When two different methods produce the same size
covering, we’ve given precedence to the method listed earlier in the
Key to the tables.

About 93% of the 1631 nontrivial (v >k>t) upper bounds in the
tables come from one of the constructions described in this paper.
For each of the remaining upper bounds, there is a source in our
reference list that describes the result, although to keep our reference
list reasonably short we have often given a secondary source rather
than the original. (Mills and Mullin [19] give an extensive list of
previous results and references.) Sources for Steiner systems, Turán
number bounds, and simulated annealing coverings appear in Sections
6.2, 6.3, and 6.5; the Todorov constructions come from papers by
Todorov [31, 33, 34] and Todorov and Tonchev [36]; and the remaining
upper bounds appear in Table 1. The covering number C(24, 18, 17)
is listed in Table 1, even though it doesn’t occur in the other tables,
because it yields a (15, 9, 8) simple induced covering (of Section 6.1).

Gordon et al. [13] construct an optimal (12, 6, 3) covering, us-
ing a block-array construction. That method directly extends to the
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bound reference

C(29, 5, 2) ≤ 44 Lamken [16]
C(31, 7, 2) = 26 Todorov [34] techniques (lower bound)
C(12, 6, 3) = 15 Gordon et al. [13]
C(14, 6, 3) ≤ 25 Lotto covering [17]
C(15, 6, 3) ≤ 31 Lotto covering [17]
C(16, 6, 3) ≤ 38 Hoehn [14]
C(18, 6, 3) = 48 Lotto covering [17]
C(30, 6, 3) ≤ 237 Lotto covering [17]
C(11, 7, 4) = 17 Sidorenko [28]
C(14, 6, 4) ≤ 87 Hoehn [14]
C(18, 6, 4) ≤ 258 Lotto covering [17]
C(18, 9, 4) ≤ 43 Gordon et al. [13]
C(20, 10, 4) ≤ 43 block-array construction
C(24, 12, 5) ≤ 86 block-array construction
C(30, 15, 5) ≤ 120 block-array construction
C(12, 8, 6) ≤ 51 Morley [20]

C(32, 16, 6) ≤ 286 block-array construction
C(15, 12, 8) = 30 Radziszowski and Sidorenko [24]

C(24, 18, 17) = 21252 de Caen [8]

Table 1: Miscellaneous results

(18, 9, 4) covering given in Table 1, and a similar construction gives
four other coverings listed in the table.

Most of the lower bounds used to establish optimality follow from
the Schönheim inequality (Theorem 1); and a few others are listed
as equalities in Table 1. For the rest: If t = 2, the lower bound
is explained by Mills and Mullin [19] when it is less than 14 or has
v ≤ 5, or explained by Todorov [34] otherwise; if t = 3, it’s either
Mills and Mullin or Todorov and Tonchev [36]; and if 4 ≤ t ≤ 8, it’s
either Mills [18, Theorem 2.3], Todorov [32, Theorem 4], or Sidorenko’s
Turán theory survey [29].

How good are our bounds? For t = 2, very good—most of the
entries are known to be optimal, and the largest gap between an entry’s
lower and upper bound is currently only a factor of 1.12. That largest
gap rises with t, though, to 1.89 for t = 4, to 2.98 for t = 6, and to
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3.72 for t = 8. We believe that our lower bounds tend to be closer
to the truth than our upper bounds; it’s quite possible that all the
upper bounds are within a factor of 3, but probably not a factor of 2,
of optimal.

Most of the entries in the tables for t > 2 are not optimal, and
we would appreciate knowing of any better coverings. Please send
communications to the first author, at gordon@ccrwest.org.

Key to Tables 2 through 8

l — greedy covering, lexicographic order
c — greedy covering, colex order
g — greedy covering, Gray code order
r — greedy covering, random order
p — projective geometry covering
a — affine geometry covering
o — cyclic covering
m — multiple of smaller covering
e — simple dynamic programming (Section 6.1)
j — simple induced covering (Section 6.1)
d — dynamic programming method (Section 5)
i — induced covering
u — Sidorenko Turán construction (Section 6.3)
s — Steiner system
t — Turán theory
x — covering with small k and t; see Mills and Mullin [19, §3]
y — covering with fixed size; see Mills and Mullin [19, §4]
v — Todorov construction
w — was known previously; see Table 1

n — Nurmela-Österg̊ard simulated annealing covering
h — hill-climbing
∗ — optimal covering
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v\k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 1∗

4 3l∗ 1∗

5 4l∗ 3l∗ 1∗

6 6o∗ 3l∗ 3l∗ 1∗

7 7l∗ 5l∗ 3l∗ 3l∗ 1∗

8 11l∗ 6l∗ 4l∗ 3l∗ 3l∗ 1∗

9 12r∗ 8l∗ 5l∗ 3l∗ 3l∗ 3l∗ 1∗

10 17r∗ 9l∗ 6j∗ 4m∗ 3l∗ 3l∗ 3l∗ 1∗

11 19r∗ 11o∗ 7r∗ 6l∗ 4l∗ 3l∗ 3l∗ 3l∗ 1∗

12 24r∗ 12o∗ 9r∗ 6l∗ 5l∗ 3l∗ 3l∗ 3l∗ 3l∗ 1∗

13 26r∗ 13l∗ 10l∗ 7l∗ 6l∗ 4d∗ 3l∗ 3l∗ 3l∗ 3l∗ 1∗

14 33r∗ 18l∗ 12l∗ 7m∗ 6y∗ 5l∗ 4l∗ 3l∗ 3l∗ 3l∗ 3l∗ 1∗

15 35l∗ 19r∗ 13r∗ 10l∗ 7l∗ 6l∗ 4m∗ 3l∗ 3l∗ 3l∗ 3l∗ 3l∗ 1∗

16 43l∗ 20a∗ 15r∗ 10l∗ 8y∗ 6l∗ 5l∗ 4m∗ 3l∗ 3l∗ 3l∗ 3l∗ 3l∗ 1∗

17 46r∗ 26c∗ 16r∗ 12l∗ 9r∗ 7l∗ 6l∗ 5l∗ 4l∗ 3l∗ 3l∗ 3l∗ 3l∗ 3l∗

18 54r∗ 27x∗ 18o∗ 12m∗10y∗ 7y∗ 6m∗ 5m∗ 4d∗ 3l∗ 3l∗ 3l∗ 3l∗ 3l∗

19 57j∗ 31x∗ 19o∗ 15r 11l∗ 9l∗ 7l∗ 6l∗ 5l∗ 4e∗ 3l∗ 3l∗ 3l∗ 3l∗

20 67r∗ 35r∗ 21c∗ 16v∗ 12l∗ 9r∗ 7j∗ 6l∗ 6l∗ 4m∗ 4l∗ 3l∗ 3l∗ 3l∗

21 70j∗ 37x∗ 21l∗ 17v∗ 13l∗ 11l∗ 7m∗ 7l∗ 6l∗ 5l∗ 4e∗ 3l∗ 3l∗ 3l∗

22 81r∗ 39x∗ 27l∗ 19m∗13y∗ 11l∗ 9y∗ 7m∗ 6y∗ 6l∗ 5l∗ 4m∗ 3l∗ 3l∗

23 85j∗ 46x∗ 28l∗ 21v 16v 12l∗ 10l∗ 8j∗ 7l∗ 6l∗ 5l∗ 4d∗ 4l∗ 3l∗

24 96j∗ 48x∗ 30j∗ 22v 17v∗ 12m∗11l∗ 8y∗ 7j∗ 6l∗ 6l∗ 5l∗ 4m∗ 3l∗

25 100j∗ 50j∗ 30a∗ 23v∗ 18v∗ 13j∗ 11l∗ 10l∗ 7y∗ 7l∗ 6l∗ 5y∗ 4m∗ 4e∗

26 113e∗ 59e∗ 37e∗ 24v∗ 20j 13m∗12l∗ 10m∗ 8y∗ 7m∗ 6y∗ 6l∗ 5l∗ 4m∗

27 117a∗ 61x∗ 38x∗ 27o∗ 20v∗ 17l 12m∗11l∗ 9y∗ 7j∗ 7l∗ 6l∗ 5m∗ 5l∗

28 131e∗ 63s∗ 43d 28o∗ 22v 18r 14j 11l∗ 10l∗ 7m∗ 7e∗ 6l∗ 6l∗ 5l∗

29 136j∗ 73e∗ 44w 31j 24v 18l∗ 14v∗ 12l∗ 10y∗ 9j∗ 7e∗ 7l∗ 6l∗ 6l∗

30 150j∗ 75x∗ 48x∗ 31j∗ 25v 19m∗15v∗ 13m∗11y∗ 9m∗ 8j∗ 7m∗ 6m∗ 6l∗

31 155l∗ 78x∗ 50x∗ 31p∗ 26v∗ 20j∗ 18l 13y∗ 12l∗ 10l∗ 8y∗ 7j∗ 7l∗ 6l∗

32 171l∗ 88x∗ 54j 38e∗ 31l 20m∗19r 15m 12l∗ 10m∗ 9y∗ 7y∗ 7e∗ 6l∗

Table 2: t = 2
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v\k 4 5 6 7 8 9 10 11 12 13 14 15 16

4 1∗

5 4l∗ 1∗

6 6o∗ 4l∗ 1∗

7 12r∗ 5l∗ 4l∗ 1∗

8 14l∗ 8o∗ 4l∗ 4l∗ 1∗

9 25l∗ 12l∗ 7j∗ 4l∗ 4l∗ 1∗

10 30r∗ 17r∗ 10l∗ 6l∗ 4l∗ 4l∗ 1∗

11 47r∗ 20j∗ 11o∗ 8r∗ 5l∗ 4l∗ 4l∗ 1∗

12 57x∗ 29n 15l∗ 11l∗ 6m∗ 4l∗ 4l∗ 4l∗ 1∗

13 78x∗ 34n 21r 13o∗ 10l 6e∗ 4l∗ 4l∗ 4l∗ 1∗

14 91s∗ 47e 25w 14i∗ 11h∗ 8d∗ 5m∗ 4l∗ 4l∗ 4l∗ 1∗

15 124e∗ 60r 31w 15p∗ 14r 10m 7d∗ 5l∗ 4l∗ 4l∗ 4l∗ 1∗

16 140l∗ 68j 38w 25e 14m∗13r 8m∗ 6d∗ 4l∗ 4l∗ 4l∗ 4l∗ 1∗

17 183l∗ 68s∗ 44v 28d 20r 14r 11r 7d∗ 6e∗ 4l∗ 4l∗ 4l∗ 4l∗

18 207x∗ 94e∗ 48w∗ 34d 24d 16r 12m 10r 6m∗ 5d∗ 4l∗ 4l∗ 4l∗

19 261e 114d 66e 44d 29d 19o 14v 11d 9d∗ 6e∗ 5l∗ 4l∗ 4l∗

20 285s∗ 145e 75d 52d 30m 25r 15l 14l 10m 8d∗ 6m∗ 4l∗ 4l∗

21 352e∗ 171g 77c 54i 42e 28d 20j 14v 11j∗ 9d∗ 7d∗ 5m∗ 4l∗

22 385j∗ 200c 77l∗ 71e 45i 34d 20m 15j 11m∗11e 8m∗ 6d∗ 5m∗

23 466e∗ 227l 104l∗ 75d 51d 38d 24j 15j∗ 14j 11e∗ 10d 7d∗ 6e∗

24 510x∗ 260c 116d 91d 57m 39j 24o∗ 23e 14m∗14e 11m 8m∗ 6m∗

25 600x∗ 260j 130j 103d 69i 39j 33d 24e 20d 14e 13j 10m 8e∗

26 650s∗ 260j∗ 130s∗ 121d 78m 39j 34m 27d 21m 15j 13m 11d 10m

27 763e∗ 319e∗ 167e∗ 130e 87d 39a∗ 39e 31d 24d 15j∗ 14j 12m 11e

28 819s∗ 372u 189d 153d 91m 56e 39e 36d 25m 22e 14m∗14e 11m

29 950e∗ 435e 228d 155j 113e 59d 53e 39e 30j 24d 15j∗ 14e∗ 13d

30 1020x∗ 503d 237w 155j 119d 66d 57d 40i 30m 26d 15m∗15e 14m

31 1170e 563l 285e 155p 134d 77d 61d 46i 38j 27d 23e 15e∗ 14j∗

32 1240l∗ 619c 312d 186e 140m 90d 67d 52i 38m 32o 24d 22e 14m∗

Table 3: t = 3
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v\k 5 6 7 8 9 10 11 12 13 14 15 16

5 1∗

6 5l∗ 1∗

7 9l∗ 5l∗ 1∗

8 20r∗ 7j∗ 5l∗ 1∗

9 30r∗ 12l∗ 6l∗ 5l∗ 1∗

10 51r 20r∗ 10o∗ 5l∗ 5l∗ 1∗

11 66j∗ 32n∗ 17j∗ 9j∗ 5l∗ 5l∗ 1∗

12 113e∗ 41n 24n 12d∗ 8j∗ 5l∗ 5l∗ 1∗

13 157n 66n 30n 19r 10j∗ 7l∗ 5l∗ 5l∗ 1∗

14 235e 87w 44r 27r 16d 9m∗ 6l∗ 5l∗ 5l∗ 1∗

15 313u 134e 59j 30j 23d 14d 8d∗ 5l∗ 5l∗ 5l∗ 1∗

16 437e 178d 90e 30a∗ 30e 19d 12j 7m∗ 5l∗ 5l∗ 5l∗ 1∗

17 558u 243l 119d 55e 30e 23d 16j 10j∗ 7e∗ 5l∗ 5l∗ 5l∗

18 732l 258w 157r 68d 43w 29d 20d 12l 9d∗ 6m∗ 5l∗ 5l∗

19 926u 352e 187d 98d 58d 39i 23d 19o 11d 9e∗ 6l∗ 5l∗

20 1165g 456u 246l 116d 74d 43w 35j 20o 16d 10m∗ 8d∗ 5l∗

21 1431g 594d 253j 162d 91d 63d 35i 28d 19d 14d 9m∗ 7d∗

22 1746g 721l 253j 191d 124d 66m 42i 31j 25d 17m 12d 9m∗

23 1771j∗ 871l 253l∗ 239d 145d 95d 43j 31j 30d 22d 15d 11d

24 2237e∗ 1035l 357l∗ 253e 168d 111d 67e 31v 31e 24m 19d 12m

25 2706u 1170j 456u 343d 201d 137d 81d 54e 31e 30j 23d 17j

26 3306e 1170j 585u 369d 249d 143d 94d 55d 46j 30m 27d 19m

27 3906u 1170j∗ 686u 473d 284d 182e 118d 70d 46i 31j 30m 24d

28 4669e 1489e∗ 845d 499d 331d 208u 133d 87m 64d 31i 30j 26d

29 5427u 1847u 1005d 620j 379d 264e 157d 94d 70d 53e 30j 30e

30 6239l 2244d 1217d 620j 451d 273d 189d 109d 85j 56d 30i∗ 30m

31 6852j 2736d 1431u 620j 520d 339e 216d 143d 85d 67d 31p∗ 30e

32 7843l 3260d 1712l 620a 606d 392d 248d 153d 120d 70d 54e 30m∗

Table 4: t = 4
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v\k 6 7 8 9 10 11 12 13 14 15 16

6 1∗

7 6l∗ 1∗

8 12l∗ 6l∗ 1∗

9 30r∗ 9o∗ 6l∗ 1∗

10 50r∗ 20d∗ 8j∗ 6l∗ 1∗

11 100n 34j 16j∗ 7l∗ 6l∗ 1∗

12 132s∗ 59n 26t∗ 12o∗ 6l∗ 6l∗ 1∗

13 245e∗ 88n 43n 19d 11j∗ 6l∗ 6l∗ 1∗

14 385u 154e 66r 36r 14o∗ 10j∗ 6l∗ 6l∗ 1∗

15 620e 224u 108r 49d 30r 13d∗ 9j∗ 6l∗ 6l∗ 1∗

16 840l 358e 118l 79e 41d 22d 12m 8l∗ 6l∗ 6l∗ 1∗

17 1277e 506r 208e 94u 58d 36j 17d 11j∗ 7l∗ 6l∗ 6l∗

18 1791u 696l 296d 149e 71d 43d 24d 15d 9m∗ 6l∗ 6l∗

19 2501l 930l 419g 199u 113d 52d 39d 21d 14j 9e∗ 6l∗

20 3297g 1239l 541c 267d 130i 86d 42d 34d 18d 12j∗ 8m∗

21 4322g 1617l 677g 369d 199d 110d 67d 38d 28d 16d 12e

22 5558g 2088l 746c 495r 241i 150d 73i 58d 34m 22o 14d

23 7064g 2647l 759c 622d 357c 194d 86j 69i 52d 31d 19d

24 7084s∗ 3312l 759l∗ 748d 408i 266d 86w 79i 59m 44d 24o

25 9321e∗ 4121l 1116l∗ 759e 494d 335i 153e 83i 67j 51d 37d

26 11954u 4680j 1543u 1102e 610d 403d 197d 137e 67i 62d 43m

27 15260e 4680j 2090d 1215d 765d 447d 254d 164d 97j 67e 50d

28 19042u 4680s∗ 2697d 1687d 950d 621c 339d 220d 97i 77i 55d

29 23711e 6169e∗ 3260d 1901d 1195d 731d 436d 273d 161e 97e 62j

30 28960u 7991u 4186d 2385d 1449d 896d 535d 345d 184d 120w 62j

31 33715j 9966d 5107d 2906d 1761l 1069l 651i 412d 230d 143j 62j

32 36544l 12660d 6430d 3465u 2069d 1263l 744i 496i 293d 191d 62a∗

Table 5: t = 5
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v\k 7 8 9 10 11 12 13 14 15 16

7 1∗

8 7l∗ 1∗

9 16l∗ 7l∗ 1∗

10 45r∗ 12j∗ 7l∗ 1∗

11 84j 29t∗ 10j∗ 7l∗ 1∗

12 177n 51w 22d∗ 9j∗ 7l∗ 1∗

13 264n 104n 40t 16d∗ 8l∗ 7l∗ 1∗

14 509e 179u 81r 29d 14o∗ 7l∗ 7l∗ 1∗

15 869u 333e 128d 59d 21j 13j∗ 7l∗ 7l∗ 1∗

16 1489e 522u 219r 95d 46d 19j 12j∗ 7l∗ 7l∗ 1∗

17 2234u 829r 305u 156r 70d 36j 17d 11j∗ 7l∗ 7l∗

18 3511e 1240r 506r 213d 114d 55r 28d 15j∗ 10j∗ 7l∗

19 5219u 1802l 737r 345r 164d 93d 42j 22d 13j∗ 9l∗

20 7522g 2550l 1049r 492r 254r 126d 71d 32d 19d 12m∗

21 10453g 3543l 1466c 691g 358g 196c 94d 58d 27d 17j

22 14290g 4856c 2006r 947g 492l 252i 155d 73d 46d 24d

23 19200g 6533l 2686u 1276c 663l 370l 200u 117d 61d 38d

24 25481g 8630l 3260u 1693d 883c 450i 282u 146d 94d 51m

25 31597u 11317c 3951u 2035d 1160l 647g 329u 203d 119d 82d

26 40918e 14635l 5067e 2452d 1422d 792i 482e 232d 147d 97d

27 52746u 18703l 6562u 3151d 1642d 1078g 614i 356d 180d 124d

28 68006e 22781u 8469d 3995d 2276d 1209d 794d 411i 272d 137d

29 86749u 26893u 10866d 5241d 2857d 1726c 965d 572d 325u 214e

30 109220l 33062e 13149d 6622d 3732d 2159c 1155d 657d 434d 234d

31 133062j 41010u 17035d 8501d 4758d 2670c 1579g 847d 567i 286j

32 154130l 50743u 21140d 10556d 5862c 3285c 1944c 1087i 709d 286w

Table 6: t = 6
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v\k 8 9 10 11 12 13 14 15 16

8 1∗

9 8l∗ 1∗

10 20j∗ 8l∗ 1∗

11 63j∗ 15l∗ 8l∗ 1∗

12 126t 40r∗ 12o∗ 8l∗ 1∗

13 297n 79n 30d 11j∗ 8l∗ 1∗

14 474j 183e 58t 22d∗ 10j∗ 8l∗ 1∗

15 983e 325d 132r 45d 18d∗ 9l∗ 8l∗ 1∗

16 1806u 636d 232d 99r 28d 16o∗ 8l∗ 8l∗ 1∗

17 3295e 1093r 407r 163d 72d 26j 15j∗ 8l∗ 8l∗

18 5354u 1775c 659c 283r 122d 50d 24j 14j∗ 8l∗

19 8865e 2800l 1048r 448r 210d 90d 42j 19d∗ 13j∗

20 13838l 4277c 1607r 693r 327r 164r 60d 34d 17j∗

21 20664g 6388l 2407c 1042g 496c 229d 131e 50d 28d

22 30045g 9292c 3509c 1526c 726g 372c 183d 94d 40d

23 42944g 13300l 5039l 2186c 1047l 539l 291l 144d 76d

24 60164g 18662l 7073c 3086l 1476l 760g 414g 235l 113d

25 83017l 25770c 9783c 4275l 2051l 1059l 579g 324d 192d

26 112252l 35103l 12896l 5834l 2803l 1449c 743i 454r 243d

27 150647l 47150c 17597l 7856l 3784c 1955c 1073l 618c 367g

28 197976l 62562l 23571l 10453c 5039c 2613c 1379i 827l 446i

29 259931l 82094l 31097l 13737l 6628c 3441l 1890l 1090i 656l

30 337223l 106616l 40540l 17879l 8641l 4495l 2473c 1427l 741i

31 430492j 137079l 52297l 23042c 11144c 5799c 3197c 1842i 1078i

32 532248l 174784l 66824l 29423c 14252c 7418g 4097c 2342i 1190i

Table 7: t = 7
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v\k 9 10 11 12 13 14 15 16

9 1∗

10 9l∗ 1∗

11 25r∗ 9l∗ 1∗

12 84t∗ 18l∗ 9l∗ 1∗

13 185t 52t∗ 15d∗ 9l∗ 1∗

14 482e 121u 40d 13d∗ 9l∗ 1∗

15 790j 300u 81t 30d∗ 12d∗ 9l∗ 1∗

16 1773e 553d 209r 65d 24d∗ 11d∗ 9l∗ 1∗

17 3499u 1160r 393d 153r 44d 20d∗ 10l∗ 9l∗

18 6794e 2083c 717r 280r 107d 34d 18o∗ 9l∗

19 11827u 3579r 1227l 487r 192d 76d 31d 17d∗

20 20692e 5934c 2055l 814r 355r 150d 57d 26d

21 33718g 9499l 3313g 1321c 582g 274c 96d 49d

22 52674g 14900l 5186g 2072c 915g 437l 219l 71d

23 80027g 22699g 7917l 3182l 1410g 674l 316d 160d

24 119064l 33830c 11828c 4765l 2118l 1013l 517l 254d

25 172071l 49556l 17331c 7000g 3118l 1498l 765l 409l

26 246965l 71206c 24924c 10079c 4504c 2166c 1110l 597l

27 347268l 100709l 34976l 14320l 6400c 3086l 1583c 853l

28 480708l 140394c 49017l 19988g 8960c 4329c 2221c 1202g

29 650404l 193066l 67625l 27561c 12364l 5992c 3080c 1669l

30 879517l 262146l 92034l 37494l 16849c 8176l 4213l 2252i

31 1174351l 351807l 123856l 50435c 22687l 11018l 5685c 3085c

32 1530641l 467414l 164722l 67117c 30228c 14697l 7601l 4130i

Table 8: t = 8
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