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Abstract

A (v,k,t) covering design, or covering, is a family of k-subsets,
called blocks, chosen from a v-set, such that each t-subset is contained
in at least one of the blocks. The number of blocks is the covering’s
size, and the minimum size of such a covering is denoted by C(v, k, t).
This paper gives three new methods for constructing good coverings:
a greedy algorithm similar to Conway and Sloane’s algorithm for lex-
icographic codes [6], and two methods that synthesize new coverings
from preexisting ones. Using these new methods, together with re-
sults in the literature, we build tables of upper bounds on C(v,k,t)
for v <32, k<16, and t <8.

1 Introduction

Let the covering number C(v,k,t) denote the smallest number of k-
subsets of a v-set that cover all t-subsets. These numbers have been
studied extensively. Mills and Mullin [19] give known results and
many references. Hundreds of papers have been written for particular
values of v, k, and ¢t. The best general lower bound on C(v, k,t), due
to Schonheim [27], comes from the following inequality:

Theorem 1

Clo,k,t) > [% Clo=1,k=1,t-1)] .
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Iterating this gives the Schonheim bound C(v, k,t) > L(v, k,t), where

vrv—1 v — 1
Dkt =[St [ ),

Sometimes a lower bound of de Caen [7] is slightly better than the
Schonheim bound when £ and ¢ are not too small:

(t+1)(v—t) (v k
st = =)/ 0)

The best general upper bound on C(v,k,t) is due to Rodl [26]:
Define the density of a covering to be the average number of blocks
containing a t-set. The minimum density of a (v,k,t) covering is
C(v,k,t) (]Z)/(g) and is obviously at least 1. Rodl shows that for k and ¢
fixed there exist coverings with density approaching 1 as v gets large.
Erdés and Spencer [11] give the bound

Clw. k1) (’Z) / (j) <1 —I—ln<lz>,

which is weaker but applies to all v, k, and ¢t. Furthermore it can be
improved by at most a factor of 41n2 ~ 2.77 asymptotically, because
a (v,v—1,|v/2]) covering that achieves the Schénheim lower bound
has density asymptotic to v/4, while the Erdés-Spencer upper bound
in that case corresponds to a density asymptotic to v1n 2.

This paper presents new constructions for coverings. The greedy
method of Section 2 produces reasonably good coverings and it is
completely general—it applies to all possible values of v, k, and ¢,
and it doesn’t rely on the existence of other good coverings. The
finite geometries of Section 3 produce very good (often optimal) cov-
erings, but they apply only to certain sets of v, k, and ¢ values. The
induced-covering method of Section 4, which constructs coverings from
larger ones, and the dynamic programming method of Section 5, which
constructs coverings from smaller ones, both apply to all parameter
values, but they rely on preexisting coverings. (We show in a pa-
per with Spencer [12] that the greedy construction, as well as the
induced-covering method applied to certain finite geometry coverings,
both produce coverings that match Rédl’s bound.) Finally, the previ-
ously known methods of Section 6, when combined with the methods
of earlier sections, yield the tables of upper bounds in Section 7.




2 Greedy Coverings

Our greedy algorithm for generating coverings is analogous to the sur-
prisingly good greedy algorithm of Conway and Sloane [6] for generat-
ing codes. That algorithm may be stated very concisely: To construct
a code of length n and minimum distance d, arrange the binary n-
tuples in lexicographic order, and repeatedly choose the first one in
the list that is distance d or more from all n-tuples chosen earlier;
the n-tuples chosen are the codewords. The resulting code is called a
lexicographic code, or lexicode.

This simple method has several nice features: Lexicodes tend to
be fairly good (at packing codewords into the space), they are linear,
and they include some well-known codes such as Hamming codes and
the binary Golay codes. Brouwer, Shearer, Sloane, and Smith [3,
page 1349] use the same method to make constant weight codes, by
choosing only n-tuples of a given weight.

The greedy algorithm does not require lexicographic order. Brualdi
and Pless [4] show that a large family of orders lead to linear codes.
And sometimes Gray code orders, for example, lead to better codes.

Constructing good codes and good constant weight codes are pack-
ing problems. But a similar method applies to covering problems. A
greedy (v, k,t) covering is one generated by the following algorithm:

1. Arrange the k-subsets of a v-set in a list.

2. Choose from the list the k-subset that contains the maximum
number of ¢-sets that are still uncovered. In case of ties, choose
the k-subset occurring earliest in the list.

3. Repeat Step 2 until all t-sets are covered.

The list of k-sets can be in any order. Some natural orders are
lexicographic, colex (which is similar to lexicographic but the subsets
are read from right to left rather than left to right), and a generalized
Gray code order (where successive sets differ only by one deletion and
one addition). The resulting lists, when k = 3 and v = 5, are

123 124 125 134 135 145 234 235 245 345 (lexicographic);
123 124 134 234 125 135 235 145 245 345 (colex);
123 134 234 124 145 245 345 135 235 125 (gray).

Nijenhuis and Wilf [22] give algorithms to generate lexicographic and
Gray code orders. Stanton and White [30] discuss colex algorithms.
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It is natural to investigate the greedy algorithm with random order,
too, since we know [12] that random order does well asymptotically.
To keep with the constructive spirit of this paper, we used an easily
reproduced “random” permutation of the k-sets. To generate the per-
mutation, start with the k-sets lexicographically ordered in positions
1 through (Z), then successively swap the k-sets in positions ¢ and i+ 7,
fori=1,2,..., (), where j is X; mod ((}) — ¢+ 1) and where the
sequence of pseudo-random X’s comes from the linear congruential
generator X;;1 = (41X; + 7) mod 23°. The seed X is 1, and when
there are multiple random-order runs on the same set of (v, k,t) pa-
rameters, the subsequent seeds are 2, 3, .... Knuth [15] discusses the
linear congruential method.

Greedy coverings are not in general optimal, but as happens with
codes (Brouwer, Shearer, Sloane, and Smith [3], Brualdi and Pless [4],
Conway and Sloane [6]) they are often quite good—about 42% of the
table entries come from greedy coverings. Interestingly, the Steiner
system S(24,8,5), which Conway and Sloane [6, page 347] showed is
a constant-weight lexicographic code, also arises as a greedy covering.

The problem with greedy coverings is that they are expensive to
compute. Our implementation of the algorithm above uses two arrays:
one with (Z) locations corresponding to the k-subsets, and one with
(1’) locations corresponding to the t-subsets. Each k-set array location
contains the number of uncovered t-sets contained in that k-set, and is
initialized to (';) Each t-set array location contains a 0 or 1, indicating
whether that ¢-set has been covered. Each time through Step 2, each
t-set contained in the selected k-set must be checked. If the t-set is
uncovered, it is marked as covered, and each k-set containing it must
have its array location decremented. For fixed k and ¢, the algorithm
asymptotically takes time and space O(v).

We ran a program to generate greedy coverings for all entries in our
tables, for all four orders described above. For random order, we used
10 runs, where e = 3[v <20]+[v < 15]+[v < 10]+ [k < 10]+ [k < 5] +2[U]
and where U is the predicate ‘¢ = 2 and C(v, k,2) is unknown’ (the
symbol [P] is 1 if the predicate P is true, 0 otherwise).

For the range of parameters of our tables, the four orders produced
coverings of roughly the same size, but lexicographic order performed
slightly better on average than colex order, which performed better
than Gray code order, which performed better than a single run of
random order.



3 Finite Geometry Coverings

Finite geometries may be used to construct very good coverings for
certain sets of parameters. Anderson [2] has a nice discussion of finite
geometries.

Let PG(m, ¢q) denote the projective geometry of dimension m over
GF(q), where ¢ is a prime power. The points of PG(m,q) are the
equivalence classes of nonzero vectors u = (ug, uq, ..., Uy), where two
vectors u and v are equivalent if u = Av for some nonzero A\ € GF(q).
There are (¢™! — 1)/(¢ — 1) such points.

A k-flat is a k-dimensional subspace of PG(m,q), for 1 < k < m,
determined by m — k independent homogeneous linear equations. A
k-flat has (¢"*! —1)/(¢ — 1) points, and there are [fill]q different
k-flats in PG(m, q), where

m _ @ -D@ T - (g -

k @ =@ —1)...(a— 1)

is the g-binomial coefficient.

By removing all points with ug = 0 we obtain the affine (or Eu-
clidean) geometry AG(m,q). It has ¢™ points and g™ * [mq different
k-flats, each of which contains ¢* points.

For either geometry, any k + 1 independent points determine a k-
flat, and k£ + 1 dependent points are contained in multiple k-flats, so
the k-flats cover every set of k + 1 points. Thus, taking the points of
the geometry as the v-set of the covering, and taking the points of a
k-flat as a block of the covering, we get the following two theorems.

Theorem 2
m+1 _ 1 k+1 _ 1
cll 4 k1] <
qg—1 qg—1

Theorem 3

m+1
k+1

q

C(q™ ¢" k+1) < qm‘kr21
q

Equality holds for both theorems when £k = m — 1 or k = 1.
Theorem 2 is due to Ray-Chaudhuri [25], and Theorem 3 follows easily
from results of Abraham, Ghosh, and Ray-Chaudhuri [1], although
the idea of using finite geometries to construct coverings dates back
at least to Veblen and Bussey [38] in 1906.
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4 Induced coverings

The main drawback of the finite geometry coverings is that they exist
only for certain families of parameters. But they are such good cov-
erings that they can be used to construct pretty good coverings for
other parameters.

Suppose we have a good (v, k,t) covering, say from a geometry, and
we want to construct a (v/,k’,t) covering, where v" < v and k¥ < k.
Consider the family of sets obtained from the (k-element) blocks by
randomly choosing v’ elements of the v-set, deleting all other elements
from the blocks, and throwing out any blocks with fewer than ¢ ele-
ments (since those blocks cover no t-sets).

The remaining blocks cover all t-subsets of the v’ elements, but
have different sizes. Suppose some block has ¢ elements. If ¢ = k’ its
size is correct as is, and it becomes a block of our new covering. If
¢ < k', add any k' — ¢ elements to the block. And if £ > &/, replace
the block by an (¢, k’,t) covering, which covers all t-sets the original
block covered.

The new blocks each have k' elements, and together they cover all
t-sets, so the new family forms a (v/, k', t) induced covering.

In small cases, the method tends to do best when k’/k is about
v'/v. In large cases, the method does well if for every ¢ near v'k/v,
a good (¢, k',t) covering is available. Also, it need not start with a
finite geometry covering—any (v, k,t) covering will do. But generally
the better the covering it starts with, the better the result.

The induced coverings in our tables come either from using the
simple special cases of Section 6.1 or from finite geometries. We
constructed each finite geometry covering based on PG(m,p) and
AG(m, p) with p < 11 prime and with at most 10* points and 10 flats.
For each such covering, and for each v and k in the relevant table, we
used a random set of v points to construct an induced covering as
described above, trying 100 random sets in each case.

5 Combining Smaller Coverings

Suppose we want to form a (vi+wvs, k,t) covering. Let the (vi4wvg)-
set be the disjoint union of a vi-set and a vs-set. Given an s with
0 < s <'t, choose a (v1,/,s) covering and a (vy, k—¥,t—s) covering
for some £, which must be in the range s < ¢ < k —t + s. For each



possible arrangement of ¢ elements as an s-subset of the vi-set and
a (t—s)-subset of the vo-set, there is an f-set from the first covering
and a (k—/¢)-set from the second covering whose union is a k-set that
covers the t-set. Thus the number of blocks that cover all such t-sets
is at most the product of the sizes of the two coverings. Choosing an
optimal ¢ for each s gives us our (vy+uvs, k,t) covering built up from
smaller coverings. This construction gives the bound

t
C(v1+vg, k,t) < ngnC(vl,ﬁ,s)-C(vg,k;—ﬁ,t—s).
s=0

Furthermore we can try all choices of v; and v summing to the v of
interest.

The coverings produced by this method tend to have some redun-
dancy. To remove redundancy when v; = 2, for example, we can
try combining a (v, k,t) covering and a (2,0,0) covering (which has
one block, the empty set), along with a (v,k—2,t—1) covering and a
(2,2,2) covering. This forms a (v+2,k,t) covering, and is sometimes
an improvement over the basic construction above:

Cv+2,k,t) < C(v,k,t) + C(v,k—2,t—1).

This example has replaced the s and s + 1 terms of the basic
construction’s bound, when s = 1, with the single term

méin C(v1,l,s+1)-C(ve,k—L,t—5s).

The new term corresponds to covering any t-subset having either
s or s+ 1 elements in the vi-set, by using one product of coverings,
rather than two. If changing C(v1,4, s) to C(v1,4,s+1) does not cost
too much, the bound will improve.

To generalize this combining of terms, define ¢; ; for 0 <i < j <t
to be the number of blocks required to cover any t-subset that has
between ¢ and j elements in the vi-set, and between t — j and ¢t —
elements in the vy-set. Since ¢; ; < ¢;, + ¢,41; for any i < r < j, we
have

Ci g < min(min C(Ulagaj) : C(U27 ]{T—f,t—’i), .min.(ci,r+cr+1,j)) .
4 1<r<g
Using dynamic programming, we may efficiently compute a bound
for ¢g ¢, which is an upper bound for C'(vi+wv2, k, t).
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This general construction produces about 30% of the entries in our
tables. It includes as special cases several of the simple constructions
of Section 6.1, as well as the direct-product construction of Morley
and van Rees [21], which yields the bound

C(2v+y,v+k+y,t+s+1) < C(v,k,t) + Clo+y, k+y,s).

6 Other Constructions

6.1 Simple Constructions

There are several simple and well-known methods for building cover-
ings from other coverings. All but the last of these methods are special
cases of the methods in the previous two sections.

Adding a random element to each block of a (v, k,t) covering gives
a (v,k+1,t) covering of the same size. Thus

C(v,k+1,t) < C(v,k,t).

Adding a new element to a w-set, and including it in every block in
a (v, k,t) covering, forms a (v+1,k+1,t) covering of the same size,
hence

Clv+1,k+1,t) < C(v,k,t).

Combining a (v, k,t) covering and a (v,k—1,t—1) covering over the
same v-set, by adding a new v+1st element to all of the blocks of
the (v,k—1,t—1) covering but to none of the blocks of the (v,k,t)
covering, forms a (v+1, k,t) covering, of size the sum of the other two
sizes, thus

Cv+1,k,t) < C(v,k,t) + C(v,k—1,t—1).

Those constructions are special cases of the method of Section 5.

Deleting one element from a v-set, and adding a random element
to any block of a (v, k,t) covering that contains the deleted element,
creates a (v—1, k,t) covering of the same size. Thus

Cv—1,k,t) < C(v,k,t).

Choosing the element of a covering that occurs in the fewest blocks,
throwing away all other blocks, and then throwing away the chosen



element, results in a (v—1,k—1,£—1) covering. This method, due to
Schonheim, is a reformulation of Theorem 1; the corresponding upper
bound is

Clo—1,k—1,t—1) < L% C(v, k:,t)J .

Those two constructions are special cases of the induced-covering
method of Section 4.

Replacing each element of the v-set in a (v, k, t) covering by m dif-
ferent elements gives an (mwv, mk,t) covering of the same size, thus

C(mv,mk,t) < C(v,k,t).

6.2 Steiner Systems

A Steiner system is a covering in which the covering density is 1—every
t-set is covered exactly once. Clearly a Steiner system is an optimal
covering, as well as an optimal packing, and C(v,k,t) = L(v,k,t).
The projective and affine coverings by lines (1-flats), for example, are
Steiner systems. Brouwer, Shearer, Sloane, and Smith [3, page 1342]
and Chee, Colbourn, and Kreher [5] give tables of small Steiner sys-
tems.

If a (v, k, t) Steiner system exists then C(v+1,k,t) = L(v+1,k,t).
This result is due to Schonheim [27, Theorem II]; the proof also ap-
pears in Mills and Mullin [19, Theorem 1.3].

6.3 Turan Theory

The Turdn number T(n,£,r) is the minimum number of r-subsets of
an n-set such that every ¢-subset contains at least one of the r-subsets.
It is easy to see that

C(v,k,t) = T(v,v—t,v—k),

so covering numbers are just Turdn numbers reordered. The two sets
of numbers, however, have been studied for different parameter ranges
(de Caen’s lower bound in the introduction, for instance, is useful
primarily for Turdn theory ranges). Most papers on coverings have
v large compared with k and ¢, while most papers on Turdn numbers
have n large compared with ¢ and r, often focusing on the quantity



limy, oo T'(n, £,7) /(") for fixed £ and . Thus Turdn theory usually
studies C(v, k,t) for k and ¢ not too far from v.

Fifty years ago Turdn [37] determined T'(n,¢,2) exactly, showing
that C'(v,v—2,t) = L(v,v—2,t), the Schonheim lower bound. He
also gave upper bounds and conjectures for T'(n,4,3) and T'(n,5, 3),
which stimulated much of the research. The results labeled ‘Turan
theory’ in our tables either are described in recent survey papers by
de Caen [8] and Sidorenko [29], or follow from constructions due to
de Caen, Kreher, and Wiseman [10] or to Sidorenko [28].

Sidorenko [28] also recently told us of a Turdn theory construction,
similar in spirit to the combining constructions of Section 5, that im-
proves many bounds in the table. In terms of covering theory, let x
be an element occurring in the most blocks of a (v, k, t) covering, and
replace x by x’ and z”: If a block b did not contain z, replace it by
two blocks, bU {2’} and b U {z"}; if b did contain z, replace it by the
single block b—{z}U{z’,2"”}. Finally, add a (v—1,k+1,t+1) covering
on the same elements minus z’ and z”. It is not hard to see that this
isa (v+1,k+1,t+1) covering, and that it gives the bound

Clo+1,k+1,t+1) < [(2v—k)C(v,k,t)/v] + Clo—1,k+1,t+1).

6.4 Cyclic Coverings

Another well-known method that is often successful when applicable—
when the size of a prospective covering is v—is to construct a cyclic
covering: Choose some k-subset as the first block, and choose the
v — 1 c¢yclic shifts of that block as the remaining blocks. Trying this
for all possible k-sets is fairly cheap, and frequently it produces a
covering. The entries C'(19,9,3) < 19 and C(24,10,3) = 24 in our
tables, for example, are generated by the k-sets 123468 13 14 17
and 1235681213 15 21, and are unmatched by any other method.

Incidentally, if the size of a prospective covering is a multiple of v,
say 2v, the same method applies by taking the cyclic shifts of two
starting blocks; the few cases we tried for this variation produced no
improvements in the tables.

6.5 Hill-Climbing

For cases of interest—with v not too large—random coverings are not
very good, but hill-climbing sometimes finds good coverings: Start

10



with a fixed number of random k-sets, say L(v, k,t)+ e for some small
integer €. Rank the k-sets by the number of t-sets they cover that
no other k-set covers, and replace one with lowest rank by another
random k-set. Repeat until all ¢t-sets are covered or until time runs
out.

We found a few good coverings with this method, but Nurmela
and Ostergard [23] went much further, using simulated annealing—a
more sophisticated hill-climbing—to find many good coverings. In fact
many of the bounds in the tables could be improved, by starting with a
covering produced by one of the other methods and then hill-climbing;
but generally the improvements would be small.

7 Tables of Upper Bounds on C(v, k,t)

We constructed Tables 2 through 8 using the methods described above,
together with results from the literature. Each table entry indicates
the upper bound, the method of construction, and whether the cov-
ering is known to be optimal. We have tried to provide constructions
for as many sets of parameters as possible, so we list a method of con-
struction from this paper even when a result in the literature achieves
the same bound. When two different methods produce the same size
covering, we've given precedence to the method listed earlier in the
Key to the tables.

About 93% of the 1631 nontrivial (v>k>t) upper bounds in the
tables come from one of the constructions described in this paper.
For each of the remaining upper bounds, there is a source in our
reference list that describes the result, although to keep our reference
list reasonably short we have often given a secondary source rather
than the original. (Mills and Mullin [19] give an extensive list of
previous results and references.) Sources for Steiner systems, Turan
number bounds, and simulated annealing coverings appear in Sections
6.2, 6.3, and 6.5; the Todorov constructions come from papers by
Todorov [31, 33, 34] and Todorov and Tonchev [36]; and the remaining
upper bounds appear in Table 1. The covering number C(24,18,17)
is listed in Table 1, even though it doesn’t occur in the other tables,
because it yields a (15,9, 8) simple induced covering (of Section 6.1).

Gordon et al. [13] construct an optimal (12,6,3) covering, us-
ing a block-array construction. That method directly extends to the
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bound reference
C(29,5,2) <44 Lamken [16]
C(31,7,2) =26 Todorov [34] techniques (lower bound)
C(12,6,3) =15 Gordon et al. [13]
C(14,6,3) <25 Lotto covering [17]
C(15,6,3) < 31 Lotto covering [17]
c( )
C( )

16,6,3) <38 | Hoehn [14]

18,6,3) =48 Lotto covering [17]
C(30,6,3) < 237 Lotto covering [17]
C(11,7,4) =17 Sidorenko [28]
C(14,6,4) < 87 Hoehn [14]

C(18,6,4) < 258 Lotto covering [17]
C(18,9,4) <43 Gordon et al. [13]
C'(20,10,4) <43 block-array construction
C'(24,12,5) < 86 block-array construction
C(30,15,5) <120 | block-array construction
C(12,8,6) <51 Morley [20]
C(32,16,6) <286 | block-array construction
C(15,12,8) =30 Radziszowski and Sidorenko [24]
C(24,18,17) = 21252 | de Caen [§]

Table 1: Miscellaneous results

(18,9,4) covering given in Table 1, and a similar construction gives
four other coverings listed in the table.

Most of the lower bounds used to establish optimality follow from
the Schonheim inequality (Theorem 1); and a few others are listed
as equalities in Table 1. For the rest: If ¢ = 2, the lower bound
is explained by Mills and Mullin [19] when it is less than 14 or has
v < 5, or explained by Todorov [34] otherwise; if ¢ = 3, it’s either
Mills and Mullin or Todorov and Tonchev [36]; and if 4 <t < 8, it’s
either Mills [18, Theorem 2.3], Todorov [32, Theorem 4], or Sidorenko’s
Turdn theory survey [29].

How good are our bounds? For ¢ = 2, very good—most of the
entries are known to be optimal, and the largest gap between an entry’s
lower and upper bound is currently only a factor of 1.12. That largest
gap rises with ¢, though, to 1.89 for ¢t = 4, to 2.98 for ¢t = 6, and to
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3.72 for t = 8. We believe that our lower bounds tend to be closer
to the truth than our upper bounds; it’s quite possible that all the
upper bounds are within a factor of 3, but probably not a factor of 2,
of optimal.

Most of the entries in the tables for ¢ > 2 are not optimal, and
we would appreciate knowing of any better coverings. Please send
communications to the first author, at gordon@ccrwest.org.

Key to Tables 2 through 8

[ — greedy covering, lexicographic order

¢ — greedy covering, colex order

g — greedy covering, Gray code order

r — greedy covering, random order

p — projective geometry covering

a — affine geometry covering

o — cyclic covering

m — multiple of smaller covering

e — simple dynamic programming (Section 6.1)

j — simple induced covering (Section 6.1)

d — dynamic programming method (Section 5)

1 — induced covering

u — Sidorenko Turan construction (Section 6.3)

s — Steiner system

t — Turédn theory

x — covering with small k& and ¢; see Mills and Mullin [19, §3]
y — covering with fixed size; see Mills and Mullin [19, §4]
v — Todorov construction

w — was known previously; see Table 1

n — Nurmela-Ostergard simulated annealing covering
h — hill-climbing

* — optimal covering
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v\k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 1*

4 3l* 1*

5 41* 3l* 1*

6 60* 3l* 3l* 1*

7 71* 5l* 3l* 3[* 1*

8 11l* 6l* 4l* 3[* 3[* 1*

9 127* 8l* 5l* 3[* 3[* 3l* 1*

10 177* 9l* 6]* 4m* 3[* 3l* 3l* 1*

11 197* 110% 7T 6[* 41* 3l* 3l* 3[* 1*

12 24T* 190% QT 6[* 5[* 3l* 3l* 3[* 3l* 1*

13 267* 13l* 10[* 71* 6[* 4d* 3l* 3[* 3l* 3l* 1*

14 337+ 18l* 121* Tk Gy 5l* 4l* 3[* 3l* 3l* 3[* 1*

15 35l* 197* 137* 10[* 71* 6l* 4mm* 3[* 3l* 3l* 3[* 3[* 1*

16 43l* 200* 157* 10[* |Y* 6l* 5l* 4m* 3l* 3l* 3[* 3[* 3l* 1*
17 467 26°* 167+ 12[* gr* 7l* 6l* 5[* 4l* 3l* 3[* 3[* 3l* 3l*
18 BAT* QLK Q0% 1QMA (WYX 7Yk Gk Ik 4d* 3l* 3[* 3[* 3l* 3l*
19 57]* 317* 19%* 157 11l* 9l* 7l* 6[* 5l* 4e* 3[* 3[* 3l* 3l*
20 677* 357* 21¢* 16Y* 12l* gr* 7]* 6[* 6l* 4 4[* 3[* 3l* 3l*
21 70]* RUch 21[* 17v* 13l* 11l* 7 71* 6l* 5l* 4e* 3[* 3l* 3l*
29 817* 39%* 27[* 19™M* 1 3y* 11l* Qy* 7mx guk 6l* 5[* 4m* 3l* 3l*
23 85]* 46%* 28[* 21Y 16Y 12l* 10[* Sj* 7l* 6l* 5[* 4d* 4l* 3l*
25 | 1007* 509* 30 23v* 18U 13/* 11 101 7v* 7l* glx Hyr gmr ger
26 | 113°* 59 37¢* 24v* 200 13™*120* 10m* 8¥* 7m* GUr glr 5l 4mx
27 | 1179* §1%* 38%* Q70* 9Ov* 17l 12m*111* gQy* 7]'* 71* 6[* 5 5l*
28 | 131°% 63* 43¢ 28°* 22¢ 18" 147 11 10% 7m* 7e* gl* 6 5l
29 | 1367* 73%* 44v 319 24V 18" 14v* 12 10v* 9* 7er 7+ gl 6
30 | 1507* 75%* 48%* 319* 25V 19M*159* 13m*11v* gm* & 7mx gmx glx
31 | 1551 787* 50* 31P* 26V 207* 18! 13v* 12!* 101+ gv* 7 Thx 6
32 | 1710 887 547 38¢* 311 20™*197 15™ 12 10™* gvr 7vr 7 gl

Table 2: t =2
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Nkl 4 5 6 7 8 9 10 11 12 13 14 15 16
4 1*

5 41* 1*

6 60* 4[* 1*

7 1927* 5[* 41* 1*

8 14[* 80* 4[* 4[* 1*

9 251* 121* 7]* 41* 41* 1*

10 307‘* 177‘* 10[* 6[* 4[* 4[* 1*

11 477* 20j* 110* ]T* 5[* 41* 4l* 1*

12 57Tk 9Qn 15[* 11[* G 4[* 4l* 4l* 1*

13 787 347 217 139% 10t 6e* 4l gl gl qx

14 915* 47¢ 25w 14@* 11h* 8d* 5k 4l* 4[* 4[* 1*

15 | 124%* 60" 31w 15P* 147 10m 79 5br gl oglx gl 1x

16 | 140 687 38w 25¢ 14™m*137  gm* GdF glx gl gl glx 1*
17 | 183k 68%* 44V 28% 207 14" 117 74 gex 4lx gl gl gl
18 | 207%* 94¢* 48wx 349 244 167 12™ 107 6"™* i glx glx gl
19 | 261¢ 114¢ 66° 44% 299 19° 14v 119 9d* gex phe glx gl
20 | 285%* 145¢  75¢ 524 30™ 257 15t 148 10™ 8% gmr 4lx glx
21 | 352°% 1719 77¢  54F  42¢ 289 207 14v 119 Qdx e mmx glx
22 | 3857% 200¢ 77 71 45° 349 20m 157 11™*11¢ &™* g+ Hm
23 | 466°* 227" 104 754 514 384 249 157* 149 11°* 10¢ 74 e
24 | 510%*260°¢ 1169 91¢ 57™ 397 24°% 23¢ 14™*14¢ 11™ 8{m* g
25 | 600%* 2607 1307 103¢ 69° 397 33¢ 24¢ 20¢ 14¢ 137 10™ &°*
26 | 650%* 2607* 130%* 121¢ 78™ 397 34™ 274 21™ 15/ 13™ 114 10™
27 | 763°* 319°* 167¢* 130¢ 874 399 39¢ 319 249 157* 149 12™ 11°¢
28 | 819%* 372 189¢ 153¢ 91™ 56¢ 39¢ 36% 25™ 22¢ 14™*14¢ 11™
29 | 950 435¢ 228¢ 1557 113¢ 59¢ 53¢ 39¢ 307 24¢ 157* 14°* 13¢
30 | 10207 503% 237 1557 1199 664 57¢ 40" 30™ 264 15™*15¢ 14™
31 | 1170 563" 285¢ 1557 1349 774 614 46° 387 27¢ 23¢ 15 147*
32 | 1240 619¢ 3129 186¢ 140™ 90¢ 67¢ 52t 38™ 320 249 22¢ 14m*

Table 3: t =3
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v\k 5 6 78 9 10 11 12 13 14 15 16
5 1*
6 5[* 1*
7 gl* 5l* 1*
8 207“* 7]* 5l* 1*
9 307* 12!* 6l* 5l* 1*
10 517 207 10 5k g 1*
11 667* 327 17ir gix g gl 7E
12 | 113%%  41™  24n 12dx gix  plx gl 1
13| 157 66" 30" 19" 107* 7 gk pk 1
14 | 235¢ 87w 447 27 16%  9m* gl gl gl qx
15| 313* 134 599 307 23¢ 144 gh g b opbeooqx
16 | 437¢ 1784  90¢ 30%* 30° 199 129  7mx gl ple gl 1x
17| 558% 2430 119¢ 55¢ 30 23¢ 167 109* 7 5 B i
18 | 7328 258w 157" 684 43w 294 20d 12l gdx gmx plx 5l
19| 926% 352¢ 187¢ 98¢ 584 39" 23¢ 190 114 9 g pi
20 | 11659 456 246! 1169 749 43w 357  20° 16% 10™* 8% 5l*
21 | 14319 5944 2537 162¢ 914 3¢ 35¢ 284 19¢ 144 gmx 7dx
22 | 17469 721 2537 1914 1249 6™ 42¢ 319 257 17™ 124 g
23 | 17717% 871% 253 239¢ 1457 954 437 319 304 22¢ 159 11¢
24 | 2237¢* 1035! 357 253¢ 168¢ 1119 67¢ 31Y 31¢ 24™ 194 12™
25 | 2706% 11707  456% 343¢ 2014 137¢ 814 54¢  31¢ 307 23¢ 177
26 | 3306¢ 11707 585 3699 2494 1437 94¢ 554 467 30™ 274 19™
27 | 3906 11707* 686“ 473% 2847 182¢ 1184 704 46 317 30™ 24¢
28 | 4669¢ 1489°* 845% 4999 3314 208v 1339 87™ 647 31¢ 307 267
29 | 5427 1847* 1005¢ 6207 379¢ 264¢ 157¢ 94¢ 70¢ 53¢ 307 30°
30 | 6239! 22447 1217% 6207 451¢ 2737 189% 109¢ 857 564 30" 30™
31 | 68527 2736¢ 1431* 6207 520¢ 339¢ 216¢ 143¢ 85¢ 67¢ 31P* 30°
32 | 78431 32607 1712' 620° 606¢ 3927 2487 1539 120 70¢ 54¢ 30"

Table 4: t =4

16



v\k 6 7 8 9 10 11 12 13 14 15 16
6 1*
7 6l* 1*
8 121* 61* 1*
9 307‘* 90* 6[* 1*
10 507 204 gi* gl 1F
11 100™ 347 1670 T gt 1*
12 1325% 597 26%* 120 g+ gt 1*
13 245¢* 88" 43" 194 119 ¢ e 1*
14 385  154¢ 66" 36"  14°* 109* 6 6 1*
15 620¢ 224 108"  49¢ 30" 13% 9i* g g 1*
16 840t 358¢ 118  79¢ 414  22¢ 1om g gl glx q*
17 | 1277¢ 506" 208¢  94v 584 367 174 119+ 7t glx gl
18| 1791* 696! 2964 149¢ 714 43¢ 244 15¢  gmx ghr gl
19 | 2501" 9308 4199 199* 113¢ 524 394 214 149  gex gl
20 | 32979 1239 541¢ 267¢ 130° 864 42¢ 344 18¢ 127% g™
21 | 43229 16170 6779 3697 199¢ 110¢ 674 387 287 164 12¢
22 | 55589 2088  746° 495" 241 1504 73* 584 34™ 220 144
23 | 70649 26471 759 622¢ 357¢ 1949 867 69° 52¢ 314 199
24 | 7084%* 33120 759 748¢ 408 2664 86¥ 79" 59T 447 24°
25 | 9321¢* 4121! 1116 759¢ 494¢ 335¢ 153¢ 83" 677 514 37
26 | 11954% 46807 1543* 1102¢ 610¢ 403¢ 197¢ 137¢ 67° 62¢ 43™
27 | 15260¢ 46807 20907 12157 765% 447¢ 2549 164¢ 977 67¢ 50¢
28 | 19042%  4680°* 2697¢ 1687¢ 950¢ 621¢ 3394 220¢ 97¢ 77 554
29 | 23711¢  6169°* 32607 19017 1195% 7317 436¢ 273% 161¢ 97°¢ 627
30 | 28960% 7991%* 41867 2385% 1449¢ 896¢ 5359 345% 184¢ 120v 627
31 | 337157  9966¢ 5107¢ 2906 1761 1069' 651¢ 412¢ 2307% 1437 627
32 | 36544' 12660¢ 64307 3465% 2069¢ 1263' 744' 496" 293¢ 191¢ 62°*

Table 5: t =5
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v\k 7 8 9 10 11 12 13 14 15 16
7 1*
8 7l* 1*
9 16l* 71* 1*
10 45m*  129* b 1*
11 847 29t%  107* e
12 177" 51w 22d* O G
13 264" 104" 40 169 g o7
14 509¢ 179 81" 294 140% 77l oqx
15 869%  333¢  128¢ 59¢ 219 137% 7l 7 1
16 1489¢  522* 219" 95¢  46% 197 120% 7 ophe ¥
17 2234% 829"  305% 156" 704 367 17?  119% 7l b
18 3511¢ 12407 506"  213¢ 114¢ 55" 284 150* 109% 7
19 5219% 18021 737" 345" 16494 93¢ 42 224 137% gl
20 75229 25500 10497 4927 254" 1264 714 324 194 12m*
21 | 104539 35431 1466° 6919 3589 196¢  94¢ 584 274 17
22 | 142909 4856°¢ 20067 9479 4920 252¢ 1554 734 46¢ 247
23 | 192009 6533 2686* 1276 663" 370" 200* 117¢ 614 384
24 | 254819 8630" 3260% 1693¢ 883¢ 450° 282* 146¢ 94¢ 1™
25 | 31597* 11317¢ 3951* 2035% 1160' 6479 329* 203% 119¢ 824
26 | 40918°¢ 14635' 5067¢ 2452¢ 1422¢ 792¢  482¢ 23274 1474 9rd
27 | 52746% 187031  6562* 3151¢ 1642¢ 10789 614° 356% 180¢ 1247
28 | 68006° 22781 8469¢ 3995¢ 2276¢ 1209¢ 7944 411 272¢ 137¢
29 | 86749* 26893* 10866¢ 5241¢ 2857¢ 1726 965% 572¢ 325% 214¢
30 | 109220 33062¢ 13149¢ 66227 3732¢ 2159¢ 1155¢ 657¢ 4349 234¢
31 | 1330627 41010% 17035% 8501% 4758¢ 2670¢ 15799 847¢ 567 2867
32 | 1541301 50743 21140¢ 105567 5862¢ 3285¢ 1944¢ 1087° 709¢ 286%

Table 6: t =6
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v\k 8 9 10 11 12 13 14 15 16
8 1*
9 8l* 1*
10 207* gL 1*
11 637* 150 g 1*
12 126¢ 40 120% g 1*
13 297" 79" 304 117* g+ 1*
14 4749 183¢ 58t 22dx  109% gk 1*
15 983¢ 325¢ 1327 459 184 glx gl qx
16 1806% 636¢ 2324 99" 284 16%¢ g gk ¥
17 3295¢ 1093”4077 1634 724 267 157% g Ql*
18 5354 1775¢  659¢ 283"  122¢ 504 249 149% gl
19 8865¢ 2800 1048" 448" 2104 90¢ 427 194 130%
20 | 138381  4277¢ 16077 693" 327" 164"  60¢  34¢  170*
21 | 206649  6388" 2407¢ 10429 496 229¢ 131¢ 50¢ 284
22 | 300459  9292¢ 3509¢ 1526° 7269 372¢ 183¢ 947  40¢
23 | 429449 13300° 5039 2186¢ 1047 539° 291 144¢ 764
24 | 601649 18662' 7073¢ 3086' 1476! 7609 4149 235" 113
25 | 83017° 25770¢ 9783 4275' 2051 1059¢ 5799 3244 1924
26 | 1122521 35103 12896 5834 2803 1449° 743" 454" 2437
27 | 1506471 47150¢ 17597  7856! 3784¢ 1955¢ 1073 618 3677
28 | 197976! 62562 235711 10453¢ 5039°¢ 2613¢ 1379° 827! 446"
29 | 2599311 82094' 31097 13737"  6628° 3441' 1890 1090° 656!
30 | 3372231 106616 40540 17879) 8641 4495! 2473¢ 1427 741
31 | 4304927 137079' 52297' 23042¢ 11144¢ 5799¢ 3197¢ 1842¢ 1078°
32 | 532248' 174784! 66824 29423°¢ 14252¢ 74189 4097¢ 2342° 1190°

Table 7: t =7
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v\k 9 10 11 12 13 14 15 16
9 1*
10 9l 1*
11 257 b 1*
12 841* 18! gl 1*
13 185¢ 521+ 15 b 1*
14 482¢ 1214 407 137 gL 1*
15 7907 300% 81t 304 12 ob 1%
16 1773¢ 5534 209" 65¢ 244 11 gl 1*
17 3499*  1160" 393¢ 153" 444 20% 10 gh
18 6794¢  2083¢ 7177 280" 107 344 180 gl*
19 11827% 35797 12271 487" 192¢ 764 314 17
20 20692¢  5934¢ 2055 814" 355"  150¢ 574 26
21 337189  9499' 33139 1321¢ 5829 274  96¢  49¢
22 526749 149000 51869 2072¢ 9159 4370 2190 714
23 800279 226999 79170 3182Y 14109 674 316% 160¢
24 | 119064! 33830¢ 11828 4765 2118 1013 5170 2544
25 | 1720711 495561 17331¢ 70009 3118" 1498"  765' 409!
26 | 246965! 71206¢ 24924¢ 10079¢ 4504¢ 2166 11100 597
27 | 347268' 100709' 34976! 14320 6400¢ 3086! 1583¢ 853!
28 | 480708 140394¢ 49017 199889 8960¢ 4329¢ 2221¢ 12029
29 | 650404 193066' 67625! 27561¢ 12364' 5992¢ 3080¢ 1669
30 | 879517 262146 92034' 37494! 16849¢ 8176 42131 2252°
31 | 1174351¢ 351807 123856' 50435¢ 22687° 11018" 5685¢ 3085¢
32 | 1530641 467414' 164722' 67117¢ 30228 14697 7601 4130°

Table 8: t =8
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