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Abstract

We review the current status of the multiplier conjecture for dif-
ference sets, present some new results on it, and determine the open
cases of the conjecture for abelian groups of order < 106. It turns out
that for Paley parameters (4n− 1, 2n− 1, n− 1, n), where 4n− 1 is a
prime power, the validity of the multiplier conjecture can be verified
in the vast majority of cases, while for other parameter sets numerous
cases remain open.
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1 Introduction

A (v, k, λ, n) difference set in an abelian group G of order v is a k-subset

D of G such that every element g 6= 1 of G has exactly λ representations

g = d1d
−1
2 with d1, d2 ∈ D. By replacing D by G \ D if necessary, we may

assume 1 < k < v/2. The positive integer n = k − λ is called the order of

the difference set.

One of the most fruitful approaches to the study of difference sets is the

concept of multipliers due to Hall [5]. An integer t is a multiplier of D if

{dt : d ∈ D} = {dg : d ∈ G} for some g ∈ G. Note that we only consider

abelian groups here.

Hall [5] proved that every prime divisor of the order of a difference set

with λ = 1 is a multiplier of the difference set. Later Hall and Ryser [7]

generalized this result and obtained what is now called the First Multiplier

Theorem.

Result 1.1 (First Multiplier Theorem). Let D be a (v, k, λ, n) difference set

in an abelian group. Let p be a prime which divides n, but not v. If p > λ,

then p is a multiplier of D.

The following conjecture, by now a classical unsolved problem, originated

from [7].

Conjecture 1.2 (Multiplier Conjecture). Let D be a (v, k, λ, n) difference

set in an abelian group. If p is a prime dividing n, but not v, then p is a

multiplier of D.

In [6], Hall substantially strengthened the results of [5, 7]. Hall’s work

in [6] was slightly generalized by Menon [15] to what is now known as the

Second Multiplier Theorem.
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Result 1.3 (Second Multiplier Theorem). Let D be a (v, k, λ, n) difference

set in an abelian group G of exponent v∗. Let n1 be a divisor of n with

(v, n1) = 1. Suppose that t is an integer such that for every prime divisor u

of n1, there is an integer fu with t ≡ ufu (mod v∗). If n1 > λ, then t is a

multiplier of D.

A much more powerful approach to the multiplier conjecture was devel-

oped by McFarland [12] in 1970. To formulate his striking result, we need the

following definition. Let m be a positive integer. For m ≤ 4, define M ′(m)

by

M ′(1) = 1, M ′(2) = 2 · 7, M ′(3) = 2 · 3 · 11 · 13, M ′(4) = 2 · 3 · 7 · 31.

For m ≥ 5, let p be a prime factor of m, and define M ′(m) to be the product

of the distinct prime factors of

m,M ′(m2/p2e), p− 1, p2 − 1, ..., pu − 1,

where pe is the highest power of p dividing m, and u = (m2 −m)/2 . Note

that M ′(m) is not uniquely defined in general, as it depends on the order in

which prime divisors of m are chosen for the recursion. But the following

result holds in any case, no matter what order of the prime divisors of m is

chosen.

Result 1.4 (McFarland [12, Thm. 6, p. 68]). Let D be a (v, k, λ, n) difference

set in an abelian group G of exponent v∗. Let n1 be a divisor of n with

(v, n1) = 1. Suppose that t is an integer such that for every prime divisor u

of n1, there is an integer fu with t ≡ ufu (mod v∗). If v and M ′(n/n1) are

coprime, then t is a multiplier of D.

Qiu [17, 18, 19], Muzychuk [16], and Feng [21] improved Result 1.4 for

certain values of n/n1, e.g., n/n1 ∈ {2, 3, 4, 5}. Beyond that there had not

been significant progress towards the multiplier conjecture since McFarland’s

work until the work of Leung, Ma, and Schmidt [11] in 2014.

In Theorem 3.1 in Section 3, we present a generalization of the result

in [11]. In fact, Theorem 3.1 contains all previous multiplier theorems for

difference sets as special cases. In Section 4, we present a new result which
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settles some of the cases of the multiplier conjecture which are left open by

Theorem 3.1. The main idea behind this result is to use the putative nonex-

istence of multipliers to construct certain “difference systems”. If, in turn,

these difference systems can be shown to nonexistent, then new multipliers

are obtained.

Finally, in Section 5 we give results of computations for difference set

parameters with v < 106, detailing how often known results are sufficient to

imply the multiplier conjecture.

2 Preliminaries

2.1 Number Theoretic Background

Let ζm = exp(2πi/m) be a primitive mth root of unity. The minimum

polynomial of ζm over Q is the cyclotomic polynomial

Φm =
m∏
i=1

(i,m)=1

(x− ζ im).

The degree of the field extension Q(ζm)/Q is ϕ(m), where ϕ denotes the Euler

totient function. Thus every element of Q(ζm) has a unique representation

as
ϕ(m)−1∑
i=0

aiζ
i
m

with ai ∈ Q.

For an integer d with (d,m) = 1, an automorphism σd of Q(ζm) is defined

by ϕ(m)−1∑
i=0

aiζ
i
m

σd

=

ϕ(m)−1∑
i=0

aiζ
di
m .

The extension Q(ζm)/Q is a Galois extension with Galois group

Gal(Q(ζm)/Q) = {σd : 1 ≤ d ≤ m, (d,m) = 1}.
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The norm of x ∈ Q(ζm) is

NQ(ζm)/Q(x) =
m∏
d=1

(d,m)=1

xσd .

The elements of the ring

Z[ζm] =

{
m−1∑
i=0

biζ
i
m : bi ∈ Z

}

are called cyclotomic integers. It is easy to see that NQ(ζm)/Q(x) is a

nonzero integer for every x ∈ Z[ζm], x 6= 0.

A prime ideal of Z[ζm] is an ideal p of Z[ζm] with the following property.

If ab ∈ p for any a, b ∈ Z[ζm], then a ∈ p or b ∈ p. A proper ideal of Z[ζm]

is an ideal which is different from Z[ζm]. A maximal ideal of Z[ζm] is a

proper ideal which is not properly contained in any proper ideal of Z[ζm]. It

is a standard result that a nonzero ideal of Z[ζm] is maximal if and only if it

is prime.

Every proper nonzero ideal I of Z[ζm] can be uniquely factorized into a

product of finitely many prime ideals, i.e., we have I =
∏t

i=1 pi for some

positive integer t, where the pi’s are (not necessarily distinct) prime ideals of

Z[ζm] and the multiset {pi : i = 1, . . . , t} (and thus t) is uniquely determined

by I. The principal ideal of Z[ζm] generated by a ∈ Z[ζm] is denoted by

aZ[ζm]. Note that a prime ideal p of Z[ζm] occurs in the prime ideal factor-

ization of aZ[ζm] if and only if a ∈ p. For a prime ideal p of Z[ζm], let νp(a)

denote the number of factors equal to p in the prime ideal factorization of

aZ[ζm]. We write a ≡ 0 ( mod b) for a, b ∈ Z[ζm] if a = bc for some c ∈ Z[ζm].

Due to the unique prime ideal factorization, we have the following fact.

Result 2.1. Let a, b ∈ Z[ζm], a, b 6= 0. We have a ≡ 0 (mod b) if and only

if νp(a) ≥ νp(b) for all prime ideals p with b ∈ p.

The following well known result is the fundamental number theoretic fact

behind all multiplier theorems. Because of its importance for this paper, we

give a complete proof.
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Result 2.2. Let p be a prime number and let p be a prime ideal of Z[ζm]

with p ∈ p. Write m = pam′ with (m′, p) = 1. Let σ ∈ Gal(Q(ζm)/Q). If

(ζm′)
σ = ζp

j

m′ . (1)

for some positive integer j, then pσ = p.

Proof. First, we claim that

(ζ ipa)
τ ≡ 1 (mod p) (2)

for all nonnegative integers i and all τ ∈ Gal(Q(ζm)/Q). If a = 0, then ζpa =

1 and (2) holds. Thus let a > 0. Using the fact that 1 + ζp + · · ·+ ζp−1
p = 0,

it is straightforward to check that

pa−1∏
i=1

(i,p)=1

(x− ζ ipa) =

p−1∑
j=0

xjp
a−1

.

Setting x = 1, we get
pa−1∏
i=1

(i,p)=1

(1− ζ ipa) = p. (3)

Note that (1−ζ ipa)/(1−ζpa) = 1+ζpa+· · ·+ζ i−1
pa . Moreover, if (i, p) = 1, then

there is j with ζpa = ζ ijpa , and we have (1−ζpa)/(1−ζ ipa) = 1+ζ ipa+· · ·+ζ i(j−1)
pa .

This shows that (1 − ζ ipa)/(1 − ζpa) is a unit in Z[ζm] whenever (i, p) = 1.

Hence (3) implies

(1− ζpa)p
a−1(p−1)Z[ζm] = pZ[ζm]. (4)

Due to unique prime ideal factorization, (4) implies 1 − ζpa ∈ p. As

1− ζ ipa = (1 + ζpa + · · ·+ ζ i−1
pa )(1− ζpa), we conclude 1− ζ ipa ∈ p for all i > 0.

This implies (2).

Let A be any element of Z[ζm] and write A =
∑pa−1

i=0 ζ ipafi(ζm′) with

fi ∈ Z[x]. By the multinomial theorem, we have

pa−1∑
i=0

fi(ζ
pj

m′) ≡

(
pa−1∑
i=0

fi(ζm′)

)pj

(mod p).
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As p ∈ p, this congruence also holds modulo p. Suppose σ ∈ Gal(Q(ζm)/Q)

satisfies (1). Using (2) and the congruence we just derived, we conclude

Aσ =

pa−1∑
i=0

(ζ ipa)
σfi(ζ

pj

m′)

≡
pa−1∑
i=0

fi(ζ
pj

m′)

≡

(
pa−1∑
i=0

fi(ζm′)

)pj

≡

(
pa−1∑
i=0

ζ ipafi(ζm′)

)pj

≡ Ap
j

(mod p).

Note that A ∈ p implies Ap
j ∈ p, as p is an ideal. We just have shown

Aσ ≡ Ap
j

(mod p). Hence A ∈ p implies Aσ ∈ p. This shows pσ ⊂ p. But

pσ is a prime ideal and thus maximal. So we have pσ = p.

Let p be a prime, let m be a positive integer, and write m = pam′ with

(p,m′) = 1, a ≥ 0. If there is an integer j with pj ≡ −1 (mod m′), then p

is called self-conjugate modulo m. A composite integer n is called self-

conjugate modulo m if every prime divisor of n is self-conjugate modulo m.

The following is a result of Turyn [22].

Result 2.3. Suppose that A ∈ Z[ζm] satisfies

|A|2 ≡ 0 mod n2

for some positive integer n which is self-conjugate modulo m. Then A ≡
0 mod n.

2.2 Group Rings and Characters

Let G be a finite abelian group of order v. The least common multiple of

the orders of the elements of G is called the exponent of G. We denote the

group of complex characters of G by Ĝ. The character sending all elements

of G to 1 is called trivial.
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We will make use of the integral group ring Z[G]. Let X =
∑
agg ∈ Z[G]

and let t be an integer. The ag’s are called the coefficients of X. We write

|X| =
∑
ag and X(t) =

∑
agg

t. Let 1 denote the identity element of G. For

a ∈ Z we simply write a for the group ring element a · 1. For S ⊂ G, we

write S instead of
∑

g∈S g.

Using the group ring notation, a k-subset of G is a (v, k, λ, n) difference

set in G if and only if

DD(−1) = n+ λG (5)

in Z[G]. Furthermore, (5) holds if and only if χ0(D) = k for the trivial

character χ0 of G and |χ(D)|2 = n for all nontrivial characters χ of G.

For a proof of the following result, see [3, Section VI.3].

Result 2.4 (Fourier inversion formula). Let G be a finite abelian group and

let D =
∑

g∈G dgg ∈ Z[G]. Then

dg =
1

|G|
∑
χ∈Ĝ

χ(Dg−1)

for all g ∈ G.

The next result is due to McFarland [12]. We include a proof for the

convenience of the reader.

Result 2.5. Let G be an abelian group, and let t be an integer with (v, t) = 1.

(a) Suppose F ∈ Z[G] satisfies FF (−1) = n for some integer n. If F (−1)F (t)

is divisible by n, then F (t) = Fg for some g ∈ G.

(b) Let D be a (v, k, λ, n) difference set in G. If D(−1)D(t) − λG is divisible

by n, then t is a multiplier of D.

(c) Suppose E ∈ Z[G] satisfies EE(−1) = m2 for some positive integer m. If

all coefficients of E are nonnegative, then E = mg for some g ∈ G.

Proof. (a) Write F =
∑

h∈G ahh and F (t) =
∑

h∈G bhh. Note
∑
a2
h =

∑
b2h.

Since FF (−1) = n, we have
∑
a2
h = n. Write X = F (−1)F (t). Since FF (−1) =

n, we have XX(−1) = n2. Hence the sum of the squares of the coefficients of
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X is n2. As X is divisible by n by assumption, this implies X = gn for some

g ∈ G. Comparing the coefficient of g on both sides of F (−1)F (t) = gn, we

get
∑

h∈H ahbgh = n. Hence∑
h∈H

(ah − bgh)2 =
∑
h∈H

a2
h +

∑
h∈H

b2h − 2
∑
h∈H

ahbgh = n+ n− 2n = 0.

Thus bgh = ah for all h ∈ G, i.e., F (t) = Fg. This proves part (a).

(b) Write E = D(−1)D(t) − λG and suppose that E is divisible by n. A

straightforward computation shows that EE(−1) = n2 and DE = nD(t).

Note that |E| = k2 − λv = n > 0. As E is divisible by n and EE(−1) = n2,

we conclude that E has at most one nonzero coefficient. Hence E = ng for

some g ∈ G. This implies nD(t) = DE = nDg and thus D(t) = Dg.

(c) Write E =
∑

g∈G egg with eg ∈ Z, eg ≥ 0. As EE(−1) = m2, we have

|E|2 = m2 and thus
∑

g∈G eg = |E| = m (note that |E| = −m is impossible,

since E has only nonnegative coefficients). Comparing the coefficient of the

identity in EE(−1) = m2, we get
∑

g∈G e
2
g = m2. But

∑
g∈G eg = m and∑

g∈G e
2
g = m2 imply that there is g ∈ G with eg = m and eh = 0 for all

h ∈ g. Thus E = mg.

2.3 Group Ring Equations

The most powerful multiplier theorems are based on results on group ring

equations of the form XX(−1) = m2, where X ∈ Z[G], G is an abelian group,

and m is a positive integer. We call a solution X of XX(−1) = m2 trivial if

it has the form X = ±gm for some g ∈ G.

For a proof of the following result, [11, Thm. 3.3].

Result 2.6. Let G be a finite abelian group and let m, z be positive integers

with (|G|, z) = 1. Let X ∈ Z[G] be a solution of XX(−1) = m2 and suppose

that X(z) = X. Let b0 be the coefficient of the identity in X.

If there exists a positive real number a such that −a ≤ b0 and ordq(z) >

m+ a for all prime divisors q of |G|, then X is trivial.

We define a function M(m, b) for all positive integers m, b recursively as

follows. We set M(1, b) = 1 for all b. For m > 1, let p be a prime divisor
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of m, and let pe be the highest power of p dividing m. Then M(m, b) is the

product of the distinct prime factors of

m,M(
m2

p2e
,
2m2

p2e
− 2), p− 1, p2 − 1, ..., pb − 1.

Furthermore, set

M(m) =

{
(4m− 1)M(m, 2m− 2) if 4m− 1 is a prime,

M(m, 2m− 2) otherwise.

The following is [11, Thm. 3.2].

Result 2.7. Let G be a finite abelian group and suppose that X ∈ Z[G] is a

solution of XX(−1) = m2, where m is a positive integer. If the order of G is

is coprime to M(m), then X is trivial.

3 The Multiplier Theorem of Leung, Ma, and

Schmidt

The strongest known multiplier theorem for difference sets is [11, Thm. 1.4].

It is an improvement of [12, Thm. 6, p. 68], which had been proved by

McFarland no less than 44 years earlier. Theorem 3.1 below is a slight gen-

eralization of [11, Thm. 1.4] and, to our knowledge, contains all previous

multiplier theorems for difference sets in abelian groups as special cases.

Theorem 3.1. Let D be a (v, k, λ, n) difference set in an abelian group G of

exponent v∗. Let n1 be a divisor of n and suppose that t is an integer with

(v, t) = 1 such that, for every prime divisor u of n1,

(i) there is a positive integer fu with t ≡ ufu (mod v∗) or

(ii) u is self-conjugate modulo v∗.

If n1/(v, n1) > λ or(
v,M

(
n(v, n1)

n1

,

⌊
k(v, n1)

n1

⌋))
= 1, (6)

then t is a multiplier of D.
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Proof. The proof is based on that of [11, Thm. 1.4], but requires some addi-

tional arguments. For the convenience of the reader, we present the details

here. Let

F = D(t)D(−1) − λG. (7)

A straightforward computation using (5) shows that

FF (−1) = n2. (8)

By Result 2.5 (b), to prove that t is a multiplier of D, it is sufficient to show

that F is trivial. First, we claim

χ(F ) ≡ 0 (mod n1) (9)

for all characters χ of G. Note that k2 = n + λv, as DD(−1) = n + λG.

Hence, if χ is the trivial character, then χ(F ) = k2 − λv = n and thus

χ(F ) ≡ 0 (mod n1). Now suppose that χ is a nontrivial character of G.

Then

χ(D)χ(D) = n (10)

by (5) and χ(F ) = χ(D(t))χ(D) by the definition of F . Note that χ(D(t)) =

χ(D)σt , where σt is the automorphism of Q(ζv∗) with ζσm = ζtm. Hence

χ(F ) = χ(D)σt χ(D). (11)

Let u be any prime divisor of n1 and let ua be the largest power of u

dividing n. We will show χ(F ) ≡ 0 (mod ua), which implies (9). First

suppose that u is self-conjugate modulo v∗. Note that |χ(F )|2 = n2 by (9).

Thus χ(F ) ≡ 0 (mod ua) by Result 2.3.

Now suppose that u is not self-conjugate modulo v∗. Then, by assump-

tion, there is a positive integer fu with t ≡ ufu (mod v∗). Let p be a prime

ideal of Z[ζv∗ ] with u ∈ p. By (10), we have

νp(χ(D)) + νp(χ(D)) = νp(n) = νp(u
a). (12)

As t ≡ ufu (mod v∗), we have pσt = p by Result 2.2. Thus

νp (χ(D)σt) = νpσt (χ(D)σt) = νp (χ(D)) .
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Hence (11) and (12) imply

νp(χ(F )) = νp(χ(D)) + νp(χ(D)) = νp(u
a). (13)

Since (13) holds for every prime ideal p of Z[ζv∗ ] with u ∈ p, we have χ(F ) ≡
0 (mod ua) by Result 2.1. This completes the proof of (9).

By (9) and Result 2.4, we have vF ≡ 0 (mod n1). This implies

F ≡ 0

(
mod

n1

(v, n1)

)
. (14)

Suppose that n1/(v, n1) > λ. Recall that F = D(t)D(−1) − λG and note

that all coefficients D(t)D(−1) are nonnegative. Moreover, F cannot have any

coefficients lying in the interval [−λ,−1] by (14). Hence all coefficients of

F are nonnegative. Thus F is trivial by Result 2.6 (c). This shows that

Theorem 3.1 holds if n1/(v, n1) > λ.

Now suppose that (6) holds. Set N = n1/(v, n1). Then E := F/N is an

element of Z[G] by (14) and

EE(−1) =
n2

N2
.

by (8).

Our aim is to show that E is trivial. If n = N , then EE(−1) = 1 and thus

E = ±g for some g ∈ G, i.e., E is trivial. Hence we may assume n > N .

Let p be a prime divisor of n/N and let pe be the largest power of p dividing

n/N . Write E1 = E(−1)E(p). Then

E1E
(−1)
1 = EE(−1)

(
EE(−1)

)(p)
=

n4

N4
. (15)

We will apply Theorem 2.7 to show that E1 is trivial. Note that

EE(−1) =
n2

N2
≡ 0 (mod p2e). (16)

Since p divides n/N and thus M(n/N, bk/Nc) by the definition of the M -

function, we have (p, v) = 1 by (6). Furthermore, the automorphism of
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Q(ζv∗) determined by ζv∗ → ζpv∗ fixes every prime ideal of Z[ζv∗ ] containing p

by Result 2.2. Hence the same argument as for the proof of (14) shows that

E1 = E(−1)E(p) ≡ 0 (mod p2e).

Thus E2 := E1/p
2e is in Z[G]. By (15), we have

E2E
(−1)
2 =

n4

N4p4e
. (17)

To apply Theorem 2.7, we need to show that M(n2/(N2p2e)) divides

M(n/N, bk/Nc). Note that, by definition, M(n2/(N2p2e), 2n2/(N2p2e) − 2)

divides M(n/N, bk/Nc). Furthermore,

M(n2/(N2p2e)) = M(n2/(N2p2e), 2n2/(N2p2e)− 2),

since 4n2/(N2p2e)− 1 is not a prime. Hence M(n/N, bk/Nc) indeed is divis-

ible by M(n2/(N2p2e)).

We have (v,M(n/N, bk/Nc)) = 1 by assumption and therefore v and

M(n2/(N2p2e)) are coprime. Thus E2 is trivial by (17) and Theorem 2.7.

Hence E1 = E(−1)E(p) is trivial, too, i.e., E1 = ±(n2/N2)h for some h ∈ G.

By Result 2.6 (a), this implies E(p) = Eg for some g ∈ G. Note that, by

definition, M(n/N, bk/Nc) is divisible by all prime divisors of p − 1, since

p divides n/N . Hence (p − 1, v) = 1 by (6). Thus there is g1 ∈ G with

gp−1
1 = g−1. We conclude

(Eg1)
(p) = Eggp1 = (Eg1)(gg

p−1
1 ) = Eg1.

Hence, replacing E by Eg1, if necessary, we can assume E(p) = E.

Suppose that E is nontrivial. Let a0 and b0 be the coefficients of the

identity in F , respectively E. Note that b0 = a0/N . Recall that F =

D(−1)D(t)−λG. Hence a0 = |D∩D(t)|−λ ≥ −λ. Furthermore, as we assume

that E is nontrivial, we have |b0| < n/N . Hence

− λ

N
≤ b0 <

n

N
. (18)

Let q be a prime divisor of v. Then ordq(p) > k/N , since q does not divide

any of the numbers p − 1, p2 − 1,. . . ,pbk/Nc − 1 by (6) and the definition of
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M(n/N, bk/Nc). Set a = λ/N . Then b0 ≥ −a by (18) and ordq(p) > k/N =

n/N + λ/N = n/N + a for all prime divisors q of |G|. Thus we can apply

Theorem 2.6 with m = n/N and a = λ/N and conclude that E is trivial, a

contradiction. Hence E and thus F is trivial and this completes the proof of

Theorem 3.1.

4 Finding Multipliers of Higher Order

For numerous open cases of the multiplier conjecture, we have the situation

that Theorem 3.1 guarantees the existence of nontrivial multipliers, but mul-

tipliers of higher order are required to verify the conjecture in these cases.

In this section, we prove a new result which is useful for this purpose.

Let Cx denote a cyclic group of order x and let g be a generator of Cx.

Let A1, . . . , Aw be subsets of Cx (the Ai’s are allowed to be empty). Write

` =
∑w

i=1 |Ai|. Let M be a set of nonnegative integers. If

w∑
i=1

AiA
(−1)
i = `+

x−1∑
a=1

mag
a (19)

with ma ∈ M for all a, we say that (A1, . . . , Aw) is a (w, `,M) difference

system over Cx.

Lemma 4.1. If a (w, `,M) difference system over Cx exists, then

maxM ≥ `2 − `w
w(x− 1)

.

Proof. Note that
∑w

i=1 |Ai|2 ≥ (1/w)(
∑w

i=1 |Ai|)2 = `2/w. On the other

hand,
∑w

i=1 |Ai|2 ≤ `+ (x− 1) maxM . This implies the assertion.

Theorem 4.2. Let D be a (v, k, λ, n) difference set in an abelian group G

with exponent v∗, where v = pa for a prime p with (p, n) = 1. Let n1 be a

divisor of n, and let p1,...,ps be the distinct prime divisors of n1. Assume

that D has a multiplier of order f and that gcd(ordp(p1), ..., ordp(ps)) = xf

14



for some prime x. Write k1 = k if k ≡ 0 (mod f) and k1 = k− 1 otherwise.

If there is no (
v − 1

xf
,
k1

f
,

{
k1

f
− sn1 : 1 ≤ s ≤ k1

fn1

})
difference system over Cx, then D has a multiplier of order xf .

Proof. Let t be integer with ordv(t) = xf and

F = D(−1)D(t) − λG.

Then FF (−1) = n2, F ≡ 0 (mod n1), and E := F/n1 satisfies EE(−1) =

n2/n2
1.

Assume that t is not a multiplier of D. Then E is nontrivial. Let a0

be the coefficient of 1 in E. As E is nontrivial, we have |a0| < n/n1. Note

that E has a multiplier of order f , since D has a multiplier of order f by

assumption. Hence a0 ≡ |E| ≡ n/n1 (mod f). Thus a0 = n/n1 − sf for

some positive integer s.

Note that |D ∩D(t)| is the coefficient of 1 in D(−1)D(t). Hence

|D ∩D(t)| = a0n1 + λ = n− sfn1 + λ = k − sfn1. (20)

Note that 1 ∈ D if k 6≡ 0 (mod f). Write D1 = D if k ≡ 0 (mod f) and

D1 = D − 1 if k 6≡ 0 (mod f). Then (20) implies

|D1 ∩D(t)
1 | = k1 − sfn1. (21)

Note that t2, ..., tx−1 are not multipliers of D, since t is not a multiplier

of D. Hence, by the same argument as above, we have

|D1 ∩D(ta)
1 | = k1 − safn1. (22)

for a = 1, ..., x− 1 and some integers sa with 1 ≤ sa ≤ k1/fn1.

Write w = (v− 1)/(xf) and let Ω0,...,Ωw−1 be the orbits of y 7→ yt on G.

Note that each Ωi contains exactly x orbits of y 7→ yt
x

on G. Write

Ωi =
x−1∑
j=0

Ωi,j

15



such that Ωi,j+1 = Ω
(t)
i,j for all i, j where the second indices in Ωi,j are taken

mod x. Since tx is a multiplier of D, we can assume Dtx = D by [14, Thm.

2]. Hence

D1 =
w−1∑
i=0

x−1∑
j=0

di,jΩi,j (23)

with di,j ∈ {0, 1} and
∑

i,j di,j = k1/f . Note that

D
(ta)
1 =

w−1∑
i=0

x−1∑
j=0

di,jΩi,j+a =
w−1∑
i=0

x−1∑
j=0

di,j−aΩi,j (24)

for a = 1, ..., x − 1, where the second indices in di,j are taken mod x. We

conclude

|D1 ∩D(ta)
1 | = f

w−1∑
i=0

x−1∑
j=0

di,jdi,j−a. (25)

Let Cx denote a cyclic group of order x and let g be a generator of Cx.

Write Ai =
∑x−1

j=0 di,jg
j, i = 0, . . . , w − 1. Then the coefficient of ga in

T :=
w−1∑
i=0

AiA
(−1)
i

is
w−1∑
i=0

x−1∑
j=0

di,jdi,j−a.

Also note that the coefficient of 1 in T is
∑
di,j = k1/f . Hence

T =
k1

f
+

x−1∑
a=1

(
w−1∑
i=0

x−1∑
j=0

di,jdi,j−a

)
ga.

From (22) and (25), we have

w−1∑
i=0

x−1∑
j=0

di,jdi,j−a = (1/f)|D1 ∩D(ta)
1 | = k1/f − san1.

Thus
w−1∑
i=0

AiA
(−1)
i =

k

f ′
+

x−1∑
a=1

(
k

f ′
− san1

)
ga. (26)
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Hence (A0, ..., Aw−1) is a(
v − 1

xf
,
k1

f
,

{
k1

f
− sn1 : 1 ≤ s ≤ k1

fn1

})
difference system over Cx, contradicting the assumptions.

Corollary 4.3. Let D be a (v, k, λ, n) difference set in an abelian group G

with exponent v∗, where v = pa for a prime p with (p, n) = 1. Let n1 be a

divisor of n, and let p1,...,ps be the distinct prime divisors of n1. Assume

that D has a multiplier of order f and that gcd(ordp(p1), ..., ordp(ps)) = xf

for some integer x > 1. Write k1 = k if k ≡ 0 (mod f) and k1 = k − 1

otherwise. If

n1 >
k1q(v − k1 − 1)

f(v − 1)(q − 1)
, (27)

where q is the smallest prime divisor of x, then D has a multiplier of order

xf .

Proof. Let r be any prime divisor of x and suppose that D does not have a

multiplier of order rf . Then, by Theorem 4.2, there is a(
v − 1

rf
,
k1

f
,

{
k1

f
− sn1 : 1 ≤ s ≤ k1

fn1

})
difference system over Cr. Note that

max

{
k1

f
− sn1 : 1 ≤ s ≤ k1

fn1

}
=
k1

f
− n1.

Thus

k1

f
− n1 ≥

k2
1

f2 − k1
f
v−1
rf

v−1
rf

(r − 1)

by Lemma 4.1. This implies

n1 ≤
k1r(v − k1 − 1)

f(v − 1)(r − 1)
,

which contradicts (27), since r ≥ q and thus r/(r− 1) ≤ q/(q− 1). Hence D

has a multiplier of order rf .
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If r < x, then we choose a prime divisor r1 of x/r and repeat the same

argument as above with f replaced by fr and r replaced by r1. This shows

that D has a multiplier of order frr1. Continuing in this way, we see that D

has a multiplier of order fx

Example 4.4. Let D be a (4n − 1, 2n − 1, n − 1, n) difference set with

n = 266. Note that v = 4n − 1 = 1063 is a prime. We have n = 2 · 7 · 19,

ordp(2) = 531, ordp(7) = 9, and ordp(19) = 531. Theorem 3.1 with n1 = n

shows that 7 is a multiplier of D. Hence D has a multiplier of order f = 9.

Theorem 3.1, however, does not imply that 2 and 19 are multipliers of D.

Set x = 59 = 531/9, n1 = 38. Note that

38 = n1 >
k1x(v − k1 − 1)

f(v − 1)(x− 1)
=

531 · 59 · (1063− 531− 1)

9 · 1062 · 58
.

Hence D has a multiplier of order 531 by Corollary 4.3. This implies that 2

and 19 are multipliers of D, as predicted by the multiplier conjecture.

5 Computational Results

It is natural to ask how close Theorem 3.1 brings us to the multiplier conjec-

ture. No counterexample has ever been found, but this is not strong evidence.

Known difference sets fit into a few families, for most of which the multiplier

conjecture follows immediately.

For parameters of Hadamard, McFarland, Spence, Davis-Jedwab and

Chen difference sets, the multiplier conjecture is vacuously true, since all

primes dividing n also divide v. Singer difference sets (and other inequivalent

difference sets with the same parameters) satisfy the multiplier conjecture by

the Second Multiplier Theorem. Lehmer [10] showed that for difference sets

composed of nth power residues, the multipliers are the elements of the dif-

ference set.

To gather more evidence, we looked at (v, k, λ, n) difference sets D in

abelian groups G of order v < 106, to see which primes p|n, gcd(p, v) = 1

are known to be multipliers for all such D. Eliminating parameters which
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do not pass known necessary conditions (counting arguments, Bruck-Ryser-

Chowla, and many others; see [2]) leaves 221364 sets of parameters, with

411183 primes p covered by the multiplier conjecture.

The primary ways of establishing whether a given parameter set and

prime p satisfies the multiplier conjecture are Theorem 3.1 and Corollary 4.3.

Another tool is the following result which essentially is due to Hall and

Yamamoto. Let ϕ denote the Euler totient function.

Result 5.1. Let q be an odd prime power and let D be a (q, k, λ, n) difference

set in the additive group of the finite field Fq. If D has a multiplier of order

at least ϕ(q)/14, then the multiplier conjecture holds for D.

Proof. Write q = pa where p is an odd prime. Let t be a multiplier of D of

order f ≥ ϕ(q)/14. Note that f = ordp(t) and thus f divides p− 1. By [14,

Thm. 2], we can assume that D is fixed by t, i.e., tD = D.

Let C0 be the orbit of t on Fq which contains 1. Then C0 = {ti : i =

0, . . . , f − 1} is the (multiplicative) subgroup of F∗q of order f . Similarly, the

other orbits of t on F∗q are cosets of C0 in F∗q. Hence D \ {0} is a union of

eth power cyclotomic cosets where e = (q − 1)/f (see [3, Section 6.8] for

background on cyclotomic cosets).

First suppose that q is a prime. Note that, in this case, e ≤ 14, as

f ≤ (v − 1)/14. For q prime, Hall [6] and Yamamoto [24, 25] classified all

difference sets D in Fq such that D \ {0} is a union of eth power cyclotomic

cosets with e ≤ 14. Furthermore, the multiplier conjecture holds for all these

difference sets. This proves Theorem 5.1 for q prime.

Now suppose that q is not a prime, i.e., a ≥ 2. We have f ≥ ϕ(q)/14 =

pa−1(p − 1)/14. As f divides p − 1, this implies pa−1 ≤ 14. Hence p ≤ 13

and q ≤ 169. But the multiplier conjecture has been verified for all abelian

groups of order less than 343 (see the tables in the appendix). This completes

the proof.

When the above mentioned tools do not suffice, for small parameters it

may be possible to do an exhaustive search of unions of orbits of known mul-

tipliers, finding all inequivalent difference sets and directly testing whether
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p is a multiplier. This was done with C code used in [2], improved to handle

larger cases, and reimplemented in Sage [20] to verify the results.

Of the 411183 primes for possible difference sets with v < 106 covered

by the multiplier conjecture, 266369, or 65%, are known to be multipliers by

the results given in this paper. If we restrict ourselves to Paley parameters

(4n − 1, 2n − 1, n − 1, n), where G is the additive group of a finite field,

there are 116386 primes, of which 115457, or 99%, are known to satisfy the

multiplier conjecture.

There are a number of cases where we show that p cannot be a multiplier,

either because it violates Mann’s condition on multipliers (see Theorem 2

of [9]), or, in the cyclic case, that the group generated by p and known

multipliers is larger than k, which contradicts the bound of [23]. Finally, an

exhaustive search of the orbits of a multiplier group including p may show

that no combination of orbits forms a difference set.

For parameters where difference sets are known to exist, the only cases

where the multiplier conjecture is open are parameters of some Paley or

twin prime power (TPP) difference sets. Table 1 gives such parameters with

v < 104 for which the multiplier conjecture is open.

For other parameters where the existence of any difference sets is open,

there are many more cases where the multiplier conjecture is open (presum-

ably it is often true because there are no such difference sets). Table 2 gives

the smallest open cases. Tables for all parameters with v < 106 may be found

online at [4].

The column “MC primes” in the tables gives prime factors of n which are

multipliers under the multiplier conjecture. A circle around a number means

that it is not known whether the prime must be a multiplier, and a box

around a prime or set of primes mean that the primes cannot be multipliers

(and so the existence of such a difference set would contradict the multiplier

conjecture).
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v k λ G n MC primes comment

343 171 85 [7, 7, 7] 2 · 43 2 43 Paley

631 315 157 [631] 2 · 79 2 79 Paley

783 391 195 [3, 3, 87] 22 · 72 2 7 TPP(27)

911 455 227 [911] 22 · 3 · 19 2 3 19 Paley

1331 665 332 [11,11,11] 32 · 37 3 37 Paley

1483 741 370 [1483] 7 · 53 7 53 Paley

1763 881 440 [1763] 32 · 72 3 7 TPP(41)

2303 1151 575 [7, 329] 26 · 32 2 3 TPP(47)

2663 1331 665 [2663] 2 · 32 · 37 2 3 37 Paley

3571 1785 892 [3571] 19 · 47 19 47 Paley

3851 1925 962 [3851] 32 · 107 3 107 Paley

3911 1955 977 [3911] 2 · 3 · 163 2 3 163 Paley

3923 1961 980 [3923] 32 · 109 3 109 Paley

4999 2499 1249 [4999] 2 · 54 2 5 Paley

5183 2591 1295 [5183] 24 · 34 2 3 TPP(71)

6163 3081 1540 [6163] 23 · 67 23 67 Paley

6871 3435 1717 [6871] 2 · 859 2 859 Paley

7351 3675 1837 [7351] 2 · 919 2 919 Paley

8171 4085 2042 [8171] 32 · 227 3 227 Paley

8179 4089 2044 [8179] 5 · 409 5 409 Paley

8951 4475 2237 [8951] 2 · 3 · 373 2 3 373 Paley

Table 1: Parameters with v < 104 for which difference sets are known to

exist
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v k λ G n MC primes

343 171 85 [7, 49] 2 · 43 2 43

416 166 66 [2, 208] 22 · 52 5

416 166 66 [4, 104] 22 · 52 5

425 160 60 [5, 85] 22 · 52 2

448 150 50 [2, 224] 22 · 52 5

448 150 50 [4, 112] 22 · 52 5

448 150 50 [8, 56] 22 · 52 5

465 145 45 [465] 22 · 52 2

469 208 92 [469] 22 · 29 2 29

477 204 87 [3, 159] 32 · 13 13

495 247 123 [3, 165] 22 · 31 2 31

621 156 39 [3, 207] 32 · 13 13

621 156 39 [3, 3, 69] 32 · 13 13

639 232 84 [639] 22 · 37 2 37

639 232 84 [3, 213] 22 · 37 2 37

703 325 150 [703] 52 · 7 5 7

729 273 102 exp(G) ≤ 27 32 · 19 19

736 196 52 exp(G) ≤ 368 24 · 32 3

765 192 48 [3, 255] 24 · 32 2

781 300 115 [781] 5 · 37 5 37

783 391 195 [3, 261] 22 · 72 2 7

816 326 130 [2, 408] 22 · 72 7

847 423 211 [11, 77] 22 · 53 2 53

855 183 39 [3, 285] 24 · 32 2

909 228 57 [3, 303] 32 · 19 19

910 405 180 [910] 32 · 52 3

Table 2: Open difference set parameters
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