L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988a)Algorithms for computing Bessel functions of half-integer order with complex arguments.
Zh. Vychisl. Mat. i Mat. Fiz.28 (10), pp. 1449–1460, 1597.
ⓘ
Notes:
English translation in U.S.S.R. Comput. Math. and Math. Phys.
28(1988), no. 5, 109–117
L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988b)Algorithms for evaluating spherical Bessel functions in the complex domain.
Zh. Vychisl. Mat. i Mat. Fiz.28 (12), pp. 1779–1788, 1918.
ⓘ
Notes:
English translation in U.S.S.R. Comput. Math. and Math. Phys.
28(1988), no. 6, 122–128
L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1997)New tables of Bessel functions of complex argument.
Comput. Math. Math. Phys.37 (12), pp. 1480–1482.
ⓘ
Notes:
Russian original in Zh. Vychisl. Mat. i Mat. Fiz.
37(1997), no. 12, 1526–1528
J. Baik, P. Deift, and K. Johansson (1999)On the distribution of the length of the longest increasing subsequence of random permutations.
J. Amer. Math. Soc.12 (4), pp. 1119–1178.
G. A. Baker and P. Graves-Morris (1996)Padé Approximants.
2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 59, Cambridge University Press, Cambridge.
L. E. Ballentine and S. M. McRae (1998)Moment equations for probability distributions in classical and quantum mechanics.
Phys. Rev. A58 (3), pp. 1799–1809.
E. Bannai (1990)Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics.
In Orthogonal Polynomials (Columbus, OH, 1989),
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 25–53.
A. Bar-Shalom and M. Klapisch (1988)NJGRAF: An efficient program for calculation of general recoupling coefficients by graphical analysis, compatible with NJSYM.
Comput. Phys. Comm.50 (3), pp. 375–393.
R. Barakat and E. Parshall (1996)Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy.
Appl. Math. Lett.9 (5), pp. 21–26.
P. Baratella and L. Gatteschi (1988)The Bounds for the Error Term of an Asymptotic Approximation of Jacobi Polynomials.
In Orthogonal Polynomials and Their Applications (Segovia, 1986),
Lecture Notes in Math., Vol. 1329, pp. 203–221.
C. Bardin, Y. Dandeu, L. Gauthier, J. Guillermin, T. Lena, J. M. Pernet, H. H. Wolter, and T. Tamura (1972)Coulomb functions in entire ()-plane.
Comput. Phys. Comm.3 (2), pp. 73–87.
R. W. Barnard, K. Pearce, and K. C. Richards (2000)A monotonicity property involving and comparisons of the classical approximations of elliptical arc length.
SIAM J. Math. Anal.32 (2), pp. 403–419.
A. R. Barnett (1981a)An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy.
Comput. Phys. Comm.21 (3), pp. 297–314.
A. R. Barnett (1982)COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed’s method.
Comput. Phys. Comm.27, pp. 147–166.
ⓘ
Notes:
Double-precision Fortran code for positive energies. Maximum
accuracy: 31S.
A. R. Barnett (1996)The Calculation of Spherical Bessel Functions and Coulomb Functions.
In Computational Atomic Physics: Electron and Positron Collisions
with Atoms and Ions, K. Bartschat and J. Hinze (Eds.),
pp. 181–202.
ⓘ
Notes:
Includes program disk. Double-precision Fortran code for
positive energies. Maximum accuracy: 15D.
W. Barrett (1981)Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V.
Philos. Trans. Roy. Soc. London Ser. A301, pp. 75–162.
P. Barrucand and D. Dickinson (1968)On the Associated Legendre Polynomials.
In Orthogonal Expansions and their Continuous Analogues (Proc.
Conf., Edwardsville, Ill., 1967),
pp. 43–50.
D. A. Barry, S. J. Barry, and P. J. Culligan-Hensley (1995a)Algorithm 743: WAPR: A Fortran routine for calculating real values of the -function.
ACM Trans. Math. Software21 (2), pp. 172–181.
A. P. Bassom, P. A. Clarkson, A. C. Hicks, and J. B. McLeod (1992)Integral equations and exact solutions for the fourth Painlevé equation.
Proc. Roy. Soc. London Ser. A437, pp. 1–24.
A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995)Bäcklund transformations and solution hierarchies for the fourth Painlevé equation.
Stud. Appl. Math.95 (1), pp. 1–71.
A. P. Bassom, P. A. Clarkson, C. K. Law, and J. B. McLeod (1998)Application of uniform asymptotics to the second Painlevé transcendent.
Arch. Rational Mech. Anal.143 (3), pp. 241–271.
H. Bateman and R. C. Archibald (1944)A guide to tables of Bessel functions.
Mathematical Tables and Other Aids to Computation
(now Mathematics of Computation)1 (7), pp. 205–308.
V. M. Beli͡akov, R. I. Kravt͡sova, and M. G. Rappoport (1962)Tablit͡sy Elliptic͡heskik͡h Integralov. Tom I.
Mathematical tables of the Computing Center of the Academy of
Sciences of the USSR, Izdat. Akad. Nauk SSSR, Moscow (Russian).
E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev (1994)Algebro-geometric Approach to Nonlinear Integrable Problems.
Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin.
A. Berkovich and B. M. McCoy (1998)Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics.
In Proceedings of the International Congress of Mathematicians,
Vol. III (Berlin, 1998),
pp. 163–172.
G. D. Bernard and A. Ishimaru (1962)Tables of the Anger and Lommel-Weber Functions.
Technical report
Technical Report 53 and AFCRL 796, University Washington Press, Seattle.
ⓘ
Notes:
Reviewed in Math. Comp., v. 17 (1963), pp.315–317.
B. C. Berndt, S. Bhargava, and F. G. Garvan (1995)Ramanujan’s theories of elliptic functions to alternative bases.
Trans. Amer. Math. Soc.347 (11), pp. 4163–4244.
B. C. Berndt (1975b)Periodic Bernoulli numbers, summation formulas and applications.
In Theory and Application of Special Functions (Proc. Advanced
Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis.,
1975),
pp. 143–189.
K. A. Berrington, P. G. Burke, J. J. Chang., A. T. Chivers, W. D. Robb, and K. T. Taylor (1974)A general program to calculate atomic continuum processes using the R-matrix method.
Comput. Phys. Comm.8 (3), pp. 149–198.
M. V. Berry and C. J. Howls (1993)Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality.
Proc. Roy. Soc. London Ser. A443, pp. 107–126.
M. V. Berry and C. J. Howls (1994)Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals.
Proc. Roy. Soc. London Ser. A444, pp. 201–216.
M. V. Berry and J. P. Keating (1992)A new asymptotic representation for and quantum spectral determinants.
Proc. Roy. Soc. London Ser. A437, pp. 151–173.
M. V. Berry and J. P. Keating (1998) and the Riemann Zeros.
In Supersymmetry and Trace Formulae: Chaos and Disorder, I. V. Lerner, J. P. Keating, and D. E. Khmelnitskii (Eds.),
pp. 355–367.
M. V. Berry and C. Upstill (1980)Catastrophe optics: Morphologies of caustics and their diffraction patterns.
In Progress in Optics, E. Wolf (Ed.),
Vol. 18, pp. 257–346.
M. V. Berry (1975)Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces.
J. Phys. A8 (4), pp. 566–584.
M. V. Berry (1980)Some Geometric Aspects of Wave Motion: Wavefront Dislocations, Diffraction Catastrophes, Diffractals.
In Geometry of the Laplace Operator (Proc. Sympos. Pure Math.,
Univ. Hawaii, Honolulu, Hawaii, 1979),
Vol. 36, pp. 13–28.
M. V. Berry (1981)Singularities in Waves and Rays.
In Les Houches Lecture Series Session XXXV, R. Balian, M. Kléman, and J.-P. Poirier (Eds.),
Vol. 35, pp. 453–543.
F. Bethuel (1998)Vortices in Ginzburg-Landau Equations.
In Proceedings of the International Congress of Mathematicians,
Vol. III (Berlin, 1998),
pp. 11–19.
A. Bhattacharyya and L. Shafai (1988)Theoretical and experimental investigation of the elliptical annual ring antenna.
IEEE Trans. Antennas and Propagation36 (11), pp. 1526–1530.
W. G. Bickley, L. J. Comrie, J. C. P. Miller, D. H. Sadler, and A. J. Thompson (1952)Bessel Functions. Part II: Functions of Positive Integer Order.
British Association for the Advancement of Science,
Mathematical Tables, Volume 10, Cambridge University Press, Cambridge.
L. C. Biedenharn, R. L. Gluckstern, M. H. Hull, and G. Breit (1955)Coulomb functions for large charges and small velocities.
Phys. Rev. (2)97 (2), pp. 542–554.
L. C. Biedenharn and J. D. Louck (1981)Angular Momentum in Quantum Physics: Theory and Application.
Encyclopedia of Mathematics and its Applications, Vol. 8, Addison-Wesley Publishing Co., Reading, M.A..
L. C. Biedenharn and H. van Dam (Eds.) (1965)Quantum Theory of Angular Momentum. A Collection of Reprints and Original Papers.
Academic Press, New York.
S. Bielski (2013)Orthogonality relations for the associated Legendre functions of imaginary order.
Integral Transforms Spec. Funct.24 (4), pp. 331–337.
L. J. Billera, C. Greene, R. Simion, and R. P. Stanley (Eds.) (1996)Formal Power Series and Algebraic Combinatorics.
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol. 24, American Mathematical Society, Providence, RI.
C. Bingham, T. Chang, and D. Richards (1992)Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis.
J. Multivariate Anal.41 (2), pp. 314–337.
R. Blackmore and B. Shizgal (1985)Discrete ordinate solution of Fokker-Planck equations with non-linear coefficients.
Phys. Rev. A31 (3), pp. 1855–1868.
R. Blackmore, U. Weinert, and B. Shizgal (1986)Discrete ordinate solution of a Fokker-Planck equation in laser physics.
Transport Theory Statist. Phys.15 (1-2), pp. 181–210.
J. M. Blair, C. A. Edwards, and J. H. Johnson (1976)Rational Chebyshev approximations for the inverse of the error function.
Math. Comp.30 (136), pp. 827–830.
G. Blanch and D. S. Clemm (1962)Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind.
U.S. Government Printing Office, Washington, D.C..
G. Blanch and D. S. Clemm (1965)Tables Relating to the Radial Mathieu Functions. Vol. 2: Functions of the Second Kind.
U.S. Government Printing Office, Washington, D.C..
G. Blanch and D. S. Clemm (1969)Mathieu’s Equation for Complex Parameters. Tables of Characteristic Values.
U.S. Government Printing Office, Washington, D.C..
G. Blanch and I. Rhodes (1955)Table of characteristic values of Mathieu’s equation for large values of the parameter.
J. Washington Acad. Sci.45 (6), pp. 166–196.
P. Bleher and A. Its (1999)Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model.
Ann. of Math. (2)150 (1), pp. 185–266.
D. Bleichenbacher (1996)Efficiency and Security of Cryptosystems Based on Number Theory.
Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zurich.
N. Bleistein (1967)Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities.
J. Math. Mech.17, pp. 533–559.
I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950)Methods of calculation of radial wave functions and new tables of Coulomb functions.
Physical Rev. (2)80, pp. 553–560.
I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1951)Coulomb functions for reactions of protons and alpha-particles with the lighter nuclei.
Rev. Modern Physics23 (2), pp. 147–182.
R. Blümel and W. P. Reinhardt (1997)Chaos in atomic physics.
Cambridge Monographs on Atomic, Molecular and Chemical
Physics, 10, Cambridge University Press, Cambridge.
S. Bochner (1952)Bessel functions and modular relations of higher type and hyperbolic differential equations.
Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]1952 (Tome Supplementaire), pp. 12–20.
A. A. Bogush and V. S. Otchik (1997)Problem of two Coulomb centres at large intercentre separation: Asymptotic expansions from analytical solutions of the Heun equation.
J. Phys. A30 (2), pp. 559–571.
A. R. Booker, A. Strömbergsson, and H. Then (2013)Bounds and algorithms for the -Bessel function of imaginary order.
LMS J. Comput. Math.16, pp. 78–108.
M. Born and E. Wolf (1999)Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light.
7th edition, Cambridge University Press, Cambridge.
J. M. Borwein and I. J. Zucker (1992)Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind.
IMA J. Numer. Anal.12 (4), pp. 519–526.
J. M. Borwein and P. B. Borwein (1987)Pi and the AGM, A Study in Analytic Number Theory and Computational Complexity.
Canadian Mathematical Society Series of Monographs and
Advanced Texts, John Wiley & Sons Inc., New York.
J. M. Borwein, D. M. Bradley, and R. E. Crandall (2000)Computational strategies for the Riemann zeta function.
J. Comput. Appl. Math.121 (1-2), pp. 247–296.
W. Bosma and M.-P. van der Hulst (1990)Faster Primality Testing.
In Advances in Cryptology—EUROCRYPT ’89 Proceedings, J.-J. Quisquater and J. Vandewalle (Eds.),
Lecture Notes in Computer Science, Vol. 434, New York, pp. 652–656.
P. Boutroux (1913)Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre.
Ann. Sci. École Norm. Sup. (3)30, pp. 255–375.
J. P. Boyd and A. Natarov (1998)A Sturm-Liouville eigenproblem of the fourth kind: A critical latitude with equatorial trapping.
Stud. Appl. Math.101 (4), pp. 433–455.
J. P. Boyd (1998)Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics.
Mathematics and its Applications, Vol. 442, Kluwer Academic Publishers, Boston-Dordrecht.
W. G. C. Boyd and T. M. Dunster (1986)Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions.
SIAM J. Math. Anal.17 (2), pp. 422–450.
W. G. C. Boyd (1973)The asymptotic analysis of canonical problems in high-frequency scattering theory. II. The circular and parabolic cylinders.
Proc. Cambridge Philos. Soc.74, pp. 313–332.
W. G. C. Boyd (1987)Asymptotic expansions for the coefficient functions that arise in turning-point problems.
Proc. Roy. Soc. London Ser. A410, pp. 35–60.
W. G. C. Boyd (1990a)Asymptotic Expansions for the Coefficient Functions Associated with Linear Second-order Differential Equations: The Simple Pole Case.
In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.),
Lecture Notes in Pure and Applied Mathematics, Vol. 124, pp. 53–73.
W. G. C. Boyd (1995)Approximations for the late coefficients in asymptotic expansions arising in the method of steepest descents.
Methods Appl. Anal.2 (4), pp. 475–489.
M. Brack, M. Mehta, and K. Tanaka (2001)Occurrence of periodic Lamé functions at bifurcations in chaotic Hamiltonian systems.
J. Phys. A34 (40), pp. 8199–8220.
N. Brazel, F. Lawless, and A. Wood (1992)Exponential asymptotics for an eigenvalue of a problem involving parabolic cylinder functions.
Proc. Amer. Math. Soc.114 (4), pp. 1025–1032.
C. Brezinski and M. Redivo Zaglia (1991)Extrapolation Methods. Theory and Practice.
Studies in Computational Mathematics, Vol. 2, North-Holland Publishing Co., Amsterdam.
C. Brezinski (1980)Padé-type Approximation and General Orthogonal Polynomials.
International Series of Numerical Mathematics, Vol. 50, Birkhäuser Verlag, Basel.
V. Britanak, P. C. Yip, and K. R. Rao (2007)Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations.
Elsevier/Academic Press, Amsterdam.
British Association for the Advancement of Science (1937)Bessel Functions. Part I: Functions of Orders Zero and Unity.
Mathematical Tables, Volume 6, Cambridge University Press, Cambridge.
J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow (2001)Stability of repulsive Bose-Einstein condensates in a periodic potential.
Phys. Rev. E (3)63 (036612), pp. 1–11.
Yu. A. Brychkov and K. O. Geddes (2005)On the derivatives of the Bessel and Struve functions with respect to the order.
Integral Transforms Spec. Funct.16 (3), pp. 187–198.
J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi (2001)Irregular primes and cyclotomic invariants to 12 million.
J. Symbolic Comput.31 (1-2), pp. 89–96.
ⓘ
Notes:
Computational algebra and number theory (Milwaukee, WI, 1996)
R. Bulirsch and H. Rutishauser (1968)Interpolation und genäherte Quadratur.
In Mathematische Hilfsmittel des Ingenieurs. Teil III, R. Sauer and I. Szabó (Eds.),
Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 141, pp. 232–319.
R. Bulirsch and J. Stoer (1968)II. Darstellung von Funktionen in Rechenautomaten.
In Mathematische Hilfsmittel des Ingenieurs. Teil III, R. Sauer and I. Szabó (Eds.),
T. Burić and N. Elezović (2011)Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions.
J. Comput. Appl. Math.235 (11), pp. 3315–3331.
W. S. Burnside and A. W. Panton (1960)The Theory of Equations: With an Introduction to the Theory of Binary Algebraic Forms.
Dover Publications, New York.
ⓘ
Notes:
Two volumes. A reproduction of the seventh edition [vol. 1, Longmans, Green, London 1912; vol. 2, Longmans, Green, London 1928].
P. J. Bushell (1987)On a generalization of Barton’s integral and related integrals of complete elliptic integrals.
Math. Proc. Cambridge Philos. Soc.101 (1), pp. 1–5.
J. Bustoz, M. E. H. Ismail, and S. K. Suslov (Eds.) (2001)Special Functions 2000: Current Perspective and Future Directions.
NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 30, Kluwer Academic Publishers, Dordrecht.
J. C. Butcher (1987)The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods.
John Wiley & Sons Ltd., Chichester.
P. L. Butzer, S. Flocke, and M. Hauss (1994)Euler functions with complex and applications.
In Approximation, probability, and related fields (Santa Barbara,
CA, 1993), G. Anastassiou and S. T. Rachev (Eds.),
pp. 127–150.
P. F. Byrd and M. D. Friedman (1971)Handbook of Elliptic Integrals for Engineers and Scientists.
2nd edition, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York.
ⓘ
Notes:
Table errata: Math. Comp. v. 66 (1997), no. 220, p. 1767,
v. 36 (1981), no. 153, p. 317,319, v. 26 (1972), no. 118, p. 597.