R. M. Aarts and A. J. E. M. Janssen (2016)Efficient approximation of the Struve functions occurring in the calculation of sound radiation quantities.
The Journal of the Acoustical Society of America140 (6), pp. 4154–4160.
A. S. Abdullaev (1985)Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation.
Dokl. Akad. Nauk SSSR280 (2), pp. 265–268 (Russian).
ⓘ
Notes:
English translation: Soviet Math. Dokl. 31(1985), no. 1,
pp. 45–47
M. J. Ablowitz and P. A. Clarkson (1991)Solitons, Nonlinear Evolution Equations and Inverse Scattering.
London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge.
M. J. Ablowitz and H. Segur (1981)Solitons and the Inverse Scattering Transform.
SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
M. Abramowitz and I. A. Stegun (Eds.) (1964)Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
ⓘ
Notes:
Corrections appeared in later printings up to the 10th Printing, December, 1972. Reproductions by other publishers, in whole or in part, have been available since 1965.
J. C. Adams and P. N. Swarztrauber (1997)SPHEREPACK 2.0: A Model Development Facility.
NCAR Technical NoteTechnical Report TN-436-STR, National Center for Atmospheric Research.
ⓘ
Notes:
SPHEREPACK 2.0 is a collection of Fortran programs that facilitates
computer modeling of geophysical processes. Accurate solutions are
obtained via the spectral method that uses both scalar and vector
spherical harmonic transforms. The package also contains utility programs
for computing the associated Legendre functions. SPHEREPACK 3.1 was
released in August 2003.
C. Adiga, B. C. Berndt, S. Bhargava, and G. N. Watson (1985)Chapter of Ramanujan’s second notebook: Theta-functions and -series.
Mem. Amer. Math. Soc.53 (315), pp. v+85.
C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia (1997)High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder.
J. Opt. Soc. Amer. A14 (6), pp. 1305–1315.
L. V. Ahlfors (1966)Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable.
2nd edition, McGraw-Hill Book Co., New York.
ⓘ
Notes:
A third edition was published in 1978 by McGraw-Hill, New York.
S. Ahmed and M. E. Muldoon (1980)On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations.
Lett. Nuovo Cimento (2)29 (11), pp. 353–358.
S-H. Ahn, H. Lee, and H. M. Lee (2001)Ly line formation in starbursting galaxies. I. Moderately thick, dustless, and static H i media.
Astrophysical J.554, pp. 604–614.
H. Airault, H. P. McKean, and J. Moser (1977)Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem.
Comm. Pure Appl. Math.30 (1), pp. 95–148.
N. I. Akhiezer (1990)Elements of the Theory of Elliptic Functions.
Translations of Mathematical Monographs, Vol. 79, American Mathematical Society, Providence, RI.
ⓘ
Notes:
Translated from the second Russian edition by H. H. McFaden
N. I. Akhiezer (2021)The classical moment problem and some related questions in analysis.
Classics in Applied Mathematics, Vol. 82, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA.
ⓘ
Notes:
Reprint of the 1965 edition [ 0184042],
Translated by N. Kemmer,
With a foreword by H. J. Landau
S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003)Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics.
Comput. Phys. Comm.150 (1), pp. 1–20.
ⓘ
Notes:
Includes algorithms for Lerch’s transcendent. C and Mathematica codes by Aksenov and Jentschura are available.
W. A. Al-Salam (1990)Characterization theorems for orthogonal polynomials.
In Orthogonal Polynomials (Columbus, OH, 1989),
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
W. A. Al-Salam and M. E. H. Ismail (1994)A -beta integral on the unit circle and some biorthogonal rational functions.
Proc. Amer. Math. Soc.121 (2), pp. 553–561.
D. W. Albrecht, E. L. Mansfield, and A. E. Milne (1996)Algorithms for special integrals of ordinary differential equations.
J. Phys. A29 (5), pp. 973–991.
K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther (1956)Study of nuclear structure by electromagnetic excitation with accelerated ions.
Rev. Mod. Phys.28, pp. 432–542.
F. Alhargan and S. Judah (1992)Frequency response characteristics of the multiport planar elliptic patch.
IEEE Trans. Microwave Theory Tech.40 (8), pp. 1726–1730.
F. Alhargan and S. Judah (1995)A general mode theory for the elliptic disk microstrip antenna.
IEEE Trans. Antennas and Propagation43 (6), pp. 560–568.
F. A. Alhargan (2000)Algorithm 804: Subroutines for the computation of Mathieu functions of integer orders.
ACM Trans. Math. Software26 (3), pp. 408–414.
G. Allasia and R. Besenghi (1991)Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule.
Rend. Sem. Mat. Univ. Politec. Torino49 (3), pp. 315–327.
G. Allasia and R. Besenghi (1989)Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule.
In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.),
IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
G. Almkvist and B. Berndt (1988)Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, , and the Ladies Diary.
Amer. Math. Monthly95 (7), pp. 585–608.
Z. Altaç (1996)Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions.
J. Heat Transfer118 (3), pp. 789–792.
H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975)Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions.
J. Mathematical Phys.16, pp. 961–970.
Y. Ameur and J. Cronvall (2023)Szegő Type Asymptotics for the Reproducing Kernel in Spaces of Full-Plane Weighted Polynomials.
Comm. Math. Phys.398 (3), pp. 1291–1348.
D. E. Amos, S. L. Daniel, and M. K. Weston (1977)Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions and , , .
ACM Trans. Math. Software3 (1), pp. 93–95.
D. E. Amos (1985)A subroutine package for Bessel functions of a complex argument and nonnegative order.
Technical ReportTechnical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
D. E. Amos (1986)Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order.
ACM Trans. Math. Software12 (3), pp. 265–273.
ⓘ
Notes:
Single and double precision, maximum accuracy 18S.
D. E. Amos (1990)Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument.
ACM Trans. Math. Software16 (2), pp. 178–182.
ⓘ
Notes:
Double- and single-precision Fortran, maximum accuracy 18S or 14S.
G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy, and M. Vuorinen (2000)Generalized elliptic integrals and modular equations.
Pacific J. Math.192 (1), pp. 1–37.
G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1990)Functional inequalities for complete elliptic integrals and their ratios.
SIAM J. Math. Anal.21 (2), pp. 536–549.
G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992a)Functional inequalities for hypergeometric functions and complete elliptic integrals.
SIAM J. Math. Anal.23 (2), pp. 512–524.
G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992b)Hypergeometric Functions and Elliptic Integrals.
In Current Topics in Analytic Function Theory, H. M. Srivastava and S. Owa (Eds.),
pp. 48–85.
G. D. Anderson, M. K. Vamanamurthy, and M. K. Vuorinen (1997)Conformal Invariants, Inequalities, and Quasiconformal Maps.
John Wiley & Sons Inc., New York.
ⓘ
Notes:
With PC diskette,
a Wiley-Interscience Publication
F. V. Andreev and A. V. Kitaev (2002)Transformations of the ranks and algebraic solutions of the sixth Painlevé equation.
Comm. Math. Phys.228 (1), pp. 151–176.
G. E. Andrews, R. Askey, and R. Roy (1999)Special Functions.
Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge.
G. E. Andrews and R. Askey (1985)Classical Orthogonal Polynomials.
In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.),
Lecture Notes in Math., Vol. 1171, pp. 36–62.
G. E. Andrews, I. P. Goulden, and D. M. Jackson (1986)Shanks’ convergence acceleration transform, Padé approximants and partitions.
J. Combin. Theory Ser. A43 (1), pp. 70–84.
G. E. Andrews (1976)The Theory of Partitions.
Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, MA-London-Amsterdam.
ⓘ
Notes:
Reprinted by Cambridge University Press, Cambridge, 1998.
G. E. Andrews (1986)-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra.
CBMS Regional Conference Series in Mathematics, Vol. 66, Amer. Math. Soc., Providence, RI.
G. E. Andrews (2001)Bailey’s Transform, Lemma, Chains and Tree.
In Special Functions 2000: Current Perspective and Future
Directions (Tempe, AZ), J. Bustoz, M. E. H. Ismail, and S. K. Suslov (Eds.),
NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 1–22.
M. A. Anuta, D. W. Lozier, and P. R. Turner (1996)The MasPar MP-1 as a computer arithmetic laboratory.
J. Res. Nat. Inst. Stand. Technol.101 (2), pp. 165–174.
K. Aomoto (1987)Special value of the hypergeometric function and connection formulae among asymptotic expansions.
J. Indian Math. Soc. (N.S.)51, pp. 161–221.
A. Apelblat (1991)Integral representation of Kelvin functions and their derivatives with respect to the order.
Z. Angew. Math. Phys.42 (5), pp. 708–714.
T. M. Apostol (1990)Modular Functions and Dirichlet Series in Number Theory.
2nd edition, Graduate Texts in Mathematics, Vol. 41, Springer-Verlag, New York.
H. Appel (1968)Numerical Tables for Angular Correlation Computations in -, - and -Spectroscopy: -, -, -Symbols, F- and -Coefficients.
Landolt-Börnstein Numerical Data and Functional Relationships
in Science and Technology, Springer-Verlag.
An extended-precision C code for special functions. The library uses arbitrary-precision
ball arithmetic. Ball arithmetic is an efficient technique for performing numerical computations
with automatic and rigorous tracking of error bounds. Arb is designed with computer algebra
and computational number theory in mind, extending the principles behind FLINT to the
domain of real and complex numbers.
R. W. B. Ardill and K. J. M. Moriarty (1978)Spherical Bessel functions and of integer order and real argument.
Comput. Phys. Comm.14 (3-4), pp. 261–265.
J. V. Armitage (1989)The Riemann Hypothesis and the Hamiltonian of a Quantum Mechanical System.
In Number Theory and Dynamical Systems (York, 1987), M. M. Dodson and J. A. G. Vickers (Eds.),
London Math. Soc. Lecture Note Ser., Vol. 134, pp. 153–172.
V. I. Arnol’d (1972)Normal forms of functions near degenerate critical points, the Weyl groups and Lagrangian singularities.
Funkcional. Anal. i Priložen.6 (4), pp. 3–25 (Russian).
ⓘ
Notes:
In Russian. English translation: Functional Anal. Appl.,
6(1973), pp. 254–272.
V. I. Arnol’d (1974)Normal forms of functions in the neighborhood of degenerate critical points.
Uspehi Mat. Nauk29 (2(176)), pp. 11–49 (Russian).
ⓘ
Notes:
Collection of articles dedicated to the memory of Ivan
Georgievič Petrovskiĭ (1901–1973), I. In Russian.
English translation: Russian Math. Surveys, 29(1974),
no. 2, pp. 10–50.
F. M. Arscott (1964b)Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions.
International Series of Monographs in Pure and Applied
Mathematics, Vol. 66, Pergamon Press, The Macmillan Co., New York.
U. M. Ascher, R. M. M. Mattheij, and R. D. Russell (1995)Numerical Solution of Boundary Value Problems for Ordinary Differential Equations.
Classics in Applied Mathematics, Vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
U. M. Ascher and L. R. Petzold (1998)Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
R. A. Askey, T. H. Koornwinder, and W. Schempp (Eds.) (1984)Special Functions: Group Theoretical Aspects and Applications.
D. Reidel Publishing Co., Dordrecht.
ⓘ
Notes:
Reprinted by Kluwer Academic Publishers, Boston, 2001.
R. Askey, T. H. Koornwinder, and M. Rahman (1986)An integral of products of ultraspherical functions and a -extension.
J. London Math. Soc. (2)33 (1), pp. 133–148.
R. Askey and J. Wilson (1985)Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials.
Mem. Amer. Math. Soc.54 (319), pp. iv+55.
R. Askey (1974)Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum.
SIAM J. Math. Anal.5, pp. 119–124.
R. Askey (1975b)Orthogonal Polynomials and Special Functions.
CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 21, Society for Industrial and Applied Mathematics, Philadelphia, PA.
R. Askey (1982a)Commentary on the Paper “Beiträge zur Theorie der Toeplitzschen Form”.
In Gábor Szegő, Collected Papers. Vol. 1,
Contemporary Mathematicians, pp. 303–305.
R. Askey (1990)Graphs as an Aid to Understanding Special Functions.
In Asymptotic and Computational Analysis, R. Wong (Ed.),
Lecture Notes in Pure and Appl. Math., Vol. 124, pp. 3–33.
M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014)Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters.
J. Math. Anal. Appl.416 (1), pp. 52–80.
M. Audin (1999)Spinning Tops: A Course on Integrable Systems.
Cambridge Studies in Advanced Mathematics, Vol. 51, Cambridge University Press, Cambridge.
J. Avron and B. Simon (1982)Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices.
Bulletin of the American Mathematical Society6 (1), pp. 81–85.