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Abstract—Given the proximity of many wireless users and
their diversity in consuming local resources (e.g., data-plans,
computation and even energy resources), device-to-device (D2D)
resource sharing is a promising approach towards realizing
a sharing economy. In the resulting networked economy, n
users segment themselves into sellers and buyers that need to
be efficiently matched locally. This paper adopts an easy-to-
implement greedy matching algorithm with distributed fashion
and only sub-linear O(logn) parallel complexity, which offers
a great advantage compared to the optimal but computational-
expensive centralized matching. But is it efficient compared to
the optimal matching? Extensive simulations indicate that in a
large number of practical cases the average loss is no more
than 10%, a far better result than the 50% loss bound in the
worst case. However, there is no rigorous average-case analysis
in the literature to back up such encouraging findings, which
is a fundamental step towards supporting the practical use of
greedy matching in D2D sharing. This paper is the first to present
the rigorous average analysis of certain representative classes of
graphs with random parameters, by proposing a new asymptotic
methodology. For typical 2D grids with random matching weights
we rigorously prove that our greedy algorithm performs better
than 84.9% of the optimal, while for typical Erdgs-Rényi random
graphs we prove a lower bound of 79% when the graph is neither
dense nor sparse. Finally, we use realistic data to show that our
random graph models approximate well D2D sharing networks
encountered in practice.

I. INTRODUCTION

Thanks to advances in wireless and smartphone technolo-
gies, mobile users in proximity can use local wireless links
(e.g., short-range communications) to share local resources
(e.g., data-plans, computation and energy resources). For in-
stance, subscribed users who have leftover data plans can set
up personal/portable hotspots and share data connections to
travelers with high roaming fees or those who face data deficit
[1], [2]. Besides sharing data-plans, mobile terminals with
extra local memories can exchange the requested files with
each other in the vicinity [3]. Furthermore, a user in need
of bandwidth for video streaming can seek some neighboring
users’ assistance to download and forward video segments via
local links [4]. Given the large diversity for each user in the
levels of her individual resource utilization, device-to-device
(D2D) resource sharing is envisioned as a promising approach
to pool resources and increase social welfare.

Some recent studies have been conducted for modelling and
guiding D2D resource sharing in wireless networks (e.g., [1]-
[6]). As a node in the established D2D network graph, each
mobile user can be a resource buyer or seller, depending on
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whether her local resource is sufficient or not. As in [6] and
[3], according to their locations, each user can only connect
to a subset of users in the neighborhood through wireless
connections, and the available wireless links are modelled
as edges in the network graph. Sharing between any two
connected users brings in certain benefit to the pair, which is
modeled as a non-negative weight to the corresponding edge.

All these works (e.g., [1]-[6]) optimize resource allocation
by matching buyers and sellers in a centralized manner that
requires global information and strict coordination. Hence the
developed approaches cannot scale well in a scenario involving
a large number of users, due to a large communication
and computation overhead caused by the centralized nature
of the proposed solutions. Carrying this argument further,
the existing optimal weighted matching algorithms from the
literature cannot be effectively used in the case of large
user-defined networks due to their centralized nature and
super-linear time complexity [7]. This motivates the need for
developing distributed algorithms that exploit parallelism, have
low computation complexity and good average performance
for practical parameter distributions.

In the broader literature of distributed algorithm design
for matching many buyers and sellers in a large graph, a
greedy matching algorithm of linear complexity is proposed
in [8], [9] without requiring a central controller to gather
all information. It simply selects each time the edges with
local maximum weights and yields an approximation ratio
of 1/2 as compared to the optimum. A parallel algorithm is
further proposed in [10] to reduce complexity at the cost of
obtaining a smaller approximation ratio than 1/2. It should be
noted that in the analysis of these algorithms, complexity and
approximation ratio are always worst-case measures, but the
worst-case approximation ratio rarely happens in most network
cases in practice. Overall, there is a lack of average-case
analysis of the greedy matching in the literature to compare
its average performance with the optimal matching.

Since worst-case bounds no longer work for average-case
analysis, we develop totally new techniques to analyze average
performance. These techniques become more accurate when
taking into account the structure of the network graph, and
provide a very positive assessment of the greedy matching’s
average performance that is far from the worst case. Since the
greedy matching can be naturally implemented in parallel by
each node in the network, we also prove that with high proba-
bility (w.h.p.), the algorithm has sub-linear parallel complexity
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O(logn) in the number of users n. Our main contributions and
key novelty are summarized as follows.

o New average-case analysis of greedy matching in 2D
grid networks with random weights: To provide rigorous
results we first study the average performance of the
greedy matching in the representative case of 2D grid
network with random weights. In this case, dynamic pro-
gramming cannot be directly applied since matching users
does not divide the grid into sub-grids. We introduce a
new asymptotic analysis method to prove that our greedy
matching’s average performance ratio as compared to the
average of the optimal matching is at least 84.9%. If
the greedy algorithm is allowed to run in parallel (as
expected in practice), we prove that it has only sub-
linear complexity O(logn) w.h.p. in 2D grids. Thus,
our algorithm provides a great implementation advantage
compared to the optimal but computational-expensive
centralized matching.

e New average-case analysis of greedy matching in ran-
dom networks: We develop a new theoretic technique
to analyze large Erd@s-Rényi random graphs G(n,p),
where each of n users connects to any other user with
probability p. For a dense random graph with constant p,
we prove that the greedy matching achieves an average
performance ratio that tends to 100% as n increases. The
analysis of sparse graphs is more challenging, yet we
equivalently reduce to the asymptotic analysis of random
trees. By exploiting the recursive nature of trees, we
obtain rigorous average performance ratio bounds and
parallel complexity O(logn) (w.h.p.) when p < 1/n. We
also prove that the average performance ratio reaches its
minimum (still above 79%) when the graph is neither
dense nor sparse.

o Application to practical scenarios: We conduct experi-
ments using real data for mobile user locations to sim-
ulate realistic D2D networks with given constraints on
the maximum allowed communication distance between
devices. We show that our analytical G(n, p) performance
measure approximates well many practical cases of such
D2D sharing networks. To decide the maximum D2D
sharing range among users, we take into account the
D2D communication failure due to path-loss and mutual
interference among matched pairs. The optimal sharing
range is achieved by tradeoff between transacting with
more devices but with the higher risk that the chosen
best neighbor might not be effectively usable due to a
communication failure.

The paper is organized as follows. In Section II, we present
our network model and the greedy matching algorithm for
solving the D2D resource sharing problem in any network
graph. In Section III, we analyze the average performance
ratios of the algorithm in the 2D grids. Sections IV and
V extend the average-case analysis to random graphs and
practical scenarios. Section VI concludes the paper.
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II. SYSTEM MODEL AND PRELIMINARIES
A. System Model for D2D Resource Sharing

We first describe our D2D resource sharing model that
involves a large number of potential users to share resources
with each other via local wireless links (e.g., short-range
communications). In this model sharing takes place in repeated
time intervals (or ‘rounds’). In each interval, we first run an
algorithm to determine the pairs of users that are willing to ex-
change resources during the given round, and then realize the
actual sharing of the corresponding resources as determined by
the algorithm. The set of participating users and the available
D2D links may be different for different rounds.

In each round, we form the ‘network graph’ G = (U, E),
where U is the set of nodes corresponding to users that
are participating in the given round, and F is the set of
D2D links between participating users that are feasible to
establish with some minimum level of performance (e.g.,
signal strength, actual physical distance, etc., depending on
the application). For each user u; € U = {uj,ua, -+ ,un},
the subset A(u;) C U denotes the set of her neighbors in G,
i.e., there is a feasible D2D link e;; € E between u; and any
uj € A(u;). Note that different definitions of ‘feasibility’ for
D2D links will imply a different set of edges E between the
users in U. Also the set U is changing over time since new
users may join the sharing economy and existing users may
drop out after satisfying their needs or moving out of range.

With each edge e;; € E there is an associated weight
w;i; > 0 that models the (net) sharing benefit between this
pair of users, if these users eventually transact with each other
(i.e., are ‘matched’ in our terminology), converted in some
monetary basis (say $). Let W = {w;; } be the weight vector
over all edges of G. Note that our model is very flexible
and can fit to various applications of D2D resource sharing
by allowing for different ways to define the values for w;;.
For example, in a secondary data-plan trading market [1],
[2], user u; with data-plan surplus shares her personal hotspot
connection with neighboring user u; with high roaming fee,
and weight w;; models the difference between user u;’s saved
roaming fee and the sharing cost (e.g., energy consumption
in battery) of user u;. In another example of cooperative
video streaming [4], user u,; seeks user u;’s assistance to
download video segments for local sharing, and w;; becomes
the difference between the QoE improvement of user u; and
the download cost of user u;.

In any given round, our sharing model corresponds to an
instance of a random weighted graph (G = (U, E),W).
A simple interpretation of the model is that a typical user,
when participating, corresponds to a random node in G.
In particular, we don’t care for the actual identity of the
participating users (after all, we care for the total value
generated in the economy, summed over all participants). To
simplify the model, we assume certain i.i.d. properties for the
resulting stochastic process, i.e., in each round the set U and
the corresponding E, W are i.i.d., with certain distributions.
In particular, we assume that the weights w;; take values
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Fig. 1: An illustrative instance of the D2D resource sharing
model with n = 7 users is captured spatially.

from a finite discrete set V = {vy, v, -+, vk} according
to the general probability distribution Pr(w;; = vg) = pi
with Zszl pr = 1.! Without loss of generality, we assume
0<v1<wy<---<vg. A small-scale illustrative instance of the
D2D resource sharing model is shown spatially on the ground
in Fig. 1, which can be abstracted to a weight graph (G=(U=
{u1,uz, - ,ur}, B = {e12, €17, €23, €25, €36, €a5, €a7}), W =
{w12, w17, w3, was, w36, Was, War}).

In typical practices of D2D sharing (e.g., energy transfer),
a user is only matched to a single neighbor (if any) to finally
transact with. Keeping this simple but practical case of single
matching per user?, given a weighted graph (G = (U, E), W),
we would like to match the most valuable (with the highest
value of w;;) pairs of users to maximize the total sharing
benefit (i.e., the ‘social welfare’). Assuming full and glob-
ally available information on G and W, we formulate the
social welfare maximization problem as a maximum weighted
matching problem:

7)1 : max Z wijxij, (]a)
ei;€EE
st Y w; <1, Yy €U, (1b)
u; €A(u;)
Tij € {0, ].}7 Veij S E, (Ic)

where z;; is the binary optimization variable denoting whether
edge e;; is included in the final matching (x;; = 1) or not
(zs; = 0). Constraint (1b) tells that any user u; can only be
matched to at most one user in her set of neighbors A(u;).

B. Preliminaries of Greedy Algorithm

According to [7], to optimally solve the maximum weighted
matching problem P;, one needs to centrally gather the
weight and graph connectivity information beforehand. Fur-
ther, searching for all possible matchings results in super-
linear computation complexity, which is formidably high for

'We can similarly extend our average-case analysis to continuous weight
distributions, though it is unlikely to have any practical interest.

2 Allowing more concurrent matchings might not greatly improve perfor-
mance, since in practice most of the total benefit is usually obtained from
one among the possible matchings (e.g., assume a Pareto distribution on the
values of the possible matchings). Furthermore, obtaining the resources as a
result of a single matching decreases the marginal benefit of the resources
from more matchings.
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a network with a large number n of users. Alternatively,
the greedy matching addresses these two issues by keeping
information local and allowing the algorithm to be performed
in a distributed fashion. Algorithm 1 outlines the key steps of
the greedy matching algorithm (please see intuition in the text
that follows).

Algorithm 1: Greedy matching algorithm for solving problem
P, for the graph (G = (U, E),W).
Initialization: U’ = U; A'(w;) = A(w,), YVu; € U; 45
=0, Veij € FE.
In each iteration, repeat the following two phases:
Proposal phase:
For each unmatched user u; € U’:

o User u; selects a user u;~ among her unmatched neigh-
bors in A’(u;) with the maximum weight w;-.
o User u; sends to u;~ a matching proposal.

Matching phase:

For a user pair (u;, u;) that both u; and u; receive proposals

from each other:
o Match u; and u; by updating z;; = 1 and U’ = U’ \
{ui7 Uj } .

o Make u; and u; unavailable for matching with others, by
updating A’ (uy) = A’(ux) \ {u;} for any uy, € A'(u;),
and similarly for u;.

Algorithm 1 is randomized® and can be implemented dis-
tributedly: at each time, each user uses local information to
choose the unmatched neighbor with the highest weight as her
potential matching partner; she will stop once this preference
becomes reciprocal, or there are no available unmatched
neighbors. This algorithm calculates a matching with total
weight at least 1/2 of the optimum (see [9]). This worst-case
approximation ratio of 1/2 is achieved in a three-edge instance
where the middle edge has slightly larger weight than its two
adjacent edges, since the greedy matching chooses the middle
edge while the optimal matching chooses the two side edges.

C. Our Problem Statement for Average-Case Analysis

Though the approximation ratio of Algorithm 1 is 1/2 with
half efficiency loss in the worst case, this ratio is achieved in
the three-edge instance only when the middle edge has slightly
larger weight than its two adjacent edges. In a large network
instance, given the i.i.d. assumption regarding the choice of
the weights, it is improbable that the graph will consist of
an infinite repetition of the above special weighted three-edge
pattern which leads to the worst-case performance. Hence, we
expect the average performance ratio of the greedy matching to
be much above 1/2. We next provide the necessary definitions
for our average performance analysis.

31t randomizes in the selection of preferred neighbors in case there are
multiple equally best choices in the proposal phase. A way to simplify this
and make the algorithm deterministic is to assume that nodes are assigned
unique IDs and that a node assigns priority in the case of ties to her neighbor
with the highest ID value. This avoids loops and guarantees termination in
O(|E|) steps. In the rest of the paper we can assume this deterministic version
for Algorithm 1.
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By taking expectation with respect to the weights in W that
are i.i.d. with a general discrete distribution Pr(w;; = vi) =
pr,Vk = 1,..., K, we define the average performance ratio
PR(G) of Algorithm 1 for a given graph G as follows:

wlf(G,W) =3 ., e wijkij]
Ewl[f*(G,W) = ZeijEE wijfffj] ]
where f*(G,W) and f(G,W) denote the total weights (i.c.,
social welfare) under the optimal matching and the greedy
matching, respectively, {z};},{Zi;} being the corresponding
matchings. Since over time the algorithm is repeated for new
instances, the numerator and denominator correspond to the
time-average of the social welfare obtained by running the
greedy and the optimal algorithms, respectively.

We next evaluate the performance ratio for several special
forms of practical interest for G that corroborate the excellent
performance of the greedy matching, including 2D grids and
the more general random graph G(n, p) networks. In the case
of random graphs, we must take expectation in (2) over both G
and W. Besides, we will also prove the sub-linear computation
complexity to run Algorithm 1 for these networks.

PR(G) = @)

III. AVERAGE-CASE ANALYSIS FOR D2D SHARING IN 2D
GRID NETWORKS

In wireless networks, 2D grids are widely used to model
social mobility of users (e.g., [11], [12]). In this section,
we analyze the average performance ratio and the parallel
complexity of Algorithm 1 to validate its performance on
planar user connectivity graphs. Note that the average-case
analysis of 2D grids is an important benchmark for the more
general random graphs analyzed in the following sections.

A. Average Performance Analysis of Optimal Matching

It is impossible to obtain the exact value of the average
total weight Ey [f*(G, W)] under the optimal matching due
to the exponential number of the possible matchings. Instead,
we propose a method to compute an upper bound for the
denominator Ey [f*(G,W)] in (2) using a methodology that
holds for general graphs. This upper bound will be used to
derive a lower bound for the average performance ratio PR(G)
in (2) later.

In any graph G = (U, E), each matched edge e;; € E adds
value w;; to the final matching. Equivalently, we can think of
it as providing individual users u; and u; with equal benefit
w;;/2. For any user u;, this individual benefit does not exceed
half of the maximum weight of its neighboring edges. Using
this idea and summing over all users, the total weight of the
optimal matching is upper bounded by

(G,W) <72

max wj

uJEA(ul A

By taking expectation over the welght distribution, we obtain

the closed-form upper bound of the average total weight.
Proposition 1: For a general graph G = (U, E) with the

weight set V = {v1,va, -+, vk} and the weight distribution
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Fig. 2: Given the weight set size K = 2 and v; < vg, an edge
that certainly matches is always found in the first 2 edges, as
marked in red. There are totally K = 4 weight combination
cases of the first 2 edges. In each case, after matching the red
edge, the remaining graph is still linear but with smaller size
n—2orn—3.

P={p1,p2, -+, Pk}, the average total weight of the optimal
matching is upper bounded by

wlf” ZZW Z

k—1
\A(uz)l (Zpi)lA(ui)\)’
u7€Uk 1 i=1 i=1
3)
where |A(u;)| is the cardinality of A(u;).
The proof is given in Appendix A of our online technical
report [13].

B. Average Performance Ratio of Algorithm 1

We next turn in the calculation of the average total weight
of the greedy matching, i.e., the numerator Eyy[f(G, W)] in
(2). In the case of 2D grid networks we cannot directly use
dynamic programming since matching users does not divide
the grid into sub-grids. Instead, we start by considering the
simplest 1 x n grid where each user u; locally connects
with two adjacent users w;—; and u;;; (except for starting
and ending users u; and w,). In such linear networks, for
notational simplicity we use e; instead of e; ;1 to denote
the connection between users u; and w;+1, and similarly use
weight w; instead of w; ;yi. Without loss of generality, we
assume that each user facing the same weights of the two
adjacent edges assigns higher priority to match with the left-
hand-side neighbor. This implies that Algorithm 1 becomes
deterministic and returns a unique solution.

We prove that given the weight set size K, an edge e; that
has the local maximum weight (i.e., w; > w;_1,w; > Wiy1 )
and will certainly match in Algorithm 1 can be found within
the first K edges of the linear network graph. Further, by
considering all the K weight combinations {wy, -+ ,wg } of
the first K edges and the existence of edge e; that will certainly
match, we derive the recursive formula for {a,} where a,
denotes the average total weight of the greedy matching in the
linear graph with n users. An illustrative example for K = 2
is shown in Fig. 2 and the recursive formula averaged with
respect to the probabilities is given by

an = pI(v1 + an_2) + p2(v2 + an_2) + p1p2(v2 + an_3)

= ptor + (P2 + p1p2)vz + (P2 + PY)an—2 + P1p2as—3. (4)
Based on that, we derive a, = %%n + o(n)
when n is large by using asymptotic analysis. Similarly, for
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Fig. 3: Illustration of the graph decomposition process in three
steps for analyzing greedy matching. Algorithm 1 adds the
red-colored edges to the greedy matching in each step.

an arbitrary K > 3, we can also obtain the general formula
for the sequence {a,} as a function of V' = {vy,vs, -+ , vk}
and P = {p1,p2, " ,PK }-

Note that a simple extension of the previous result to n. x n
grid by dividing it into n sub-grids of size 1 xn provides a bad
lower bound because all the vertical edges become unavailable
to match. Instead, we split the grid network into sub-grids in
a way that keeps half of the vertical edges, and then estimate
a lower bound of the average total weight. For illustration
purpose, we treat the case of weight set size K = 2, v < vs.
Our procedure involves the following three steps (as illustrated
in Fig. 3), and it is easy for the reader to generalize for K > 2.

Step 1: Split the n x n grid into n/2 sub-grids of size 2 X n
by eliminating the corresponding edges.

Step 2: For each 2 x n sub-grid from step 1, greedily add
the vertical edges of (largest) weight value v, to the matching
and remove the corresponding users. This results in further
disconnecting the given sub-grid into smaller sub-grids of size
2 x t, for appropriate values of ¢. Note that each such sub-grid
only has vertical edges of (smaller) weight v;.

Step 3: For each sub-grid of size 2 x ¢ from step 2, if t = 1,
simply add this single-edge to the matching. If ¢ > 1, greedily
match the horizontal edges in the corresponding upper and
lower linear networks first and remove the corresponding
users; then match the remaining vertical edges of smaller
weight v;.

The above procedure allows us to find a lower bound on
the matching obtained by Algorithm 1. This is obtained by
i) eliminating from the set of edges that may be matched the
vertical edges in step 1 (see Fig. 3), ii) analyzing the greedy
matching of the two horizontal linear networks in the resulting
2xt sub-grids (using similar analysis as in (4)), and leaving out
the possible matching of the rest vertical edges in step 3. By
combining this lower bound for the performance of Algorithm
1 with the upper bound for the optimal matching in (3), we
obtain the following bound for the average performance ratio.

Proposition 2: In nxn grids with the weight set V = {v; =
1,v2 = 2} and uniform weight distribution p; = ps = 1, the
average performance ratio of Algorithm 1 satisfies PR(G) >
84.9% when n — oc.

The proof is given in Appendix B of our online technical
report [13]. Observe that here we consider the case of weight
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set V= {1,2} (‘low’ and ‘high’) and uniform weight
distribution P = {, 3} for illustration purpose. The analysis
can be extended for any possible V' and P.

C. Farallel Complexity Analysis of Algorithm 1

In this subsection, we focus on analyzing the parallel
running time of Algorithm 1, where a unit of time corresponds
to one iteration of the steps of Algorithm 1. Similarly, we
start with the simplest 1 x n grid. Let H(u;) denote the
length of the longest chain (sequence of edges) that has non-
decreasing weights and starts from u; towards the left or right
side. Suppose that w;—1 < w;—2 < -+ < Wi_g(u)41 <
Wi (u;) > Wi—H(u;)—1 18 such a longest chain. We claim
that uw; will terminate running Algorithm 1 (i.e., by being
matched or knowing that there is no unmatched neighbors)
within H (u;)/2 time. This is easy to see since starting from
time 0, the edge €;_ () Will be included in the total matching
in iteration 1, e;_p(y,)+2 in iteration 2, etc. Hence, in less
than H (u;)/2 steps, all neighbors of u; will have resolved
their possible preferences towards users different than wu,,
and subsequently u; will either be matched with one of
her neighbors or be left with an empty unmatched neighbor
set. As Algorithm 1 terminates when all users make their
final decision, if the probability of any user in G having a
chain longer than clogn (i.e., max,,cy H(u;) > clogn) for
some constant c is very small, then the parallel execution of
Algorithm 1 will terminate within O(logn) time with very
high probability.

Then, we extend our analysis to the n xn grid. Note that the
number of possible chains that start from any given node u;
and have non-decreasing weights is no longer two (toward left
or right) as in 1 X n grid networks, but exponential in the size
of the chain (since from each node there are 4 — 1 = 3 ‘out’
ways for the chain to continue), and such chains now form with
non-negligible probability. This problem is not an issue for
Algorithm 1 since every node will need to use priorities over
ties among neighbors whose edge has the same weight. This
significantly reduces the number of possible chains that are
relevant to a user’s decisions and we can prove the following
proposition.

Proposition 3: In n x n grids, Algorithm 1 runs in O(logn)
time w.h.p..

The proof is given in Appendix C of our online technical
report [13]. In conclusion, our distributed matching algorithm
has low complexity and provides a great implementation ad-
vantage compared to the optimal but computational-expensive
centralized matching.

IV. AVERAGE-CASE ANALYSIS FOR D2D SHARING IN
G(n,p) NETWORKS

In practice, a mobile user may encounter a random number
of neighbors. In this section, we extend our analysis to random
networks G(n, p), where n users connect with each other with
probability p and hence each user has in the average (an order
of magnitude) d = np neighbors. Although the actual spatial
distribution of users is not necessarily planar, such random
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graphs can still represent their connectivity on the ground and
the analysis also holds.

We study the average performance ratio of Algorithm 1 in
the cases of dense random graphs with a constant p (i.e., dense
since d = np increases linearly in n) [14], and sparse random
graphs with a constant average neighbor number d < 1 (i.e.,
p < 1/n) [15]. Unlike the 2D grid networks, the structure
of the random network G(n, p) is no longer fixed due to the
random connectivity. Though it is more technically difficult to
analyze the average performance of Algorithm 1 for random
graph structure, we are able to derive the ratio using statistical
analysis in the two important cases below. For intermediate
values of d where our techniques cannot be applied, we have
used exhaustive sets of simulations.

A. Average-Case Analysis of Dense Random Graphs

Given p remains a constant, as n increases, each user
will have an increasing number of neighbors with the largest
possible weight value vy . Since such edges are preferred by
greedy matching, as n goes to infinity, the greedy matching
will almost surely provide the highest possible total matching
value of nvg /2 (n/2 pairs of users with weight value vg).

Proposition 4: For a random graph G(n,p) with a constant
p, the average performance ratio of Algorithm 1 satisfies
PR =100% w.h.p..

The proof is given in Appendix D of our online technical
report [13]. In this result, in the definition of the average
performance ration PR we have taken expectation over both G
and W. Note that the computation complexity is not anymore
O(logn) in this case due to the increasing graph density. An
obvious bound is O(|E|) proved in [9].

B. Average-Case Analysis of Sparse Random Graphs

In this subsection, we consider that the connection proba-
bility is p = d/n and hence each user has a constant average
number of neighbors d(n—1)/n — d as n becomes large. We
first prove low parallel complexity for Algorithm 1 as long
as each user has a small enough number of neighbors to pair
with that depends on the distribution of the edge weights.

Proposition 5: For G(n, d/n) type of networks, Algorithm 1
runs in O(logn) time w.h.p. if d < 2/ max{p1,pe,- - , Pk }-

The proof is given in Appendix E of our online technical
report [13]. Note that this condition is always satisfied when
d < 1 as the weight probability p;, < 1 for any k.

Next, we focus on studying the average performance ratio
PR for sparse random graphs G(n,d/n). The average total
weight of the optimal matching can be upper bounded by (3),
which works for any graph. Then, we only need to study the
average total weight Eng(nvd/nhw[]@(G, W)] of the greedy
matching. Note that when matching any graph G, we can
equivalently view that the weight of any matched edge is
equally split and allocated to its two end-nodes. Then we can
rewrite the above expression as follows:

Ecuc(na/m),wlf(GW)]=nEgc(n,da/m)wlzi(GW)], (5)
where z;(G,W) is half of the weight of the matched edge
corresponding to each user u; under the greedy matching.
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We cannot use dynamic programming directly to compute
the average weight B (n,a/n),w[2:(G, W)] per user in (5)
since G(n, d/n) may have loops and it cannot be divided into
independent sub-graphs. Given that n is large and assuming
d < 1, then graph G(n,d/n), with very high probability, is
composed by a large number of random trees without forming
loops. In this case the matching weight z;(G, W) of user
u; only depends on the connectivity with other users in the
same tree. To analyze z;(G, W), we want to mathematically
characterize such trees which turn out to be ‘small’ because
d < 1. Note that, in G(n,d/n), each user has n — 1 inde-
pendent potential neighbors, and its random neighbor number
follows a binomial distribution B((n — 1),d/n) with mean
(n —1)d/n — d, as n becomes large. This binomial distri-
bution can be well approximated by the Poisson distribution
Poi(d) (with mean d). We define T'(d) as a random tree
where each node in the tree gives birth to children randomly
according to the Poisson distribution Poi(d).

Proposition 6: Given a sparse random network G(n,d/n)
with d < 1 and sufficiently large n, the average matching
weight of any node u; is well approximated by the average
matching weight of the root node of a random tree T'(d), i.e.,

nlggongg(m%)yw[xi(GaW)]:ETNT(d),W[l'root(TaW)]~ (6)

The proof is given in Appendix F of our online tech-
nical report [13]. We will show numerically later that the
approximation in (6) yields trivial performance gap and re-
mains accurate as long as d < 10. By substituting (6)
into (5), we obtain approximately the average total weight
ngg(n,d/n)yw[f((}’?W)}. Hence, it remains to derive the
form of Epr(q),w [Zroot (T, W)]. Given the recursive nature
of trees, we are able to use dynamic programming techniques.

The root node may receive multiple proposals from its
children corresponding to different possible edge weights in
the set {vy,vs,- - , vk}, and will match to the one (of them)
with the maximum weight. We define yi, k € {1,2,--- , K},
to denote the probability that the root node receive a proposal
from a child who connects to it with an edge of weight vg.
Then, by considering all the possible weight combinations of
the root’s children, we can compute the probability to match a
child with any given weight, using the proposal probabilities
yx. In a random tree T'(d), given the root node is matched
with one of its children, the remaining graph can be divided
into several sub-trees which are generated from the grand-
child or child nodes of the root node. In any case, a sub-tree
starting with any given node has the similar graph structure
and statistical property as the original tree T'(d). Thus, we are
able to analytically derive the recursive equations for finding
the proposal probabilities {y} for the root node.

Proposition 7: In the random tree T'(d), for any k €
{1,2,---, K}, the proposal probability y; from a child of
edge weight vy to the root node is the unique solution to the
following equation:

Yp = e~ (PEAE ki1 iP5 Z (ped)' (1 = (1 —yp)"*) . (D

£ i+ 1lys
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Fig. 4: The average performance ratio of Algorithm 1 in the
large random graph G(n,p = d/n) under different values of
average neighbor number d.

The proof is given in Appendix G of our online tech-
nical report [13]. Though not in closed-form, we can eas-
ily solve (7) using bisection, and then compute the prob-
ability that the root node matches to a child with any
given weight. Based on that we derive the average matching
weight Erra),w [Zroot (T, W)] of the root for (6) and thus
IEGNg(md/n),W[f(G, W)] in (5). Finally, by comparing with
(3) under the optimal matching, we can obtain the average
performance ratio of Algorithm 1.

C. Numerical Results for Random Graphs

Next, we conduct numerical analysis for sparse random
graphs with d < 1 and random graphs with finite d > 1. To do
that by using analytic formulas, we need to approximate the
random graph by random trees, and one may wonder if the
approximation error is significant (when d > 1). To answer
this question, we consider large network size of n = 10, 000,
with edge weights uniformly chosen from the weight set
V = {1,2} (‘low’ and ‘high’). Our extensive numerical
results show that the difference between the simulated average
matching weight B¢, 2y w [z;(G, W)] and the analytically
derived average matching weight E 7 (q),w [Tro0t (T, W)] in
the approximated tree T'(d) is always less than 0.05% when
d < 1 and is still less than 1% even for large 1 < d < 10.
This is consistent with Proposition 6.

Fig. 4 shows the average performance ratio of Algorithm
1, which is greater than 79% for any d value. It approaches
100% as d is small in the sparse random graph regime.
Intuitively, when the average neighbor number d is small and
users are sparsely connected, both Algorithm 1 and the optimal
algorithm try to match as many existing pairs as possible,
resulting in trivial performance gap. When d is large, each
user has many neighbors and choosing the second or third best
matching in the greedy matching is also close to the optimum.
This is consistent with Proposition 4 for dense random graphs.

V. PRACTICAL APPLICATION ASPECTS

In practice, the network graphs that one may obtain by
restricting the D2D sharing range may have different distri-
butions than the 2D grids and the G(n,p) graphs used in
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Fig. 5: The average matching weight per user of the greedy
matching obtained by Algorithm 1 versus the average neighbor
number d in the three practical instances of the realistic
network and the G(n,p = d/n) network.

our analysis. In addition to that, the actual performance of
the algorithm might be degraded because of communication
failures of nodes that are far or mutual interference among
pairs. In this section, we provide an initial investigation of
the above issues. We construct instances of a network graph
based on realistic user location data and check how well
our analytical G(n,p = d/n) performance measure captures
the actual performance of the greedy algorithm on the above
graph instances by tuning d to match the average number of
neighbors in the realistic graph. Next, we analyze the impact
of D2D communication failures on the optimum selection of
maximum D2D sharing range.

A. Approximating Realistic Networks

The G(n,d/n) network studied in Section IV assumes
users connect with each other with the same probability
p = d/n, and hence the average performance of Algorithm
1 in G(n,d/n) is characterized by the average neighbor
number d. However, in practice, the connectivity distribution
of users can follow different laws due to the structure of
the environment and the D2D communication limitations. To
validate our analysis on real scenarios, we run our algorithm on
graphs corresponding to realistic mobile user data and compare
the numerical results with our analytically derived results for
G(n,d/n) using Propositions 6 and 7.

We use the real dataset in [16] that records users’ position
information in a three-story university building. We choose
three instances in the peak (in terms of density) time from the
dataset and each instance contains hundreds of users. For these
users, we assume that any two of them can share resources
with each other when they are in the same story and the
distance between them is less than the D2D sharing range
L. By setting different values for L the structure of the graph
changes and the average number d(L) of neighbors per node
increases. In Fig. 5, we show the average matching weight
(per user) of the greedy matching versus the average neighbor
number d (instead of versus L) for the three practical instances
of the realistic user network and its G(n, d/n) approximation.
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Fig. 6: The average matching weight per user of the greedy
matching obtained by Algorithm 1 versus the maximum D2D
sharing range L with and without considering D2D commu-
nication failures.

We observe that the average matching weight increases in d
since increasing d (by increasing L) provides more sharing
choices for each user and our performance measure obtained
for G(n,d/n) approximates well the performance for the
realistic network, especially for large d.

B. D2D Sharing Range under Communication Failures

Our numerical results from the previous section suggest
that, as expected, the average matching weight of the greedy
matching increases with the D2D sharing range L. We wonder
whether a large L always benefits resource sharing. In fact, for
two users who are connected and share resources via a D2D
wireless link, a communication failure may occur due to the
long-distance transmission or the mutual interference among
different matched pairs. In our experiment, we consider that
the resource sharing transmission between any two users fails
with a probability that increases in the distance between them
based on a practical path-loss model and the number of inter-
fered pairs in proximity [17]. In our simulation experiment,
we consider a large number n = 10,000 of users uniformly
distributed in a circular ground cell with radius of R = 1000
meters and we can adjust the maximum sharing range L inside
which two users can apply D2D resource sharing.

In Fig. 6, we depict the average matching weight (per user)
of the greedy matching versus the maximum D2D sharing
range L for two cases depending on whether or not we con-
sider communication failures. Under communication failures,
this weight first increases and then decreases. Intuitively, when
the sharing range L is small, each user has few potential users
to share resources or interfere and failures occur rarely to be
an issue. But when L is large, since most of the neighbors
are located remotely and the channels between matched pairs
may cross each other, there is a high chance for the algorithm
to choose such a remote neighbor to incur large path loss
or interference. Then, if communication fails, this results in
adding zero value to the total matching. This is in contrast to
the case without failures, where the performance of the system
is always increasing in L.
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VI. CONCLUSIONS

In this paper, we adopt a greedy matching algorithm to
maximize the total sharing benefit in large D2D resource
sharing networks. This algorithm is fully distributed and has
sub-linear complexity O(logn) in the number of users n.
Though the approximation ratio of this algorithm is 1/2
(a worst-case result), we conduct average-case analysis to
rigorously prove that this algorithm provides a much better
average performance ratio compared to the optimal in 2D
grids and random networks G(n,p) when these are sparse or
very dense. We also use realistic data to show that our ana-
lytical G(n,p) performance measure approximates well D2D
networks encountered in practice. Finally, we consider the
communication failures due to the practical implementation
issues and study the best maximum D2D sharing range.
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