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Abstract—We present a method for experimentally measuring
the capacity region of a wireless network, defined here as the
set of all possible combinations of simultaneously achievable
link transmission rates. Due to the inherent complexity of the
problem, measuring the capacity region exactly typically involves
a prohibitively large volume of experiments. Therefore, the
method is based on a judicious, tunable algorithm, employing
online machine learning, which aims at reducing the volume
of experiments conducted. In order to evaluate the efficiency
of the method, and also to demonstrate the usefulness of
having the capacity region available, we apply our method to
a network of Raspberry Pi nodes placed inside a building and
communicating using IEEE 802.11. In particular, we compare the
performance of an optimal, centrally organized communication
scheme, computed using the measured capacity region within
a network optimization formulation, with the performance of a
simple communication scheme that uses multihop TCP flows.

Index Terms—Capacity Region, Online Machine Learning,
Experiment, Interference, Measurement, Wireless Network.

I. INTRODUCTION

Wireless networks have been studied for many decades

now [1], but research interest in them remains significant;

indeed, such networks are currently deployed or considered

for deployment in various settings [2], [3], [4], [5], [6].

A fundamental problem in wireless networks, and a water-

shed that sets them apart from wired ones, is the fact that

transmissions interfere with each other. The capacity region

is a multidimensional set of data rates that captures this

interference; our topic is its experimental evaluation.

There are various, closely related definitions of the capacity

region, capturing difference nuances of the real-life problem,

based, notably, on information theory [7], queuing theory

[8], network optimization [9], [10], [11], and optimal control

and scheduling [12], [13]. In information theoretic settings,

the capacity region is typically defined under the implicit

assumption that the channel is specified, but the complete

protocol stack is subject to optimization; in others, notably

network optimization settings, the transmission and media

access schemes are also specified, and the capacity region

captures the performance of the network when the data flow

is optimized; this is the approach adopted here.

An important problem in this field is that the capacity region

is inherently very hard to describe, due to the fact that, as

the number of nodes and links in the network increases, the

number of ways with which the network can operate increases

very fast. Another problem is that for the network to operate

optimally, i.e., make full use of the envelope provided by the

capacity region, nodes typically need to coordinate centrally.

Despite these problems, knowing the capacity region is very

useful, for two reasons: firstly, it is always useful to compare

the performance of distributed protocols with the theoretical

optimum, even if this cannot be practicably achieved, as this

comparison gives an absolute gauge of the suboptimality of

these protocols. Secondly, finding how the network operates

optimally under central coordination often provides insights

on how distributed protocols can be improved.

Unfortunately, to the best of our knowledge, work so far on

the capacity regions of wireless networks has been theoretical

in nature, employing analysis and simulation. Typically, a

model is adopted for the capacity region, based, in turn,

on channel and physical layer models, without attempting to

evaluate its accuracy experimentally. This is regrettable, as

both the wireless channel and the technologies used cannot

be captured accurately by tractable analytical models, as, e.g.,

studies of the MAC layer have demonstrated [14].

Machine Learning (ML) has been used extensively in the

context of wireless networks research [15], [16], [17], [18],

[19]. Here, we use ML to estimate the throughputs achieved

jointly by multiple simultaneously transmitting links.

In Section II we present a network optimization model

that features the capacity region. In Section III we present

our method for measuring the capacity region, by conducting

a sequence of experiments. In Section IV we showcase the

usefulness of measuring the capacity region and evaluate the

efficiency of the method using a small experimental network.

We conclude in Section V.

II. NETWORK AND CAPACITY REGION MODEL

Here, we introduce a simple network optimization frame-

work in which the capacity region appears as a key parameter

of a network optimization problem. We note that, excepting

our definition of the capacity region, similar frameworks have

been applied in the past (e.g., in [10], [11]).

A. The Wireless Network Utility Maximization Problem

We consider a set N of N nodes. Each of the nodes is able

to send information directly to some of the rest through point-

to-point wireless links. The link from node i to node j �= i is

denoted by l = (i, j), and we refer to i as its transmitter and

j as its receiver. Let L be the set of links and L their number.

Note that the links are directional, so, for any i, j with i �= j,

(i, j) and (j, i) may both exist.

The data traffic is described in terms of two types of

optimization variables, the flows and the divergences. Firstly,
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let xij be the flow through link (i, j), measured in units of data

volume over units of time. Let x ∈ R
L be the flow vector,

of length L, comprising all flows. We require that x belongs

to the capacity region (CR) C ⊂ R
L
+, i.e., an L-dimensional

set of vectors with non-negative components that describes the

capabilities of the links to jointly convey traffic. We present

our model for the CR in Section II-B. Secondly, let

si =
∑

j:(i,j)∈L
xij −

∑
j:(j,i)∈L

xji, i = 1, . . . , N, (1)

be the divergence at node i. The divergence expresses the rate

with which traffic is inserted into the network by node i. Let

s ∈ R
N be the divergence vector comprising all divergences.

As a means of more succinctly describing (1), we define the

adjacency matrix A to be a matrix of size N × L such that

Ai,l =

⎧⎪⎨
⎪⎩
1, if i is the transmitter of l,

−1, if i is the receiver of l,

0, otherwise.

With this definition, (1) is equivalent to Ax = s.

We require the divergence vector s to be bounded as follows:

L ≤ s ≤ U . The two vectors L,U ∈ R
N specify which nodes

can insert traffic in the network and which nodes can extract

traffic from the network. Finally, the objective function, which

must be maximized, is the utility function U(x, s).
Putting everything together, the resulting problem becomes:

Wireless Network Utility Maximization (WNUM)

maximize: U(x, s)

subject to: x ∈ C, Ax = s, L ≤ s ≤ U.

A number of comments can be made at this point. Firstly,

observe that there is no node mobility, as, indeed, the pa-

rameters of the problem do not change with time. Secondly,

there is only a single commodity in the optimization problem,

meaning that any piece of data created at any node may be

delivered to any other node, subject to the existing capacity

and divergence constraints. This assumption often applies in,

e.g., sensor and cellular networks, but not always. Thirdly,

we have assumed that there is a single common channel

available for communication, as there is a single CR. We

refrain from considering more general versions of the WNUM

Problem along, e.g., the above-mentioned lines, as in this work

we focus on measuring the CR and the WNUM Problem

is a straightforward problem in which the CR appears in a

nontrivial manner.

B. A model for the capacity region of the network

We call each subset T ⊂ L of links a transmission mode
(TM). We refer to the number of links in a TM as the size of

the TM. Let P(L) be the set of all TMs, i.e., the power set of

L. Note that the size of P(L), i.e., the total number of distinct

TMs, is M = 2L; indeed, to construct one of the TMs, each

link may be added to that TM or not.

We call a link (i, j) active when node i is transmitting data

for node j, and j is attempting to receive them. We say that

a TM is active when the links of that TM are active and no

other link is.

We associate each TM T with a corresponding primal
rate vector (PRV) R(T ) ≥ 0 which is an L-dimensional

vector (each dimension corresponding to a distinct link in

the network) comprised of the rates achieved by each of the

links that belong to T when T is active, in the respective

dimensions, and zeros in all other dimensions.

Next, let {R1, . . . , RK}, with K ≤ M = 2L be any subset

of PRVs and let the set

D({R1, . . . , RK}) =
{
x ∈ R

L : 0 ≤ x ≤
K∑

k=1

akRk,

K∑
k=1

ak ≤ 1, ak ≥ 0, k = 1, . . .K
}
. (2)

Therefore, a given vector x ∈ D({R1, . . . , RK}) if and only

if there is a K-dimensional vector a = (a1, . . . , ak) such that

0 ≤ x ≤
K∑

k=1

akRk,

K∑
k=1

ak ≤ 1, a ≥ 0, (3)

and so finding if x ∈ D({R1, . . . , RK}) is a feasibility linear

program.

What makes definition (2) useful are the following ob-

servations, whose proofs we omit due to space constraints:

D(R1, . . . , RK) is the set of all possible combinations of

average rates with which links transport information, if the

network is constrained to use the K TMs corresponding to

the PRVs R1, . . . , RK . Furthermore, any combination of rates

x ∈ D({R1, . . . , RK}) is achievable by a time division of the

TMs corresponding to R1, . . . , RK and padding transmissions

with random bits. For this reason, we call D({R1, . . . , RK})
the time division set of {R1, . . . , RK}; we call its elements

time division rate vectors of {R1, . . . , RK} and we refer

to both PRVs and time division rate vectors as rate vectors.

We also refer to any vector a with non-negative components

that sum to at most 1 as a time division (vector). Finally, for

simplicity, if we are given a set of TMs T1, . . . , TK , then we

denote D({R(T1), . . . , R(TK))} also as D({T1, . . . , TK}).
We can now define the capacity region C of the network as

the time division set of all PRVs R1, R2, . . . , RM :

C = D({R1, . . . , RM}).
In other words, the CR is the set of all possible combinations

of average rates with which links transport data, without any

constraint on the TMs used.

C. The Reduction Algorithm

Given a set of PRVs {R1, . . . , RK}, we do not expect all of

them to contribute to the time division set D({R1, . . . , RK}).
Rather, if the transfer of data by a particular TM can also be

achieved by some time division of the other TMs, removing

its PRV from the set {R1, . . . , RK} will not change the time
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Algorithm 1: Reduction Algorithm

Input: Set of K PRVs, R = {R1, . . . , RK}.

Output: Basis B ⊆ R
1 B = R;

2 for k ∈ 1, . . . ,K do
3 if Rk ∈ D(B − {Rk}) then
4 B = B − {Rk};

5 end
6 end

division set. Indeed, it is straightforward to prove that if R =
{R1, . . . , RK} is any set of PRVs and for some k, Rk ∈
D(R− {Rk}), then D(R) = D(R− {Rk}), but we omit the

proof due to space constraints.

This property motivates us to introduce the following Re-
duction Algorithm, which can be applied to any set of PRVs

R: we go through all PRVs in the set and, for each, we check

if that PRV is a time division rate vector of the rest. If it

is, it is removed from the set, and is not included in the

remaining checks. We refer to the set of those PRVs that are

kept as a basis (the concept should not be confused with the

bases of vector spaces). The pseudocode for this algorithm is

Algorithm 1.

As a side note, we conjecture that, provided that no two

input PRVs are equal, there is only one basis of their set, in the

sense that the Reduction Algorithm arrives at the same basis

irrespective of the order with which the PRVs are checked for

removal. We make no use of this conjecture later on.

By the above property, it follows that if we execute the

Reduction Algorithm on the complete set of M = 2L PRVs,

then we will find a basis of PRVs, BE , for which

C = D(BE).

In the following, we will refer to the members of BE , as well

as their respective TMs, as efficient and to all other PRVs,

and their respective TMs, as inefficient. Intuitively, efficient

PRVs contribute to the CR, and so the network has use for

them, whereas inefficient PRVs do not contribute to the CR,

and could be ignored when solving the WNUM Problem.

III. METHOD FOR MEASURING THE CAPACITY REGION

A. Sequential Algorithm

In principle, to establish the CR we need to measure each of

the PRVs R1, . . . , RM , through experimentation, and then op-

tionally execute the Reduction Algorithm, in order to arrive at

the smaller, more manageable number of PRVs that comprise

the basis. However, as the number M of PRVs increases very

fast with the number of links, the time needed to run these

experiments is prohibitive for all but the smallest networks.

Motivated by this observation, we present an algorithm that

aims to establish a manageable number of PRVs whose time

division set, though not equal to the CR, approximates it well.

We start with a definition: if b ≥ 0, then we refer to a TM,

as well as its corresponding PRV, as b-strong if

1) its links do not share any common node and

2) all its links transmit with a rate at least equal to b.

Intuitively, these two conditions jointly attempt to ensure that

b-strong TMs do not contain active links that suffer from

excessive levels of interference or contention for media access,

and so are expected to be more useful than the rest.

Next, we specify our Sequential Algorithm, which aims

at discovering as many b-strong TMs as possible, in a se-

quential manner. In the first step, we find, through exhaustive

measurements, the set P(L)b,1 of all b-strong TMs of size 1,

i.e., single links that can support a rate at least equal to b
when they are not interfered with. In the second step, we first

construct all pairs of these links and then keep all of these that

are also found to be b-strong, first by removing those where

there are nodes shared by two links, and then by performing

experiments on those TMs that remain to ensure that all their

link rates simultaneously exceed b. In this manner, we find a

set P(L)b,2 of b-strong TMs of size 2. More generally, in the

i-th step, we take all combinations of b-strong TMs added in

step i−1 with TMs added in the first step, i.e., single, b-strong

links, and we keep, first by removing those with nodes that are

shared by two links and then by performing measurements, a

set P(L)b,i of TMs of size i that are also b-strong. We continue

this process until either the �N/2	-th step has been concluded,

so we have ran out of suitable links to add to our expanding

b-strong TMs, or no new TMs were found in a step i < �N/2	.

The pseudocode for this algorithm is Algorithm 2. There,

the Cartesian operation P(L)check = P(L)b,i×P(L)b,1 of line

11 creates all distinct TMs of size i+1 comprised of a single

link from P(L)b,1 and i links from P(L)b,i, such that no node

participates in more than one link. The Boolean function b-
strong(·) is true if we find, through actual measurements, that

the TM T is b-strong, and false otherwise. If T is b-strong,

this function also stores its corresponding PRV, for later use

in solving the WNUM Problem.

Having executed the Sequential Algorithm, we arrive at a

set of b-strong TMs,

P(L)b = ∪�N/2�
i=1 P(L)b,i,

and we approximate the CR with their time division set:

Cb � D(P(L)b). (4)

Observe that a basic tradeoff exists: we anticipate that

increasing the value of b reduces the number of b-strong

vectors we have to discover experimentally. Therefore, our

measurements will be less time-consuming (so that our method

remains applicable at higher levels of mobility) and solving

the WNUM Problem will be less computationally intensive.

On the other hand, it also leads to a worse approximation, Cb,

for the CR and a suboptimal performance of the network, if

we use it for solving the WNUM Problem instead of the exact

CR C.

Also observe that the algorithm is not guaranteed to arrive

at a good approximation of the capacity region. In fact, it is not

guaranteed to even find all b-strong TMs. Indeed, it is possible
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Algorithm 2: Sequential Algorithm

Input: b,
Network of N nodes, comprising set N , and

L links, comprising set L.

Output: Sets of b-strong TMs of length i:
P(L)b,i, i = 1, . . . , �N/2	

/* Initialization: */
1 for i = 1 to �N/2	 do
2 P(L)b,i = ∅;

3 end
/* We find all b-strong links: */

4 for l ∈ L do
5 if b-strong({l}) then
6 P(L)b,1 = P(L)b,1 ∪ {{l}};

7 end
8 end
9 i = 1; /* Main iteration */

10 while i < �N/2	 and P(L)b,i �= ∅ do
11 P(L)check = P(L)b,i × P(L)b,1;

12 i++;

13 for T ∈ P(L)check do
14 if b-strong(T ) then
15 P(L)b,i = P(L)b,i ∪ {T };

16 end
17 end
18 end

that a b-strong TM of K links exists such that if any one link

is removed, the remaining K−1 links fail to create a b-strong

TM. However, as we show next, it is possible to arrive at a

performance guarantee for the Sequential Algorithm, assuming

a few modest assumptions.

B. Performance guarantee of the Sequential Algorithm

First, we specify three assumptions.

Assumption 1: TMs that have multiple links that share a
common node are inefficient (i.e., prohibiting the network to
use them does not reduce the CR).

The assumption is motivated by the fact that if such a TM

is used, the nodes involved in multiple links might prefer

to perform an impromptu time division, which will not be

better than time divisions achieved using the rest of the TMs.

Therefore, we expect that PRVs that correspond to such TMs

do not contribute to the CR. For some choices of the MAC

and PHY layers, such as those of IEEE 802.11, this is a

reasonable assumption. In some other cases, notably involving

spread spectrum techniques, this might not hold. Observe that

adopting this assumption significantly reduces the number of

TMs that can potentially contribute to the CR.

Assumption 2: TMs in which some links are active but have
zero data rate, due to excessive interference, are inefficient.

This assumption is very reasonable. Indeed, if we shut all

unsuccessfully transmitting links, we expect that there is a time

division that the other links of that TM can use to maintain the

performance they were experiencing when the unsuccessfully

transmitting links were competing with them.

Assumption 3: Let any b-strong TM of K transmitting links.
At least one of the K TMs that are created by removing one
link from that TM is also b-strong and, furthermore, the TM
created by that single link that was removed is also b-strong.

Indeed, if a set of links can all be active at the same time

with their rates all exceeding some value b, we expect that

there should be at least one link that can be removed from

that set without any of the others dropping below b, and that

link, by itself, should also be able to transmit with rate at least

equal to b.
In the case of the hardware used in our experimental setting

of Section IV, we expect these three assumptions to hold. In

fact, our experiments revealed deviations, as we discuss there.

Using these three assumptions, we can show that there

is some b > 0 such that, indeed, our Sequential Algorithm

discovers all efficient TMs, and so

Cb = C. (5)

Indeed, first note that, by induction, Assumption 3 ensures

that for all i, the set P(L)b,i that the algorithm finds in the

i-th step comprises all b-strong TMs of length i. Indeed, the

first step (lines 4-8) discovers all b-strong TMs of length 1 by

exhaustively going through all L TMs of length 1. To prove

the inductive step, assume that we have found all b-strong TMs

in step i−1, using lines 10-18. Let any b-strong TM of length

i. Then, by Assumption 3, it can be divided in a b-strong

TM of length i − 1, and a b-strong TM of length 1. As both

of them have been discovered in the previous and first step,

respectively, the given TM will belong to P(L)check and will

also be discovered, when these two are combined, in one of the

checks performed in line 14. Concluding, when Assumption

3 holds the Sequential Algorithm finds all b-strong vectors.

Furthermore, by Assumptions 1 and 2, the basis comprises

only TMs whose active links do not share nodes and transmit

with positive rates. Since these TMs are finite in number, it

follows that there is a b > 0 such that all of them are b-strong,

and so are all discovered by the algorithm. Therefore, for that

b, (5) holds.

C. Accelerating experiments with a machine learning module

Here, we show how the experiments prescribed by the

Sequential Algorithm can be accelerated using an online ML

module.

The basic idea is to modify the b-strong(·) routine that

is invoked by the Sequential Algorithm at line 14, so that

it first performs a tentative check, using past measurements,

of the input TM T under investigation. If T has a very low

probability of being b-strong, no experiments are executed. On

the other hand, those experiments that are executed are used

to train the module further.

Deciding if the input TM T is b-strong or not is a classifi-
cation problem with two classes. However, rather than solving

this classification problem directly, we solve it indirectly, by

first solving the regression problem of estimating the RV of
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Fig. 1. The experimental network.

T , and then deciding if T is b-strong or not, based on this

estimation. The reason for this approach is that the regression

approach can be applied in other related problems as well, and

so is of independent interest.

Moving to the details of the module, first, regarding its

state, the module stores, at any given time, all past TMs,

T1, T2, . . . , TK , for which experiments have been conducted,

including those that did not turn out to be b-strong. For each

Tk of these TMs, the module also stores the measured rate

vector Rk = (Rk1, . . . , RkL), as well the estimate R̂k =
(R̂k1, . . . , R̂kL) of that rate vector that had been calculated,

based on the previous k − 1 measurements, right before the

experiment for measuring Rk was executed.

Using the above information, the module selects its internal

set of weights so that the following quantity is minimized:

K∑
k=1

L∑
�=1

(R̄k� −Rk�)
2.

In the above, the vectors R̄k = (R̄k1, . . . , R̄kL) are functions

of the weights and are the best estimates of the corresponding

rate vectors Rk, k = 1, . . . ,K. They are updated, together

with the weights, whenever a new measurement is taken; they

should not be confused with the aforementioned vectors R̂k =
(R̂k1, . . . , R̂kL), which are based on preceding measurements

and are not updated once calculated. The minimization is

subject to the intuitively clear constraint that an estimate R̄k

can have positive elements only in those dimensions that

correspond to links that are active in the TM related to that

estimate.

The module also keeps track of the following metric:

eK =

⎧⎪⎪⎨
⎪⎪⎩
∞, K < W,(

1
N(K)

K∑
k=K−W+1

L∑
�=1

(R̂k� −Rk�)
2

) 1
2

, K ≥ W.

This metric is the sample standard deviation between the

estimate of a link’s data rate right before its measurement and

its actual measurement, computed over a sliding window of the

last W measurements preceding the (K+1)-th measurement.

The quantity N(K) is the number of all active links in the

TMs included in the sliding window. If there have been fewer

than W measurements, we deem all estimates inaccurate and,

to indicate this, set eK to infinity.

Whenever the b-strong(·) routine is invoked, the module is

fed with a new candidate TM TC and computes an estimate

R̂C = (R̂C1, . . . , R̂CL) of its rate vector. Based on this

estimate, the module decides if the rate vector of that TM will

be measured by experiment, or the estimate suggests such a

suboptimal performance that it is safe to skip the experiment

and promptly declare that TC is not b-strong. In particular,

let B be a marginally acceptable b-strong rate vector, i.e., a

vector whose components are either zero (if they correspond

to links not in TC) or b (for the rest of the components). Then,

experiments are skipped when

L∑
�=1

max(B� − R̂C�, 0) ≥ GeK .

The sum expresses how much, in total, the estimated data rates

should be increased so that the resulting rate vector marginally

becomes b-strong; if it exceeds a multiple GeK of the standard

deviation, eK , experiments are skipped. The parameter G > 0
is chosen so that the proper tradeoff between the number of

experiments that are executed and the number of b-strong TMs

that are missed is achieved.

IV. METHOD EVALUATION

We now present a preliminary evaluation of our method

based on measurements conducted on a testbed of 5 nodes.

A. Experimental testbed and measurements

Regarding the used hardware, each node comprises a Rasp-

berry Pi 4 Model B with 4 GB of RAM equipped with a

power bank and an external IEEE 802.11 card. The nodes

form a wireless network using the internal IEEE 802.11 cards

(with RTS/CTS handshakes deactivated, as is the default) in

the 5 GHz band, but communicate with a central controller

using the external IEEE 802.11 cards through an independent

control channel in the 2.4 GHz band.

Regarding the network topology, the 5 nodes, with IDs 50
through 54, are located in successive floors of a multiple-

floor residential building and can communicate using a total

of 10 links, as shown in Fig. 1. In that figure, there are five

lines connecting 5 node pairs, each line corresponding to two

links. Each line is labeled with the two data rates of the

respective links, when these links are not interfered with. The

rate shown first in the label is the rate when the node closer to

the beginning of the label transmits to the node closer to the

end of the label. The rates are measured in Kbps and, in the

figure, are rounded to integer values. We note that there were

a few other links between other pairs of nodes, but these were

weaker and more susceptible to competing transmissions, and

so at this stage were disregarded, as we estimated that they

would not have changed the CR, if included; formally, the CR

computed is the CR in the network with only these 10 links

available.

We conducted two sets of measurements. In the first set,

we measured successively the data rates of single, fixed-

duration multihop TCP flows for each of the 12 distinct source-

destination pairs comprised of two nodes that do not have

consecutive ids, using the best-performing route. We used the
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iperf [20] routine. These measurements were used to provide

a baseline, as we discuss later on.

In the second set of measurements, we measured the PRVs

of all TMs. Whenever a TM was tested, the states of all

nodes were reset and concurrent single-hop TCP flows were

initiated at each of its links, again using the iperf routine,

for a fixed duration. Measurements were then collected at the

central controller and stored for processing. As our network

was comprised of 10 links, the total number of TMs was

210 = 1024, which was manageable. We used concurrent TCP

flows with a duration of 60 seconds; together with the time

intervals needed for switching, the duration of that part of the

experiment lasted for approximately 18 hours.

There were two reasons for measuring all RVs beforehand.

Firstly, we can emulate the execution of the Sequential Al-

gorithm for any choice of the parameter b as well as the

parameters of our ML model by running the algorithm and,

whenever the RV of one of the 1023 non-empty TMs is

needed, we retrieve it. This is the approach we adopted in the

analysis of Section IV-B. Secondly, having all RVs available

allows us to test the validity of the assumptions of Section

III-B. We stress that in a practical setting measuring all RVs

is neither practicable nor required by our method.

Regarding the quality of the measurements, we discovered

that many of the measured throughputs were varying consid-

erably with time, despite no mobility or apparent interference

from other networks. We attribute this to the randomized

manner with which IEEE 802.11 resolves contention.

Regarding the ML module implementation, we used the

scikit-learn library [21] and the Python programming lan-

guage. Scikit-learn is a library offering a wide variety of ML

models and algorithms as well as different data processing

utilities. We experimented with the multilayer perceptron

(MLP), Random Forest and Linear Regression models for

regression. In our investigations, we tuned the parameters G,

W , the number of layers and the depth of the MLP by aiming

to keep the F1 score of the predictions as large as possible.

We note that

F1 =
tp

tp + 1
2 (fp + fn)

where tp is the number of true positive estimations (where

a TM was deemed to be b-strong and indeed was), fp is the

number of false positive estimations (where a TM was deemed

to be b-strong but was actually not), and fn is the number of

false negative estimations (where a TM was deemed to not

be b-strong but actually was). For the results reported here

we used W = 300/b, G = 0.1, and the Random Forest

model with parameters such that for b = 2 Mbps the F1
is maximized.

Regarding the complexity of our online machine learning

algorithm, we omit the details due to space constraints, how-

ever we briefly mention that it is dictated by the amount of

training examples K that are used and the number L of links in

the network. In particular, the amount of computations needed

to train the model on a new measurement arrival is O(KL)

for the case of the MLP, O(K2L) for the case of the random

forest, and O(L2K +L3) in the case of the linear regression.

B. Analysis of measurements

As a first comment, it is interesting to note that of the 1023
non-empty TMs, by executing the Reduction Algorithm only

19 were found to be efficient.

Regarding the extent to which the three assumptions of

Section III-B hold, of the 19 efficient vectors 11 actually had
links that shared nodes (thus violating Assumption 1) and 7

had active links that transmitted with 0 rate (thus violating

Assumption 2). We attribute these findings to the very large

number of measured TMs and the fact that measurements were

not exact. However, as we show next, although the Sequential

Algorithm fails to find these TMs, the resulting effects are

limited. We also note that we found Assumption 3 to hold for

all b-strong vectors, irrespective of the value of b.
To showcase the advantage of knowing the capacity region

of the network, even approximately, we now use our mea-

surements in order to compare two approaches for using the

network in the scenario that one of the 12 source-destination

pairs defined in Section IV-A must communicate.

The first approach is to discover the best route connecting

the two nodes, and then set up a TCP connection. With this

approach, using the results of the first set of experiments

discussed in Section IV-A, it turns out that the sum of the

throughputs over the 12 scenarios, rounded to an integer value,

is 105 Mbps.

The second approach is first to compute an approximation of

the capacity region, using our Sequential Algorithm of Section

III-A, and then, for each of the 12 scenarios, solve a linear

maximum-flow version of the WNUM problem of Section II-A

in order to arrive at a centrally computed time-division scheme.

In Fig. 2 we plot the sum of the 12 throughputs (as provided

by a MATLAB solver) versus the value of b in three cases:

1) When the CR is found by the Sequential Algorithm

without using the ML module (blue line).

2) When the CR is found by the Sequential Algorithm

without using the ML module, but the constraint that

b-strong TMs must have non-overlapping links is lifted

(blue dashed line, on or very close to the blue line

everywhere except for small values of b).
3) When the CR is constructed as follows: all 1023

nonempty TMs are sequentially checked by the ML

module for having all their active links exceeding b and

those accepted for experimentation are added in the CR

irrespective of the outcome of the experiment, i.e., if all

their active links indeed exceed b or not (red dash-dotted

line).

Note that in the last case in particular, the number of PRVs

comprising the CR equals the number of experiments con-

ducted. For this case, we did not use the Sequential Algorithm

out of necessity, in order to be able to feed the ML module

with a volume of data sufficiently large for training and

provide an indication of its performance in larger settings.

We also draw the performance of the multihop TCP scheme
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Fig. 2. Total throughput achieved versus the parameter b.
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(horizontal black dotted line). The number of PRVs creating

the approximate CR in the three cases is shown in Fig. 3.

The results of Figs. 2 and Fig. 3 are very encouraging.

Firstly, when the ML module is not enabled, despite the fact

that the network can operate in 1023 distinct TMs, selecting

any value for b in the reasonable range from 1 Mbps to 10

Mbps, and using only the b-strong TMs that are output by the

Sequential Algorithm, it follows that the sum of throughputs

remains greater than 192 Mbps. This is more than 90% of

the absolute maximum sum of throughputs, achieved when

all TMs are available, which is approximately 213 Mbps.

However, the number of measured TMs for this range of

b is very modest, as there is a total of 22 TMs with non-

overlapping links. Furthermore, for all these values of b, the

sum of throughputs is close to double the sum of throughputs

achieved by multihop TCP. Therefore, by performing at most

22 measurements, a central optimization can almost double

the performance of the network and bring it within 10% of

the performance that would be achieved if 1023 measurements

were conducted and so the complete CR was established.

Secondly, when the constraint that links must not overlap

is lifted, the number of b-strong PRVs increases significantly,

but the aggregate throughput does not change perceptibly. This

results justifies the inclusion of this constraint in the definition

of b-strong PRVs.

Thirdly, when the ML module is used, the tradeoff between

the volume of measurements and the aggregate throughput is

also excellent. Indeed, as long as 5 Mbps < b < 40 Mbps, the

specified algorithm achieves an aggregate throughput within

10% of the optimal with one to two orders of magnitude fewer

measurements.

Finally, it is interesting to note that, even in this simple

topology, the performance of multihop TCP is around 50% of

the theoretical optimum. We are investigating this issue, and

our current understanding is that the poor performance is due

to the fact that multihop TCP fails to divide time efficiently

between successive links of the same multihop route.

V. CONCLUSIONS

To the best of our knowledge, this is the first study to

explore the capacity regions of wireless networks by actual

measurements in a real-life testbed; previous work so far had

been theoretical in nature, employing analysis and simulation.

Notably, with respect to past works, we dispense with the need

to model the interference and the operation of the MAC layer

during the transmission of data and/or acknowledgment pack-

ets in terms of graph models, and depend on our measurements

to accurately reveal their effects.

Our (very preliminary) results are encouraging, as they

suggest that by measuring a small percentage of all TMs, we

are able to determine the bulk of the CR. Furthermore, they

reveal that the performance of the network can be improved

significantly, with respect to plain TCP multihop routing, if its

operation is prescribed by the solutions of the WNUM, which

use the discovered CR. Developing practicable protocols along

these lines is the subject of immediate future work.

On the other hand, our method has clear limitations. No-

tably, when there is high node mobility the CR cannot be

discovered in time (we note, however, that if the mobility

exhibits periodicity, multiple CRs, each corresponding to a

different recurrent epoch, can be computed and employed in

a suitably modified WNUM problem – this is the subject

of future work). Also, using our method requires a central

controller which will collect all measured PRVs, compile the

traffic needs of the network, and solve the WNUM problem.

Finally, our CR is calculated for the specific hardware used.

Providing bounds for the gap between our CR and a more
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Fig. 4. Average MSE evolution for the three networks of Section V.

information-theoretic, hardware-independent CR could be the

subject of future work.

Also as future work, we find the issue of the estimation of

PRVs, irrespective of any CR work, to be of particular interest.

For example, in Fig. 4 we present the results of the following

experiment on three different networks:

1) Our experimental network.

2) A model network created using a simple model under

which the rate at a receiver is an increasing function

of its SINR, and such that the average value of PRV

elements is the same as in the experimental network.

3) A random network, which has the PRVs of the experi-

mental network, but with their positive values substituted

by independent and uniform random numbers whose

average value is the same is in the experimental network.

For each of these networks, we input the RVs sequentially

into our ML module, in this case using an MLP of depth 5,

train the network to minimize the mean square error (MSE)

between the PRVs processed so far and their estimations, and

measure, as a function of the input TM index, the active link

MSE for new RV inputs, in units of (Mbps)2, averaged over a

window of size 100. It is interesting to note that the MSE of the

experimental network exhibits a behavior much closer to that

of the model network. Indeed, it is continuously reducing (as

opposed to the random network, which flattens out after a few

hundred measurements) as the MLP is able to glean structural

information from the experimental network and train itself.
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